PEPTIDES FOR INDUCING A CTL AND/OR HTL RESPONSE TO HEPATITIS C VIRUS

Abstract
The present invention is directed to peptides, and nucleic acids encoding them, derived from the Hepatitis C Virus (HCV). The peptides are those which elicit a CTL and/or HTL response in a host. The invention is also directed to compositions and vaccines for prevention and treatment of HCV infection and diagnostic methods for detection of HCV exposure in patients.
Description
FIELD OF THE INVENTION

The present invention is directed to peptides or nucleic acids encoding them, derived from the Hepatitis C Virus (HCV). The peptides are those which elicit a cytotoxic and/or helper T lymphocyte response in a host. The invention is also directed to vaccines for prevention and treatment of HCV infection and diagnostic methods for detection of HCV exposure in patients.


BACKGROUND OF THE INVENTION

The about 9.6 kb single-stranded RNA genome of the HCV virus comprises a 5′- and 3′-non-coding region (NCRs) and, in between these NCRs a single long open reading frame of about 9 kb encoding an HCV polyprotein of about 3000 amino acids.


HCV polypeptides are produced by translation from the open reading frame and cotranslational proteolytic processing. Structural proteins are derived from the amino-terminal one-fourth of the coding region and include the capsid or Core protein (about 21 kDa), the E1 envelope glycoprotein (about 35 kDa) and the E2 envelope glycoprotein (about 70 kDa, previously called NS1), and p7 (about 7 kDa). The E2 protein can occur with or without a C-terminal fusion of the p7 protein (Shimotohno et al. 1995). Recently, an alternative open reading frame in the Core-region was found which is encoding and expressing a protein of about 17 kDa called F (Frameshift) protein (Xu et al. 2001; Ou & Xu in US Patent Application Publication No. US2002/0076415). In the same region, ORFs for other 14-17 kDa ARFPs (Alternative Reading Frame Proteins), A1 to A4, were discovered and antibodies to at least A1, A2 and A3 were detected in sera of chronically infected patients (Walewski et al. 2001). From the remainder of the HCV coding region, the non-structural HCV proteins are derived which include NS2 (about 23 kDa), NS3 (about 70 kDa), NS4A (about 8 kDa), NS4B (about 27 kDa), NS5A (about 58 kDa) and NS5B (about 68 kDa) (Grakoui et al. 1993).


HCV is the major cause of non-A, non-B hepatitis worldwide. Acute infection with HCV (20% of all acute hepatitis infections) frequently leads to chronic hepatitis (70% of all chronic hepatitis cases) and end-stage cirrhosis. It is estimated that up to 20% of HCV chronic carriers may develop cirrhosis over a time period of about 20 years and that of those with cirrhosis between 1 to 4%/year is at risk to develop liver carcinoma (Lauer & Walker 2001, Shiffman 1999). An option to increase the life-span of HCV-caused end-stage liver disease is liver transplantation (30% of all liver transplantations world-wide are due to HCV-infection).


Virus-specific, human leukocyte antigen (HLA) class I-restricted cytotoxic T lymphocytes (CTL) are known to play a major role in the prevention and clearance of virus infections in vivo (Houssaint et al., 2001; Gruters et al., 2002; Tsai et al., 1997; Marray et al., 1992; Lukacher et al, 1984; Tigges et al., 1993).


MHC molecules are classified as either class I or class II. Class I MHC molecules are expressed on virtually all nucleated cells. Peptide fragments presented in the context of Class I MHC molecules are recognized by CD8+ T lymphocytes (cytotoxic T lymphocytes or CTLs). CD8+ T lymphocytes frequently mature into cytotoxic effectors which can lyse cells bearing the stimulating antigen. CTLs are particularly effective in eliminating tumor cells and in fighting viral infections.


Class II MHC molecules are expressed primarily on activated lymphocytes and antigen-presenting cells. CD4+ T lymphocytes (helper T lymphocytes or HTLs) are activated with recognition of a unique peptide fragment presented by a class II MHC molecule, usually found on an antigen presenting cell like a macrophage or dendritic cell. CD4+ T lymphocytes proliferate and secrete cytokines that either support an antibody-mediated response through the production of IL-4 and IL-10 or support a cell-mediated response through the production of IL-2 and IFN-gamma.


T lymphocytes recognize an antigen in the form of a peptide fragment bound to the MHC class I or class II molecule rather than the intact foreign antigen itself. An antigen presented by a MHC class I molecule is typically one that is endogenously synthesized by the cell (e.g., an intracellular pathogen). The resulting cytoplasmic antigens are degraded into small fragments in the cytoplasm, usually by the proteasome (Niedermann et al., 1995). Antigens presented by MHC class II molecules are usually soluble antigens that enter the antigen presenting cell via phagocytosis, pinocytosis, or receptor-mediated endocytosis. Once in the cell, the antigen is partially degraded by acid-dependent proteases in endosomes (Blum et al., 1997; Arndt et al., 1997).


Functional HLAs are characterized by a deep binding groove to which endogenous as well as foreign, potentially antigenic peptides bind. The groove is further characterized by a well-defined shape and physico-chemical properties. HLA class I binding sites are closed, in that the peptide termini are pinned down into the ends of the groove. They are also involved in a network of hydrogen bonds with conserved HLA residues (Madden et al., 1992). In view of these restraints, the length of bound peptides is limited to 8-10 residues. However, it has been demonstrated by Henderson et al (1992) that peptides of up to 12 amino acid residues are also capable of binding HLA class I. Superposition of the structures of different HLA complexes confirmed a general mode of binding wherein peptides adopt a relatively linear, extended conformation.


At the same time, a significant variability in the conformation of different peptides was observed also. This variability ranges from minor structural differences to notably different binding modes. Such variation is not unexpected in view of the fact that class I molecules can bind thousands of different peptides, varying in length (8-12 residues) and in amino acid sequence. The different class I allotypes bind peptides sharing one or two conserved amino acid residues at specific positions. These residues are referred to as anchor residues and are accommodated in complementary pockets (Falk, K. et al., 1991). Besides primary anchors, there are also secondary anchor residues occupied in more shallow pockets (Matsumura et al., 1992). In total, six allele-specific pockets termed A-F have been characterized (Saper et al., 1991; Latron et al., 1992). The constitution of these pockets varies in accordance with the polymorphism of class I molecules, giving rise to both a high degree of specificity (limited cross reactivity) while preserving a broad binding capacity.


In contrast to HLA class I binding sites, class II sites are open at both ends. This allows peptides to extend from the actual region of binding, thereby “hanging out” at both ends (Brown et al., 1993). Class II HLAs can therefore bind peptide ligands of variable length, ranging from 9 to more than 25 amino acid residues. Similar to HLA class I, the affinity of a class II ligand is determined by a “constant” and a “variable” component. The constant part again results from a network of hydrogen bonds formed between conserved residues in the HLA class II groove and the main-chain of a bound peptide. However, this hydrogen bond pattern is not confined to the N- and C-terminal residues of the peptide but distributed over the whole of the chain. The latter is important because it restricts the conformation of complexed peptides to a strictly linear mode of binding. This is common for all class II allotypes. The second component determining the binding affinity of a peptide is variable due to certain positions of polymorphism within class II binding sites. Different allotypes form different complementary pockets within the groove, thereby accounting for subtype-dependent selection of peptides, or specificity. Importantly, the constraints on the amino acid residues held within class II pockets are in general “softer” than for class I. There is much more cross reactivity of peptides among different HLA class II allotypes. Unlike for class I, it has been impossible to identify highly conserved residue patterns in peptide ligands (so-called motifs) that correlate with the class II allotypes.


Peptides that bind some MHC complexes have been identified by acid elusion methods (Buus et al., 1988), chromatography methods (Jardetzky, et al., 1991 and Falk et al., 1991), and by mass spectrometry methods (Hunt, et al., 1992). A review of naturally processed peptides that bind MHC class I molecules is set forth in Rotzschke and Falk, 1991.


Of the many thousand possible peptides that are encoded by a complex foreign pathogen, only a small fraction ends up in a peptide form capable of binding to MHC class I or class II antigens and can thus be recognized by T cells if containing a matching T-cell receptor. This phenomenon is known as immunodominance (Yewdell et al., 1997). More simply, immunodominance describes the phenomenon whereby immunization or exposure to a whole native antigen results in an immune response directed to one or a few “dominant” epitopes of the antigen rather than every epitope that the native antigen contains. Immunodominance is influenced by a variety of factors that include MHC-peptide affinity, antigen processing and T-cell receptor recognition.


In view of the heterogeneous immune response observed with HCV infection, induction of a multi-specific cellular immune response directed simultaneously against multiple HCV epitopes appears to be important for the development of an efficacious vaccine against HCV. There is a need, however, to establish vaccine embodiments that elicit immune responses that correspond to responses seen in patients that clear HCV infection.


The large degree of HLA polymorphism is an important factor to consider with the epitope-based approach to vaccine development. To address this factor, epitope selection can include identification of peptides capable of binding at high or intermediate affinity to multiple HLA molecules or selection of peptides binding the most prevalent HLA types. Another important factor to be considered in HCV vaccine development is the existence of different HCV genotypes and subtypes. Therefore, HCV genotype- or subtype-specific immunogenic epitopes need to be identified for all considered genotypes or subtypes. However, it is preferred to identify epitopes covering more than one HCV genotype or subtype.


The different characteristics of class I and class II MHC molecules are responsible for specific problems associated with the prediction of potential T-cell epitopes. As discussed before, class I molecules bind short peptides that exhibit well-defined residue type patterns.


This has led to various prediction methods that are based on experimentally determined statistical preferences for particular residue types at specific positions in the peptide. Although these methods work relatively well, uncertainties associated with non-conserved positions limit their accuracy.


Methods for MHC/peptide binding prediction can grossly be subdivided into two categories: “statistical methods” that are driven by experimentally obtained affinity data and “structure-related methods” that are based on available 3D structural information of MHC molecules. Alternatively, a molecular dynamics simulation is sometimes performed to model a peptide within an MHC binding groove (Lim et al., 1996). Another approach is to combine loop modeling with simulated annealing (Rognan et al., 1999). Most research groups emphasize the importance of the scoring function used in the affinity prediction step.


Several MHC binding HCV peptides have already been disclosed, e.g. in WO02/34770 (Imperial College Innovations Ltd), WO01/21189 and WO02/20035 (Epimmune), WO04/024182 (Intercell), WO95/25122 (The Scripps Research Institute), WO95/27733 (Government of the USA, Department of Health and Human Services), EP 0935662 (Chiron), WO02/26785 (Immusystems GmbH), WO95/12677 (Innogenetics N.V) and WO97/34621 (Cytel Corp).


There is a need to substantially improve both the structure prediction and the affinity assessment steps of methods which predict the affinity of a peptide for a major histocompatibility (MHC) class I or class II molecule. The main problem encountered in this field is the poor performance of prediction algorithms with respect to MHC alleles for which experimentally determined data (both binding and structural information) are scarce. This is e.g. the case for HLA-C.


Accordingly, while some MHC binding peptides have been identified, there is a need in the art to identify novel MHC binding peptides from HCV that can be utilized to generate an immune response against HCV from which they originate. Also, peptides predicted to bind (and binding) with reasonable affinity need a slow off rate in order to be immunogenic (Micheletti et al., 1999; Brooks et al., 1998; van der Burg et al., 1996).


SUMMARY OF THE INVENTION

The present invention is directed to peptides or epitopes derived from the Core, E1, E2, P7, to NS2, NS3, NS4 (NS4A and NS4B) and NS5 (NS5A and NS5B) protein of the Hepatitis C Virus (HCV). The peptides are those which elicit a HLA class I and/or class II restricted T lymphocyte response in an immunized host. More specific, the HLA class I restricted peptides of the present invention bind to at least one HLA molecule of the following HLA class I groups: HLA-A*01, HLA-A*02, HLA-A*03, HLA-A*11, HLA-A*24, HLA-B*07, HLA-B*08, HLA-B*35, HLA-B*40, HLA-B*44, HLA-Cw03, HLA-Cw04, HLA-Cw06 or HLA-Cw07. Preferred peptides are summarized in Table 13. The HLA class II restricted peptides of the present invention bind to at least one HLA molecule of the following HLA class II groups: HLA-DRB1, -DRB2, -DRB3, -DRB4, -DRB5, -DRB6, -DRB7, -DRB8 or -DRB9. Said HLA class II groups are sometimes summarized as HLA-DRB1-9. Preferred class II restricted peptides are given in Table 14.


The HLA class I and II binding peptides of the invention have been identified by the method as described in WO03/105058—Algonomics, by the method as described by Epimmune in WO01/21189 and/or by three public database prediction servers, respectively Syfpeithi, BIMAS and nHLAPred. Each of the peptides per se (as set out in the Tables) is part of the present invention. Furthermore, it is also an inventive aspect of this application that each peptide may be used in combination with the same peptide as multiple repeats, or with any other peptide(s) or epitope(s), with or without additional linkers. Accordingly, the present invention also relates to a composition and more specific to a polyepitopic peptide.


In a further embodiment, the present invention relates to a polyepitopic peptide comprising at least three peptides selected from the HLA-B and/or HLA-C binding peptides as disclosed in Table 13.


In a further embodiment, the present invention relates to a polyepitopic peptide comprising at least two peptides derived from a HCV protein and capable of inducing a HLA class I and/or class II restricted T lymphocyte response, wherein at least one peptide is a HLA-C binding peptide.


In a further embodiment, the present invention relates to a polyepitopic peptide comprising at least two HLA class II binding peptides selected from the peptides as disclosed in Table 14.


In a specific embodiment of the invention, the peptides are characterized in that they are present in the HCV consensus sequence of genotype 1a, 1b and/or 3a.


Furthermore, the present invention relates to nucleic acids encoding the peptides described herein. More particular, the present invention relates to a “minigene” or a polynucleotide that encodes a polyepitopic peptide as described herein.


The current invention also relates to a vector, plasmid, recombinant virus and host cell comprising the nucleic acid(s) or minigene(s) as described herein.


The peptides, corresponding nucleic acids and compositions of the present invention are useful for stimulating an immune response to HCV by stimulating the production of CTL and/or HTL responses. The peptide epitopes of the present invention, which are derived from native HCV amino acid sequences, have been selected so as to be able to bind to HLA molecules and induce or stimulate an immune response to HCV. In a specific embodiment, the present invention provides “nested epitopes”. The present invention also relates to a polyepitopic peptide comprising a nested epitope.


In a further embodiment, the present invention provides polyepitopic peptides, polynucleotides, compositions and combinations thereof that enable epitope-based vaccines from which the epitopes are capable of interacting directly or indirectly with HLA molecules encoded by various genetic alleles to provide broader population coverage than prior vaccines.


In a preferred embodiment, the invention relates to a composition comprising HCV-specific CTL epitopes, HCV-specific HTL epitopes or a combination thereof. Said composition can be in the form of a minigene comprising one or more CTL epitopes, one or more HTL epitopes, or a combination thereof.


In a further embodiment, the peptides of the invention, or nucleic acids encoding them, are used in diagnostic methods such as the determination of a treatment regimen, the determination of the outcome of an HCV infection, evaluation of an immune response or evaluation of the efficacy of a vaccine.





FIGURE LEGENDS


FIG. 1: HCV 1b consensus sequence (SEQ ID NO 769), based on a selection of available HCV sequences with identification (in bold) of the parts used for the 9-mer peptide design by the method as described by Algonomics N.V.; said parts are Core, NS3 and NS5; the amino acid numbering of the 9-mers present in Tables 1-11 is based on the HCV sequence disclosed in FIG. 1.






















part of






AA start
AA end
interest
AA start
AA end
#AA






















C
1
191
C
1
191
191


E1
192
383


E2
384
746


P7
747
809


NS2
810
1026


NS3
1027
1657
NS3
1160
1657
498


NS4A
1658
1711


NS4B
1712
1972


NS5A
1973
2420


NS5B
2421
3011
NS5B
2560
2850
291










FIG. 2: HCV 1b consensus sequence (SEQ ID NO 770) with identification (in bold) of the parts used for the 10-mer peptide design by the method as described by Algonomics N.V., and used for determination of HCV genotype cross-reactivity; said parts are Core, NS3, NS4 and NS5. The amino acid numbering is the same as for FIG. 1. The amino acid numbering of the 10-mers present in Tables 1-11 is based on the HCV sequence disclosed in FIG. 2.



FIG. 3: Binding of HLA-A02 reference peptide FLPSDC(F1)FPSV on HLA-A02 in a cell-based binding assay.



FIG. 4: Example of a typical HLA-A02 competition experiment in a cell-based binding assay.



FIG. 5: HCV 1a consensus sequence (SEQ ID NO 771) used for determination of HCV genotype cross-reactivity.



FIG. 6: HCV 3a consensus sequence (SEQ ID NO 772) used for determination of HCV genotype cross-reactivity.



FIG. 7: Binding versus immunogenicity in HLA-DRB1*0401 Tg mice.





DETAILED DESCRIPTION OF THE INVENTION

The present invention is directed to peptides derived from the Core, E1, E2, P7, NS2, NS3, NS4 (NS4A and NS4B) or NS5 (NS5A and NS5B) protein of the Hepatitis C Virus (HCV). The peptides are those which elicit a HLA class I and/or class II restricted T lymphocyte response in an immunized host.


More specific, the HLA class I restricted peptides (CTL epitopes) of the present invention bind at least one HLA molecule of the following HLA class I groups: HLA-A*01, HLA-A*02, HLA-A*03, HLA-A*11, HLA-A*24, HLA-B*07, HLA-B*08, HLA-B*35, HLA-B*40, HLA-B*44, HLA-Cw03, HLA-Cw04, HLA-Cw06 or HLA-Cw07. Preferred peptides are summarized in Table 13. The HLA class II restricted peptides (HTL epitopes) of the present invention bind at least one HLA molecule of the following HLA class II groups: HLA-DRB1, -DRB2, -DRB3, -DRB4, -DRB5, -DRB6, -DRB7, -DRB8 or -DRB9. Said HLA class II groups are sometimes summarized as HLA-DRB1-9. Preferred HTL epitopes are given in Table 14.


Each of the HLA class I and class II peptides per se (as set out in the Tables) is part of the present invention. Furthermore, it is an aspect of the invention that each epitope may be used in combination with any other epitope.


Identification of the Peptides

Based on the hundreds of known HCV genotypes and subtypes (at least 3000 amino acids per sequence), thousands of theoretical CTL and/or HTL epitopes are predicted according to the methods as described herein. Starting from said long list, a first selection of epitopes has been made based on the predicted binding affinity.


The HLA class I and II binding peptides of the invention have been identified by the method as described in WO03/105058—Algonomics, by the method as described by Epimmune in WO01/21189 and/or by three public epitope prediction servers respectively Syfpeithi, BIMAS and nHLAPred.


A first set of CTL peptides is derived by the method as described in WO03/105058 by Algonomics N.V., Zwijnaarde, Belgium, which is incorporated herein by reference. Said method is directed to a structure-based prediction of the affinity of potentially antigenic peptides for major histocompatibility (MHC) receptors.


Initially, a HCV consensus sequence is designed. To do this, a selection of HCV sequences from HCV type 1b present in the “Los Alamos” database are clustered and aligned. The HCV Sequence Database from the Los Alamos National laboratory can be found on: http://hcv.lanl.gov/content/hcv-db/HelpDocs/cluster-help.html.


The generated multiple sequence alignments have been used to identify interesting (i.e. conserved) regions in the HCV proteins for CTL epitope prediction.



FIG. 1 discloses the HCV consensus sequence used for the 9-mer CTL epitope prediction in the present invention. Amino acid numbering for the 9-mers present in Tables 1-11 is based on said sequence.



FIG. 2 discloses the HCV consensus sequence used for the 10-mer CTL epitope prediction in the present invention. Amino acid numbering for the 10-mers present in Tables 1-11 is based on said sequence.


Predictions were made for HLA-A0101, HLA-A0201, HLA-A0301, HLA-A2402, HLA-B0702, HLA-B0801, HLA-B3501, HLA-B4403, HLA-Cw0401, HLA-Cw0602 and HLA-Cw0702.


Tables 1-11 disclose the HLA-A, HLA-B and HLA-C binding peptides of the current invention derived by the above-described algorithm. Division is made between Strong binders (S) with Kdpred <0.1 μM, Medium binders (M) with Kdpred 0.1-1 μM and Weak binders (W) with Kdpred 1-10 μM. Kdpred is the affinity (dissociation constant) as predicted by the algorithm.


A further selection is made based upon the presence of the epitopes in the most prevalent genotypes. Accordingly, those peptides that are present in

    • at least genotype 3a, or
    • at least genotype 1b, or
    • at least genotype 1a and 1b, or
    • at least genotypes 1a, 1b and 3a,


      are retained for further testing. These peptides are summarized in Table 13.


Furthermore, other HCV genotypes (e.g. genotype 4a) can be retained in view of prevalence and/or importance.


A second set of peptides is identified by the method as described in WO01/21189 by Epimmune Inc., California, USA, which is incorporated herein by reference. Proprietary computer algorithms are used to rapidly identify potential epitopes from genomic or proteomic sequence data of viruses, bacteria, parasites or tumor-associated antigens. The program can also be used to modify epitopes (analogs) in order to enhance or suppress an immune response.


The algorithm is based on the conversion of coefficient-based scores into KD (IC50) predictions (PIC Score) thereby facilitating combined searches involving different peptide sizes or alleles. The combined use of scaling factors and exponential power corrections resulted in best goodness of fit between calculated and actual IC50 values. Because the algorithm predicts epitope binding with any given affinity, a more stringent candidate selection procedure of selecting only top-scoring epitopes, regardless of HLA-type, can be utilized.


Protein sequence data from 57 HCV isolates were evaluated for the presence of the designated supermotif or motif. The 57 strains include COLONEL-ACC-AF290978, H77-ACC-NC, HEC278830-ACC-AJ278830, LTD1-2-XF222-ACC-AF511948, LTD6-2-XF224-ACC-AF511950, JP.HC-J1-ACC-D10749, US.HCV-H-ACC-M67463, US.HCV-PT-ACC-M62321, D89815-ACC-D89815, HC-J4-ACC-AF054250, HCR6-ACC-AY045702, HCV-CG1B-ACC-AF333324, HCV-JS-ACC-D85516, HCV-K1-R1-ACC-D50480, HCV-S1-ACC-AF356827, HCVT050-ACC-AB049087, HPCHCPO-ACC-D45172, M1LE-ACC-AB080299, MD11-ACC-AF207752, Source-ACC-AF313916, TMORF-ACC-D89872, AU.HCV-A-ACC-AJ000009, CN.HC-C2-ACC-D10934, CN.HEBEI-ACC-L02836, DE.HCV-AD78-ACC-AJ132996, DE.HD-1-ACC-U45476, DE.NC1-ACC-AJ238800, JP.HCV-BK-ACC-M58335, JP.HCV-J-ACC-D90208, JP.HCV-N-ACC-AF139594, JP.J33-ACC-D14484, JP.JK1-full-ACC-X61596, JP.JT-ACC-D11355, JP.MD1-1-ACC-AF165045, KR.HCU16362-ACC-U16362, KR.HCV-L2-ACC-U01214, RU.274933RU-ACC-AF176573, TR.HCV-TR1-ACC-AF483269, TW.HCU89019-ACC-U89019, TW.HPCGENANTI-ACC-M84754, G2AK1-ACC-AF169003, HC-J6CH-ACC-AF177036, MD2A-1-ACC-AF238481, NDM228-ACC-AF169002, JP.JCH-1-ACC-AB047640, JP.JFH-1-ACC-AB047639, JP.Td-6-ACC-D00944, JPUT971017-ACC-AB030907, MD2B-1-ACC-AF238486, JP.HC-J8-ACC-D10988, BEBE1-ACC-D50409, CB-ACC-AF046866, K3A-ACC-D28917, NZL1-ACC-D17763, DE.HCVCENS1-ACC-X76918, JP.HCV-Tr-ACC-D49374 and EG.ED43-ACC-Y11604.


Predictions were made for HLA-A0101, HLA-A0201, HLA-A1101, HLA-A2402, HLA-B0702, HLA-B-0801 and HLA-B4002. For B0801, no PIC algorithm is available but motif-positive sequences were selected.


Tables 1, 2, 3, 4, 5, 6 and 8 disclose the HLA-A and HLA-B peptides of the current invention yielding PIC Scores <100 derived by the above-described algorithm.


A further selection is made based upon the presence of the epitopes in the most prevalent genotypes. Accordingly, those peptides that are present in

    • at least genotype 3a, or
    • at least genotype 1b, or
    • at least genotype 1a and 1b, or
    • at least genotypes 1a, 1b and 3a,


      are retained for further testing. These peptides are summarized in table 13.


Furthermore, other HCV genotypes (e.g. genotype 4a) can be retained in view of prevalence and/or importance.


A third set of peptides is identified by three publicly available algorithms.


Initially, a HCV 1b consensus sequence is designed. HCV sequences from 80 HCV type 1b sequences were retrieved from the HCV sequence database URL hcv.lanl.gov/content/hcv-db/index of the Division of Microbiology and Infectious Diseases of the National Institute of Allergies and Infectious Diseases (NIAID).


The generated multiple sequence alignments are used to identify interesting regions in the HCV proteins for CTL epitope prediction. FIG. 2 discloses the HCV consensus sequence used for the CTL epitope prediction Amino acid numbering throughout the specification is based on said sequence.


Based on said consensus sequence, three different prediction algorithms were used for CTL epitope prediction:


A) Syfpeithi:

Hans-Georg Rammensee, Jutta Bachmann, Niels Nikolaus Emmerich, Oskar Alexander Bachor, Stefan Stevanovic: SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics (1999) 50: 213-219; URL syfpeithi.de)


The prediction is based on published motifs (pool sequencing, natural ligands) and takes into consideration the amino acids in the anchor and auxiliary anchor positions, as well as other frequent amino acids. The scoring system evaluates every amino acid within a given peptide. Individual amino acids may be given the arbitrary value 1 for amino acids that are only slightly preferred in the respective position, optimal anchor residues are given the value 15; any value between these two is possible. Negative values are also possible for amino acids which are disadvantageous for the peptide's binding capacity at a certain sequence position. The allocation of values is based on the frequency of the respective amino acid in natural ligands, T-cell epitopes, or binding peptides. The maximal scores vary between different MHC alleles. Only those MHC class I alleles for which a large amount of data is available are included in the “epitope prediction” section of SYFPEITHI. SYFPEITHI does not make predictions for HLA-C alleles.


Predictions were made for HLA-A01, A0201, A03, A2402, B0702, B08 and B44. For each class, both 9- and 10-mers were predicted, except for B08, where 8- and 9-mers were predicted, but no 10-mers.


B) BIMAS:

This algorithm allows users to locate and rank 8-mer, 9-mer, or 10-mer peptides that contain peptide-binding motifs for HLA class I molecules. Said rankings employ amino acid/position coefficient tables deduced from the literature by Dr. Kenneth Parker of the National Institute of Allergy and Infectious Diseases (NIAID) at the National Institutes of Health (NIH) in Bethesda, Md. The Web site (http://bimas.dcrt.nih.gov/molbio/hla_bind/) was created by Ronald Taylor of the Bioinformatics and Molecular Analysis Section (BIMAS), Computational Bioscience and Engineering Laboratory (CBEL), Division of Computer Research & Technology (CIT), National Institutes of Health, in collaboration with Dr. Parker. The initial (running) score is set to 1.0. For each residue position, the program examines which amino acid is appearing at that position. The running score is then multiplied by the coefficient for that amino acid type, at that position, for the chosen HLA molecule. These coefficients have been pre-calculated and are stored for use by the scoring algorithm in a separate directory as a collection of HLA coefficient files. The idea behind these tables is the assumption that, to the first approximation, each amino acid in the peptide contributes independently to binding to the class I molecule. Dominant anchor residues, which are critical for binding, have coefficients in the tables that are significantly different from 1. Highly favorable amino acids have coefficients substantially greater than 1, and unfavorable amino acids have positive coefficients that are less than one. Auxiliary anchor residues have coefficients that are different from 1 but smaller in magnitude than dominant anchor residues. Using 9-mers, nine multiplications are performed. Using 10-mers, nine multiplications are again performed, because the residue lying at the fifth position in the sequence is skipped. The resulting running score is multiplied by a final constant to yield an estimate of the half time of disassociation. The final multiplication yields the score reported in an output table. Predictions were made for HLA-A01, A0201, A03, A24, B07, B08, B3501, B4403, Cw0301, Cw0401, Cw0602 and Cw0702. For each class, both 9- and 10-mers were predicted, except for B08, where 8-, 9- and 10-mers were predicted.


C) nHLAPred


nHLAPred is a highly accurate MHC binders' prediction method for the large number of class I MHC alleles. (Dr. GPS Raghava, Coordinator, Bioinformatics Centre, Institute of Microbial Technology, Sector 39A, Chandigarh, India; http://imtech.rs.in/raghava). The algorithm is partitioned in two parts ComPred and ANNpred. In the ComPred part the prediction is based on the hybrid approach of Quantitative matrices and artificial neural network. In ANNPred the prediction is solely based on artificial neural network.


ComPred: This part of the algorithm can predict the MHC binding peptides for 67 MHC alleles. The method is systematically developed as follows:


Firstly, a quantitative matrix (QM) based method has been developed for 47 MHC class I alleles having minimum 15 binders available in the MHCBN database.


Quantitative matrices provide a linear model with easy to implement capabilities. Another advantage of using the matrix approach is that it covers a wider range of peptides with binding potential and it gives a quantitative score to each peptide.


Further, an artificial neural network (ANN) based method has been developed for 30 out of these 47 MHC alleles having 40 or more binders. The ANNs are self-training systems that are able to extract and retain the patterns present in submitted data and subsequently recognize them in previously unseen input. The ANNs are able to classify the data of MHC binders and non-binders accurately as compared to other. The ANNs are able to generalize the data very well. The major constraint of neural based prediction is that it requires large data for training. In addition, the method allows prediction of binders for 20 more MHC alleles using the quantitative matrices reported in the literature.


Predictions were made for HLA-A01, A0201, A0301, A24, B0702, B08, B3501, B4403, Cw0301, Cw0401, Cw0602 and Cw0702. nHLAPred can only predict 9-mers.


For each combination of prediction algorithm, protein and HLA allele, a list of the top ranking peptides (=predicted to have the highest affinity) is retrieved.


A list was created (not shown) with all peptides for all HLA alleles in descending order of affinity. In this list, the peptides were marked according to occurrence in different HCV genotypes (1b, 1a and/or 3a consensus sequences) and to cross-reaction between HLA alleles. For each HLA class, all peptides predicted by the different prediction servers are combined in 1 table (not shown) with the rank numbers for each of the prediction servers per column. For each peptide the number of prediction servers that assigned a rank number up to 60 or 100 are counted.


Those peptides that are predicted by 2 to 4 algorithms and that are within the 60 or 100 best are finally selected. If upon binding analysis (see below) only few high affinity binding peptides are identified, additional selections can be made (e.g. from peptides predicted by the Epimmune algorithm and yielding PIC scores <1000). All these peptides are given in Table 13.


As an example, the selection of the B07 peptides has been disclosed in Example 2. A comparable procedure was followed for the other HLA-binding peptides predicted by the Epimmune algorithm and the three public algorithms.


Table 13 discloses the selection of the HLA-A, HLA-B and HLA-C peptides of the current invention that are predicted to bind to a given HLA and that are derived by the above-described procedures. The peptide and corresponding nucleic acid compositions of the present invention are useful for inducing or stimulating an immune response to HCV by stimulating the production of CTL responses.


The HLA class II binding peptides of the present invention have been identified by the method as described in WO 01/21189A1 by Epimmune Inc., California, USA, which is incorporated herein by reference. Protein sequence data from 57 HCV isolates (as for the CTL prediction) were evaluated for the presence of the designated supermotif or motif. Predictions were made using the HLA DR-1-4-7 supermotif for peptides that bind to HLA-DRB1*0401, DRB1*0101 and DRB1*0701, and using HLA DR3 motifs for peptides that bind to DRB1*0301.


The predicted HTL peptides are given in Table 12.


A further selection is made based upon the presence of the core of the class II epitopes in the most prevalent genotypes. The “core” is defined as the central 9 (uneven amount of total amino acids) or 10 (even amount of total amino acids) amino acids of the total epitope sequence. As an example, the core (9aa) of the following epitope (15aa-uneven) is indicated in bold/underlined: ADLMGYIPLVGAPLG.


Accordingly, those peptides that have a core present in

    • at least genotype 3a, or
    • at least genotype 1b, or
    • at least genotype 1a and 1b, or
    • at least genotypes 1a, 1b and 3a,


      are retained for further testing. These peptides are summarized in table 14.


Furthermore, other HCV genotypes (e.g. genotype 4a) can be retained in view of prevalence and/or importance.


The relationship between binding affinity for HLA class I and II molecules and immunogenicity of discrete peptides or epitopes on bound antigens (HLA molecules) can be analyzed in two different experimental approaches (see, e.g., Sette et al, 1994). E.g. as for HLA-A0201, in the first approach, the immunogenicity of potential epitopes ranging in HLA binding affinity over a 10.000-fold range can be analyzed in HLA-A0201 transgenic mice. In the second approach, the antigenicity of approximately 100 different hepatitis B virus (HBV)-derived potential epitopes, all carrying A0201 binding motifs, was assessed by using PBL from acute hepatitis patients. Pursuant to these approaches, it was determined that an affinity threshold value of approximately 500 nM (preferably 50 nM or less) determines the capacity of a peptide epitope to elicit a CTL response. Said values are not yet available for other HLA Class I alleles.


These data are true for class I binding affinity measurements for naturally processed peptides and for synthesized T cell epitopes.


An affinity threshold associated with immunogenicity in the context of HLA class II DR molecules has also been delineated (see, e.g., Southwood et al., 1998). In order to define a biologically significant threshold of DR binding affinity, a database of the binding affinities of 32 DR-restricted epitopes for their restricting element (i.e., the HLA molecule that binds the motif) was compiled. In this case, 1000 nM can be defined as an affinity threshold associated with immunogenicity in the context of DR molecules.


The predicted binding affinity (Score) of the peptides of the current invention are indicated in Tables 1-11. The experimentally determined binding affinity or inhibition constant (Ki) of peptides for HLA molecules can be determined as described in Example 3. The inhibition constant (Ki) is the affinity of the peptide as determined in a competition experiment with labeled reference peptide. The Ki is calculated from the experimentally determined IC50 value according to the formula:







K
i

=


IC





50


1
+


[

F





1


-


pep

]

/
Kd







The binding affinities (Ki or IC50) of the peptides of the present invention to the respective HLA class I and II alleles are indicated in Tables 13 and 14.


“IC50” is the concentration of peptide in a binding assay at which 50% inhibition of binding of a reference peptide is observed. Throughout the specification, “binding data” results are often expressed in terms of IC50. Given the conditions in which the assays are run (i.e. limiting HLA proteins and labeled peptide concentrations), these values approximate Ki values. It should also be noted that the calculated Ki values are indicative values and are no absolute values as such, as these values depend on the quality/purity of the peptide/MHC preparations used and the type of non-linear regression used to analyze the binding data.


Binding may be determined using assay systems including those using:


live cells (e.g., Ceppellini et al., 1989; Christnick et al., 1991; Busch et al., 1990; Hill et al., 1991; del Guercio et al., 1995), cell free systems using detergent lysates (e.g., Cerundolo et al., 1991), immobilized purified MHC (e.g., Hill et al., 1994; Marshall et al., 1994), ELISA systems (e.g., Reay et al., 1992), surface plasmon resonance (e.g. Khilko et al., 1993); high flux soluble phase assays (Hammer et al., 1994), and measurement of class I MHC stabilization or assembly (e.g., Ljunggren et al., 1990; Schumacher et al., 1990; Townsend et al., 1990; Parker et al., 1992). The binding assays used in the present invention are demonstrated in Examples 3 and 4. The results as shown in Table 13 and 14 are either results of individual experiments or are the mean of a number of experiments.


As used herein, “high affinity” or “strong binder” with respect to HLA class I and II molecules is defined as binding with a Ki or IC50 value of 100 nM or less; “intermediate affinity” or “mediate binder” is binding with a Ki or IC50 value of between about 100 and about 1000 nM.


As used herein, “threshold affinity” is the minimal affinity a peptide needs to display for a given HLA type that assures immunogenicity with high certainty in humans and/or animals. The threshold affinity can—but must not—be different for different HLA types.


Based on the data derived from the binding experiments, a further selection of candidate epitopes is made. Higher HLA binding affinity is typically correlated with higher immunogenicity. Immunogenicity can be manifested in several different ways. Immunogenicity corresponds to whether an immune response is elicited at all, and to the vigor of any particular response, as well as to the extent of a population in which a response is elicited. For example, a peptide might elicit an immune response in a diverse array of the population, yet in no instance produce a vigorous response. In accordance with these principles, close to 90% of high affinity binding peptides have been found to be immunogenic, as contrasted with about 50% of the peptides that bind with intermediate affinity (Sette et al., 1994; Alexander et al., 2003). Moreover, higher binding affinity peptides lead to more vigorous immunogenic responses. As a result, less peptide is required to elicit a similar biological effect if a high affinity binding peptide is used. Thus, in preferred embodiments of the invention, high affinity binding peptides (strong binders) and medium affinity peptides (medium binders) are particularly useful.


Various strategies can be utilized to evaluate immunogenicity, including:


1) Evaluation of primary T cell cultures from normal individuals (see, e.g., Wentworth et al., 1995; Celis et al., 1994; Tsai et al., 1997; Kawashima et al., 1998). This procedure involves the stimulation of peripheral blood lymphocytes (PBL) from normal subjects with a test peptide in the presence of antigen presenting cells in vitro over a period of several weeks. T cells specific for the peptide become activated during this time and are detected using, e.g., a 51Cr-release assay involving peptide sensitized target cells.


2) Immunization of HLA transgenic mice (see, e.g., Wentworth et al., 1996; Wentworth et al., 1996; Alexander et al., 1997) or surrogate mice. In this method, peptides (e.g. formulated in incomplete Freund's adjuvant) are administered subcutaneously to HLA transgenic mice or surrogate mice. Several weeks following immunization, splenocytes are removed and cultured in vitro in the presence of test peptide for approximately one week. Peptide-specific T cells are detected using, e.g., a 51Cr-release assay involving peptide sensitized target cells and target cells expressing endogenously generated antigen.


3) Demonstration of recall T cell responses from immune individuals who have effectively been vaccinated, recovered from infection, and/or from chronically infected patients (see, e.g., Rehermann et al., 1995; Doolan et al., 1997; Bertoni et al., 1997; Threlkeld et al., 1997; Diepolder et al., 1997). In applying this strategy, recall responses are detected by culturing PBL from subjects that have been naturally exposed to the antigen, for instance through infection, and thus have generated an immune response “naturally”, or from patients who were vaccinated with a vaccine comprising the peptide of interest. PBL from subjects are cultured in vitro for 1-2 weeks in the presence of test peptide plus antigen presenting cells (APC) to allow activation of “memory” T cells, as compared to “naive” T cells. At the end of the culture period, T cell activity is detected using assays for T cell activity including 51Cr release involving peptide-sensitized targets, T cell proliferation, or lymphokine release.


A given epitope is stated to be immunogenic if T cell reactivity can be shown to targets sensitized with that peptide. Immunogenicity for a given epitope can further be described by the number of individuals in a group of HLA matched infected or vaccinated subjects (e.g. human, transgenic mice, surrogate mice) that show T cell reactivity to that particular epitope, or e.g. by the number of spots detected in an ELISPOT assay, as described in examples 5-8. Based on the data derived from one of these experiments, a further selection of candidate epitopes is made according to their immunogenicity. Immunogenicity for the peptides of the invention is indicated in Tables 13 and 14. A “+” indicates T cell reactivity in at least one subject.


Vaccines having a broad coverage of the existing HCV genotypes or subtypes are preferred. Genotypes 1b, 1a and 3a are the most prevalent HCV genotypes (among HCV infected individuals) and thus important to be taken into consideration. Other genotypes (e.g. genotype 4a) can be retained in view of their prevalence and/or importance. The present invention contains all selected CTL and HTL epitopes for which immunogenicity has been shown and that are present in the consensus sequence of genotype 1b, 1a and/or genotype 3a. Said consensus sequences are shown in FIGS. 2, 5 and 6. Accordingly, the peptides of the present invention are present in the consensus sequence of:

    • at least genotype 1a,
    • at least genotype 1b,
    • at least genotype 3a,
    • at least genotype 1a and 1b,
    • at least genotype 1a and 3a,
    • at least genotype 1b and 3a, or
    • at least genotype 1a, 1b and 3a.


The epitopes obtained by the methods as described herein can additionally be evaluated on the basis of their conservancy among and/or within different HCV strains or genotypes.


In a further step of the invention, an array of epitopes is selected for inclusion in a polyepitopic composition for use in a vaccine, or for selecting discrete epitopes to be included in a vaccine and/or to be encoded by nucleic acids such as a minigene. It is preferred that each of the following principles are balanced in order to make the selection:

  • 1) Selection of either HCV native or analoged epitopes.
  • 2) Selection of native HCV epitopes that are present in the most prevalent and/or important HCV genotypes or subtypes.
  • 3) Epitopes are selected that have the requisite binding affinity established to be correlated with immunogenicity: for HLA class I an IC50 or Ki of 1000 nM or less, or for HLA class II an IC50 or Ki of 1000 nM or less.
  • 4) Epitopes are selected which, upon administration, induce a T cell response (CTL and/or HTL).
  • 5) Sufficient supermotif bearing-peptides and/or a sufficient array of allele-specific peptides are selected to give broad population coverage. It is a serious hurdle to find, for a given pathogen with a specific sequence, enough immunogenic epitopes so as to cover a complete HLA-locus and consequently a complete population. As such, considering immunogenic peptides for two or three HLA class I loci, i.e. HLA-A, -B and/or -C, significantly increases population coverage for a given pathogen.
  • 6) Of relevance are epitopes referred to as “nested epitopes”. Nested epitopes occur where at least two epitopes overlap partly or completely in a given peptide sequence. A nested peptide sequence can comprise both HLA class I and HLA class II epitopes, 2 or more HLA class I epitopes or 2 or more HLA class II epitopes.
  • 7) It is important to screen the epitope sequence (e.g. comparing with mammal genome sequence) in order to ensure that it does not have pathological or other deleterious biological properties in the treated subject e.g. by inducing auto-antibodies.
  • 8) When used in a polyepitopic composition, spacer amino acid residues can be introduced to avoid junctional epitopes (an epitope recognized by the immune system, not present in the target antigen, and only created by the man-made juxtaposition of epitopes), or to facilitate cleavage between epitopes and thereby enhance epitope presentation. Junctional epitopes are generally to be avoided because the recipient may generate an immune response to that non-native epitope. Of particular concern is a junctional epitope that is a “dominant epitope.” A dominant epitope may lead to such a strong response that immune responses to other epitopes are diminished or suppressed.


The term “peptide” is used interchangeably with “oligopeptide” and “polypeptide” and designates a series of amino acids, connected one to the other, typically by peptide bonds between the amino and carboxyl groups of adjacent amino acids. The preferred CTL-inducing peptides of the invention are 13 residues or less in length and usually consist of 8, 9, 10, 11 or 12 residues, preferably 9 or 10 residues. The preferred HLA class II binding peptides are less than 50 residues in length and usually consist of between 6 and 30 residues, more usually between 12 and 25, and often between 15 and 20 residues. More preferred, an HLA class II binding peptide consists of 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 or more amino acid residues.


The peptides of the invention can be prepared by classical chemical synthesis. “Synthetic peptide” refers to a peptide that is man-made using such methods as chemical synthesis or recombinant DNA technology. The synthesis can be carried out in homogeneous solution or in solid phase. For instance, the synthesis technique in homogeneous solution which can be used is the one described by Houbenweyl in the book entitled “Methode der organischen chemie” (Method of organic chemistry) edited by E. Wunsh, vol. 15-I et II. THIEME, Stuttgart 1974. The polypeptides of the invention can also be prepared in solid phase according to the methods described by Atherton and Shepard in their book entitled “Solid phase peptide synthesis” (IRL Press, Oxford, 1989). The polypeptides according to this invention can also be prepared by means of recombinant DNA techniques as documented below.


Conservative substitutions may be introduced in these HCV polypeptides according to the present invention. The term “conservative substitution” as used herein denotes that one amino acid residue has been replaced by another, biologically similar residue. Peptides having conservative substitutions bind the HLA molecule with a similar affinity as the original peptide and CTL's and/or HTL's generated to or recognizing the original peptide are activated in the presence of cells presenting the altered peptide (and/or vice versa). Examples of conservative substitutions include the substitution of one hydrophobic residue such as isoleucine, valine, leucine or methionine for another, or the substitution of one polar residue for another such as between arginine and lysine, between glutamic and aspartic acids or between glutamine and asparagine and the like. Other substitutions can be introduced as long as the peptide containing said one or more amino acid substitutions is still immunogenic. This can be analysed in ELISPOT assays as described in examples 5 and 6. Accordingly, the current invention also relates to a peptide consisting of an amino acid sequence which is at least 70, 75, 80, 85 or 90% identical to the amino acid sequence of the peptide as disclosed in Tables 13 and 14, and wherein said peptide is still capable of inducing a HLA class I and/or class II restricted T lymphocyte response to cells presenting the original peptides.


A strategy to improve the cross-reactivity of peptides between different HLA types or within a given supermotif or allele is to delete one or more of the deleterious residues present within a peptide and substitute a small “neutral” residue such as Ala, that may not influence T cell recognition of the peptide. Such an improved peptide is sometimes referred to as an analoged peptide.


The peptides can be in their natural (uncharged) forms or in forms which are salts, and either free of modifications such as glycosylation, side chain oxidation, or phosphorylation or containing these modifications. Also included in the definition are peptides modified by additional substituents attached to the amino acids side chains, such as glycosyl units, lipids, or inorganic ions such as phosphates, as well as modifications relating to chemical conversions of the chains, such as oxidation of sulfhydryl groups. Thus, “polypeptide” or its equivalent terms is intended to include the appropriate amino acid sequence referenced, and may be subject to those of the foregoing modifications as long as its functionality is not destroyed.


With regard to a particular amino acid sequence, an “epitope” is a set of amino acid residues which is involved in recognition by a particular immunoglobulin, or in the context of T cells, those residues necessary for recognition by T cell receptor proteins and/or Major Histocompatibility Complex (MHC) molecules. In an immune system setting, in vivo or in vitro, an epitope is the collective features of a molecule, such as primary, secondary and tertiary peptide structure, and charge, that together form a site recognized by an immunoglobulin, T cell receptor or HLA molecule. Throughout this specification “epitope” and “peptide” are used interchangeably.


The phrases “isolated” or “biologically pure” refer to material which is substantially or essentially free from components which normally accompany the material as it is found in its native state. Thus, isolated peptides in accordance with the invention preferably do not contain materials normally associated with the peptides in their in situ environment. An “isolated” epitope refers to an epitope that does not include the whole sequence of the antigen or polypeptide from which the epitope was derived.


It is to be understood that protein or peptide molecules that comprise an epitope of the invention as well as additional amino acid(s) are still within the bounds of the invention.


An “immunogenic peptide” is a peptide that comprises a sequence as disclosed in Tables 13 and/or 14, or a peptide comprising an allele-specific motif or supermotif, such that the peptide will bind an HLA molecule and induce a CTL and/or HTL response. Immunogenic peptides of the invention comprise a peptide capable of binding to an appropriate HLA molecule and the immunogenic peptide can induce an HLA-restricted cytotoxic and/or helper T cell response to the antigen from which the immunogenic peptide is derived. A CTL response is a set of different biological responses of T cells activated by cells presenting the immunogenic peptide in the MHC-I context and includes but is not limited to cellular cytotoxicity, IFN-gamma production and proliferation. An HTL response is a set of different biological responses of T cells activated by APC presenting the immunogenic peptide in the MHC-II context and includes but is not limited to cytokine production (such as IFN-gamma or IL-4) and proliferation. In a preferred embodiment of the invention, the immunogenic peptide consists of less than 50 amino acid residues. Even more particularly, the immunogenic peptide consists of less than 45, 40, 35, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10 or 9 amino acid residues.


Sette and Sidney (1999) (incorporated herein by reference) describe the epitope approach to vaccine development and identified several HLA supermotifs, each of which corresponds to the ability of peptide ligands to bind several different HLA alleles. The HLA allelic variants that bind peptides possessing a particular HLA supermotif are collectively referred to as an HLA supertype.


A “supermotif” is a peptide binding specificity shared by HLA molecules encoded by two or more HLA alleles. Preferably, a supermotif-bearing peptide is recognized with high or intermediate affinity (as defined herein) by two or more HLA antigens. The term “motif” refers to the pattern of residues in a peptide of defined length, usually a peptide of 8, 9, 10, 11, 12 or 13 amino acids for a class I HLA motif and from about 6 to about 50 amino acids, or more specific a peptide of 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 22, 24, 25, 30, 35, 40 or 50 amino acids for a class II HLA motif, which is recognized by a particular HLA molecule. The family of HLA molecules that bind to the A1 supermotif (i.e. the HLA-A1 supertype) includes at least A0101, A2601, A2602, A2501 and A3201. The family of HLA molecules that bind to the A2 supermotif (i.e. the HLA-A2 supertype) is comprised of at least: A0201 A0202, A0203, A0204, A0205, A0206, A0207, A0209, A0214, A6802 and A6901. Members of the family of HLA molecules that bind the A3 supermotif (the HLA-A3 supertype) include at least A0301, A1101, A3101, A3301 and A6801. The family of HLA molecules that bind to the A24 supermotif (i.e. the A24 supertype) includes at least A2402, A3001 and A2301. The family of HLA molecules that bind the B7 supermotif (i.e., the HLA-B7 supertype) is comprised of at least twenty six HLA-B proteins including: B0702, B0703, B0704, B0705, B1508, B3501, B3502, B3503, B3504, B3505, B3506, B3507, B3508, B5101, B5102, B5103, B5104, B5105, B5301, B5401, B5501, B5502, B5601, B5602, B6701 and B7801. Members of the family of HLA molecules that bind to the B44 supermotif (i.e., the B44 supertype) include at least: B1801, B1802, B3701, B4001, B4002, B4006, B4402, B4403 and B4006 (WO01/21189).


According to a preferred embodiment, the immunogenic peptide of the present invention is less than 50, less than 25, less than 20 or less than 15 amino acids. Peptide motifs are typically different for each protein encoded by each human HLA allele and differ in the pattern of the primary and secondary anchor residues.


“Cross-reactive binding” indicates that a peptide is bound by more than one HLA molecule derived from more than one HLA allele group or locus; a synonym is degenerate binding. “Human Leukocyte Antigen” or “HLA” is a human class I or class II Major Histocompatibility Complex (see, e.g., Stites, et al, IMMUNOLOGY, 8 ED, Lange Publishing, Los Altos, Calif. (1994)). “Major Histocompatibility Complex” or “MHC” is a cluster of genes that plays a role in control of the cellular interactions responsible for physiologic immune responses. In humans, the MHC complex is also known as the HLA complex. For a detailed description of the MHC and HLA complexes, see, Paul, FUNDAMENTAL IMMUNOLOGY, PDED, Raven Press, New York, 1993. The HLA nomenclature used herein is generally known in the art and e.g. as described in “The HLA Factsbook, ed. Marsh et al., Academic Press, 2000”.


Also, information on HLA sequences and the currently used nomenclature can be found on URL anthonynolan.org.uk/HIG/.


Polyepitopic Peptides

The present invention also relates to the use of the peptides as described herein for the preparation of an HCV immunogenic composition and more specific to a composition comprising at least one of the peptides as provided in Tables 13-14, possibly in combination with one or more of the same or other peptides or epitopes. The peptides of the invention can be combined via linkage to form polymers (multimers), or can be formulated in a composition without linkage, as an admixture. In a specific embodiment, the peptides of the invention can be linked as a polyepitopic peptide. The linkage of the different peptides in the polyepitopic peptide is such that the overall amino acid sequence differs from a naturally occurring sequence. Hence, the polyepitopic peptide sequence of the present invention is a non-naturally occurring sequence. Accordingly, the present invention relates to a composition or polyepitopic peptide comprising at least one peptide selected from the peptides disclosed in Tables 13 and 14. Of particular interest are the peptides with Ki or IC50<1000 nM. More preferably, the peptides of interest are these peptides having a positive immunogenicity after evaluation by the herein described strategies. Particularly preferred are the HLA class I binding peptides identified by:

    • for HLA-A: SEQ ID NO 557, 1241, 1456, 1478, 1833, 1887, 67, 922, 66, 361, 1070, 1072, 1151, 71, 1233, 1269, 75, 73, 1396, 5, 87, 91, 238, 265, 1661, 1753, 76, 81, 92, 1933, 1934, 69, 2043, 2047, 74, 63, 2053, 83, 56, 155, 156, 1205, 1206, 167, 1350, 47, 146, 1609, 144, 3, 39, 158, 16, 122, 1034, 1095, 1096, 1150, 246, 1406, 23, 1483, 1512, 87, 93, 1625, 1626, 59, 1710, 250, 81, 1885, 1916, 1938, 2048, 271, 2083, 1, 877, 17, 7, 1086, 1087, 1468, 1700 and 1894;
    • for HLA-B: SEQ ID NO 402, 836, 381, 371, 853, 370, 387, 307, 1237, 1289, 1343, 1418, 1419, 375, 1430, 380, 450, 1582, 390, 1677, 1687, 121, 386, 372, 95, 443, 396, 455, 1441, 436, 1719, 92, 394, 1969, 287, 1237, 1289, 375, 1430, 1444, 582, 1117 and 59;
    • for HLA-C: SEQ ID NO 1048, 1095, 1730, 349, 475, 111, 2066, 1511, 1454, 1100 and 907.


Preferred HLA class II binding peptides are the peptides with IC50<500 nM identified by SEQ ID NO 2142, 2213, 2157, 2245, 2162, 2164, 2235, 2113, 2182, 2111, 2180, 2236, 2112, 2132, 2192, 2107, 2137, 2125, 2229, 2166, 2136, 2177, 2153, 2110, 2156, 2241, 2228, 2219, 2187, 2249, 2194, 2207 and 2237.


Particularly preferred HLA class II peptides are identified by SEQ ID NO 2235, 2164, 2162, 2113, 2182, 2180, 2236, 2149, 2112, 2201, 2249, 2158, 2108, 2107, 2229, 2194, 2156, 2228, 2207 and 2232.


More preferably, the composition or polyepitopic peptide comprises at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 55, 60 or more peptides. Preferably, the peptides are selected from Tables 13 and 14. Any combination of peptides is possible, e.g., the composition can comprise at least one HLA-A binding peptide and at least one HLA-B or HLA-C binding peptide. Furthermore, the composition can also comprise at least one HLA-B binding peptide and at least one HLA-C binding peptide. More specific, the composition comprises at least one HLA-A, at least one HLA-B and at least one HLA-C binding peptide. In a preferred embodiment, the polyepitopic peptide or composition comprises at least two peptides derived from a HCV protein and capable of inducing a HLA class I and/or class II restricted T lymphocyte response, wherein at least one peptide is a HLA-C binding peptide. In a further embodiment, the composition comprises at least two HLA-DRB binding peptides, preferably selected from Table 14.


A “HLA-A binding peptide” is defined as a peptide capable of binding at least one molecule of the HLA-A locus. Said definition can be extrapolated to the other loci, i.e. HLA-B, HLA-C, HLA-DRB1-9, etc.


In a particular, the epitopes of the invention can be combined in an HLA-group restricted polyepitope. The term “HLA-group restricted polyepitope” refers to a polyepitopic peptide comprising at least two epitopes binding to an allele or molecule of the same HLA group. The HLA nomenclature used herein is generally known in the art and e.g. as described in “The HLA Factsbook, ed. Marsh et al., Academic Press, 2000”. In a preferred embodiment, the HLA-group restricted polyepitope is a HLA-A01 restricted polyepitope, a HLA-A02 restricted polyepitope, a HLA-A03 restricted polyepitope, a HLA-A11 restricted polyepitope, a HLA-A24 restricted polyepitope, a HLA-B07 restricted polyepitope, a HLA-B08 restricted polyepitope, a HLA-B35 restricted polyepitope, a HLA-B40 restricted polyepitope, a HLA-B44 restricted polyepitope, a HLA-Cw03 restricted polyepitope, a HLA-Cw04 restricted polyepitope, a HLA-Cw06 restricted polyepitope, a HLA-Cw07 restricted polyepitope, a HLA-DRB1*01 restricted polyepitope, HLA-DRB1*03 restricted polyepitope or HLA-DRB1*04 restricted polyepitope.


The number of epitopes in a HLA-group restricted polyepitope is not limited and can be 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 25 or more. An HLA-group restricted polyepitope can be used in a first phase of establishing the immunogenicity of a subset of epitopes in a construct. The advantage of using such an HLA-group restricted polyepitope is that a considerable number of HLA restricted epitopes can be evaluated in one and the same construct. Furthermore, a specific selection of more than one HLA-group restricted polyepitope can be administered in order to customize treatment. More specific, the selection can comprise more than one HLA-group restricted polyepitope within a given HLA-locus or covering 2, 3 or more HLA-loci.


More particular, the composition as described herein comprises linked peptides that are either contiguous or are separated by a linker or a spacer amino acid or spacer peptide. This is referred to as a polyepitopic or multi-epitopic peptide.


“Link” or “join” refers to any method known in the art for functionally connecting peptides (direct of via a linker), including, without limitation, recombinant fusion, covalent bonding, non-covalent bonding, disulfide bonding, ionic bonding, hydrogen bonding, polymerization, cyclization, electrostatic bonding and connecting through a central linker or carrier. Polymerization can be accomplished for example by reaction between glutaraldehyde and the —NH2 groups of the lysine residues using routine methodology. The peptides may also be linked as a branched structure through synthesis of the desired peptide directly onto a central carrier, e.g. a poly-lysyl core resin.


This larger, preferably poly- or multi-epitopic, peptide can be generated synthetically, recombinantly, or via cleavage from the native source.


The polyepitopic peptide can exist as a homopolymer comprising multiple copies of the same peptide, or as a heteropolymer of various peptides. Polymers have the advantage of increased immunological reaction and, where different peptide epitopes are used to make up the polymer, the additional ability to induce antibodies, HTL's and/or CTLs that react with different antigenic determinants of the pathogenic organism targeted for an immune response. Multi-epitope constructs can for example be prepared according to the methods set forth in Ishioka et al., 1999; Velders et al., 2001; or as described in WO04/031210—Epimmune. The polyepitopic peptide can be expressed as one protein. In order to carry out the expression of the polyepitopic peptide in bacteria, in eukaryotic cells (including yeast) or in cultured vertebrate hosts such as Chinese Hamster Ovary (CHO), Vero cells, RK13, COS1, BHK, and MDCK cells, or invertebrate hosts such as insect cells, the following steps are carried out:

    • transformation of an appropriate cellular host with a recombinant vector, or by means of adenoviruses, influenza viruses, BCG, and any other live carrier systems, in which a nucleotide sequence coding for one of the polypeptides of the invention has been inserted under the control of the appropriate regulatory elements, particularly a promoter recognized by the polymerases of the cellular host or of the live carrier system and in the case of a prokaryotic host, an appropriate ribosome binding site (RBS), enabling the expression in said cellular host of said nucleotide sequence,
    • culture of said transformed cellular host under conditions enabling the expression of said insert.


The polyepitopic peptide can be purified by methods well known to the person skilled in the art.


Vaccines that have broad population coverage are preferred because they are more commercially viable and generally applicable to most people. Broad population coverage can be obtained through selecting peptides that bind to HLA alleles which, when considered in total, are present in most of the individuals of the population. The A2-, A3-, and B7 supertypes are each present on the average of over 40% in each of the five major ethnic groups, i.e. Caucasian, North American Black, Japanese, Chinese and Hispanic. Coverage in excess of 80% is achieved with a combination of these supermotifs. The B44-, A1-, and A24-supertypes are present, on average, in a range from 25% to 40% in these major ethnic populations. The HLA groups Cw04, Cw03, Cw06 and Cw07 are each present, on average, in a range from 13% to 54% in these major ethnic populations. Thus, by including epitopes from most frequent HLA-A, -B and/or -C alleles, an average population coverage of 90-99% is obtained for five major ethnic groups. Especially in the field of HLA-C, experimentally determined data (both binding and immunogenic) for HCV epitopes are scarce. Accordingly, the present invention relates to a composition or polyepitopic peptide comprising at least two peptides derived from a HCV protein and capable of inducing a HLA class I and/or class II restricted T lymphocyte response, wherein at least one peptide is a HLA-C binding peptide. More preferred, said composition or polyepitopic peptide comprises at least 2, 3, 4, 5 or more HLA-C binding peptide(s). More particularly, the one or more HLA-C binding peptides are derived from at least one of the following HCV regions: Core, E1, E2/NS1, NS2, NS3, NS4A, NS4B, NS5A and NS5B. Even more preferred is that the HLA-C binding peptides are furthermore characterized in that they are present in the HCV consensus sequence of genotype 1a, 1b and/or 3a. Optionally, the composition or polyepitopic peptide can furthermore comprise at least 1, 2, 3, 4 or more HLA-B binding peptide(s) and/or at least 1, 2, 3, 4 or more HLA-A binding peptide(s) and/or at least 1, 2, 3, 4 or more HLA-DRB1-9 binding peptide(s). More preferred, the composition or the polyepitopic peptide of the present invention comprises at least 1, 2, 3, 4 or more HLA-A binding peptide(s), at least 1, 2, 3, 4 or more HLA-B binding peptide(s) and at least 1, 2, 3, 4 or more HLA-C binding peptide(s), optionally in combination with a HLA class II binding peptide. In a specific embodiment, the peptides are selected from Table 13 or 14.


Furthermore, the present invention relates to a composition comprising at least one peptide selected from Tables 13 and 14 and at least one other HLA class I binding peptide, a HLA class II binding peptide or a HCV derived peptide. Said “other” HLA class I binding peptide and said HLA class II binding peptide to be used in combination with the peptides of the present invention can be derived from HCV or from a foreign antigen or organism (non-HCV). There is no limitation on the length of said other peptides, these can have a length of e.g. 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 30 or more amino acids. The “at least one” can include, e.g., at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95 or 100 or more peptides. Preferably, said HLA class I binding peptide is a peptide capable of binding one or more HLA class I alleles. More specific, said peptide is selected from the group consisting of peptides binding a molecule of the following HLA groups: HLA-A1, HLA-A2, HLA-A3, HLA-A11, HLA-A24, HLA-B7, HLA-B8, HLA-B27, HLA-B35, HLA-B40, HLA-B44, HLA-B58, HLA-B62, HLA-Cw03, HLA-Cw04, HLA-Cw06 and/or HLA-Cw07.


For HLA class II, the peptides, also called HTL epitopes, are preferably selected from the group consisting of peptides binding a molecule of the HLA-loci HLA-DR, HLA-DQ and/or HLA-DP, or as described in e.g. WO95/27733, WO02/26785, WO01/21189, WO02/23770, WO03/084988, WO04/024182, Hoffmann et al., 1995, Diepolder et al., 1997, Werheimer et al, 2003 and Lamonaca et al, 1999 (incorporated herein by reference). The preferred HLA class II binding peptides are less than about 50 residues in length and usually consist of between about 6 and about 30 residues, more usually between about 12 and 25, and often between about 15 and 20 residues. For example, a HLA class II binding peptide consists of 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 or more amino acid residues. Further and preferred examples of candidate HTL epitopes to include in a polyepitopic construct for use in a vaccine, or for selecting discrete epitopes to be included in a vaccine and/or to be encoded by nucleic acids such as a minigene are enclosed in Table 14.


A “CTL inducing peptide” is a HLA Class I binding peptide that is capable of inducing a CTL response. A “HTL inducing peptide” is a HLA Class II binding peptide that is capable of inducing a HTL response.


In a specific embodiment, the present invention relates to a composition or polyepitopic peptide comprising at least two HLA class I binding peptides selected from Table 13 or at least two HLA class II binding peptides selected from Table 14. Any combination is possible. More preferred, the at least two peptides are selected to bind HLA molecules derived from the same or a different HLA locus, i.e. HLA-A, -B, -C or DRB1. Alternatively, the at least two peptides are selected to bind HLA molecules derived from the same or a different HLA-group. Preferred HLA-groups are: HLA-A01, A02, A03, A11, A24, B07, B08, B35, B40, B44, Cw03, Cw04, Cw06, Cw07, DRB1*01, DRB1*03 and DRB1*04.


In a more preferred embodiment, the present invention relates to a composition or polyepitopic peptide comprising at least three HLA class I binding peptides selected from Table 13. Any combination is possible, for example:

    • at least 3 HLA-A binding peptides,
    • at least 3 HLA-B binding peptides,
    • at least 3 HLA-C binding peptides,
    • at least 2 HLA-A binding peptides and at least 1 HLA-B or HLA-C binding peptide,
    • at least 2 HLA-B binding peptides and at least 1 HLA-A or HLA-C binding peptide,
    • at least 2 HLA-C binding peptides and at least 1 HLA-A or HLA-B binding peptide, or
    • at least one HLA-A, at least one HLA B and at least one HLA-C binding peptide.


More preferred and for each combination, the at least three peptides are selected to bind HLA molecules derived from the same or a different HLA-group. Preferred HLA-groups are: HLA-A01, A02, A03, A11, A24, B07, B08, B35, B40, B44, Cw03, Cw04, Cw06 and Cw07. More specifically, the composition or polyepitopic peptide comprises at least three peptides selected from Table 13, said at least three peptides being:

    • at least one HLA-A binding peptide selected from a HLA-A01, A02, A3, A11 or A24 binding peptide,
    • at least one HLA-B binding peptide selected from a HLA-B07, B08, B35, B40 or B44 binding peptide, and/or
    • at least one HLA-C binding peptide selected from a HLA-Cw03, Cw04, Cw06 or Cw07 binding peptide.


An HLA-A01 binding peptide is defined as a peptide capable of binding at least one molecule of the HLA-01 group. Said definition can be extrapolated to the other allele groups, i.e. A02, A03, A11, A24, B07, B08, B35, B40, B44, Cw03, Cw04, Cw06, Cw07 etc.


HLA class I binding peptides of the invention can be admixed with, or linked to, HLA class II binding peptides, to facilitate activation of both cytotoxic T lymphocytes and helper T lymphocytes. Accordingly, the composition or polyepitopic peptide of the present invention further comprises at least one HLA class II binding peptide. Alternatively, the composition or polyepitopic peptide of the present invention comprises at least one HLA class II binding peptide. More specific, said HLA class II binding peptide is selected from Table 14. The amount of HTL epitopes is not limiting, i.e., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 or more HTL epitopes can be comprised in the composition or polyepitopic peptide of the present invention. In a specific embodiment, the composition or polyepitopic peptide comprises at least three CTL peptides selected from Table 13 and at least one HTL peptide selected from Table 14.


In a further embodiment, the composition or polyepitopic peptide can also comprise the universal T cell epitope called PADRE® (Epimmune, San Diego; described, for example in U.S. Pat. No. 5,736,142 or International Application WO95/07707, which are enclosed herein by reference). A ‘PanDR binding peptide or PADRE® peptide” is a member of a family of molecules that binds more that one HLA class II DR molecule. The pattern that defines the PADRE® family of molecules can be thought of as an HLA Class II supermotif. PADRE® binds to most HLA-DR molecules and stimulates in vitro and in vivo human helper T lymphocyte (HTL) responses. Alternatively T-help epitopes can be used from universally used vaccines such as tetanos toxoid.


In a further embodiment, the peptides in the composition or polyepitopic peptide are characterized in that they are derived from a HCV protein, and more specific from at least one of the following HCV regions selected from the group consisting of Core, E1, E2/NS1, NS2, NS3, NS4A, NS4B, NS5A and NS5B. Even more preferred is that peptides are characterized in that they are present in the HCV consensus sequence of genotype 1a, 1b and/or 3a.


In a further embodiment the two or more epitopes in the polyepitopic peptide consist of to discrete HCV amino acid sequences (discrete epitopes) or nested HCV amino acid sequences (nested epitopes). Particularly preferred are “nested epitopes”. Nested epitopes occur where at least two individual or discrete epitopes overlap partly or completely in a given peptide sequence. A nested epitope can comprise both HLA class I and HLA class II epitopes, 2 or more HLA class I epitopes (whereby the epitopes bind two or more alleles of class I loci, supertypes or groups), or 2 or more HLA class II epitopes (whereby the epitopes bind two or more alleles of class II loci, supertypes or groups). A nested epitope can comprise 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 or more individual epitopes. Nested epitopes enable epitope-based vaccines with broad population coverage as they provide a high number of epitopes by a limited number of amino acids. This is particular advantageous since the number of epitopes of a vaccine is limited by constraints originating from manufacturing, formulation and product stability. The length of the nested epitope varies according to the amount of individual epitopes included. Usually, a nested epitope consists of 9 to 35 amino acids. Preferably, the nested epitope consists of 35 amino acids or less, i.e 34, 33, 32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10 or 9 amino acids. More preferred, the nested epitope consists of 9 to 30 amino acids, 9 to 25 amino acids, 10 to 30 amino acids or 10 to 25 amino acids.


Examples of nested epitopes based on 3 or more individual epitopes identified in the present invention and whereby the individual epitopes have a binding affinity of less than 1000 nM for a given HLA are shown in Table A. Said individual epitopes have an overlap of at least 3 amino acids.










TABLE A







The nested epitopes are indicated in bold. The individual



epitopes are indicated in normal font.











SEQ


HLA



ID

HLA class I
Class II


NO
Sequence
coverage
coverage














2277

GQIVGGVYLLPRRGPRLGVRATRKSER






2254
QIVGGVYLLPRRGPRLGVRATRKSER


127
GQIVGGVYLL
Cw03


616
 QIVGGVYLL
A02, Cw03


149
       YLLPRRGPR
A03


2047
       YLLPRRGPRL
A02; B08


132
        LLPRRGPRL
A24; B08


1442
         LPRRGPRL
B07; B08


380
         LPRRGPRLG
B07


450
         LPRRGPRLGV
B07


2149
             GPRLGVRATRKSER

DRB1


387
             GPRLGVRAT
B07


144
               RLGVRATRK
A03





2255

KTSERSQPRGRRQPIPKARR



167
KTSERSQPR
A03


390
      QPRGRRQPI
B07; B08


159
           RQPIPKARR
A03





2256

LYGNEGLGWAGWLL



1487
LYGNEGLGW
A24


1150
     GLGWAGWLL
A24; A02





2257

VIDTLTCGFADLMGYIPLVGAPLGGAARAL



1914
VIDTLTCGFA
A01


2
    LTCGFADLM
A01


1465
    LTCGFADLMGY
A01


236
       GFADLMGYI
A24; Cw04


1048
        FADLMGYIPL
Cw04


66
          DLMGYIPLV
A02


2038
              YIPLVGAPL
A02; A24


1289
               IPLVGAPL
B07; B08


384
                    APLGGAARA
B07


836
                    APLGGAARAL
B07





2258

NLPGCSFSIFLLALLSCLT



93
NLPGCSFSI
A24; A02


1425
 LPGCSFSI
B07


375
 LPGCSFSIF
B07; B35


1426
 LPGCSFSIFL
B07


250
     SFSIFLLAL
A24; Cw04,-07


361
         FLLALLSCL
A02


1070
         FLLALLSCLT
A02





2259

AAYAAQGYKVLVLNPSVAATLGFGAYMSKAHGV



56
AAYAAQGYK
A03


277
 AYAAQGYKV
A24


95
  YAAQGYKVL
B07


2107
    AQGYKVLVLNPSVAA

DRB1,-4


2157
      GYKVLVLNPSVAATL

DRB1,-4


2235
         VLVLNPSVAATLGFG

DRB1


73
        KVLVLNPSV
A02


1887
                VAATLGFGAY
A01


557
                 AATLGFGAY
A01


1831
                   TLGFGAYMSK
A03


244
                        AYMSKAHGV
A24





2260

GEIPFYGKAIPI



1117
GEIPFYGKAI
B44


1283
  IPFYGKAI
B07


1553
   PFYGKAIPI
A24





2261

HLIFCHSKKKCDEL



148
HLIFCHSKK
A03


1228
HLIFCHSKKK
A03


151
 LIFCHSKKK
A03


455
     HSKKKCDEL
B08





2262

GLNAVAYYRGLDVSVI



145
GLNAVAYYR
A03


394
    VAYYRGLDV
B08; Cw06


907
     AYYRGLDVSV
Cw07


271
      YYRGLDVSV
Cw07; A24


2083
      YYRGLDVSVI
A24; Cw07,-06





2263

TPGERPSGMFDSSVLCECY



372
TPGERPSGM
B07


1687
    RPSGMFDSSV
B07


71
       GMFDSSVLC
A02


17
          DSSVLCECY
A01





2264

LRAYLNTPGLPVCQDHLEF



1454
LRAYLNTPGL
Cw07


434
 RAYLNTPGL
Cw03


2048
   YLNTPGLPV
A02; A24


1444
         LPVCQDHLEF
B35





2265

EFWESVFTGLTHIDAHFL



1010
EFWESVFTGL
Cw04


234
 FWESVFTGL
Cw04; A24


76
    SVFTGLTHI
A02


258
        GLTHIDAHF
A24


5
         LTHIDAHFL
A02





2266

FPYLVAYQATVCARA



443
FPYLVAYQA
B08; B35


2052
  YLVAYQATV
A02


83
      YQATVCARA
A02





2267

APPPSWDQMWKCLIRLKPTLHGPTPLLYRLGAV



381
APPPSWDQM
B35; B07


279
    SWDQMWKCL
Cw04; A24


1804
    SWDQMWKCLI
Cw04


238
       QMWKCLIRL
A02; A24


122
           CLIRLKPTL
A24


205
            LIRLKPTLH
B08


2164
                KPTLHGPTPLLYRLG

DRB1


1343
                KPTLHGPTPL
B07; B35


1587
                 PTLHGPTPLLY
A01


81
                  TLHGPTPLL
A02; A24


1833
                  TLHGPTPLLY
A01


219
                   LHGPTPLLY
Cw07


307
                     GPTPLLYRL
B35; B07


389
                       TPLLYRLGA
B07


1851
                       TPLLYRLGAV
B07





2268

VTLTHPITKYIMA



21
VTLTHPITK
A03


23
  LTHPITKYI
A24


396
    HPITKYIMA
B08; B35





2269

FWAKHMWNFISGIQYLAGLSTLPGNPAIASLMAF



2278

FWAKHMWNFISGIQYLAGLSTLPGNPA



1095
FWAKHMWNF
A24; Cw04


1096
FWAKHMWNFI
A24


1993
 WAKHMWNFI
B08


1233
    HMWNFISGI
A02


1521
       NFISGIQYL
A24; Cw04
DRB1,-4,-5


2162
            IQYLAGLSTLPGNPA


1625
             QYLAGLSTL
A24


1428
                     LPGNPAIASL
B07


1527
                        NPAIASLMA
B07


1528
                        NPAIASLMAF
B07; B35





2270

KVLVDILAGYGAGVAGALVAFK



1350
KVLVDILAGY
A03


1478
  LVDILAGYGA
A01


1269
     ILAGYGAGV
A02


2166
      LAGYGAGVAGALVAF

DRB1


1193
            GVAGALVAFK
A03


1890
             VAGALVAFK
A03





2271

VNLLPAILSPGALVVGV



2236
VNLLPAILSPGALVVG

DRB1,-4


1418
   LPAILSPGAL
B07; B35


1275
      ILSPGALVV
A02


1759
        SPGALVVGV
B07





2272

GRKPARLIVFPDLGVRVCEKMALYDVVSTL



1182
GRKPARLIVF
Cw07


1336
  KPARLIVF
B07


643
    ARLIVFPDL
Cw07


1661
     RLIVFPDLGV
A02


349
        VFPDLGVRV
Cw04


632
              VRVCEKMAL
Cw07


3
               RVCEKMALY
A03


67
                     ALYDVVSTL
A02; A24





2273

VMGSSYGFQYSPGQRVEFLVNAWKSKKCPMGFSY



1938
VMGSSYGF
A24


2153
  GSSYGFQYSPGQRVE

DRB1,-3,-5


111
       FQYSPGQRV
Cw06


1626
        QYSPGQRVEF
A24


373
          SPGQRVEFL
B07; B08


1710
              RVEFLVNAW
A24


146
                  LVNAWKSKK
A03


1739
                        SKKCPMGFSY
Cw07





2274

EARQAIRSLTERLYIGGPLT



388
EARQAIRSL
B08; B07


624
     IRSLTERLY
Cw07; Cw06


79
           RLYIGGPLT
A02





2275

YRRCRASGVL



475
YRRCRASGV
B08; Cw06


2066
YRRCRASGVL
Cw07; Cw06





2276

PVNSWLGNIIMYAPTLWARMILMTHFFS



256
PVNSWLGNI
A24


62
    WLGNIIMYA
A02


87
       NIIMYAPTL
A02; A24; Cw03


246
        IIMYAPTLW
A24


84
         IMYAPTLWA
A02


1511
          MYAPTLWARM
Cw07


852
            APTLWARM
B07


371
            APTLWARMI
B07


853
            APTLWARMIL
B07


854
            APTLWARMILM
B07


2194
             PTLWARMILMTHFFS

DRB1,-4


92
              TLWARMILM
A02; B08


1483
               LWARMILMTHF
A24


287
                WARMILMTH
B08


1997
                WARMILMTHF
Cw07


641
                 ARMILMTHF
Cw07


864
                 ARMILMTHFF
Cw07


59
                  RMILMTHFF
A24; B44









Accordingly, the present invention encompasses a nested epitope consisting of 9 to 35 amino acids and comprising at least 2 epitopes selected from Tables 13 and 14. More specific, the nested epitope comprises 2 or more individual epitopes as given in Table A. More preferred, the nested epitope comprises 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 or more epitopes selected from Tables 13 and 14. Examples of such nested epitopes are presented in Table A. The present invention thus relates to a nested epitope consisting of 9 to 35 amino acids and selected from the group consisting of SEQ ID NO 2254 to 2278, or a part thereof, characterized in that the nested epitope or the part thereof comprises at least 2 individual CTL and/or HTL epitopes. More preferred, said nested epitope or part thereof comprises at least 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 or more individual CTL and/or HTL epitopes as presented in Table A.


The applications of the nested epitopes in the present invention, i.e. possible combinations, modifications, compositions, kits, therapeutic and diagnostic use, are the same as described for the (polyepitopic) peptides of the present invention.


In a preferred embodiment, the present invention relates to a polyepitopic peptide comprising at least one nested epitope or a fragment thereof as described herein.


The peptides or polypeptides or polyepitopic peptides can optionally be modified, such as by lipidation (e.g. a peptide joined to a lipid), addition of targeting or other sequences.


In the HCV peptides as described herein, one cysteine residue, or 2 or more cysteine residues comprised in said peptides may be “reversibly or irreversibly blocked”.


An “irreversibly blocked cysteine” is a cysteine of which the cysteine thiol-group is irreversibly protected by chemical means. In particular, “irreversible protection” or “irreversible blocking” by chemical means refers to alkylation, preferably alkylation of a cysteine in a protein by means of alkylating agents, such as, for example, active halogens, ethylenimine or N-(iodoethyl)trifluoro-acetamide. In this respect, it is to be understood that alkylation of cysteine thiol-groups refers to the replacement of the thiol-hydrogen by (CH2)nR, in which n is 0, 1, 2, 3 or 4 and R═H, COOH, NH2, CONH2, phenyl, or any derivative thereof. Alkylation can be performed by any method known in the art, such as, for example, active halogens X(CH2)nR in which X is a halogen such as I, Br, Cl or F. Examples of active halogens are methyliodide, iodoacetic acid, iodoacetamide, and 2-bromoethylamine.


A “reversibly blocked cysteine” is a cysteine of which the cysteine thiol-groups is reversibly protected. In particular, the term “reversible protection” or “reversible blocking” as used herein contemplates covalently binding of modification agents to the cysteine thiol-groups, as well as manipulating the environment of the protein such, that the redox state of the cysteine thiol-groups remains (shielding). Reversible protection of the cysteine thiol-groups can be carried out chemically or enzymatically. The term “reversible protection by enzymatical means” as used herein contemplates reversible protection mediated by enzymes, such as for example acyl-transferases, e.g. acyl-transferases that are involved in catalysing thio-esterification, such as palmitoyl acyltransferase. The term “reversible protection by chemical means” as used herein contemplates reversible protection:

  • 1. by modification agents that reversibly modify cysteinyls such as for example by sulphonation and thio-esterification;
  • 2. by modification agents that reversibly modify the cysteinyls of the present invention such as, for example, by heavy metals, in particular Zn2+, Cd2+, mono-, dithio- and disulfide-compounds (e.g. aryl- and alkylmethanethiosulfonate, dithiopyridine, dithiomorpholine, dihydrolipoamide, Ellmann reagent, ALDROTHIOL (Aldrich) (Rein et al. 1996), dithiocarbamates), or thiolation agents (e.g. gluthathion, N-Acetyl cysteine, cysteineamine). Dithiocarbamate comprise a broad class of molecules possessing an R1R2NC(S)SR3 functional group, which gives them the ability to react with sulphydryl groups. Thiol containing compounds are preferentially used in a concentration of 0.1-50 mM, more preferentially in a concentration of 1-50 mM, and even more preferentially in a concentration of 10-50 mM;
  • 3. by the presence of modification agents that preserve the thiol status (stabilise), in particular antioxidantia, such as for example DTT, dihydroascorbate, vitamins and derivates, mannitol, amino acids, peptides and derivates (e.g. histidine, ergothioneine, carnosine, methionine), gallates, hydroxyanisole, hydroxytoluene, hydroquinon, hydroxymethylphenol and their derivates in concentration range of 10 μM-10 mM, more preferentially in a concentration of 1-10 mM;
  • 4. by thiol stabilising conditions such as, for example, (i) cofactors as metal ions (Zn2+, Mg2+), ATP, (ii) pH control (e.g. for proteins in most cases pH ˜5 or pH is preferentially thiol pKa −2; e.g. for peptides purified by Reversed Phase Chromatography at pH ˜2).


Combinations of reversible protection as described in (1), (2), (3) and (4) may be applied. The reversible protection and thiol stabilizing compounds may be presented under a monomeric, polymeric or liposomic form.


The removal of the reversibly protection state of the cysteine residues can chemically or enzymatically accomplished by e.g.:

    • a reductant, in particular DTT, DTE, 2-mercaptoethanol, dithionite, SnCl2, sodium borohydride, hydroxylamine, TCEP, in particular in a concentration of 1-200 mM, more preferentially in a concentration of 50-200 mM;
    • removal of the thiol stabilising conditions or agents by e.g. pH increase;
    • enzymes, in particular thioesterases, glutaredoxine, thioredoxine, in particular in a concentration of 0.01-5 μM, even more particular in a concentration range of 0.1-5 μM;
    • combinations of the above described chemical and/or enzymatical conditions.


The removal of the reversibly protection state of the cysteine residues can be carried out in vitro or in vivo, e.g. in a cell or in an individual.


Alternatively, one cysteine residue, or 2 or more cysteine residues comprised in the HCV peptides as described herein may be mutated to a natural amino acid, preferentially to methionine, glutamic acid, glutamine or lysine.


The peptides of the invention can be combined via linkage or via a spacer amino acid to form polymers (multimers: homopolymers or heteropolymers), or can be formulated in a composition without linkage, as an admixture. The “spacer amino acid” or “spacer peptide” is typically comprised of one or more relatively small, neutral molecules, such as amino acids or amino acid mimetics, which are substantially uncharged under physiological conditions. The spacers are typically selected from, e.g., Ala, Gly, Leu, Ile, or other neutral spacers of nonpolar amino acids or neutral polar amino acids. It will be understood that the optionally present spacer need not be comprised of the same residues and thus may be a hetero- or homo-oligomer. When present, the spacer will be at least 1 residue, more usually 2, 3, 4, 5 or 6 residues, or even up to 7, 8, 9, 10, 15, 20, 30, or 50 residues. Spacer amino acid residues can be introduced to avoid junctional epitopes (an epitope recognized by the immune system, not present in the target antigen, and only created by the man-made juxtaposition of epitopes), or to facilitate cleavage between epitopes and thereby enhance epitope presentation. Generally, the spacer sequence will include nonpolar amino acids, though polar residues such as Glu, Gln, Ser, His, and Asn could also be present, particularly for spacer sequences longer than three residues. The only outer limit on the total length and nature of each spacer sequence derives from considerations of ease of synthesis, proteolytic processing, and manipulation of the polypeptide.


Moreover, the present invention also contemplates a polypeptide comprising or consisting of multiple repeats of any of the peptides as defined above or combinations of any of the peptides as defined above.


Minigene

A further embodiment of the present invention relates to a nucleic acid encoding a peptide selected from Tables 13 and 14. Said nucleic acids are “isolated” or “synthetic”. The term “isolated” refers to material that is substantially free from components that normally accompany it as found in its naturally occurring environment. However, it should be clear that the isolated nucleic acid of the present invention might comprise heterologous cell components or a label and the like. The terms “nucleic acid” or “polynucleic acid” are used interchangeable throughout the present application and refer to a deoxyribonucleotide or ribonucleotide polymer in either single- or double stranded form, which may encompass known analogues of natural nucleotides.


More particular, the present invention relates to a “minigene” or a polynucleotide that encodes a polyepitopic peptide as described herein. The term “multi-epitope construct” when referring to nucleic acids can be used interchangeably with the terms “polynucleotides”, “minigene” and “multi-epitope nucleic acid vaccine,” and other equivalent phrases, and comprises multiple epitope nucleic acids that encode peptide epitopes of any length that can bind to a molecule functioning in the immune system, preferably a HLA class I and a T-cell receptor or a HLA class II and a T-cell receptor. The epitope nucleic acids in a multi-epitope construct can encode HLA class I epitopes, HLA class II epitopes, a combination of HLA class I and class II epitopes or a nested epitope. HLA class I-encoding epitope nucleic acids are referred to as CTL epitope nucleic acids, and HLA class II-encoding epitope nucleic acids are referred to as HTL epitope nucleic acids. Some multi-epitope constructs can have a subset of the multi-epitope nucleic acids encoding HLA class I epitopes and another subset of the multi-epitope nucleic acids encoding HLA class II epitopes. A multi-epitope construct may have one or more spacer nucleic acids. A spacer nucleic acid may flank each epitope nucleic acid in a construct. The spacer nucleic acid may encode one or more amino acids (spacer amino acids). Alternatively, minigenes can be constructed using the technology as described by Qi-Liang Cai et al., 2004.


Accordingly, the present invention relates to a polynucleotide or minigene encoding a polyepitopic peptide comprising at least one peptide selected from Tables 13 and 14 or comprising at least one nested epitope selected from Table A.


Furthermore, the invention also encompasses a polynucleotide or minigene encoding a polyepitopic peptide comprising at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 55, 60 or more peptides. Preferably, the peptides are selected from Tables 13 and 14. Any combination of peptides is possible as described for the polyepitopic peptide. Hence, the polynucleotide or minigene can also encode one or more nested epitopes, or fragments thereof, for example as given in Table A.


More particular, the nucleic acids of the invention can be incorporated in an HLA-group restricted construct. Said “HLA-group restricted construct” comprises at least two nucleic acid epitopes encoding peptides binding to an allele or molecule of the same HLA group. The number of epitopes in a HLA-group restricted construct is not limited and can be 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 25 or more. The same combinations are possible as described for the HLA-group restricted polyepitopic peptide.


In a preferred embodiment, the polyepitopic peptide encoded by the polynucleotide further comprises at least one HLA-class I binding peptide, a HLA class II binding peptide or a HCV derived peptide. Said HLA Class I binding peptide and said HLA Class II binding peptide can be derived from a foreign antigen or organism (non-HCV). There is no limitation on the length of said peptide, this can have a length of e.g. 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 30 or more amino acids.


In a further embodiment, the polynucleotide or minigene as described herein can further comprise one or more spacer nucleic acids, i.e. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more. In a particular embodiment, the minigene further comprises one or more regulatory sequences and/or one or more signal sequences and/or one or more promotor sequences.


Polynucleotides or nucleic acids that are not commercially available can be chemically synthesized according to the solid phase phosphoramidite triester method first described by Beaucage & Caruthers, 1981, using an automated synthesizer, as described in Van Devanter et. al., 1984. Purification of polynucleotides is by either native acrylamide gel electrophoresis or by anion-exchange HPLC as described in Pearson & Reanier, 1983. Other purification methods are reversed phase separation and hydroxyapatite and are well known to the skilled person. Chemically synthesized and purified polynucleotides can be assembled into longer polynucleotides by PCR-based methods (Stemmer et al., 1995; Kriegler et al., 1991).


The epitopes of the multi-epitope constructs are typically subcloned into an expression vector that contains a promoter to direct transcription, as well as other regulatory sequences such as enhancers and polyadenylation sites. Additional elements of the vector are e.g. signal or target sequences, translational initiation and termination sequences, 5′ and 3′ untranslated regions and introns, required for expression of the multi-epitope construct in host cells.


For therapeutic or prophylactic immunization purposes, the (polyepitopic) peptides of the invention can be expressed by plasmid vectors as well as viral or bacterial vectors as already described herein. The term “vector” may comprise a plasmid, a cosmid, a prokaryotic organism, a phage, or an eukaryotic organism such as a virus, an animal or human cell or a yeast cell. The expression vector typically contains a transcription unit or expression cassette that contains all the additional elements required for the expression of the multi-epitope construct in host cells. A typical expression cassette thus contains a promoter operably linked to the multi-epitope construct and signals required for efficient polyadenylation of the transcript. Additional elements of the cassette may include enhancers and introns with functional splice donor and acceptor sites.


Suitable promoters are well known in the art and described, e.g., in Sambrook et al., Molecular cloning, A Laboratory Manual (2nd ed. 1989) and in Ausubel et al, Current Protocols in Molecular Biology (1994). Eukaryotic expression systems for mammalian cells are well known in the art and are commercially available. Such promoter elements include, for example, cytomegalovirus (CMV), Rous sarcoma virus long terminal repeats (RSV LTR) and Simian Virus 40 (SV40). See, e.g., U.S. Pat. Nos. 5,580,859 and 5,589,466 for other suitable promoter sequences.


In addition to a promoter sequence, the expression cassette can also contain a transcription termination region downstream of the structural gene to provide for efficient termination. The termination region may be obtained from the same gene as the promoter sequence or may be obtained from different genes.


Medical Use

In a further embodiment, the present invention also relates to the (polyepitopic) peptide, nested epitope, nucleic acid, minigene or composition of the present invention for use as a medicament. Preferably, said medicament is a vaccine. In a specific embodiment the invention also relates to a vector, a plasmid, a recombinant virus or host cell comprising the nucleic acid or minigene as described herein for use a medicament. More specifically, the present invention relates to the use of at least one of the peptides selected from Tables 13 and 14 or the nucleic acid sequence encoding said peptide for the manufacture of a medicament for preventing or treating a HCV infection. In a specific embodiment the invention also relates to a vector, a plasmid, a recombinant virus or host cell comprising the nucleic acid or minigene as described herein for the manufacture of a medicament for preventing or treating a HCV infection.


Vaccines and Vaccine Compositions

The invention furthermore relates to compositions comprising any of the HCV (polyepitopic) peptides as described herein or the corresponding nucleic acids. In a specific embodiment, the composition furthermore comprises at least one of a pharmaceutically acceptable carrier, adjuvant or vehicle. The terms “composition”, “immunogenic composition” and “pharmaceutical composition” are used interchangeable with “vaccine composition” or “vaccine”. There are numerous embodiments of vaccines in accordance with the invention, such as by a cocktail of one or more peptides, one or more epitopes of the invention comprised in a polyepitopic peptide, and/or nucleic acids that encode such peptides or polypeptides, e.g., a minigene that encodes a polyepitopic peptide. Vaccines can also comprise peptide-pulsed antigen presenting cells, e.g., the epitope can be bound to an HLA molecule on dendritic cells. More particularly, said immunogenic composition is a vaccine composition. Even more particularly, said vaccine composition is a prophylactic vaccine composition. Alternatively, said vaccine composition may also be a therapeutic vaccine composition. The prophylactic vaccine composition refers to a vaccine composition aimed for preventing HCV infection and to be administered to healthy persons who are not yet infected with HCV. The therapeutic vaccine composition refers to a vaccine composition aimed for treatment of HCV infection and to be administered to patients being infected with HCV.


A vaccine or vaccine composition is an immunogenic composition capable of eliciting an immune response sufficiently broad and vigorous to provoke at least one or both of:

    • a stabilizing effect on the multiplication of a pathogen already present in a host and against which the vaccine composition is targeted. A vaccine composition may also induce an immune response in a host already infected with the pathogen against which the immune response leading to stabilization, regression or resolving of the disease; and
    • an increase of the rate at which a pathogen newly introduced in a host, after immunization with a vaccine composition targeted against said pathogen, is resolved from said host.


A vaccine composition may also provoke an immune response broad and strong enough to exert a negative effect on the survival of a pathogen already present in a host or broad and strong enough to prevent an immunized host from developing disease symptoms caused by a newly introduced pathogen. In particular the vaccine composition of the invention is a HCV vaccine composition. In particular, the vaccine or vaccine composition comprises an effective amount of the peptides or nucleic acids of the present invention. In a specific embodiment, said vaccine composition comprises a vector, a plasmid, a recombinant virus or host cell comprising the nucleic acid or minigene of the present invention. Said vaccine composition may additionally comprise one or more further active substances and/or at least one of a pharmaceutically acceptable carrier, adjuvant or vehicle.


An “effective amount” of a peptide or nucleic acid in a vaccine or vaccine composition is referred to as an amount required and sufficient to elicit an immune response. It will be clear to the skilled artisan that the immune response sufficiently broad and vigorous to provoke the effects envisaged by the vaccine composition may require successive (in time) immunizations with the vaccine composition as part of a vaccination scheme or vaccination schedule. The “effective amount” may vary depending on the health and physical condition of the individual to be treated, the age of the individual to be treated (e.g. dosing for infants may be lower than for adults) the taxonomic group of the individual to be treated (e.g. human, non-human primate, primate, etc.), the capacity of the individual's immune system to mount an effective immune response, the degree of protection desired, the formulation of the vaccine, the treating doctor's assessment, the strain of the infecting pathogen and other relevant factors. It is expected that the effective amount of the vaccine composition will fall in a relatively broad range that can be determined through routine trials, i.e. 0.01-50 mg/dose; more preferably between 0, 1-5 mg/dose. Usually, the amount will vary from 0.01 to 1000 μg/dose, more particularly from 0.1 to 100 μg/dose. Dosage treatment may be a single dose schedule or a multiple dose schedule. The vaccine may be administered in conjunction with other immunoregulatory agents. The dosages, routes of administration, and dose schedules are adjusted in accordance with methodologies known in the art.


A composition or vaccine composition may comprise more than one peptide or nucleic acid, i.e., a plurality thereof, e.g. 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34 or more, e.g., up to 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50 or more distinct peptides or nucleic acids.


Carriers, Adjuvants and Vehicles—Delivery

Once appropriately immunogenic peptides, or the nucleic acids encoding them, have been defined, they can be sorted and delivered by various means, herein referred to as “compositions”, “vaccine compositions” or “pharmaceutical compositions”. The peptides of the present invention and pharmaceutical and vaccine compositions of the invention are useful for administration to mammals, particularly humans, to treat and/or prevent HCV infection. Vaccine compositions containing the peptides of the invention, or the DNA encoding them, are administered to a patient infected with HCV or to an individual susceptible to, or otherwise at risk for, HCV infection to elicit an immune response against HCV antigens and thus enhance the patient's own immune response capabilities.


Various art-recognized delivery systems may be used to deliver peptides, polyepitopic polypeptides, or polynucleotides encoding peptides or polyepitope polypeptides, into appropriate cells. The peptides and nucleic acids encoding them can be delivered in a pharmaceutically acceptable carrier or as colloidal suspensions, or as powders, with or without diluents. They can be “naked” or associated with delivery vehicles and delivered using delivery systems known in the art.


A “pharmaceutically acceptable carrier” or “pharmaceutically acceptable adjuvant” is any suitable excipient, diluent, carrier and/or adjuvant which, by themselves, do not induce the production of antibodies harmful to the individual receiving the composition nor do they elicit protection. Preferably, a pharmaceutically acceptable carrier or adjuvant enhances the immune response elicited by an antigen. Suitable carriers or adjuvantia typically comprise one or more of the compounds included in the following non-exhaustive list:


large slowly metabolized macromolecules such as proteins, polysaccharides, polylactic acids, polyglycolic acids, polymeric amino acids, amino acid copolymers and inactive virus particles; aluminium hydroxide, aluminium phosphate (see International Patent Application Publication No. WO93/24148), alum (KA1(SO4)2.12H2O), or one of these in combination with 3-0-deacylated monophosphoryl lipid A (see International Patent Application Publication No. WO93/19780); N-acetyl-muramyl-L-threonyl-D-isoglutamine (see U.S. Pat. No. 4,606,918), N-acetyl-normuramyl-L-alanyl-D-isoglutamine, N-acetylmuramyl-L-alanyl-D-isoglutamyl-L-alanine2-(1′,2′-dipalmitoyl-sn-glycero-3-hydroxyphosphoryloxy)ethylamine; RIBI (ImmunoChem Research Inc., Hamilton, Mont., USA) which contains monophosphoryl lipid A (i.e., a detoxified endotoxin), trehalose-6,6-dimycolate, and cell wall skeleton (MPL+TDM+CWS) in a 2% squalene/Tween 80 emulsion. Any of the three components MPL, TDM or CWS may also be used alone or combined 2 by 2; adjuvants such as Stimulon (Cambridge Bioscience, Worcester, Mass., USA), SAF-1 (Syntex); adjuvants such as combinations between QS21 and 3-de-O-acetylated monophosphoryl lipid A (see International Application No. WO94/00153) which may be further supplemented with an oil-in-water emulsion (see, e.g., International Application Nos. WO95/17210, WO97/01640 and WO9856414) in which the oil-in-water emulsion comprises a metabolisable oil and a saponin, or a metabolisable oil, a saponin, and a sterol, or which may be further supplemented with a cytokine (see International Application No. WO98/57659); adjuvants such as MF-59 (Chiron), or poly[di(carboxylatophenoxy)phosphazene] based adjuvants (Virus Research Institute); blockcopolymer based adjuvants such as Optivax (Vaxcel, Cytrx) or inulin-based adjuvants, such as Algammulin and Gammalnulin (Anutech); Complete or Incomplete Freund's Adjuvant (CFA or WA, respectively) or Gerbu preparations (Gerbu Biotechnik); a saponin such as QuilA, a purified saponin such as QS21, QS7 or QS17, β-escin or digitonin; immunostimulatory oligonucleotides comprising unmethylated CpG dinucleotides such as [purine-purine-CG-pyrimidine-pyrimidine] oligonucleotides. These immunostimulatory oligonucleotides include CpG class A, B, and C molecules (Coley Pharmaceuticals), ISS (Dynavax), Immunomers (Hybridon). Immunostimulatory oligonucleotides may also be combined with cationic peptides as described, e.g., by Riedl et al. (2002); Immune Stimulating Complexes comprising saponins, for example Quil A (ISCOMS); excipients and diluents, which are inherently non-toxic and non-therapeutic, such as water, saline, glycerol, ethanol, wetting or emulsifying agents, pH buffering substances, preservatives, and the like; a biodegradable and/or biocompatible oil such as squalane, squalene, eicosane, tetratetracontane, glycerol, peanut oil, vegetable oil, in a concentration of, e.g., 1 to 10% or 2.5 to 5%; vitamins such as vitamin C (ascorbic acid or its salts or esters), vitamin E (tocopherol), or vitamin A; carotenoids, or natural or synthetic flavanoids; trace elements, such as selenium; any Toll-like receptor ligand as reviewed in Barton and Medzhitov (2002).


Any of the afore-mentioned adjuvants comprising 3-de-O-acetylated monophosphoryl lipid A, said 3-de-O-acetylated monophosphoryl lipid A may be forming a small particle (see International Application No. WO94/21292).


In any of the aforementioned adjuvants MPL or 3-de-O-acetylated monophosphoryl lipid A can be replaced by a synthetic analogue referred to as RC-529 or by any other amino-alkyl glucosaminide 4-phosphate (Johnson et al. 1999, Persing et al. 2002). Alternatively it can be replaced by other lipid A analogues such as OM-197 (Byl et al. 2003).


A “pharmaceutically acceptable vehicle” includes vehicles such as water, saline, physiological salt solutions, glycerol, ethanol, etc. Auxiliary substances such as wetting or emulsifying agents, pH buffering substances, preservatives may be included in such vehicles. Delivery systems known in the art are e.g. lipopeptides, peptide compositions encapsulated in poly-DL-lactide-co-glycolide (“PLG”), microspheres, peptide compositions contained in immune stimulating complexes (ISCOMS), multiple antigen peptide systems (MAPs), viral delivery vectors, particles of viral or synthetic origin, adjuvants, liposomes, lipids, microparticles or microcapsules, gold particles, nanoparticles, polymers, condensing agents, polysaccharides, polyamino acids, dendrimers, saponins, QS21, adsorption enhancing materials, fatty acids or, naked or particle absorbed cDNA.


Typically, a vaccine or vaccine composition is prepared as an injectable, either as a liquid solution or suspension. Injection may be subcutaneous, intramuscular, intravenous, intraperitoneal, intrathecal, intradermal, intraepidermal, or by “gene gun”. Other types of administration comprise electroporation, implantation, suppositories, oral ingestion, enteric application, inhalation, aerosolization or nasal spray or drops. Solid forms, suitable for dissolving in, or suspension in, liquid vehicles prior to injection may also be prepared. The preparation may also be emulsified or encapsulated in liposomes for enhancing adjuvant effect.


A liquid formulation may include oils, polymers, vitamins, carbohydrates, amino acids, salts, buffers, albumin, surfactants, or bulking agents. Preferably carbohydrates include sugar or sugar alcohols such as mono-, di-, or polysaccharides, or water-soluble glucans. The saccharides or glucans can include fructose, dextrose, lactose, glucose, mannose, sorbose, xylose, maltose, sucrose, dextran, pullulan, dextrin, alpha and beta cyclodextrin, soluble starch, hydroxethyl starch and carboxymethylcellulose, or mixtures thereof. Sucrose is most preferred. “Sugar alcohol” is defined as a C4 to C8 hydrocarbon having an —OH group and includes galactitol, inositol, mannitol, xylitol, sorbitol, glycerol, and arabitol. Mannitol is most preferred. These sugars or sugar alcohols mentioned above may be used individually or in combination. There is no fixed limit to the amount used as long as the sugar or sugar alcohol is soluble in the aqueous preparation. Preferably, the sugar or sugar alcohol concentration is between 1.0% (w/v) and 7.0% (w/v), more preferable between 2.0 and 6.0% (w/v). Preferably amino acids include levorotary (L) forms of carnitine, arginine, and betaine; however, other amino acids may be added. Preferred polymers include polyvinylpyrrolidone (PVP) with an average molecular weight between 2,000 and 3,000, or polyethylene glycol (PEG) with an average molecular weight between 3,000 and 5,000. It is also preferred to use a buffer in the composition to minimize pH changes in the solution before lyophilization or after reconstitution. Any physiological buffer may be used, but citrate, phosphate, succinate, and glutamate buffers or mixtures thereof are preferred. Most preferred is a citrate buffer. Preferably, the concentration is from 0.01 to 0.3 molar. Surfactants that can be added to the formulation are shown in EP patent applications No. EP 0 270 799 and EP 0 268 110.


Additionally, polypeptides can be chemically modified by covalent conjugation to a polymer to increase their circulating half-life, for example. Preferred polymers, and methods to attach them to peptides, are shown in U.S. Pat. Nos. 4,766,106; 4,179,337; 4,495,285; and 4,609,546. Preferred polymers are polyoxyethylated polyols and polyethylene glycol (PEG). PEG is soluble in water at room temperature and has the general formula: R(O—CH2—CH2)nO—R where R can be hydrogen, or a protective group such as an alkyl or alkanol group. Preferably, the protective group has between 1 and 8 carbons, more preferably it is methyl. The symbol n is a positive integer, preferably between 1 and 1.000, more preferably between 2 and 500. The PEG has a preferred average molecular weight between 1000 and 40.000, more preferably between 2000 and 20.000, most preferably between 3.000 and 12.000. Preferably, PEG has at least one hydroxy group, more preferably it is a terminal hydroxy group. It is this hydroxy group which is preferably activated. However, it will be understood that the type and amount of the reactive groups may be varied to achieve a covalently conjugated PEG/polypeptide of the present invention.


Water soluble polyoxyethylated polyols are also useful in the present invention. They include polyoxyethylated sorbitol, polyoxyethylated glucose, polyoxyethylated glycerol (POG), etc. POG is preferred. One reason is because the glycerol backbone of polyoxyethylated glycerol is the same backbone occurring naturally in, for example, animals and humans in mono-, di-, triglycerides. Therefore, this branching would not necessarily be seen as a foreign agent in the body. The POG has a preferred molecular weight in the same range as PEG. The structure for POG is shown in Knauf et al., 1988, and a discussion of POG/IL-2 conjugates is found in U.S. Pat. No. 4,766,106.


Another drug delivery system for increasing circulatory half-life is the liposome. The peptides and nucleic acids of the invention may also be administered via liposomes, which serve to target a particular tissue, such as lymphoid tissue, or to target selectively infected cells, as well as to increase the half-life of the peptide and nucleic acids composition. Liposomes include emulsions, foams, micelles, insoluble monolayers, liquid crystals, phospholipid dispersions, lamellar layers and the like. In these preparations, the peptide or nucleic acids to be delivered is incorporated as part of a liposome or embedded, alone or in conjunction with a molecule which binds to a receptor prevalent among lymphoid cells, such as monoclonal antibodies which bind to the CD45 antigen, or with other therapeutic or immunogenic compositions. Thus, liposomes either filled or decorated with a desired peptide or nucleic acids of the invention can be directed to the site of lymphoid cells, where the liposomes then deliver the peptide and nucleic acids compositions. Liposomes for use in accordance with the invention are formed from standard vesicle-forming lipids, which generally include neutral and negatively charged phospholipids and a sterol, such as cholesterol. The selection of lipids is generally guided by consideration of, e.g., liposome size, acid lability and stability of the liposomes in the blood stream. A variety of methods are available for preparing liposomes, as described in, e.g., Szoka et al, 1980, and U.S. Pat. Nos. 4,235,871, 4,501,728, 4,837,028, and 5,019,369.


For targeting cells of the immune system, a ligand to be incorporated into the liposome can include, e.g., antibodies or fragments thereof specific for cell surface determinants of the desired immune system cells. A liposome suspension containing a peptide may be administered intravenously, locally, topically, etc. in a dose which varies according to, inter alia, the manner of administration, the peptide being delivered, and the stage of the disease being treated. For example, liposomes carrying either immunogenic polypeptides or nucleic acids encoding immunogenic epitopes are known to elicit CTL responses in vivo (Reddy et al., 1992; Collins et al., 1992; Fries et al., 1992; Nabel et al., 1992).


After the liquid pharmaceutical composition is prepared, it is preferably lyophilized to prevent degradation and to preserve sterility. Methods for lyophilizing liquid compositions are known to those of ordinary skill in the art. Just prior to use, the composition may be reconstituted with a sterile diluent (Ringer's solution, distilled water, or sterile saline, for example) which may include additional ingredients. Upon reconstitution, the composition is preferably administered to subjects using those methods that are known to those skilled in the art.


The approach known as “naked DNA” is currently being used for intramuscular (IM) administration in clinical trials. To maximize the immunotherapeutic effects of minigene DNA vaccines, an alternative method for formulating purified plasmid DNA may be desirable. A variety of methods have been described, and new techniques may become available. Cationic lipids can also be used in the formulation (see, e.g., as described by WO 93/24640; Mannino & Gould-Fogerite 1988; U.S. Pat. No. 5,279,833; WO 91/06309; and Felgner et al., 1987. In addition, glycolipids, fusogenic liposomes, peptides and compounds referred to collectively as protective, interactive, non-condensing compounds could also be complexed to purified plasmid DNA to influence variables such as stability, intramuscular dispersion, or trafficking to specific organs or cell types.


Further examples of DNA-based delivery technologies include facilitated (bupivicaine, polymers, peptide-mediated) delivery, cationic lipid complexes, particle-mediated (“gene gun”) or pressure-mediated delivery (see, e.g., U.S. Pat. No. 5,922,687), DNA formulated with charged or uncharged lipids, DNA formulated in liposomes, emulsified DNA, DNA included in a viral vector, DNA formulated with a transfection-facilitating protein or polypeptide, DNA formulated with a targeting protein or polypeptide, DNA formulated with calcium precipitating agents, DNA coupled to an inert carrier molecule, and DNA formulated with an adjuvant. In this context it is noted that practically all considerations pertaining to the use of adjuvants in traditional vaccine formulation apply to the formulation of DNA vaccines.


Recombinant virus or live carrier vectors may also be directly used as live vaccines in humans. Accordingly the present invention also relates to a recombinant virus, an expression vector or a plasmid, and a host cell comprising the nucleic acid encoding at least one of the peptides as disclosed in Tables 13 and 14.


In a preferred embodiment of the invention, the nucleic acid or minigene is introduced in the form of a vector wherein expression is under control of a viral promoter. Therefore, further embodiments of the present invention are an expression vector which comprises a polynucleotide encoding at least one of the herein described peptides and which is capable of expressing the respective peptides, a host cell comprising the expression vector and a method of producing and purifying herein described peptides, pharmaceutical compositions comprising the herein described peptides and a pharmaceutically acceptable carrier and/or adjuvants. The “peptides as described herein” refer to the peptides disclosed in Tables 13 and 14.


Detailed disclosures relating to the formulation and use of nucleic acid vaccines are available, e.g. by Donnelly J. J. et al, 1997 and 1997a. Examples of expression vectors include attenuated viral hosts, such as vaccinia or fowlpox. As an example of this approach, vaccinia virus is used as a vector to express nucleotide sequences that encode the peptides of the invention. Upon introduction into a host, the recombinant vaccinia virus expresses the immunogenic peptide, and thereby elicits a host CTL and/or HTL response. Vaccinia vectors, for example Modified Vaccinia Ankara (MVA), and methods useful in immunization protocols are described in, e.g., U.S. Pat. No. 4,722,848. Another vector is BCG (Bacille Calmette Guerin). BCG vectors are described in Stover et al., 1991. Further examples are: Alphaviruses (Semliki Forest Virus, Sindbis Virus, Venezuelan Equine Encephalitis Virus (VEE)), Transgene Herpes simplex Virus (HSV), replication-deficient strains of Adenovirus (human or simian), SV40 vectors, CMV vectors, papilloma virus vectors, and vectors derived from Epstein Barr virus. A wide variety of other vectors useful for therapeutic administration or immunization of the peptides of the invention, e.g. retroviral vectors, Salmonella typhi vectors, detoxified anthrax toxin vectors, and the like, will be apparent to those skilled in the art from the description herein.


Additional vector modifications may be desired to optimize minigene expression and immunogenicity. In some cases, introns are required for efficient gene expression, and one or more synthetic or naturally-occurring introns could be incorporated into the transcribed region of the minigene. The inclusion of mRNA stabilization sequences and sequences for replication in mammalian cells may also be considered for increasing minigene expression.


In addition, immunostimulatory sequences (ISSs or CpGs) appear to play a role in the immunogenicity of nucleic acid vaccines. These sequences may be included in the vector, outside the minigene coding sequence, if desired to enhance immunogenicity.


In some embodiments, a bi-cistronic expression vector which allows production of both the minigene-encoded epitopes and a second protein (included to enhance or decrease immunogenicity) can be used. Examples of proteins or polypeptides that could beneficially enhance the immune response if co-expressed include cytokines (e.g., IL-2, IL-12, GM-CSF), cytokine-inducing molecules (e.g., LeIF), costimulatory molecules, or for HTL responses, pan-DR binding proteins (PADRE®, Epimmune, San Diego, Calif.).


Helper (HTL) epitopes can be joined to intracellular targeting signals and expressed separately from expressed CTL epitopes; this allows direction of the HTL epitopes to a cell compartment different than that of the CTL epitopes. If required, this could facilitate more efficient entry of HTL epitopes into the HLA class II pathway, thereby improving HTL induction. In contrast to HTL or CTL induction, specifically decreasing the immune response by co-expression of immunosuppressive molecules (e.g. TGF-P) may be beneficial in certain diseases.


The use of multi-epitope minigenes is described in, e.g., U.S. Pat. No. 6,534,482; An and Whitton, 1997; Thomson et al., 1996; Whitton et al., 1993; Hanke et al., 1998. For example, a multi-epitope DNA plasmid encoding supermotif- and/or motif-bearing HCV epitopes derived from multiple regions of the HCV polyprotein sequence, the PADRE® universal helper T cell epitope (or multiple HTL epitopes from HCV), and an endoplasmic reticulum-translocating signal sequence can be engineered.


The nucleic acids or minigenes encoding the peptides or polyepitopic polypeptides, or the peptides or polyepitopic peptides themselves, can be administered alone or in combination with other therapies known in the art. In addition, the polypeptides and nucleic acids of the invention can be administered in combination with other treatments designed to enhance immune responses, e.g., by co-administration with adjuvants or cytokines (or nucleic acids encoding cytokines), as is well known in the art. Accordingly, the peptides or nucleic acids or vaccine compositions of the invention can also be used in combination with antiviral drugs such as interferon, or other treatments for viral infection.


All disclosures herein which relate to use of adjuvants in the context of protein or (poly)peptide based pharmaceutical compositions apply mutatis mutandis to their use in nucleic acid vaccination technology. The same holds true for other considerations relating to formulation and mode and route of administration and, hence, also these considerations discussed herein in connection with a traditional pharmaceutical composition apply mutatis mutandis to their use in nucleic acid vaccination technology.


In a further embodiment, the present invention relates to the use of the peptide and/or nucleic acid as described herein for inducing immunity against HCV, characterized in that said peptide and/or nucleic acid is used as part of a series of time and compounds. In this regard, it is to be understood that the term “a series of time and compounds” refers to administering with time intervals to an individual the compounds used for eliciting an immune response. The latter compounds may comprise any of the following components: a peptide or polyepitopic peptide, a nucleic acid or minigene or a vector.


In this respect, a series comprises administering, either:

  • (i) a peptide or polyepitopic peptide, or
  • (ii) a nucleic acid, minigene or vector, wherein said nucleic acid, minigene or vector can be administered simultaneously, or at different time intervals, including at alternating time intervals, or
  • (iii) a peptide or polyepitopic peptide in combination with a nucleic acid, minigene or vector, wherein said peptide or polyepitopic peptide and said nucleic acid, minigene or vector can be administered simultaneously, or at different time intervals, including at alternating time intervals, or
  • (iv) either (i) or (ii), possibly in combination with other peptides or nucleic acids or vectors, with time intervals.


The peptide and nucleic acid compositions of this invention can be provided in kit form together with instructions for vaccine administration. Typically the kit would include desired peptide compositions in a container, preferably in unit dosage form and instructions for administration. An alternative kit would include a minigene construct with desired nucleic acids of the invention in a container, preferably in unit dosage form together with instructions for administration. Lymphokines such as IL-2 or IL-12 may also be included in the kit. Other kit components that may also be desirable include, for example, a sterile syringe, booster dosages, and other desired excipients.


Use of the Peptides for Evaluating Immune Responses.

The peptides may also find use as diagnostic reagents. For example, a peptide of the invention may be used to determine the susceptibility of a particular individual to a treatment regimen which employs the peptide, related peptides or any other HCV vaccine, and thus may be helpful in modifying an existing treatment protocol or in determining a prognosis for an affected individual. In addition, the peptides may also be used to predict which individuals will be at substantial risk for developing chronic HCV infection.


Accordingly, the present invention relates to a method of determining the outcome for a subject exposed to HCV, comprising the steps of determining whether the subject has an immune response to one or more peptides selected from Tables 13 and 14.


In a preferred embodiment of the invention, the peptides as described herein can be used as reagents to evaluate an immune response. The immune response to be evaluated can be induced by the natural infection or by using as an immunogen any agent that may result in the production of antigen-specific CTLs or HTLs that recognize and bind to the peptide(s) to be employed as the reagent. The peptide reagent need not be used as the immunogen. Assay systems that can be used for such an analysis include relatively recent technical developments such as tetramers, staining for intracellular lymphokines and interferon release assays, or ELISPOT assays.


For example, a peptide of the invention may be used in a tetramer staining assay to assess peripheral blood mononuclear cells for the presence of antigen-specific CTLs following exposure to an antigen or an immunogen. The HLA-tetrameric complex is used to directly visualize antigen-specific CTLS (see, e.g., Ogg et al., 1998; and Altman et al., 1996) and determine the frequency of the antigen-specific CTL population in a sample of peripheral blood mononuclear cells. A tetramer reagent using a peptide of the invention may be generated as follows: a peptide that binds to an HLA molecule is refolded in the presence of the corresponding HLA heavy chain and beta2-microglobulin to generate a trimolecular complex. The complex is biotinylated at the carboxyl terminal end of the heavy chain at a site that was previously engineered into the protein. Tetramer formation is then induced by the addition of streptavidin. By means of fluorescently labeled streptavidin, the tetramer can be used to stain antigen-specific cells. The cells may then be identified, for example, by flow cytometry. Such an analysis may be used for diagnostic or prognostic purposes. Cells identified by the procedure can also be used for therapeutic purposes. As an alternative to tetramers also pentamers or dimers can be used (Current Protocols in Immunology (2000) unit 17.2 supplement 35)


Peptides of the invention may also be used as reagents to evaluate immune recall responses. (see, e.g., Bertoni et al., 1997 and Perma et al., 1991.). For example, patient PBMC samples from individuals with HCV infection may be analyzed for the presence of antigen-specific CTLs or HTLs using specific peptides. A blood sample containing mononuclear cells may be evaluated by cultivating the PBMCs and stimulating the cells with a peptide of the invention. After an appropriate cultivation period, the expanded cell population may be analyzed, for example, for cytotoxic activity (CTL) or for HTL activity.


The peptides may also be used as reagents to evaluate the efficacy of a vaccine.


PBMCs obtained from a patient vaccinated with an immunogen may be analyzed using, for example, either of the methods described above. The patient is HLA typed, and peptide epitope reagents that recognize the allele-specific molecules present in that patient are selected for the analysis. The immunogenicity of the vaccine is indicated by the presence of epitope-specific CTLs and/or HTLs in the PBMC sample.


The peptides of the invention may also be used to make antibodies, using techniques well known in the art (see, e.g. CURRENT PROTOCOLS IN IMMUNOLOGY, Wiley/Greene, NY; and Antibodies A Laboratory Manual, Harlow and Lane, Cold Spring Harbor Laboratory Press, 1989). Such antibodies include those that recognize a peptide in the context of an HLA molecule, i.e., antibodies that bind to a peptide-MHC complex.


Tables

The peptides of current invention are set out in Tables 1-14.


As used herein, “CS_fr” and “CS_to” means Consensus Sequence “from” and “to” residue numbers of the HCV consensus sequence as disclosed in FIG. 1 or 2.


S: Strong, Kdpred <0.1 μM; M: Medium, Kdpred 0.1-1μM; W: Weak, Kdpred 1-10 μM









TABLE 1





Predicted HLA-A*0101 binding peptides



























SEQ ID



Protein
CS_fr
CS_to
pep_seq
Score
NO











Algonomics



9-mer













1
NS3
1436
1444
ATDALMTGY
S
1





2
C
126
134
LTCGFADLM
S
2





3
NS5B
2588
2596
RVCEKMALY
S
3





4
C
130
138
FADLMGYIP
M
4





5
NS3
1565
1573
LTHIDAHFL
M
5





6
NS3
1285
1293
ITTGAPITY
M
6





7
NS3
1210
1218
FTDNSSPPA
M
7





8
NS3
1581
1589
DNFPYLVAY
M
8





9
NS5B
2759
2767
FTEAMTRYS
M
9





10
NS5B
2795
2803
DASGKRVYY
M
10





11
NS3
1288
1296
GAPITYSTY
M
11





12
NS3
1241
1249
PAAYAAQGY
M
12





13
NS3
1520
1528
CYDAGCAWY
M
13





14
NS5B
2835
2843
YAPTLWARM
M
14





15
NS3
1197
1205
PVESMETTM
M
15





16
NS5B
2605
2613
AVMGSSYGF
M
16





17
NS3
1513
1521
DSSVLCECY
M
17





18
NS3
1410
1418
LGLNAVAYY
M
18





19
NS5B
2770
2778
PGDPPQPEY
M
19





20
NS3
1370
1378
NGEIPFYGK
M
20





21
NS3
1635
1643
VTLTHPITK
M
21





22
NS5B
2607
2615
MGSSYGFQY
M
22





23
NS3
1637
1645
LTHPITKYI
M
23





24
NS3
1579
1587
AGDNFPYLV
M
24





25
NS3
1236
1244
KSTKVPAAY
M
25





26
NS3
1291
1299
ITYSTYGKF
M
26





27
NS3
1532
1540
PAETSVRLR
M
27





28
C
122
130
VIDTLTCGF
M
28





29
NS3
1420
1428
GLDVSVIPT
M
29





30
NS3
1466
1474
LDPTFTIET
M
30





31
C
158
166
LEDGVNYAT
W
31





32
NS3
1260
1268
ATLGFGAYM
W
32





33
NS3
1602
1610
PSWDQMWKC
W
33





34
NS5B
2837
2845
PTLWARMIL
W
34





35
NS3
1468
1476
PTFTIETTT
W
35





36
NS5B
2758
2766
VFTEAMTRY
W
36





37
NS5B
2603
2611
PQAVMGSSY
W
37





38
NS5B
2792
2800
VAHDASGKR
W
38





39
NS5B
2757
2765
RVFTEAMTR
W
39





40
NS5B
2710
2718
GNTLTCYLK
W
40





41
NS5B
2563
2571
EVFCVQPEK
W
41





42
C
172
180
CSFSIFLLA
W
42





43
NS5B
2615
2623
YSPGQRVEF
W
43





44
NS3
1434
1442
VVATDALMT
W
44





45
C
156
164
RVLEDGVNY
W
45





46
NS3
1534
1542
ETSVRLRAY
W
46





47
NS3
1391
1399
LIFCHSKKK
W
47





48
NS5B
2662
2670
CCDLAPEAR
W
48





49
NS5B
2826
2834
NSWLGNIIM
W
49





50
NS3
1262
1270
LGFGAYMSK
W
50





51
NS3
1409
1417
ALGLNAVAY
W
51





52
NS3
1199
1207
ESMETTMRS
W
52





53
NS3
1437
1445
TDALMTGYT
W
53





54
NS3
1195
1203
FIPVESMET
W
54





55
C
109
117
PTDPRRRSR
W
55





56
NS3
1242
1250
AAYAAQGYK
W
56





57
NS3
1203
1211
TTMRSPVFT
W
57





58
NS3
1569
1577
DAHFLSQTK
W
58





59
NS5B
2842
2850
RMILMTHFF
W
59





60
NS3
1335
1343
QAETAGARL
W
60





61
NS3
1649
1657
MSADLEVVT
W
61



















Score
SEQ ID


Protein
CS_fr
CS_to
pep_seq
PIC
NO











Epimmune
















MSATLCSALY
22
1507





E1


VQDCNCSIY
16
1961





E1


VQECNCSIY
24
1962





E1


TQDCNCSIY
12
1864








DMRPYCWHY
68
970








ASSVCGPVY
56
874








TTDRSGAPTY
88
1872








CTWMNSTGY
21
947








CGAPPCNIY
74
914





E2


LTPRCLVDY
65
1474





E2


LTPRCLIDY
32
1473





E2


FTIFKVRMY
34
1089





E2


YTIFKIRMY
26
2070





E2


FTIFKIRMY
33
1088








GLSPAITKY
15
1156








VLALPQQAY
56
1926








LIAVLGPLY
31
1384








LLALLGPAY
30
1389








ISGVLWTVY
42
1304





NS3


CTCGSSDLY
18
940





NS3


CTCGAVDLY
17
938





NS3


CTCGSADLY
21
939





NS3


LLSPRPISY
15
1408





NS3


KSTKVPAAY
71
25





NS3


PAAYAAQGY
29
12





NS3


PAAYVAQGY
42
1544





NS3


ITTGAPITY
13
6





NS3


ITTGSPITY
15
1309





NS3


STTGEIPFY
50
1791





NS3


GSEGEIPFY
42
1185





NS3


GMGLNAVAY
47
1159





NS3


ATDALMTGY
32
1





NS3


DSSVLCECY
31
17





NS3


DSVVLCECY
83
987








ETTVRLRAY
46
1035





NS5A


CTPSPAPNY
78
943





NS5A


EVDGVRLHRY
17
1036





NS5A


ELDGVRLHRY
23
1017








PLSNSLLRY
21
1560





NS5B


HSAKSKFGY
24
1241





NS5B


HSARSKFGY
25
1242





NS5B


MGSSYGFQY
91
22





NS5B


MGSAYGFQY
98
1495





NS5B


KKDPMGFSY
77
1328





NS5B


TSCGNTLTCY
41
1867





NS5B


TSFGNTITCY
45
1868





NS5B


DASGKRVYY
55
10





NS5B


GLSAFSLHSY
47
1153





NS5B


GLDAFSLHTY
28
1148





NS5B


GLSAFTLHSY
43
1155





NS5B


LSAFSLHSY
9
1456





NS5B


LDAFSLHTY
32
1367





NS5B


LSAFTLHSY
9
1457





NS5B


GRAAICGKY
95
1179





NS5B


LLSVGVGIY
47
1411




















SEQ ID


Protein
CS_fr
CS_to
pep_seq
Score
NO











Algonomics



10-mer












Ns5b
2759
2768
FTEAMTRYSA
S
1087





Ns5b
2826
2835
NSWLGNIIMY
M
1534





Ns4b
1848
1857
LVDILAGYGA
M
1478





Ns3
1436
1445
ATDALMTGYT
M
877





Ns3
1617
1626
TLHGPTPLLY
M
1833





Ns3
1435
1444
VATDALMTGY
M
1894





Ns3
1210
1219
FTDNSSPPAV
M
1086





Ns5b
2757
2766
RVFTEAMTRY
M
1712





Ns3
1635
1644
VTLTHPITKY
M
1976





Ns3
1258
1267
VAATLGFGAY
M
1887





Ns3
1409
1418
ALGLNAVAYY
M
822





Ns3
1637
1646
LTHPITKYIM
M
1469





Ns3
1240
1249
VPAAYAAQGY
M
1943





Ns3
1519
1528
ECYDAGCAWY
M
1002





Core
122
131
VIDTLTCGFA
M
1914





Ns3
1578
1587
QAGDNFPYLV
W
1596





Ns5b
2794
2803
HDASGKRVYY
W
1216





Ns3
1408
1417
SALGLNAVAY
W
1717





Ns5b
2606
2615
VMGSSYGFQY
W
1939





Ns3
1554
1563
HLEFWESVFT
W
1225





Ns3
1367
1376
LSNTGEIPFY
W
1459





Core
127
136
TCGFADLMGY
W
1815





Core
130
139
FADLMGYIPL
W
1048





Ns3
1433
1442
VVVATDALMT
W
1987





Ns3
1465
1474
SLDPTFTIET
W
1741





Ns5b
2832
2841
IIMYAPTLWA
W
1268





Ns3
1369
1378
NTGEIPFYGK
W
1535





Ns5b
2620
2629
RVEFLVNAWK
W
1711





Ns5b
2602
2611
LPQAVMGSSY
W
1437





Core
157
166
VLEDGVNYAT
W
1927





Ns3
1197
1206
PVESMETTMR
W
1588





Ns3
1634
1643
EVTLTHPITK
W
1041





Ns5b
2835
2844
YAPTLWARMI
W
2028





Ns3
1567
1576
HIDAHFLSQT
W
1222





Ns3
1490
1499
RTGRGRRGIY
W
1704





Ns3
1530
1539
LTPAETSVRL
W
1471





Ns5b
2589
2598
VCEKMALYDV
W
1897





Ns3
1568
1577
IDAHFLSQTK
W
1256





Ns3
1522
1531
DAGCAWYELT
W
953





Ns3
1580
1589
GDNFPYLVAY
W
1112





Ns3
1192
1201
AVDFIPVESM
W
882





Ns5b
2707
2716
TSCGNTLTCY
W
1867





Ns3
1284
1293
TITTGAPITY
W
1829





Ns4b
1944
1953
VTQILSSLTI
W
1977





Ns5b
2796
2805
ASGKRVYYLT
W
870





Ns5b
2713
2722
LTCYLKASAA
W
1466





Ns3
1172
1181
PSGHAVGIFR
W
1584





Core
182
191
LSCLTIPASA
W
1458





Ns5b
2833
2842
IMYAPTLWAR
W
1279





Ns3
1260
1269
ATLGFGAYMS
W
878





Ns5b
2754
2763
ASLRVFTEAM
W
871
















TABLE 2





Predicted HLA-A*0201 binding peptides



























SEQ ID



Protein
CS_fr
CS_to
pep_seq
Score
NO











Algonomics



9-mer













 1
NS5B
2828
2836
WLGNIIMYA
S
62





 2
NS3
1585
1593
YLVAYQATV
S
63





 3
NS3
1565
1573
LTHIDAHFL
S
64





 4
C
77
85
AQPGYPWPL
S
65





 5
C
132
140
DLMGYIPLV
S
66





 6
NS5B
2594
2602
ALYDVVSTL
S
67





 7
NS5B
2598
2606
VVSTLPQAV
S
68





 8
C
136
144
YIPLVGAPL
S
69





 9
C
181
189
LLSCLTIPA
S
70





10
NS3
1510
1518
GMFDSSVLC
M
71





11
C
150
158
ALAHGVRVL
M
72





12
NS3
1250
1258
KVLVLNPSV
M
73





13
NS3
1542
1550
YLNTPGLPV
M
74





14
NS5B
2727
2735
KLQDCTMLV
M
75





15
NS3
1560
1568
SVFTGLTHI
M
76





16
NS3
1434
1442
VVATDALMT
M
77





17
C
90
98
GLGWAGWLL
M
78





18
NS5B
2679
2687
RLYIGGPLT
M
79





19
NS3
1195
1203
FIPVESMET
M
80





20
NS3
1617
1625
TLHGPTPLL
M
81





21
NS3
1252
1260
LVLNPSVAA
M
82





22
NS3
1589
1597
YQATVCARA
M
83





23
NS5B
2833
2841
IMYAPTLWA
M
84





24
NS5B
2593
2601
MALYDVVST
M
85





25
NS3
1342
1350
RLVVLATAT
M
86





26
NS5B
2831
2839
NIIMYAPTL
M
87





27
NS5B
2748
2756
GTQEDAASL
M
88





28
NS3
1325
1333
TILGIGTVL
M
89





29
NS3
1645
1653
IMACMSADL
M
90





30
C
29
37
QIVGGVYLL
M
91





31
NS5B
2838
2846
TLWARMILM
M
92





32
C
168
176
NLPGCSFSI
M
93





33
NS5B
2733
2741
MLVNGDDLV
W
94





34
NS3
1244
1252
YAAQGYKVL
W
95





35
NS3
1188
1196
GVAKAVDFI
W
96





36
NS5B
2842
2850
RMILMTHFF
W
97





37
NS3
1331
1339
TVLDQAETA
W
98





38
NS3
1637
1645
LTHPITKYI
W
99





39
NS3
1253
1261
VLNPSVAAT
W
100





40
NS3
1210
1218
FTDNSSPPA
W
101





41
NS3
1345
1353
VLATATPPG
W
102





42
NS3
1251
1259
VLVLNPSVA
W
103





43
NS3
1169
1177
LLCPSGHVV
W
104





44
NS3
1420
1428
GLDVSVIPT
W
105





45
NS3
1464
1472
FSLDPTFTI
W
106





46
NS3
1260
1268
ATLGFGAYM
W
107





47
NS5B
2835
2843
YAPTLWARM
W
108





48
NS3
1284
1292
TITTGAPIT
W
109





49
NS3
1203
1211
TTMRSPVFT
W
110





50
NS5B
2613
2621
FQYSPGQRV
W
111





51
NS3
1224
1232
QVAHLHAPT
W
112





52
NS3
1218
1226
AVPQTFQVA
W
113





53
NS3
1283
1291
RTITTGAPI
W
114





54
NS3
1245
1253
AAQGYKVLV
W
115





55
NS3
1586
1594
LVAYQATVC
W
116





56
NS3
1178
1186
GVFRAAVCT
W
117





57
C
133
141
LMGYIPLVG
W
118





58
NS3
1630
1638
AVQNEVTLT
W
119





59
NS3
1497
1505
GIYRFVTPG
W
120





60
NS5B
2720
2728
SAACRAAKL
W
121





61
NS3
1610
1618
CLIRLKPTL
W
122





62
NS3
1572
1580
FLSQTKQAG
W
123





63
NS3
1450
1458
SVIDCNTCV
W
124





64
NS3
1349
1357
ATPPGSVTV
W
125





65
NS5B
2815
2823
AAWETARHT
W
126





66
C
28
36
GQIVGGVYL
W
127





67
C
157
165
VLEDGVNYA
W
128





68
NS3
1555
1563
LEFWESVFT
W
129





69
NS3
1246
1254
AQGYKVLVL
W
130





70
NS5B
2734
2742
LVNGDDLVV
W
131





71
C
36
44
LLPRRGPRL
W
132





72
NS5B
2600
2608
STLPQAVMG
W
133





73
NS3
1425
1433
VIPTSGDVV
W
134





74
NS3
1509
1517
SGMFDSSVL
W
135





75
NS3
1648
1656
CMSADLEVV
W
136





76
NS3
1376b
1384b
YGKAIPIEV
W
137





77
NS3
1649
1657
MSADLEVVT
W
138





78
NS5B
2830
2838
GNIIMYAPT
W
139





79
NS3
1328
1336
GIGTVLDQA
W
140





80
NS3
1175
1183
HVVGVFRAA
W
141





81
NS3
1406
1414
KLSALGLNA
W
142





82
NS3
1379b
1387b
AIPIEVIKG
W
143



















Score
SEQ ID


Protein
CS_fr
CS_to
pep_seq
PIC
NO











Epimmune













C


AQPGYPWPL
82
65





C


GLGWAGWLL
71
78





C


DLMGYIPLV
21
66





C


DLMGYIPVV
56
966





C


NLPGCSFSI
56
93





C


FLLALLSCL
24
361





C


FLLALFSCL
21
1068





C


FLLALLSCI
24
1069





C


FLLALLSCLT
87
1070








LLALLSCLTV
63
1390








HLPGCVPCV
75
1231





E1


MMMNWSPTA
55
1498





E1


MMMNWSPTT
91
1500





E1


MMMNWSPTAA
99
1499





E1


MMMNWSPTTA
90
1501








VMFGLAYFSM
78
1937








SMQGAWAKV
76
1752








LQTGFLASL
34
1451





E2


CMVDYPYRL
40
924





E2


CLVDYPYRL
41
922





E2


CLIDYPYRL
37
920





E2


CLVHYPYRL
81
923





E2


RLWHYPCTI
25
1667





E2


RLWHYPCTV
14
1669





E2


RLWHYPCTL
25
1668





E2


TLFKVRMYV
89
1830





E2


ALSTGLIHL
74
825





E2


ALSTGLLHL
64
826





E2


YLYGVGSAV
23
2056





E2


YLYGVGSAVV
43
2057





E2


YVVLLFLLL
42
2075





E2


YVVLLFLLLA
77
2076





E2


VILLFLLLA
60
1919





E2


VVLLFLLLA
77
1983





E2


LLFLLLADA
61
1395





E2


FLLLADARI
36
1071





E2


FLLLADARV
20
1072








LLLADARVCV
98
1399








MLLISQAEA
90
1497





P7


GVWPLLLLL
61
1207








ALQVWVPPL
72
824








LQVWVPPLL
45
1453








KLLLAVLGPL
83
1332








LLLAVLGPL
50
1401








LLIAVLGPL
57
1398








LLLAIFGPL
44
1400








ALLGPAYLL
46
823








AVLGPLYLI
53
892








SLLRIPYFV
18
1744








YIYNHLTPL
51
2040








YIYDHLTPM
37
2039





NS2


YVYNHLTPL
66
2079





NS2


YVYDHLTPL
26
2077








LLAPITAYA
36
1391





NS3


GLLGCIITSL
88
1151





NS3


LLGCIITSL
57
1397





NS3


FLGTTVGGV
62
1067





NS3


FLGTSISGV
66
1066





NS3


FLATCINGV
25
1065





NS3


CINGVCWTV
84
919





NS3


SISGVLWTV
61
1737





NS3


GVMWTVYHGA
100
1198





NS3


VMWTVYHGA
39
1942





NS3


VLWTVYHGA
41
1935





NS3


YLVTRHADV
79
2053





NS3


YLVTRNADV
38
2055





NS3


ATLGFGAYM
92
32





NS3


YLNTPGLPV
45
74





NS3


YLSTPGLPV
49
2049





NS3


YLVAYQATV
3
63





NS3


YLTAYQATV
5
2050





NS3


YQATVCARA
49
83





NS3


QMWKCLIRL
71
238





NS3


VMWKCLIRL
36
1940





NS3


VMWKCLTRL
61
1941





NS3


RLGAVQNEV
82
265





NS4A


VLVGGVLAA
74
1933





NS4A


VLAGGVLAA
90
1922





NS4A


VLVGGVLAAL
89
1934





NS4A


VLAGGVLAAV
47
1923





NS4A


LAGGVLAAV
99
1360





NS4A


ALAAYCLSV
7
820





NS4A


ALAAYCLTT
26
821





NS4B


HMWNFISGI
53
1233





NS4B


HMWNFVSGI
49
1234





NS4B


FISGIQYLA
20
1060





NS4B


FVSGIQYLA
25
1093





NS4B


SLMAFTASV
6
1746





NS4B


SMMAFSAAL
19
1751





NS4B


LLFNILGGWV
51
1396





NS4B


ILLNIMGGWL
87
1272





NS4B


FVVSGLAGA
77
1094





NS4B


ILAGYGAGV
28
1269





NS4B


VLAGYGAGV
30
1925





NS4B


VLAGYGAGI
54
1924





NS4B


WMNRLIAFA
97
2015





NS5A


NMWHGTFPI
21
1525





NS5A


NTWQGTFPI
99
1537





NS5A


NTWHGTFPI
87
1536








FMGGDVTRI
46
1075





NS5B


RLIVFPDLGV
83
1661





NS5B


ALYDVIQKL
56
829





NS5B


ALYDITQKL
63
828





NS5B


ALYDVVSTL
29
67





NS5B


FLVCGDDLV
43
1073





NS5B


FLVCGDDLVV
65
1074





NS5B


IQYAPTIWV
39
1299





NS5B


IMYAPTLWA
34
84





NS5B


TLWARMILM
40
92





NS5B


ILMTHFFSI
7
1273





NS5B


VLMTHFFSI
8
1928





NS5B


VLMTHFFSIL
90
1929





NS5B


ILMTHFFSIL
82
1274





NS5B


EMYGATYSV
30
1019





NS5B


EMYGAVYSV
24
1020





NS5B


RLHGLSAFT
74
1660





NS5B


RLHGLEAFSL
89
1658





NS5B


RLHGLDAFSL
73
1657





NS5B


GLDAFSLHT
67
1147





NS5B


GLYLFNWAV
33
1157





NS5B


RLLDLSSWFT
53
1663





NS5B


RLLLLGLLLL
40
1664





NS5B


HLLLCLLLL
42
1230





NS5B


LLLLGLLLL
38
1404





NS5B


LLLCLLLLT
27
1402





NS5B


LLLCLLLLTV
16
1403





NS5B


LLCLLLLTV
43
1393





NS5B


LLLLTVGVGI
70
1405





NS5B


LTVGVGIFL
89
1477
















TABLE 3





Predicted HLA-A*0301 and HLA-A*1101


binding peptides



























SEQ



Protein
CS_fr
CS_to
pep_seq
Score
ID NO











Algonomics



9-mer













 1
C
43
51
RLGVRATRK
S
144





 2
NS3
1411
1419
GLNAVAYYR
S
145





 3
NS5B
2624
2632
LVNAWKSKK
S
146





 4
NS3
1242
1250
AAYAAQGYK
S
147





 5
NS3
1390
1398
HLIFCHSKK
S
148





 6
C
35
43
YLLPRRGPR
S
149





 7
NS5B
2623
2631
FLVNAWKSK
S
150





 8
NS3
1391
1399
LIFCHSKKK
S
151





 9
NS3
1635
1643
VTLTHPITK
M
152





10
NS3
1409
1417
ALGLNAVAY
M
153





11
NS5B
2584
2592
DLGVRVCEK
M
154





12
NS5B
2719
2727
ASAACRAAK
M
155





13
NS3
1183
1191
AVCTRGVAK
M
156





14
NS5B
2567
2575
VQPEKGGRK
M
157





15
C
2
10
STNPKPQRK
M
158





16
C
62
70
RQPIPKARR
M
159





17
NS5B
2757
2765
RVFTEAMTR
M
160





18
NS5B
2716
2724
YLKASAACR
M
161





19
NS5B
2710
2718
GNTLTCYLK
M
162





20
C
96
104
WLLSPRGSR
M
163





21
C
10
18
KTKRNTNRR
M
164





22
NS5B
2594
2602
ALYDVVSTL
M
165





23
NS3
1262
1270
LGFGAYMSK
M
166





24
C
51
59
KTSERSQPR
M
167





25
NS5B
2580
2588
IVFPDLGVR
M
168





26
C
156
164
RVLEDGVNY
M
169





27
NS5B
2833
2841
IMYAPTLWA
W
170





28
NS3
1288
1296
GAPITYSTY
W
171





29
NS5B
2798
2806
GKRVYYLTR
W
172





30
NS3
1389
1397
RHLIFCHSK
W
173





31
NS3
1492
1500
GRGRRGIYR
W
174





32
NS5B
2679
2687
RLYIGGPLT
W
175





33
NS5B
2634
2642
PMGFSYDTR
W
176





34
C
59
67
RGRRQPIPK
W
177





35
NS5B
2621
2629
VEFLVNAWK
W
178





36
NS3
1510
1518
GMFDSSVLC
W
179





37
NS3
1605
1613
DQMWKCLIR
W
180





38
NS3
1378b
1386b
KAIPIEVIK
W
181





39
NS3
1542
1550
YLNTPGLPV
W
182





40
NS5B
2588
2596
RVCEKMALY
W
183





41
C
93
101
WAGWLLSPR
W
184





42
NS3
1585
1593
YLVAYQATV
W
185





43
C
90
98
GLGWAGWLL
W
186





44
NS3
1607
1615
MWKCLIRLK
W
187





45
NS5B
2791
2799
SVAHDASGK
W
188





46
C
47
55
RATRKTSER
W
189





47
NS5B
2828
2836
WLGNIIMYA
W
190





48
NS3
1378
1386
KAIPIEAIK
W
191





49
NS3
1619
1627
HGPTPLLYR
W
192





50
NS5B
2563
2571
EVFCVQPEK
W
193





51
C
1
9
MSTNPKPQR
W
194





52
NS3
1228
1236
LHAPTGSGK
W
195





53
NS3
1482
1490
VSRSQRRGR
W
196





54
C
31
39
VGGVYLLPR
W
197





55
NS3
1178
1186
GVFRAAVCT
W
198





56
C
15
23
TNRRPQDVK
W
199





57
NS3
1624
1632
LLYRLGAVQ
W
200





58
NS3
1636
1644
TLTHPITKY
W
201





59
NS3
1420
1428
GLDVSVIPT
W
202





60
C
105
113
PSWGPTDPR
W
203





61
NS3
1176
1184
VVGVFRAAV
W
204





62
NS3
1611
1619
LIRLKPTLH
W
205





63
C
45
53
GVRATRKTS
W
206





64
C
141
149
GAPLGGAAR
W
207





65
C
132
140
DLMGYIPLV
W
208





66
NS3
1221
1229
QTFQVAHLH
W
209





67
NS3
1436
1444
ATDALMTGY
W
210





68
NS3
1577
1585
KQAGDNFPY
W
211





69
NS3
1581
1589
DNFPYLVAY
W
212





70
C
36
44
LLPRRGPRL
W
213





71
NS3
1231
1239
PTGSGKSTK
W
214





72
NS3
1291
1299
ITYSTYGKF
W
215





73
C
78
86
QPGYPWPLY
W
216





74
NS5B
2762
2770
AMTRYSAPP
W
217





75
NS3
1328
1336
GIGTVLDQA
W
218





76
NS3
1618
1626
LHGPTPLLY
W
219





77
NS3
1530
1538
LTPAETSVR
W
220





78
NS3
1485
1493
SQRRGRTGR
W
221





79
NS3
1236
1244
KSTKVPAAY
W
222





80
C
30
38
IVGGVYLLP
W
223





81
NS3
1490
1498
RTGRGRRGI
W
224





82
NS3
1406
1414
KLSALGLNA
W
225





83
NS5B
2613
2621
FQYSPGQRV
W
226





84
C
74
82
RTWAQPGYP
W
227





85
NS5B
2692
2700
QNCGYRRCR
W
228






NS3
1513
1521
DSSVLCECY
N
229



















Score
SEQ


Protein
CS_fr
CS_to
pep_seq
PIC
ID NO











Epimmune













C


STNPKPQRK
5.6
158





C


STIPKPQRK
17
1789





C


KTSERSQPR
70
167





C


AQPGYPWPLY
365
861








RVLEDGINY
51
1713








GQAFTFRPR
383
1177





E1


QLFTFSPRR
109
1609





E1


TTQDCNCSIY
67
1877





E1


ALVVSQLLR
50
827





E1


GVLAGLAYY
26
1197





E1


GILAGLAYY
94
1142








FSMQGAWAK
3.7
1084








QTGFLASLFY
59
1620








GFIAGLFYY
57
1134








FIAGLFYYHK
11
1058








FLASLFYTHK
50
1064








TLLCPTDCFR
168
1834








LLCPTDCFRK
125
1394





E2


CTVNFTIFK
2.4
945





E2


CTVNFTLFK
2.0
946





E2


CTVNFSIFK
4.2
944








GQAEAALEK
13
1176





P7


VFFCAAWYIK
6.5
1908





P7


FFCAAWYIK
30
1056





P7


GFFTLSPWYK
44
1133





P7


FFTLSPWYK
31
1057





P7


ILTLSPHYK
32
1277








SLLRIPYFVR
112
1745








LTRVPYFVR
43
1476








LLRIPYFVR
301
1407








FVRAHALLR
71
1091








KLGALTGTY
444
1329





NS2


YVYDHLTPLR
26
2078





NS2


YVYNHLTPLR
34
2080








VIFSPMEIK
5.7
1915








RLLAPITAY
466
1662








KLLAPITAY
331
1330








ITAYAQQTR
58
1307








TVYHGAGNK
6.7
1882








AVDLYLVTR
20
884





NS3


GIFRAAVCTR
27
1141





NS3


GIFRAAVCSR
47
1140





NS3


AVCTRGVAK
5.4
156





NS3


AVCSRGVAK
2.8
881





NS3


TLGFGAYMSK
18
1831





NS3


TLGFGTYMSK
22
1832





NS3


PITYSTYGK
77
1556





NS3


KLTYSTYGK
15
1334





NS3


SITYSTYGK
2.1
1738





NS3


AITYSTYGK
2.0
818





NS3


TTGEIPFYGK
13
1873





NS3


HLIFCHSRK
95
1229





NS3


LIFCHSKKK
45
47





NS3


LIFCHSRKK
80
1385





NS3


SLGLNAVAYY
327
1742





NS3


GLNAVAYYR
4.8
145





NS3


GINAVAYYR
2.0
1143





NS3


GVNAVAYYR
0.57
1199





NS3


ATDALMTGY
48
1





NS3


KQSGENEPY
244
1347





NS3


DVMWKCLTR
62
991





NS3


DQMWKCLTR
504
983





NS3


LQGPTPLLYR
881
1448





NS3


VTLTHPITK
13
21





NS3


VVLTHPITK
9.9
1984





NS4B


MQLAEQFKQK
268
1506





NS4B


QLAEQFKQK
34
1608





NS4B


RIAEMLKSK
69
1654





NS4B


AVGSIGLGK
0.9
888





NS4B


AVGSVGLGK
1.2
889





NS4B


GVAGALVAFK
3.0
1192





NS4B


GISGALVAFK
16
1145





NS4B


GVSGALVAFK
5.2
1204





NS4B


ISGALVAFK
29
1302





NS4B


VSGALVAFK
29
1971





NS4B


AFKIMSGEK
326
801





NS4B


GVVCAAILR
19
1205





NS4B


GVICAAILR
20
1194





NS4B


GVVCAAILRR
17
1206





NS4B


GVICAAILRR
20
1195





NS4B


VVCAAILRR
6.5
1978





NS4B


VICAAILRR
23
1913








SLTITSLLR
110
1747








SLTVTQLLR
98
1748








SLTVTSLLR
103
1749








GLPFISCQK
68
1152








GIPFISCQK
28
1144








GSMRITGPK
2.4
1188








QIHRFAPTPK
34
1605








ITAEAAARR
70
1305





NS5A


ASQLSAPSLK
25
873





NS5A


SQLSAPSLK
15
1781





NS5A


SQLSAPSLR
151
1782





NS5A


NLFMGGDVTR
273
1524





NS5A


RQEMGGNITR
587
1692





NS5A


RQEMGSNITR
553
1693





NS5A


VSVPAEILRK
23
1974





NS5A


SVPAEILRK
1.5
1800





NS5A


SIPSEYLLPK
18
1736





NS5A


SSALAELATK
28
1784





NS5A


STALAELAAK
13
1786





NS5B


SLLRHHNMVY
215
1743





NS5B


TTSRSASQR
26
1879





NS5B


TTSRSASLR
61
1878





NS5B


RQKKVTFDR
955
1694





NS5B


RLQVLDDHYK
48
1665





NS5B


LQVLDDHYK
139
1452





NS5B


VQPEKGGRK
595
157





NS5B


RVCEKMALY
75
3





NS5B


RVFTEAMTR
13
39





NS5B


RVFTEAMTRY
20
1712





NS5B


SVAHDASGK
5.7
188





NS5B


SVAHDASGKR
54
1797





NS5B


SVALDPRGRR
61
1798





NS5B


IQYAPTIWVR
702
1300





NS5B


LLAQEQLEK
151
1392





NS5B


AVRASLISR
26
894





NS5B


SVRAKLLSR
36
1801





NS5B


GLYLFNWAVR
78
1158





NS5B


YLFNWAVRTK
53
2044





NS5B


YLFNWAVKTK
54
2042





NS5B


LFNWAVRTK
124
1380





NS5B


LFNWAVKTK
69
1379
















TABLE 4





Predicted HLA-A*2402 binding peptides



























SEQ



Protein
CS_fr
CS_to
pep_seq
Score
ID NO











Algonomics



9-mer













  1
NS5B
2842
2850
RMILMTHFF
S
230





  2
NS5B
2838
2846
TLWARMILM
S
231





  3
NS3
1610
1618
CLIRLKPTL
S
232





  4
NS3
1617
1625
TLHGPTPLL
S
233





  5
NS3
1557
1565
FWESVFTGL
S
234





  6
C
75
83
TWAQPGYPW
S
235





  7
C
129
137
GFADLMGYI
S
236





  8
NS5B
2831
2839
NIIMYAPTL
S
237





  9
NS3
1606
1614
QMWKCLIRL
S
238





 10
NS3
1643
1651
KYIMACMSA
S
239





 11
NS3
1246
1254
AQGYKVLVL
S
240





 12
NS3
1292
1300
TYSTYGKFL
S
241





 13
NS3
1270
1278
KAHGVDPNI
S
242





 14
C
85
93
LYGNEGLGW
S
243





 15
NS3
1266
1274
AYMSKAHGV
S
244





 16
C
90
98
GLGWAGWLL
M
245





 17
NS5B
2832
2840
IIMYAPTLW
M
246





 18
C
28
36
GQIVGGVYL
M
247





 19
NS5B
2828
2836
WLGNIIMYA
M
248





 20
NS3
1338
1346
TAGARLVVL
M
249





 21
C
173
181
SFSIFLLAL
M
250





 22
NS3
1464
1472
FSLDPTFTI
M
251





 23
NS3
1585
1593
YLVAYQATV
M
252





 24
NS3
1384b
1392b
VIKGGRHLI
M
253





 25
NS3
1623
1631
PLLYRLGAV
M
254





 26
NS3
1325
1333
TILGIGTVL
M
255





 27
NS5B
2824
2832
PVNSWLGNI
M
256





 28
NS3
1202
1210
ETTMRSPVF
M
257





 29
NS3
1564
1572
GLTHIDAHF
M
258





 30
NS5B
2605
2613
AVMGSSYGF
M
259





 31
NS3
1162
1170
KGSSGGPLL
M
260





 32
NS5B
2727
2735
KLQDCTMLV
M
261





 33
NS3
1244
1252
YAAQGYKVL
M
262





 34
NS3
1637
1645
LTHPITKYI
M
263





 35
NS3
1374
1382
PFYGKAIPI
M
264





 36
NS3
1627
1635
RLGAVQNEV
M
265





 37
NS3
1384
1392
AIKGGRHLI
M
266





 38
NS5B
2594
2602
ALYDVVSTL
M
267





 39
C
149
157
RALAHGVRV
M
268





 40
C
136
144
YIPLVGAPL
M
269





 41
C
36
44
LLPRRGPRL
M
270





 42
NS3
1417
1425
YYRGLDVSV
M
271





 43
NS3
1402
1410
ELAAKLSAL
M
272





 44
NS3
1376b
1384b
YGKAIPIEV
M
273





 45
NS5B
2607
2615
MGSSYGFQY
M
274





 46
NS3
1169
1177
LLCPSGHVV
M
275





 47
NS5B
2627
2635
AWKSKKCPM
M
276





 48
NS3
1243
1251
AYAAQGYKV
M
277





 49
NS5B
2620
2628
RVEFLVNAW
M
278





 50
NS3
1603
1611
SWDQMWKCL
M
279





 51
C
168
176
NLPGCSFSI
M
280





 52
NS5B
2636
2644
GFSYDTRCF
M
281





 53
NS3
1217
1225
PAVPQTFQV
M
282





 54
C
118
126
NLGKVIDTL
M
283





 55
C
23
31
KFPGGGQIV
M
284





 56
NS3
1542
1550
YLNTPGLPV
M
285





 57
NS3
1604
1612
WDQMWKCLI
W
286





 58
NS5B
2840
2848
WARMILMTH
W
287





 59
C
77
85
AQPGYPWPL
W
288





 60
C
29
37
QIVGGVYLL
W
289





 61
NS3
1293
1301
YSTYGKFLA
W
290





 62
NS3
1510
1518
GMFDSSVLC
W
291





 63
NS5B
2834
2842
MYAPTLWAR
W
292





 64
C
172
180
CSFSIFLLA
W
293





 65
C
171
179
GCSFSIFLL
W
294





 66
NS3
1188
1196
GVAKAVDFI
W
295





 67
NS5B
2613
2621
FQYSPGQRV
W
296





 68
C
150
158
ALAHGVRVL
W
297





 69
NS5B
2821
2829
RHTPVNSWL
W
298





 70
NS5B
2837
2845
PTLWARMIL
W
299





 71
NS3
1493
1501
RGRRGIYRF
W
300





 72
NS5B
2629
2637
KSKKCPMGF
W
301





 73
C
179
187
LALLSCLTI
W
302





 74
NS3
1354
1362
SVTVPHPNI
W
303





 75
NS5B
2705
2713
LTTSCGNTL
W
304





 76
NS3
1641
1649
ITKYIMACM
W
305





 77
NS3
1375
1383
FYGKAIPIE
W
306





 78
NS3
1620
1628
GPTPLLYRL
W
307





 79
NS3
1440
1448
LMTGYTGDF
W
308





 80
NS5B
2588
2596
RVCEKMALY
W
309





 81
C
132
140
DLMGYIPLV
W
310





 82
NS3
1385
1393
IKGGRHLIF
W
311





 83
NS3
1220
1228
PQTFQVAHL
W
312





 84
NS5B
2802
2810
YYLTRDPTT
W
313





 85
NS5B
2839
2847
LWARMILMT
W
314





 86
NS3
1250
1258
KVLVLNPSV
W
315





 87
NS3
1283
1291
RTITTGAPI
W
316





 88
NS3
1187
1195
RGVAKAVDF
W
317





 89
C
115
123
RSRNLGKVI
W
318





 90
NS5B
2679
2687
RLYIGGPLT
W
319





 91
NS5B
2715
2723
CYLKASAAC
W
320





 92
NS3
1527
1535
WYELTPAET
W
321





 93
NS3
1565
1573
LTHIDAHFL
W
322





 94
NS5B
2617
2625
PGQRVEFLV
W
323





 95
NS3
1406
1414
KLSALGLNA
W
324





 96
NS3
1566
1574
THIDAHFLS
W
325





 97
NS5B
2615
2623
YSPGQRVEF
W
326





 98
NS3
1579
1587
AGDNFPYLV
W
327





 99
NS3
1645
1653
IMACMSADL
W
328





100
NS3
1549
1557
PVCQDHLEF
W
329





101
NS3
1245
1253
AAQGYKVLV
W
330





102
NS3
1365
1373
IGLSNNGEI
W
331





103
NS5B
2674
2682
RSLTERLYI
W
332





104
NS3
1648
1656
CMSADLEVV
W
333





105
NS5B
2796
2804
ASGKRVYYL
W
334





106
NS3
1376
1384
YGKAIPIEA
W
335





107
NS5B
2782
2790
LITSCSSNV
W
336





108
NS3
1260
1268
ATLGFGAYM
W
337





109
NS5B
2665
2673
LAPEAROAI
W
338





110
C
161
169
GVNYATGNL
W
339





111
C
156
164
RVLEDGVNY
W
340





112
NS3
1444
1452
YTGDFDSVI
W
341





113
NS3
1640
1648
PITKYIMAC
W
342





114
NS3
1433
1441
VVVATDALM
W
343





115
NS3
1596
1604
RAQAPPPSW
W
344





116
C
170
178
PGCSFSIFL
W
345





117
NS3
1560
1568
SVFTGLTHI
W
346





118
NS3
1629
1637
GAVQNEVTL
W
347





119
NS3
1577
1585
KQAGDNFPY
W
348





120
NS5B
2581
2589
VFPDLGVRV
W
349





121
NS3
1462
1470
VDFSLDPTF
W
350





122
NS3
1547
1555
GLPVCQDHL
W
351





123
NS5B
2735
2743
VNGDDLVVI
W
352





124
NS3
1443
1451
GYTGDFDSV
W
353





125
NS3
1172
1180
PSGHVVGVF
W
354





126
NS5B
2598
2606
VVSTLPQAV
W
355





127
NS3
1291
1299
ITYSTYGKF
W
356





128
C
143
151
PLGGAARAL
W
357





129
NS3
1584
1592
PYLVAYQAT
W
358





130
NS3
1638
1646
THPITKYIM
W
359





131
NS3
1264
1272
FGAYMSKAH
W
360





132
C
177
185
FLLALLSCL
N
361





133
C
174
182
FSIFLLALL
N
362





134
C
125
133
TLTCGFADL
N
363





135
C
133
141
LMGYIPLVG
N
364





136
C
83
91
WPLYGNEGL
N
365





137
C
135
143
GYIPLVGAP
N
366





138
C
89
97
EGLGWAGWL
N
367





139
C
181
189
LLSCLTIPA
N
368





140
C
80
88
GYPWPLYGN
N
369





141
C
111
119
DPRRRSRNL
N
370



















Score
SEQ


Protein
CS_fr
CS_to
pep_seq
PIC
ID NO











Epimmune













C


GFADLMGYI
67
236








SFSIFLLALF
69
1729





E1


CWVALTPTL
11
950








AYFSMQGAW
37
902








AWAKVVVIL
8.8
896





E2


HYAPRPCGI
9.9
1246





E2


HYPPRPCGI
11
1251





E2


HYPPKPCGI
13
1250





E2


HYPYRLWHY
3.7
1252





E2


LWHYPCTVNF
77
1484





E2


HYPCTVNFTI
66
1247





E2


HYPCTVNYTI
65
1249





E2


HYPCTVNFTL
64
1248








NYTIFKIRM
64
1543








EWAILPCSY
76
1043








KWEYVVLLF
6.5
1354








KWEWVVLLF
6.5
1353








EYVVLLFLL
23
1047








EWVVLLFLL
70
1045








EWVILLFLL
31
1044





P7


SFLVFFCAAW
67
1728





P7


WYLVAFCAAW
58
2023





P7


VFFCAAWYI
6.9
1907








HWIGRLIWW
13
1245








LYPSLIFDI
21
1489








FYPGVVFDI
2.7
1101








VFDITKWLL
55
1906








PYFVRAHVL
21
1592








PYFVRAHALL
49
1591








YFVRAHALL
1.4
2032








TYIYNHLTPL
98
1884








PMEIKVITW
73
1561








GYTSKGWKL
52
1214








AYMSKAHGI
76
904





NS3


TYSTYGKFL
97
241





NS3


YYRGLDVSI
80
2082





NS3


TFTIETTTL
66
1823





NS3


FWESVFTGL
52
234





NS3


FWEAVFTGL
56
1099





NS3


SWDVMWKCLI
59
1805





NS3


IMACMSADL
94
90





NS3


VMACMSADL
60
1936








PYIEQAQAI
58
1593








NWQKLEAFW
20
1542





NS4B


TFWAKHMWNF
50
1824





NS4B


AFWAKHMWNF
87
803





NS4B


QFWAKHMWNF
93
1604





NS4B


VFWAKHMWNF
28
1909





NS4B


FWAKHMWNF
0.23
1095





NS4B


FWANDMWNF
0.19
1097





NS4B


FWARHMWNF
0.16
1098





NS4B


NFISGIQYL
91
1521








SMMAFSAAL
96
1751





NS5A


SWLRDVWDW
26
1807





NS5A


RYAPPCKPL
32
1715





NS5A


RYAPPCKPLL
20
1716





NS5A


KFPPALPIW
5.1
1322





NS5A


KYPPALPIW
0.75
1355








DYNPPLLETW
77
996





NS5B


SYTWTGALI
20
1810





NS5B


SYSWTGALI
42
1809





NS5B


HYRDVLKEM
18
1253





NS5B


LYDVIQKLSI
68
1486





NS5B


RMILMTHFF
6.6
59





NS5B


RMVLMTHFF
13
1671





NS5B


LMTHFFSILL
80
1415
















TABLE 5





Predicted HLA-B*0702 binding peptides



























SEQ ID



Protein
CS_fr
CS_to
pep_seq
Score
NO











Algonomics



9-mer













 1
NS5B
2836
2844
APTLWARMI
S
371





 2
NS3
1503
1511
TPGERPSGM
S
372





 3
NS5B
2616
2624
SPGQRVEFL
S
373





 4
C
111
119
DPRRRSRNL
S
374





 5
C
169
177
LPGCSFSIF
S
375





 6
NS3
1383b
1391b
EVIKGGRHL
M
376





 7
NS3
1383
1391
EAIKGGRHL
M
377





 8
C
83
91
WPLYGNEGL
M
378





 9
C
150
158
ALAHGVRVL
M
379





10
C
37
45
LPRRGPRLG
M
380





11
NS3
1599
1607
APPPSWDQM
M
381





12
NS3
1620
1628
GPTPLLYRL
M
382





13
NS3
1531
1539
TPAETSVRL
M
383





14
C
142
150
APLGGAARA
M
384





15
NS3
1260
1268
ATLGFGAYM
M
385





16
C
99
107
SPRGSRPSW
M
386





17
C
41
49
GPRLGVRAT
M
387





18
NS5B
2668
2676
EARQAIRSL
M
388





19
NS3
1622
1630
TPLLYRLGA
M
389





20
C
57
65
QPRGRRQPI
M
390





21
NS3
1244
1252
YAAQGYKVL
M
391





22
NS3
1357
1365
VPHPNIEEI
M
392





23
NS5B
2605
2613
AVMGSSYGF
M
393





24
NS3
1415
1423
VAYYRGLDV
M
394





25
NS3
1359
1367
HPNIEEIGL
M
395





26
NS3
1639
1647
HPITKYIMA
M
396





27
NS3
1230
1238
APTGSGKST
M
397





28
NS3
1560
1568
SVFTGLTHI
M
398





29
NS3
1171
1179
CPSGHVVGV
M
399





30
NS3
1413
1421
NAVAYYRGL
M
400





31
NS5B
2720
2728
SAACRAAKL
M
401





32
NS3
1404
1412
AAKLSALGL
M
402





33
C
147
155
AARALAHGV
M
403





34
C
4
12
NPKPQRKTK
W
404





35
NS5B
2666
2674
APEARQAIR
W
405





36
C
115
123
RSRNLGKVI
W
406





37
C
24
32
FPGGGQIVG
W
407





38
NS3
1289
1297
APITYSTYG
W
408





39
C
65
73
IPKARRPEG
W
409





40
NS3
1219
1227
VPQTFQVAH
W
410





41
NS5B
2826
2834
NSWLGNIIM
W
411





42
C
149
157
RALAHGVRV
W
412





43
NS3
1490
1498
RTGRGRRGI
W
413





44
NS3
1641
1649
ITKYIMACM
W
414





45
NS3
1426
1434
IPTSGDVVV
W
415





46
NS3
1616
1624
PTLHGPTPL
W
416





47
NS3
1373
1381
IPFYGKAIP
W
417





48
NS5B
2835
2843
YAPTLWARM
W
418





49
NS5B
2796
2804
ASGKRVYYL
W
419





50
NS3
1338
1346
TAGARLVVL
W
420





51
NS5B
2633
2641
CPMGFSYDT
W
421





52
NS3
1384
1392
AIKGGRHLI
W
422





53
NS3
1255
1263
NPSVAATLG
W
423





54
NS3
1325
1333
TILGIGTVL
W
424





55
NS3
1380
1388
IPIEAIKGG
W
425





56
NS3
1637
1645
LTHPITKYI
W
426





57
NS3
1252
1260
LVLNPSVAA
W
427





58
NS5B
2678
2686
ERLYIGGPL
W
428





59
NS3
1188
1196
GVAKAVDFI
W
429





60
NS5B
2568
2576
QPEKGGRKP
W
430





61
C
104
112
RPSWGPTDP
W
431





62
C
161
169
GVNYATGNL
W
432





63
NS3
1402
1410
ELAAKLSAL
W
433





64
NS3
1540
1548
RAYLNTPGL
W
434





65
NS5B
2572
2580
GGRKPARLI
W
435





66
NS3
1277
1285
NIRTGVRTI
W
436





67
NS3
1433
1441
VVVATDALM
W
437





68
NS3
1246
1254
AQGYKVLVL
W
438





69
NS3
1337
1345
ETAGARLVV
W
439





70
NS5B
2725
2733
AAKLQDCTM
W
440





71
NS3
1162
1170
KGSSGGPLL
W
441





72
C
137
145
IPLVGAPLG
W
442





73
NS3
1583
1591
FPYLVAYQA
N
443





74
C
93
101
WAGWLLSPR
N
444





75
C
78
86
QPGYPWPLY
N
445





76
C
179
187
LALLSCLTI
N
446





77
C
154
162
GVRVLEDGV
N
447





78
C
77
85
AQPGYPWPL
N
448





79
C
38
46
PRRGPRLGV
N
449





80
C
37
46
LPRRGPRLGV
S
450



















Score
SEQ ID


Protein
CS_fr
CS_to
pep_seq
PIC
NO











Epimmune













C


LPRRGPRLGV
4.9
450





C


QPRGRRQPI
3.0
390





C


QPRRRRQPI
3.9
1617





C


QPGYPWPLY
39918
216





C


SPRGSRPSW
1.6
386





C


SPRGSRPNW
11
1772





C


SPRGSRPTW
2.8
1774





C


DPRRRSRNL
12
370





C


APLGGAARAL
3.5
836





C


APLGGVARAL
5.5
837





C


APVGGVARAL
8.1
855





C


LPGCSFSIF
101
375





C


LPGCSFSIFL
32
1426





E1


YPGHVSGHRM
264
2063





E2


APRPCGIVPA
38
847





E2


RPCGIVPAL
1.9
1675





E2


VPARSVCGPV
48
1945





E2


VPASSVCGPV
54
1947





E2


GPWLTPRCL
64
1173





E2


GPWLTPRCM
105
1175





E2


TPRCLVDYPY
238
1857





E2


TPRCMVDYPY
445
1858





E2


YPCTVNFTI
71
2059





E2


YPCTVNFSI
42
2058





E2


YPCTVNFTL
17
2061





E2


YPCTVNFTIF
307
2060








LPCSFSDLPA
100
1423








LPALSTGLL
41
1420





P7


VPGAAYALY
27777
1949





P7


WPLLLLLLAL
7.5
2018








VPYFVRAHAL
9.1
1959








TPYFVRAHVL
32
1863








SPMEKKVIV
31
1769








GPKGPVTQM
86
1166








CPSGHVVGI
62
933








CPRGHAVGI
3.6
929








CPAGHAVGIF
56
925








CPRGHAVGIF
6.9
930





NS3


VPAAYAAQGY
2734
1943





NS3


NPSVAATLGF
1610
1532





NS3


IPFYGKAIPI
29
1284





NS3


IPFYGKAIPL
7.9
1285





NS3


TPGERPSGM
834
372





NS3


TPGERPSGMF
699
1845





NS3


RPSGMFDSV
9.4
1688





NS3


RPSGMFDSSV
37
1687





NS3


RPSGMFDSVV
58
1689





NS3


LPVCQDHLEF
5715
1444





NS3


APPPSWDQM
933
381





NS3


KPTLHGPTPL
7.9
1343





NS3


KPTLVGPTPL
34
1345





NS3


KPTLQGPTPL
47
1344





NS3


HPITKYIMA
39
396





NS3


HPVTKYIMA
48
1238





NS4B


LPYIEQGMQL
43
1447





NS4B


APYIEQAQAI
44
857





NS4B


NPAIASLMAF
7.2
1528





NS4B


NPAVASMMAF
14
1530





NS4B


NPAVASLMAF
11
1529





NS4B


SPLTTNQTM
80
1766





NS4B


APPSAASAFV
76
845





NS4B


LPAILSPGAL
4.4
1418





NS4B


GPGEGAVQWM
976
1163








KPAPNFKTAI
26
1335





NS5A


EPDVAVLTSM
597
1023





NS5A


LPKSRFPPA
50
1432





NS5A


LPKSRFPPAL
14
1433





NS5A


LPIWARPDY
4290
1431





NS5A


RPDYNPPLL
73
1677





NS5A


VPPVVHGCPL
26
1953








PPRKKRTVV
31
1577





NS5B


LPINALSNSL
46
1430





NS5B


TPPHSAKSKF
699
1856





NS5B


PPHSAKSKF
9170
1568





NS5B


PPHSARSKF
4229
1569





NS5B


SPGQRVEFL
21
373





NS5B


SPAQRVEFL
7.6
1757





NS5B


LPTSFGNTI
61
1443





NS5B


PPGDPPQPEY
633519
1566





NS5B


APTLWARMI
14
371





NS5B


APTIWVRMV
19
850





NS5B


APTLWARMIL
1.2
853





NS5B


APTIWVRMVL
1.9
851





NS5B


RPRLLLLGL
0.17
1682





NS5B


RPRLLLLGLL
0.72
1683
















TABLE 6





Predicted HLA-B*0801 binding peptides



























SEQ



Protein
CS_fr
CS_to
pep_seq
Score
ID NO











Algonomics



9-mer













 1
C
111
119
DPRRRSRNL
S
451





 2
C
57
65
QPRGRRQPI
S
452





 3
C
65
73
IPKARRPEG
S
453





 4
NS3
1639
1647
HPITKYIMA
S
454





 5
NS3
1395
1403
HSKKKCDEL
S
455





 6
NS3
1486
1494
QRRGRTGRG
M
456





 7
C
4
12
NPKPQRKTK
M
457





 8
NS5B
2798
2806
GKRVYYLTR
M
458





 9
NS3
1536
1544
SVRLRAYLN
M
459





10
C
132
140
DLMGYIPLV
M
460





11
NS3
1413
1421
NAVAYYRGL
M
461





12
C
72
80
EGRTWAQPG
M
462





13
NS3
1641
1649
ITKYIMACM
M
463





14
NS3
1494
1502
GRRGIYRFV
M
464





15
NS5B
2838
2846
TLWARMILM
M
465





16
NS5B
2640
2648
DTRCFDSTV
M
466





17
NS3
1606
1614
QMWKCLIRL
M
467





18
NS3
1611
1619
LIRLKPTLH
M
468





19
NS3
1415
1423
VAYYRGLDV
M
469





20
NS3
1637
1645
LTHPITKYI
M
470





21
NS5B
2840
2848
WARMILMTH
M
471





22
NS3
1583
1591
EPYLVAYQA
M
472





23
NS5B
2672
2680
AIRSLTERL
M
473





24
NS5B
2668
2676
EARQAIRSL
M
474





25
NS5B
2696
2704
YRRCRASGV
M
475





26
C
8
16
QRKTKRNTN
W
476





27
NS3
1393
1401
FCHSKKKCD
W
477





28
NS5B
2627
2635
AWKSKKCPM
W
478





29
C
63
71
QPIPKARRP
W
479





30
NS3
1553
1561
DHLEFWESV
W
480





31
NS5B
2797
2805
SGKRVYYLT
W
481





32
NS3
1376
1384
YGKAIPIEA
W
482





33
NS3
1234
1242
SGKSTKVPA
W
483





34
NS3
1622
1630
TPLLYRLGA
W
484





35
NS5B
2831
2839
NIIMYAPTL
W
485





36
NS3
1376b
1384b
YGKAIPIEV
W
486





37
C
33
41
GVYLLPRRG
W
487





38
NS5B
2761
2769
EAMTRYSAP
W
488





39
C
89
97
EGLGWAGWL
W
489





40
NS3
1491
1499
TGRGRRGIY
W
490





41
NS3
1384b
1392b
VIKGGRHLI
W
491





42
NS3
1387
1395
GGRHLIFCH
W
492





43
NS3
1569
1577
DAHFLSQTK
W
493





44
NS5B
2714
2722
TCYLKASAA
W
494





45
NS5B
2755
2763
SLRVFTEAM
W
495





46
NS3
1480
1488
DAVSRSQRR
W
496





47
NS3
1605
1613
DQMWKCLIR
W
497





48
NS5B
2586
2594
GVRVCEKMA
W
498





49
NS3
1237
1245
STKVPAAYA
W
499





50
NS5B
2812
2820
LARAAWETA
W
500





51
C
36
44
LLPRRGPRL
W
501





52
NS3
1294
1302
STYGKFLAD
W
502





53
NS5B
2572
2580
GGRKPARLI
W
503





54
NS3
1384
1392
AIKGGRHLI
W
504





55
C
60
68
GRRQPIPKA
W
505





56
NS3
1610
1618
CLIRLKPTL
W
506





57
NS5B
2573
2581
GRKPARLIV
W
507





58
NS5B
2833
2841
IMYAPTLWA
W
508





59
C
115
123
RSRNLGKVI
W
509





60
NS3
1372
1380
EIPFYGKAI
W
510





61
NS3
1277
1285
NIRTGVRTI
W
511





62
C
35
43
YLLPRRGPR
W
512





63
C
147
155
AARALAHGV
W
513





64
C
37
45
LPRRGPRLG
W
514




















SEQ


Protein
CS_fr
CS_to
pep_seq
Score
ID NO











Epimmune













C


TNRRPQDVKF

1838





C


NRRPQDVKF

685





C


DVKFPGGGQI

990





C


YLLPRRGPRL

2047





C


LLPRRGPRL

132





C


QPRGRRQPI

390





C


TDPRRRSRNL

1817





C


DPRRRSRNL

370





C


RSRNLGKVI

318





C


RNLGKVIDTL

1673





E2


WTRGERCDL

2022





E2


DLEDRDRSEL

964





E2


RDRSELSPL

1636





E2


RDRSELSPLL

1637





E2


LADARVCACL

1358





NS2


NVRGGRDAI

1538





NS2


NVRGGRDAII

1539





NS2


VRGGRDAII

1965





NS2


VRGGRDAIIL

1966





NS2


GGRDAIILL

1138





NS2


PVSARRGREI

1589





NS2


VSARRGREI

1969





NS2


VSARRGREIL

1970





NS2


SARRGREIL

1718





NS2


SARRGREILL

1719





NS2


ARRGREILL

865





NS3


QTRGLLGCI

1621





NS3


QTRGLLGCII

1622





NS3


YLVTRHADVI

2054





NS3


RRRGDSRGSL

1697





NS3


RGDSRGSLL

1648





NS3


YLKGSSGGPL

2046





NS3


RGVAKAVDF

317





NS3


RGVAKAVDFI

1653





NS3


ETTMRSPVF

257





NS3


AQGYKVLVL

130





NS3


AYMSKAHGI

904





NS3


NIRTGVRTI

436





NS3


TAGARLVVL

249





NS3


PFYGKAIPI

264





NS3


PFYGKAIPL

1554





NS3


IKGGRHLIF

311





NS3


CHSKKKCDEL

918





NS3


HSKKKCDEL

455





NS3


YYRGLDVSVI

2083





NS3


TPGERPSGMF

1845





NS3


DQMWKCLIRL

982





NS3


KCLIRLKPTL

1319





NS4B


AEQFKQKAL

794





NS4B


QFKQKALGL

1602





NS4B


QFKQKALGLL

1603





NS4B


WAKHMWNFI

1993





NS4B


IGLGKVLVDI

1267





NS4B


LGKVLVDIL

1382





NS4B


QWMNRLIAF

1623





NS5A


KGVWRGDGI

1326





NS5A


LARGSPPSL

1363





NS5A


LWRQEMGGNI

1485





NS5A


ESENKVVIL

1030





NS5A


ENKVVILDSF

1021





NS5A


WARPDYNPPL

1998





NS5B


RQKKVTFDRL

1695





NS5B


QKKVTFDRL

1607





NS5B


VTFDRLQVL

1975





NS5B


TIMAKNEVF

1827





NS5B


EKGGRKPARL

1015





NS5B


KGGRKPARL

1323





NS5B


KGGRKPARLI

1324





NS5B


GGRKPARLI

435





NS5B


GRKPARLIVF

1182





NS5B


RKPARLIVF

646





NS5B


PARLIVFPDL

1545





NS5B


GVRVCEKMAL

1203





NS5B


SPGQRVEFL

373





NS5B


YRRCRASGVL

2066





NS5B


LTRDPTTPL

1475





NS5B


WARMILMTHF

1997





NS5B


IERLHGLSAF

1264





NS5B


IQRLHGLSAF

1298





NS5B


CLRKLGVPPL

921





NS5B


LRKLGVPPL

1455





NS5B


RARSVRAKL

1632





NS5B


RARSVRAKLL

1633





NS5B


ARSVRAKLL

867





NS5B


NWAVKTKLKL

1540





NS5B


NWAVRTKLKL

1541





NS5B


RTKLKLTPI

1705








Algonomics



10-mer












Core
65
74
IPKARRPEGR
S
1287





Core
4
13
NPKPQRKTKR
M
1531





Ns3
1395
1403
HSKKKCDELA
M
1243





Core
111
120
DPRRRSRNLG
M
975





Core
37
46
LPRRGPRLGV
M
450





Core
8
17
QRKTKRNTNR
M
1618





Core
21
30
DVKFPGGGQI
M
990





Ns5b
2696
1655
YRRCRASGVL
M
2066





Ns5b
2626
1655
NAWKSKKCPM
M
1514





Core
57
66
QPRGRRQPIP
M
1616





Ns3
1491
1499
TGRGRRGIYR
M
1825





Ns3
1605
1613
DQMWKCLIRL
M
982





Ns3
1291
1299
ITYSTYGKFL
M
1310





Ns3
1234
1242
SGKSTKVPAA
M
1734





Ns3
1376
1384
YGKAIPIEVI
M
2035





Core
35
44
YLLPRRGPRL
M
2047





Ns5b
2797
1655
SGKRVYYLTR
M
1733





Ns3
1493
1501
RGRRGIYRFV
W
1650





Ns4b
1844
1655
LGKVLVDILA
W
1383





Core
89
98
EGMGWAGWLL
W
1012





Ns3
1237
1245
STKVPAAYAA
W
1790





Ns3
1189
1197
VAKAVDFIPV
W
1893





Ns3
1609
1617
KCLIRLKPTL
W
1319





Ns3
1494
1502
GRRGIYRFVT
W
1183





Ns3
1393
1401
FCHSKKKCDE
W
1051





Ns3
1637
1645
LTHPITKYIM
W
1469





Ns3
1482
1490
VSRSQRRGRT
W
1972





Ns5b
2677
1655
TERLYIGGPL
W
1820





Ns3
1340
1348
GARLVVLATA
W
1106





Ns5b
2761
1655
EAMTRYSAPP
W
999





Ns5b
2627
1655
AWKSKKCPMG
W
899





Ns5b
2573
1655
GRKPARLIVF
W
1182





Ns5b
2572
1655
GGRKPARLIV
W
1139





Ns3
1622
1630
TPLLYRLGAV
W
1851





Core
99
108
SPRGSRPSWG
W
1773





Ns3
1611
1619
LIRLKPTLHG
W
1387





Core
41
50
GPRLGVRATR
W
1170





Ns5b
2671
1655
QAIRSLTERL
W
1597





Core
132
141
DLMGYIPLVG
W
965





Ns5b
2586
1655
GVRVCEKMAL
W
1203





Core
59
68
RGRRQPIPKA
W
1651





Ns3
1488
1496
RGRTGRGRRG
W
1652





Ns3
1294
1302
STYGKFLADG
W
1795





Ns3
1486
1494
QRRGRTGRGR
W
1619





Ns3
1384
1392
VIKGGRHLIF
W
1917





Ns3
1536
1544
SVRLRAYLNT
W
1802





Ns3
1373
1381
IPFYGKAIPI
W
1284





Ns5b
2795
1655
DASGKRVYYL
W
955





Ns3
1485
1493
SQRRGRTGRG
W
1783





Ns3
1552
1560
QDHLEFWESV
W
1600





Core
45
54
GVRATRKTSE
W
1200





Ns5b
2716
1655
YLKASAACRA
W
2045





Ns5b
2725
1655
AAKLQDCTML
W
775





Ns3
1160
1169
YLKGSSGGPL
W
2046





Core
113
122
RRRSRNLGKV
W
1698





Ns3
1242
1250
AAYAAQGYKV
W
783





Ns3
1606
1614
QMWKCLIRLK
W
1610





Core
68
77
ARRPEGRAWA
W
866





Ns5b
2694
1655
CGYRRCRASG
W
917





Ns3
1639
1647
HPITKYIMAC
W
1236





Ns5b
2840
1655
WARMILMTHF
W
1997
















TABLE 7







Predicted HLA-B*3501 binding peptides



















SEQ ID



Protein
CS_fr
CS_to
pep_seq
Score
NO












Algonomics



9-mer













1
C
 169
 177
LPGCSFSIF
S
515





2
NS3
1464
1472
FSLDPTFTI
M
516





3
NS5B
2605
2613
AVMGSSYGF
M
517





4
NS3
1583
1591
FPYLVAYQA
M
518





5
C
  24
  32
FPGGGQIVG
M
519





6
NS5B
2607
2615
MGSSYGFQY
M
520





7
NS3
1531
1539
TPAETSVRL
M
521





8
C
 156
 164
RVLEDGVNY
M
522





9
NS3
1359
1367
HPNIEEIGL
M
523





10
NS3
1581
1589
DNFPYLVAY
W
524





11
NS5B
2795
2803
DASGKRVYY
W
525





12
NS3
1456
1464
TCVTQTVDF
W
526





13
NS3
1175
1183
HVVGVFRAA
W
527





14
NS3
1522
1530
DAGCAWYEL
W
528





15
NS5B
2826
2834
NSWLGNIIM
W
529





16
NS3
1438
1446
DALMTGYTG
W
530





17
NS3
1367
1375
LSNNGEIPF
W
531





18
NS5B
2615
2623
YSPGQRVEF
W
532





19
NS5B
2840
2848
WARMILMTH
W
533





20
NS3
1357
1365
VPHPNIEEI
W
534





21
C
  78
  86
QPGYPWPLY
W
535





22
NS5B
2720
2728
SAACRAAKL
W
536





23
NS3
1289
1297
APITYSTYG
W
537





24
C
  83
  91
WPLYGNEGL
W
538





25
NS3
1620
1628
GPTPLLYRL
W
539





26
C
 174
 182
FSIFLLALL
W
540





27
NS3
1171
1179
CPSGHVVGV
W
541





28
NS5B
2633
2641
CPMGFSYDT
W
542





29
NS5B
2772
2780
DPPQPEYDL
W
543





30
NS3
1219
1227
VPQTFQVAH
W
544





31
C
 149
 157
RALAHGVRV
W
545





32
NS3
1433
1441
VVVATDALM
W
546





33
C
 137
 145
IPLVGAPLG
W
547





34
NS3
1622
1630
TPLLYRLGA
W
548





35
NS3
1240
1248
VPAAYAAQG
W
549





36
NS3
1410
1418
LGLNAVAYY
W
550





37
NS3
1578
1586
QAGDNFPYL
W
551





38
C
  18
  26
RPQDVKFPG
W
552





39
NS5B
2588
2596
RVCEKMALY
W
553





40
NS5B
2740
2748
LVVICESAG
W
554





41
C
 142
 150
APLGGAARA
W
555





42
C
 172
 180
CSFSIFLLA
W
556





43
NS3
1259
1267
AATLGFGAY
W
557





44
C
 128
 136
CGFADLMGY
W
558





45
NS5B
2794
2802
HDASGKRVY
W
559





46
NS3
1260
1268
ATLGFGAYM
W
560





47
NS3
1380b
1388b
IPIEVIKGG
W
561





48
NS5B
2751
2759
EDAASLRVF
W
562











Algonomics



10-mer













1
Ns3
1548
1556
LPVCQDHLEF
S
1444





2
Core
 169
 178
LPGCSFSIFL
M
1426





3
Ns3
1196
1204
IPVESMETTM
M
1296





4
Ns3
1408
1416
SALGLNAVAY
M
1717





5
Ns5b
2604
1655
QAVMGSSYGF
M
1599





6
Ns4b
1873
1655
MPSTEDLVNL
M
1505





7
Core
  24
  33
FPGGGQIVGG
M
1077





8
Ns3
1373
1381
IPFYGKAIPI
M
1284





9
Ns3
1255
1263
NPSVAATLGF
M
1532





10
Ns3
1521
1529
YDAGCAWYEL
M
2030





11
Ns3
1171
1180
CPSGHAVGIF
W
932





12
Ns5b
2602
1655
LPQAVMGSSY
W
1437





13
Ns5b
2840
1655
WARMILMTHF
W
1997





14
Ns5b
2826
1655
NSWLGNIIMY
W
1534





15
Ns3
1240
1248
VPAAYAAQGY
W
1943





16
Core
 142
 151
APLGGAARAL
W
836





17
Core
  76
  85
WAQPGYPWPL
W
1996





18
Ns5b
2795
1655
DASGKRVYYL
W
955





19
Core
  74
  83
RAWAQPGYPW
W
1634





20
Ns3
1637
1645
LTHPITKYIM
W
1469





21
Ns3
1175
1184
HAVGIFRAAV
W
1215





22
Core
  81
  90
YPWPLYGNEG
W
2064





23
Ns5b
2794
1655
HDASGKRVYY
W
1216





24
Ns3
1622
1630
TPLLYRLGAV
W
1851





25
Ns5b
2836
1655
APTLWARMIL
W
853





26
Ns4b
1846
1655
KVLVDILAGY
W
1350





27
Ns5b
2757
1655
RVFTEAMTRY
W
1712





28
Ns3
1258
1266
VAATLGFGAY
W
1887





29
Ns5b
2651
1655
NDIRVEESIY
W
1515





30
Core
  83
  92
WPLYGNEGMG
W
2020





31
Ns5b
2769
1655
PPGDPPQPEY
W
1566





32
Core
 172
 181
CSFSIFLLAL
W
935





33
Core
  89
  98
EGMGWAGWLL
W
1012





34
Core
 137
 146
IPLVGAPLGG
W
1290





35
Ns3
1367
1375
LSNTGEIPFY
W
1459





36
Ns5b
2823
1655
TPVNSWLGNI
W
1862





37
Ns5b
2734
1655
LVNGDDLVVI
W
1480





38
Ns3
1639
1647
HPITKYIMAC
W
1236





39
Core
  18
 27
RPQDVKFPGG
W
1681





40
Ns5b
2580
1655
IVFPDLGVRV
W
1312





41
Ns5b
2674
1655
RSLTERLYIG
W
1702





42
Ns3
1219
1227
VPQTFQVAHL
W
1954





43
Ns3
1216
1224
PPAVPQTFQV
W
1564





44
Ns3
1242
1250
AAYAAQGYKV
W
783





45
Ns5b
2616
1655
SPGQRVEFLV
W
1765





46
Ns5b
2810
1655
TPLARAAWET
W
1850





47
Ns3
1357
1365
VPHPNIEEVA
W
1951





48
Ns3
1426
1434
IPTSGDVVVV
W
1295





49
Core
  37
  46
LPRRGPRLGV
W
450





50
Ns5b
2563
1655
EVFCVQPEKG
W
1038





51
Ns3
1337
1345
ETAGARLVVL
W
1032





52
Ns3
1245
1253
AAQGYKVLVL
W
777





53
Ns5b
2754
1655
ASLRVFTEAM
W
871





54
Ns5b
2593
1655
MALYDVVSTL
W
1492





55
Ns5b
2773
1655
PPQPEYDLEL
W
1575





56
Ns4b
1857
1655
AGVAGALVAF
W
808
















TABLE 8





Predicted HLA-B*4403 and HLA-B*4002 binding peptides



























SEQ ID



Protein
CS_fr
CS_to
pep_seq
Score
NO











Algonomics



9-mer













1
C
  77
  85
AQPGYPWPL
S
563





2
NS3
1555
1563
LEFWESVFT
M
564





3
C
  88
  96
NEGLGWAGW
M
565





4
NS5B
2828
2836
WLGNIIMYA
M
566





5
NS5B
2842
2850
RMILMTHFF
M
567





6
NS5B
2838
2846
TLWARMILM
M
568





7
NS3
1401
1409
DELAAKLSA
M
569





8
C
  28
  36
GQIVGGVYL
M
570





9
NS3
1558
1566
WESVFTGLT
W
571





10
NS3
1633
1641
NEVTLTHPI
W
572





11
NS3
1585
1593
YLVAYQATV
W
573





12
NS3
1382
1390
IEAIKGGRH
W
574





13
NS3
1382b
1390b
IEVIKGGRH
W
575





14
NS5B
2621
2629
VEFLVNAWK
W
576





15
NS5B
2817
2825
WETARHTPV
W
577





16
NS3
1606
1614
QMWKCLIRL
W
578





17
C
  90
  98
GLGWAGWLL
W
579





18
NS5B
2677
2685
TERLYIGGP
W
580





19
NS5B
2590
2598
CEKMALYDV
W
581





20
NS3
1336
1344
AETAGARLV
W
582





21
NS3
1362
1370
IEEIGLSNN
W
583





22
NS5B
2679
2687
RLYIGGPLT
W
584





23
NS3
1409
1417
ALGLNAVAY
W
585





24
NS5B
2760
2768
TEAMTRYSA
W
586





25
NS5B
2776
2784
PEYDLELIT
W
587





26
NS3
1440
1448
LMTGYTGDF
W
588





27
NS3
1518
1526
CECYDAGCA
W
589





28
NS3
1201
1209
METTMRSPV
W
590





29
NS5B
2833
2841
IMYAPTLWA
W
591





30
NS3
1260
1268
ATLGFGAYM
W
592



















Score
SEQ ID


Protein
CS_fr
CS_to
pep_seq
PIC
NO











Epimmune
















PEGRSWAQPG
21
1548








PEGRTWAQPG
62
1549








NEGLGWAGW
2452
565








NEGLGWAGWL
58
1516





E2


SELSPLLLST
8.1
1726








TEWAILPCSY
30
1822








WEWVILLFL
1.1
2007








WEWVVLLFL
2.1
2009








WEYVVLLFL
2.1
2011








WEWVILLFLL
1.2
2008








WEWVVLLFLL
0.67
2010








WEYVVLLFLL
0.75
2012








AEAALENLV
47
790








AEAALEKLV
83
788








AEAALENLVI
55
791








AEAALEKLVI
74
789








LENLVILNA
72
1373





NS2


REMAASCGG
53
1641








TEPVIFSPM
1.8
1819








REILLGPADG
72
1638





NS3


GEIQVLSTV
11
1120





NS3


GEVQVLSTA
35
1129





NS3


GEVQVVSTA
29
1131





NS3


GEIQVLSTVT
52
1121





NS3


GEVQVLSTAT
69
1130





NS3


METTMRSPV
57
590





NS3


LETTMRSPV
51
1375





NS3


AETAGVRLT
177
797





NS3


AETAGARLVV
36
796





NS3


AETAGVRLTV
70
798





NS3


GEIPFYGKA
11
1116





NS3


GEIPFYGRA
7.1
1118





NS3


GEIPFYGKAI
6.5
1117





NS3


GEIPFYGRAI
2.7
1119





NS3


DELAAALRG
284
956





NS3


YELTPAETT
94
2031





NS3


AETTVRLRA
120
800





NS3


LEFWEGVFT
72
1369





NS3


LEFWEGVFTG
91
1370





NS3


WEAVFTGLT
12
2000





NS3


WESVFTGLT
11
571





NS3


WEGVFTGLT
19
2001





NS3


GENFAYLTA
31
1122





NS3


GENLPYLVA
1.2
1126





NS3


GENFPYLVA
2.4
1124





NS3


GENFAYLTAY
35
1123





NS3


GENLPYLVAY
37
1127





NS3


GENFPYLVAY
12
1125





NS3


NEVVLTHPI
29
1520





NS3


NEITLTHPV
49
1518





NS3


NEVTLTHPI
76
572








LEVVTSTWVL
31
1378








IELGGKPAL
7.7
1257








LEQFWAKHMW
100
1374








LEVFWAKHMW
84
1376








VEDVVNLLPA
87
1898








PEFFSWVDGV
20
1547








TEVLASMLT
39
1821








AEAAARRLA
281
787








SEASSSASQL
10
1723





NS5A


VESENKVVV
97
1903





NS5A


VESENKVVI
67
1901





NS5A


VESETKVVIL
94
1905





NS5A


VESENKVVVL
95
1904





NS5A


VESENKVVIL
58
1902





NS5A


REPSIPSEY
50
1642





NS5A


REVSVAAEI
55
1644





NS5A


REISVPAEI
17
1639





NS5A


REVSVPAEI
38
1646





NS5A


REPSIPSEYL
38
1643





NS5A


REVSVAAEIL
2.6
1645





NS5A


REISVPAEIL
1.1
1640





NS5A


REVSVPAEIL
1.8
1647





NS5A


SEYLLPKSRF
6.2
1727





NS5A


AEILRKSRRF
18
792





NS5A


AELATKTFG
152
793








EEQSVVCCSM
15
1006








SEDVVCCSM
35
1724








GEDVVCCSM
14
1113








EEKLPISPL
5.6
1005








EEKLPINPL
7.9
1004








KEVRSLSRRA
3.2
1320








CEKMALYDI
99
911








EESIYQACSL
63
1007








EEARTAIHSL
91
1003





NS5B


PEYDLELIT
72
587





NS5B


WETVRHSPV
7.0
2005





NS5B


WETVRHTPV
12
2006





NS5B


WETARHTPI
20
2003





NS5B


WETARHTPV
29
577





NS5B


FEMYGATYSV
25
1054





NS5B


FEMYGAVYSV
13
1055





NS5B


IEPLDLPQI
97
1258





NS5B


IERLHGLEA
19
1261





NS5B


IERLHGLDA
20
1259





NS5B


IERLHGLSA
15
1263





NS5B


IERLHGLEAF
33
1262





NS5B


IERLHGLDAF
40
1260





NS5B


IERLHGLSAF
20
1264





NS5B


HELTRVAAA
41
1217





NS5B


HELTRVAAAL
5.8
1218





NS5B


GEINRVASCL
16
1115




















SEQ ID


Protein
CS_fr
CS_to
pep_seq
Score
NO











Algonomics



10-mer












Ns3
1382
1391
IEVIKGGRHL
S
1265





Ns3
1555
1564
LEFWESVFTG
M
1371





Ns5b
2621
2630
VEFLVNAWKS
M
1900





Ns5b
2606
2615
VMGSSYGFQY
M
1939





Ns3
1558
1567
WESVFTGLTH
M
2002





Core
88
97
NEGMGWAGWL
M
1517





Ns5b
2677
2686
TERLYIGGPL
M
1820





Ns3
1533
1542
AETSVRLRAY
M
799





Ns3
1518
1527
CECYDAGCAW
M
910





Ns3
1201
1210
METTMRSPVF
M
1493





Ns3
1371
1380
GEIPFYGKAI
M
1117





Ns3
1409
1418
ALGLNAVAYY
W
822





Ns4b
1913
1922
VQWMNRLIAF
W
1963





Ns5b
2750
2759
QEDAASLRVF
W
1601





Ns3
1633
1642
NEVTLTHPIT
W
1519





Core
77
86
AQPGYPWPLY
W
861





Ns5b
2656
2665
EESIYQCCDL
W
1008





Ns5b
2679
2688
RLYIGGPLTN
W
1670





Ns5b
2667
2676
PEARQAIRSL
W
1546





Ns5b
2838
2847
TLWARMILMT
W
1837





Ns4b
1876
1885
TEDLVNLLPA
W
1818





Ns3
1605
1614
DQMWKCLIRL
W
982





Ns3
1401
1410
DELAAKLSAL
W
957





Ns3
1223
1232
FQVAHLHAPT
W
1080





Ns5b
2817
2826
WETARHTPVN
W
2004





Ns4b
1909
1918
GEGAVQWMNR
W
1114





Ns5b
2655
2664
VEESIYQCCD
W
1899





Ns3
1577
1586
KQAGDNFPYL
W
1346





Ns5b
2776
2785
PEYDLELITS
W
1552





Core
28
37
GQIVGGVYLL
W
1178





Ns4b
1847
1856
VLVDILAGYG
W
1932
















TABLE 9





Predicted HLA-Cw0401 binding peptides



























SEQ ID



Protein
CS_fr
CS_to
pep_seq
Score
NO











Algonomics



9-mer













1
Ns3
1603
1611
SWDQMWKCL
S
593





2
Core
173
181
SFSIFLLAL
M
594





3
Ns3
1557
1565
FWESVFTGL
M
595





4
Ns3
1292
1300
TYSTYGKFL
M
596





5
Ns5B
2777
2785
EYDLELITS
M
597





6
Ns3
1243
1251
AYAAQGYKV
M
598





7
Ns5b
2581
2589
VFPDLGVRV
M
599





8
Core
129
137
GFADLMGYI
M
600





9
Ns3
1554
1562
HLEFWESVF
W
601





10
Ns3
1520
1528
CYDAGCAWY
W
602





11
Core
85
93
LYGNEGLGW
W
603





12
Ns5b
2842
2850
RMILMTHFF
W
604





13
Ns3
1266
1274
AYMSKAHGV
W
605





14
Ns3
1645
1653
IMACMSADL
W
606





15
Ns3
1527
1535
WYELTPAET
W
607





16
Core
23
31
KFPGGGQIV
W
608





17
Ns5b
2636
2644
GFSYDTRCF
W
609





18
Ns3
1417
1425
YYRGLDVSV
W
610





19
Ns3
1469
1477
TFTIETTTV
W
611





20
Ns5b
2758
2766
VFTEAMTRY
W
612





21
Ns3
1359
1367
HPNIEEIGL
W
613





22
Core
122
130
VIDTLTCGF
W
614





23
Ns5b
2638
2646
SYDTRCFDS
W
615





24
Core
29
37
QIVGGVYLL
N
616





25
Core
90
98
GLGWAGWLL
N
617





26
Core
125
133
TLTCGFADL
N
618





27
Core
135
143
GYIPLVGAP
N
619





28
Core
168
176
NLPGCSFSI
N
620




















SEQ ID


Protein
CS_fr
CS_to
pep_seq
Score
NO











Algonomics



10-mer












Ns3
1603
1611
SWDQMWKCLI
S
1804





Ns3
1556
1564
EFWESVFTGL
M
1010





Core
173
182
SFSIFLLALL
M
1730





Core
130
139
FADLMGYIPL
M
1048





Ns5b
2834
1655
MYAPTLWARM
M
1511





Ns3
1463
1471
DFSLDPTFTI
M
958





Ns5b
2614
1655
QYSPGQRVEF
M
1626





Core
82
91
PWPLYGNEGM
M
1590





Ns3
1243
1251
AYAAQGYKVL
M
900





Ns5b
2816
1655
AWETARHTPV
M
897





Ns5b
2777
1655
EYDLELITSC
W
1046





Ns3
1584
1592
PYLVAYQATV
W
1594





Core
135
144
GYIPLVGAPL
W
1211





Ns3
1192
1200
AVDFIPVESM
W
882





Ns4b
1854
1655
GYGAGVAGAL
W
1210





Ns3
1292
1300
TYSTYGKFLA
W
1886





Core
176
185
IFLLALLSCL
W
1266





Ns3
1375
1383
FYGKAIPIEV
W
1100





Ns5b
2638
1655
SYDTRCFDST
W
1808





Core
85
94
LYGNEGMGWA
W
1488





Ns3
1582
1590
NFPYLVAYQA
W
1522





Ns3
1541
1549
AYLNTPGLPV
W
903





Ns4b
1914
1655
QWMNRLIAFA
W
1624
















TABLE 10





Predicted HLA-Cw0602 binding peptides



























SEQ


#
Protein
CS_fr
CS_to
pep_seq
Score
ID NO











Algonomics



9-mer













1
Ns3
1292
1300
TYSTYGKFL
S
621





2
Ns3
1244
1252
YAAQGYKVL
S
622





3
Ns5b
2696
2704
YRRCRASGV
S
623





4
Ns5b
2673
2681
IRSLTERLY
S
624





5
Ns3
1494
1502
GRRGIYRFV
S
625





6
Ns5b
2573
2581
GRKPARLIV
S
626





7
Ns5b
2842
2850
RMILMTHFF
S
627





8
Ns3
1417
1425
YYRGLDVSV
S
628





9
Ns3
1606
1614
QMWKCLIRL
S
629





10
Core
 173
 181
SFSIFLLAL
M
630





11
Ns3
1603
1611
SWDQMWKCL
M
631





12
Ns5b
2587
2595
VRVCEKMAL
M
632





13
Ns3
1385
1393
IKGGRHLIF
M
633





14
Ns5b
2668
2676
EARQAIRSL
M
634





15
Ns3
1413
1421
NAVAYYRGL
M
635





16
Ns3
1383
1391
EAIKGGRHL
M
636





17
Ns3
1415
1423
VAYYRGLDV
M
637





18
Ns5b
2678
2686
ERLYIGGPL
M
638





19
Ns3
1383b
1391b
EVIKGGRHL
M
639





20
Ns3
1266
1274
AYMSKAHGV
M
640





21
Ns5b
2841
2849
ARMILMTHF
M
641





22
Ns3
1645
1653
IMACMSADL
M
642





23
Ns5b
2577
2585
ARLIVFPDL
M
643





24
Ns3
1243
1251
AYAAQGYKV
M
644





25
Ns3
1534
1542
ETSVRLRAY
M
645





26
Ns5b
2574
2582
RKPARLIVF
M
646





27
Ns3
1245
1253
AAQGYKVLV
M
647





28
Ns5b
2613
2621
FQYSPGQRV
M
648





29
Core
  29
  37
QIVGGVYLL
W
649





30
Core
 174
 182
FSIFLLALL
W
650





31
Ns3
1557
1565
FWESVFTGL
W
651





32
Ns3
1553
1561
DHLEFWESV
W
652





33
Core
 177
 185
FLLALLSCL
W
653





34
Core
  38
  46
PRRGPRLGV
W
654





35
Ns5b
2631
2639
KKCPMGFSY
W
655





36
Ns5b
2607
2615
MGSSYGFQY
W
656





37
Ns5b
2835
2843
YAPTLWARM
W
657





38
Core
  83
  91
WPLYGNEGL
W
658





39
Ns3
1522
1530
DAGCAWYEL
W
659





40
Ns5b
2796
2804
ASGKRVYYL
W
660





41
Ns3
1338
1346
TAGARLVVL
W
661





42
Ns5b
2795
2803
DASGKRVYY
W
662





43
Ns3
1376b
1384b
YGKAIPIEV
W
663





44
Ns5b
2833
2841
IMYAPTLWA
W
664





45
Ns5b
2827
2835
SWLGNIIMY
W
665





46
Core
  77
  85
AQPGYPWPL
W
666





47
Ns5b
2840
2848
WARMILMTH
W
667





48
Ns5b
2838
2846
TLWARMILM
W
668





49
Ns3
1618
1626
LHGPTPLLY
W
669





50
Ns3
1637
1645
LTHPITKYI
W
670





51
Ns3
1638
1646
THPITKYIM
W
671





52
Ns3
1440
1448
LMTGYTGDF
W
672





53
Core
 111
 119
DPRRRSRNL
W
673





54
Core
 171
 179
GCSFSIFLL
W
674





55
Core
 150
 158
ALAHGVRVL
W
675





56
Ns3
1554
1562
HLEFWESVF
W
676





57
Ns3
1404
1412
AAKLSALGL
W
677





58
Ns3
1585
1593
YLVAYQATV
W
678





59
Ns5b
2636
2644
GFSYDTRCF
W
679





60
Ns3
1583
1591
FPYLVAYQA
W
680





61
Ns3
1540
1548
RAYLNTPGL
W
681





62
Ns3
1418
1426
YRGLDVSVI
W
682





63
Core
  23
  31
KFPGGGQIV
W
683





64
Ns3
1581
1589
DNFPYLVAY
W
684





65
Core
  16
  24
NRRPQDVKF
W
685





66
Ns5b
2720
2728
SAACRAAKL
W
686





67
Ns3
1620
1628
GPTPLLYRL
W
687





68
Core
 136
 144
YIPLVGAPL
W
688





69
Core
  28
  36
GQIVGGVYL
W
689





70
Ns3
1176
1184
VVGVFRAAV
W
690





71
Ns5b
2758
2766
VFTEAMTRY
W
691





72
Core
 132
 140
DLMGYIPLV
W
692





73
Ns3
1181
1189
RAAVCTRGV
W
693





74
Ns5b
2616
2624
SPGQRVEFL
W
694





75
Ns5b
2605
2613
AVMGSSYGF
W
695





76
Ns3
1402
1410
ELAAKLSAL
W
696





77
Core
 149
 157
RALAHGVRV
W
697





78
Ns3
1246
1254
AQGYKVLVL
W
698





79
Core
 114
 122
RRSRNLGKV
W
699





80
Ns5b
2821
2829
RHTPVNSWL
W
700





81
Ns5b
2598
2606
VVSTLPQAV
W
701





82
Ns5b
2831
2839
NIIMYAPTL
W
702





83
Ns5b
2834
2842
MYAPTLWAR
W
703





84
Ns5b
2615
2623
YSPGQRVEF
W
704





85
Ns5b
2619
2627
QRVEFLVNA
W
705





86
Ns5b
2594
2602
ALYDVVSTL
W
706





87
Core
  73
  81
GRTWAQPGY
W
707





88
Ns5b
2581
2589
VFPDLGVRV
W
708





89
Ns5b
2579
2587
LIVFPDLGV
W
709





90
Ns5b
2697
2705
RRCRASGVL
W
710





91
Ns3
1571
1579
HFLSQTKQA
W
711





92
Ns3
1458
1466
VTQTVDFSL
W
712





93
Ns5b
2837
2845
PTLWARMIL
W
713





94
Ns5b
2794
2802
HDASGKRVY
W
714





95
Core
  89
  97
EGLGWAGWL
W
715




















SEQ


Protein
CS_fr
CS_to
pep_seq
Score
ID NO











Algonomics



10-mer












Ns3
1180
1188
FRAAVCTRGV
S
1081





Ns5b
2696
1655
YRRCRASGVL
S
2066





Ns3
1243
1251
AYAAQGYKVL
S
900





Ns5b
2573
1655
GRKPARLIVF
S
1182





Ns5b
2841
1655
ARMILMTHFF
S
864





Ns5b
2820
1655
ARHTPVNSWL
S
863





Ns5b
2628
1655
WKSKKCPMGF
S
2013





Ns3
1539
1547
LRAYLNTPGL
M
1454





Ns4b
1942
1655
ARVTQILSSL
M
868





Core
76
85
WAQPGYPWPL
M
1996





Ns3
1492
1500
GRGRRGIYRF
M
1181





Ns5b
2834
1655
MYAPTLWARM
M
1511





Ns5b
2673
1655
IRSLTERLYI
M
1301





Ns3
1626
1634
YRLGAVQNEV
M
2065





Ns5b
2614
1655
QYSPGQRVEF
M
1626





Core
149
158
RALAHGVRVL
M
1629





Ns5b
2587
1655
VRVCEKMALY
M
1967





Core
148
157
ARALAHGVRV
M
862





Core
22
31
VKFPGGGQIV
M
1920





Ns3
1384
1392
VIKGGRHLIF
M
1917





Ns5b
2840
1655
WARMILMTHF
M
1997





Ns3
1244
1252
YAAQGYKVLV
M
2024





Core
28
37
GQIVGGVYLL
M
1178





Core
35
44
YLLPRRGPRL
M
2047





Ns5b
2630
1655
SKKCPMGFSY
M
1739





Ns3
1416
1424
AYYRGLDVSV
M
907





Ns3
1375
1383
FYGKAIPIEV
M
1100





Ns5b
2593
1655
MALYDVVSTL
M
1492





Core
130
139
FADLMGYIPL
M
1048





Core
176
185
IFLLALLSCL
M
1266





Ns3
1417
1425
YYRGLDVSVI
M
2083





Ns3
1242
1250
AAYAAQGYKV
W
783





Ns5b
2836
1655
APTLWARMIL
W
853





Ns5b
2792
1655
VAHDASGKRV
W
1892





Ns3
1556
1564
EFWESVFTGL
W
1010





Core
172
181
CSFSIFLLAL
W
935





Ns3
1291
1299
ITYSTYGKFL
W
1310





Ns5b
2795
1655
DASGKRVYYL
W
955





Core
113
122
RRRSRNLGKV
W
1698





Core
173
182
SFSIFLLALL
W
1730





Ns3
1249
1257
YKVLVLNPSV
W
2041





Core
155
164
VRVLEDGVNY
W
1968





Core
77
86
AQPGYPWPLY
W
861





Ns5b
2833
1655
IMYAPTLWAR
W
1279





Ns4b
1913
1655
VQWMNRLIAF
W
1963





Ns3
1403
1411
LAAKLSALGL
W
1356





Ns3
1382
1390
IEVIKGGRHL
W
1265





Ns3
1553
1561
DHLEFWESVF
W
960





Core
135
144
GYIPLVGAPL
W
1211





Core
169
178
LPGCSFSIFL
W
1426





Ns5b
2835
1655
YAPTLWARMI
W
2028





Ns3
1292
1300
TYSTYGKFLA
W
1886





Ns4b
1839
1655
VGSIGLGKVL
W
1911





Ns3
1335
1343
QAETAGARLV
W
1595





Ns5b
2726
1655
AKLQDCTMLV
W
819





Ns3
1605
1613
DQMWKCLIRL
W
982





Ns4b
1897
1655
VCAAILRRHV
W
1895





Ns3
1189
1197
VAKAVDFIPV
W
1893





Ns3
1541
1549
AYLNTPGLPV
W
903





Ns3
1489
1497
GRTGRGRRGI
W
1184





Ns3
1175
1184
HAVGIFRAAV
W
1215





Ns4b
1939
1655
DAAARVTQIL
W
952





Ns5b
2604
1655
QAVMGSSYGF
W
1599





Ns5b
2615
1655
YSPGQRVEFL
W
2068





Ns5b
2695
1655
GYRRCRASGV
W
1212





Ns5b
2606
1655
VMGSSYGFQY
W
1939





Ns3
1602
1610
PSWDQMWKCL
W
1585





Ns3
1644
1652
YIMACMSADL
W
2037





Core
142
151
APLGGAARAL
W
836





Ns5b
2580
1655
IVFPDLGVRV
W
1312





Ns5b
2635
1655
MGFSYDTRCF
W
1494





Core
37
46
LPRRGPRLGV
W
450





Ns5b
2793
1655
AHDASGKRVY
W
810





Ns5b
2586
1655
GVRVCEKMAL
W
1203





Ns3
1265
1273
GAYMSKAHGV
W
1110





Ns3
1619
1627
HGPTPLLYRL
W
1219





Ns3
1200
1208
SMETTMRSPV
W
1750





Ns3
1609
1617
KCLIRLKPTL
W
1319





Ns4b
1873
1655
MPSTEDLVNL
W
1505





Core
114
123
RRSRNLGKVI
W
1699





Ns5b
2570
1655
EKGGRKPARL
W
1015





Ns3
1337
1345
ETAGARLVVL
W
1032





Ns3
1161
1170
LKGSSGGPLL
W
1388





Ns3
1584
1592
PYLVAYQATV
W
1594





Ns3
1534
1542
ETSVRLRAYL
W
1033





Ns3
1412
1420
LNAVAYYRGL
W
1416





Ns3
1637
1645
LTHPITKYIM
W
1469





Ns3
1186
1194
TRGVAKAVDF
W
1866





Ns5b
2589
1655
VCEKMALYDV
W
1897





Ns3
1578
1586
QAGDNFPYLV
W
1596





Ns3
1646
1654
MACMSADLEV
W
1490





Core
89
98
EGMGWAGWLL
W
1012





Ns5b
2602
1655
LPQAVMGSSY
W
1437





Ns3
1219
1227
VPQTFQVAHL
W
1954





Ns4b
1859
1655
VAGALVAFKV
W
1891





Ns3
1245
1253
AAQGYKVLVL
W
777





Ns3
1622
1630
TPLLYRLGAV
W
1851





Ns4b
1920
1655
IAFASRGNHV
W
1255





Ns5b
2616
1655
SPGQRVEFLV
W
1765





Ns4b
1864
1655
VAFKVMSGEM
W
1888





Ns3
1521
1529
YDAGCAWYEL
W
2030





Ns3
1240
1248
VPAAYAAQGY
W
1943





Ns5b
2672
1655
AIRSLTERLY
W
817





Ns4b
1840
1655
GSIGLGKVLV
W
1187





Ns3
1617
1625
TLHGPTPLLY
W
1833





Ns3
1507
1515
RPSGMFDSSV
W
1687





Ns3
1235
1243
GKSTKVPAAY
W
1146





Ns3
1373
1381
IPFYGKAIPI
W
1284





Ns3
1408
1416
SALGLNAVAY
W
1717





Ns3
1414
1422
AVAYYRGLDV
W
880





Core
46
55
VRATRKTSER
W
1964
















TABLE 11





Predicted HLA-Cw0702 binding peptides



























SEQ ID


#
Protein
CS_fr
CS_to
pep_seq
Score
NO











Algonomics



9-mer













1
Ns3
1292
1300
TYSTYGKFL
S
716





2
Ns3
1243
1251
AYAAQGYKV
S
717





3
Ns3
1417
1425
YYRGLDVSV
M
718





4
Ns5b
2577
2585
ARLIVFPDL
M
719





5
Core
173
181
SFSIFLLAL
M
720





6
Ns5b
2673
2681
IRSLTERLY
M
721





7
Core
85
93
LYGNEGLGW
M
722





8
Core
129
137
GFADLMGYI
M
723





9
Core
73
81
GRTWAQPGY
M
724





10
Ns5b
2636
2644
GFSYDTRCF
M
725





11
Ns5b
2827
2835
SWLGNIIMY
M
726





12
Ns3
1643
1651
KYIMACMSA
M
727





13
Ns5b
2841
2849
ARMILMTHF
M
728





14
Ns5b
2587
2595
VRVCEKMAL
M
729





15
Ns5b
2835
2843
YAPTLWARM
M
730





16
Core
75
83
TWAQPGYPW
M
731





17
Ns5b
2802
2810
YYLTRDPTT
W
732





18
Ns5b
2834
2842
MYAPTLWAR
W
733





19
Ns5b
2821
2829
RHTPVNSWL
W
734





20
Ns3
1244
1252
YAAQGYKVL
W
735





21
Core
83
91
WPLYGNEGL
W
736





22
Ns3
1571
1579
HFLSQTKQA
W
737





23
Ns3
1266
1274
AYMSKAHGV
W
738





24
Ns3
1557
1565
FWESVFTGL
W
739





25
Ns5b
2574
2582
RKPARLIVF
W
740





26
Ns5b
2697
2705
RRCRASGVL
W
741





27
Ns5b
2842
2850
RMILMTHFF
W
742





28
Ns5b
2610
2618
SYGFQYSPG
W
743





29
Ns3
1618
1626
LHGPTPLLY
W
744





30
Ns5b
2678
2686
ERLYIGGPL
W
745





31
Ns3
1603
1611
SWDQMWKCL
W
746





32
Ns3
1583
1591
FPYLVAYQA
W
747





33
Core
16
24
NRRPQDVKF
W
748





34
Ns5b
2581
2589
VFPDLGVRV
W
749





35
Core
17
25
RRPQDVKFP
W
750





36
Core
136
144
YIPLVGAPL
W
751





37
Ns3
1248
1256
GYKVLVLNP
W
752





38
Ns3
1638
1646
THPITKYIM
W
753





39
Ns5b
2765
2773
RYSAPPGDP
W
754





40
Ns3
1494
1502
GRRGIYRFV
W
755





41
Ns3
1520
1528
CYDAGCAWY
W
756





42
Ns3
1492
1500
GRGRRGIYR
W
757





43
Ns3
1499
1507
YRFVTPGER
W
758





44
Ns5b
2695
2703
GYRRCRASG
W
759





45
Core
68
76
ARRPEGRTW
W
760





46
Ns5b
2631
2639
KKCPMGFSY
W
761





47
Core
69
77
RRPEGRTWA
W
762





48
Core
34
42
VYLLPRRGP
W
763





49
Ns5b
2833
2841
IMYAPTLWA
W
764





50
Core
114
122
RRSRNLGKV
W
765





51
Ns3
1418
1426
YRGLDVSVI
W
766





52
Ns3
1341
1349
ARLVVLATA
W
767





53
Ns5b
2796
2804
ASGKRVYYL
W
768




















SEQ ID


Protein
CS_fr
CS_to
pep_seq
Score
NO











Algonomics



10-mer












Ns3
1243
1251
AYAAQGYKVL
S
900





Core
135
144
GYIPLVGAPL
S
1211





Ns5b
2834
1655
MYAPTLWARM
S
1511





Ns5b
2587
1655
VRVCEKMALY
M
1967





Ns5b
2696
1655
YRRCRASGVL
M
2066





Core
173
182
SFSIFLLALL
M
1730





Ns3
1398
1406
KKCDELAAKL
M
1327





Ns3
1417
1425
YYRGLDVSVI
M
2083





Core
85
94
LYGNEGMGWA
M
1488





Ns5b
2841
1655
ARMILMTHFF
M
864





Ns3
1416
1424
AYYRGLDVSV
M
907





Ns3
1375
1383
FYGKAIPIEV
M
1100





Ns3
1539
1547
LRAYLNTPGL
M
1454





Ns5b
2820
1655
ARHTPVNSWL
M
863





Ns4b
1933
1655
HYVPESDAAA
M
1254





Ns3
1582
1590
NFPYLVAYQA
M
1522





Ns3
1541
1549
AYLNTPGLPV
W
903





Ns5b
2573
1655
GRKPARLIVF
W
1182





Core
114
123
RRSRNLGKVI
W
1699





Ns5b
2673
1655
IRSLTERLYI
W
1301





Core
176
185
IFLLALLSCL
W
1266





Ns3
1292
1300
TYSTYGKFLA
W
1886





Core
129
138
GFADLMGYIP
W
1132





Core
155
164
VRVLEDGVNY
W
1968





Ns5b
2827
1655
SWLGNIIMYA
W
1806





Core
73
82
GRAWAQPGYP
W
1180





Ns4b
1854
1655
GYGAGVAGAL
W
1210





Core
76
85
WAQPGYPWPL
W
1996





Ns3
1492
1500
GRGRRGIYRF
W
1181





Ns4b
1942
1655
ARVTQILSSL
W
868





Ns5b
2628
1655
WKSKKCPMGF
W
2013





Core
74
83
RAWAQPGYPW
W
1634





Ns5b
2593
1655
MALYDVVSTL
W
1492





Ns3
1584
1592
PYLVAYQATV
W
1594





Ns5b
2802
1655
YYLTRDPTTP
W
2081





Ns3
1235
1243
GKSTKVPAAY
W
1146





Ns5b
2801
1655
VYYLTRDPTT
W
1991





Core
34
43
VYLLPRRGPR
W
1990





Ns3
1358
1366
PHPNIEEVAL
W
1555





Core
149
158
RALAHGVRVL
W
1629





Ns4b
1873
1655
MPSTEDLVNL
W
1505





Ns3
1498
1506
IYRFVTPGER
W
1314





Ns5b
2840
1655
WARMILMTHF
W
1997





Ns3
1443
1451
GYTGDFDSVI
W
1213





Ns5b
2614
1655
QYSPGQRVEF
W
1626





Ns5b
2695
1655
GYRRCRASGV
W
1212





Ns5b
2757
1655
RVFTEAMTRY
W
1712





Ns3
1626
1634
YRLGAVQNEV
W
2065





Core
23
32
KFPGGGQIVG
W
1321





Core
17
26
RRPQDVKFPG
W
1696





Ns5b
2835
1655
YAPTLWARMI
W
2028





Ns3
1644
1652
YIMACMSADL
W
2037





Ns4b
1914
1655
QWMNRLIAFA
W
1624





Core
68
77
ARRPEGRAWA
W
866
















TABLE 12







Predicted HLA-DRB1*0101/0401/0701


and -DRB1*0301 binding peptides















SEQ ID



Protein
Full Sequence
Score (PIC)
NO
















NS4B
AAQLAPPSAASAFVG
0.074
2102







NS5B
ACKLTPPHSAKSKFG
1.07
2103







NS5A
ADLIEANLLWRQEMG
5.63
2104







C
ADLMGYIPLVGAPLG
0.043
2105







NS5B
APTLWARMILMTHFF
6.67
2106







NS3
AQGYKVLVLNPSVAA
0.5
2107







NS5B
ARAAWETARHTPVNS

2108







NS3
ARLVVLATATPPGSV
0.12
2109







NS5B
ASCLRKLGVPPLRVW
0.47
2110







NS5A
ASQLSAPSLKATCTT
0.41
2111







NS3
AVGIFRAAVCTRGVA
5.96
2112







NS4B
AVQWMNRLIAFASRG
9.61
2113







E1
AWDMMMNWSPTTALV
2.56
2114







NS4A
AYCLTTGSVVIVGRI
0.74
2115







NS5B
CQIYGACYSIEPLDL
2.04
2116







NS5A
DADLIEANLLWRQEM
7.67
2117







NS3
DAHFLSQTKQAGDNF

2118







NS3
DIIICDECHSTDSTT

2119







NS2
DLAVAVEPVVFSDME
2.42
2120







NS2
DLAVAVEPVVFSDME

2120







NS4B
DLVNLLPAILSPGA
0.17
2121







NS3
DPTFTIETTTVPQDA

2122







NS3
DSSVLCECYDAGCAW

2123








DVVVVATDALMTGFT
3.12
2124







NS3
DVVVVATDALMTGYT
3.12
2125







NS4B
EDLVNLLPAILSPG
0.72
2126







NS5A
EPDVAVLTSMLTDPS
0.027
2127







NS4B
FNILGGWVAAQLAPP
0.16
2128







NS3
FPYLVAYQATVCARA
4.76
2129







C
FSIFLLALLSCLTIP
5.47
2130








FSIFLLALLSCLTVP
5.47
2131







E2
FTTLPALSTGLIHLH
7.05
2132







NS5B
GACYSIEPLDLPQII

2133








GAGVAGALVAFKIMS
0.29
2134







NS4B
GAGVAGALVAFKVMS
0.29
2135







NS4B
GALVVGVVCAAILRR
3.59
2136







NS3
GARLVVLATATPPGS
0.11
2137








GCGWAGWLLSPRGSR
6.86
2138







C
GCSFSIFLLALLSCL
4.62
2139







NS3
GDNFPYLVAYQATVC
0.05
2140







NS4A
GGVLAALAAYCLTTG
0.44
2141







E1
GHRMAWDMMMNWSPT
6.3
2142







E1
GHRMAWDMMMNWSPT

2142







NS4B
GIQYLAGLSTLPGNP
0.1
2143







NS5B
GKYLFNWAVRTKLKL
9.61
2144








GLGWAGWLLSPRGSR
6.86
2145







NS3
GLPVCQDHLEFWESV

2146







C
GMGWAGWLLSPRGSR
6.86
2147







NS4B
GMQLAEQFKQKALGL

2148







C
GPRLGVRATRKTSER
2.87
2149








GQGWRLLAPITAYSQ
1.34
2150







C
GQIVGGVYLLPRRGP
1.3
2151







NS5A
GSQLPCEPEPDVAVL

2152







NS5B
GSSYGFQYSPGQRVE
0.52
2153







NS3
GTVLDQAETAGARLV
0.32
2154







C
GVNYATGNLPGCSFS
4.02
2155







C
GVRVLEDGVNYATGN

2156







NS3
GYKVLVLNPSVAATL
6.3
2157







NS3
HLIFCHSKKKCDELA

2158








HQWINEDCSTPCSGS

2159







NS5B
IERLHGLSAFSLHSY
2.56
2160








IQRLHGLSAFSLHSY
2.56
2161







NS4B
IQYLAGLSTLPGNPA
0.66
2162







NS5A
ITRVESENKVVILDS

2163







NS3
KPTLHGPTPLLYRLG
0.56
2164







NS3
KVLVLNPSVAATLGF
0.52
2165







NS4B
LAGYGAGVAGALVAF
1.63
2166







E2
LFLLLADARVCACLW

2167







NS4B
LFNILGGWVAAQLAP
3.69
2168







NS4B
LGKVLVDILAGYGAG

2169







NS5B
LHSYSPGEINRVASC
2.87
2170







NS3
LIRLKPTLHGPTPLL

2171







NS4B
LPAILSPGALVVGVV
0.11
2172







E2
LPALSTGLIHLHQNI
0.68
2173







NS4B
LSTLPGNPAIASLMA
0.24
2174







NS3
LTHIDAHFLSQTKQA
3.03
2175








LTHIDAHFLSQTKQS
3.03
2176







NS5A
LTSMLTDPSHITAET
2.29
2177







NS5A
LTSMLTDPSHITAET

2177







NS3
LVAYQATVCARAQAP
4.76
2178







NS4B
LVNLLPAILSPGALV
5.63
2179







NS3
LVVLATATPPGSVTV
0.24
2180








MACMSADLEVVTSTW

2181







NS4B
MNRLIAFASRGNHVS
2.79
2182







NS5A
MPPLEGEPGDPDL

2183







C
MSTNPKPQRKTK

2184








MTGFTGDFDSVIDCN

2185







NS4B
NPAIASLMAFTASIT
0.29
2186







NS5B
NSWLGNIIMYAPTLW
1.2
2187







NS5B
NVSVAHDASGKRVYY

2188







E2
PCSFTTLPALSTGLI
0.04
2189







NS4B
PGALVVGVVCAAILR
0.55
2190







NS5B
PMGFSYDTRCFDSTV

2191







NS3
PQTFQVAHLHAPTGS
0.28
2192







NS4B
PTHYVPESDAAARVT

2193







NS5B
PTLWARMILMTHFFS
0.85
2194







NS3
PYLVAYQATVCARAQ
0.072
2195







NS3
QDAVSRSQRRGRTGR

2196







NS5B
QKKVTFDRLQVLDDH

2197







NS5B
QPEYDLELITSCSSN

2198







NS3
RAAVCTRGVAKAVDF
3.8
2199







NS3
RGLLGCIITSLTGRD
8.59
2200







C
RLGVRATRKTSERSQ

2201







NS5B
RLIVFPDLGVRVCEK

2202







NS3
RLVVLATATPPGSVT
9.34
2203








RPEYDLELITSCSSN

2204







NS5A
RQEMGGNITRVESEN
5.03
2205







E2
RSELSPLLLSTTEWQ
0.72
2206







NS3
RSPVFTDNSSPPAVP

2207







E1
SAMYVGDLCGSVFLV

2208







NS3
SDLYLVTRHADVIPV

2209







C
SFSIFLLALLSCLTI
4.02
2210








SFSIFLLALLSCLTV
4.02
2211







C
SIFLLALLSCLTIPA
0.23
2212








SKGWRLLAPITAYAQ
1.34
2213







NS5B
SLRVFTEAMTRYSAP
2.49
2214







NS5B
SLRVFTEAMTRYSAP

2214







E1
SRCWVALTPTLAARN
0.047
2215







NS3
STKVPAAYAAQGYKV
0.15
2216







NS3
STTILGIGTVLDQAE
0.37
2217







NS4A
STWVLVGGVLAALAA
0.28
2218







NS5B
SYTWTGALITPCAAE
5.63
2219







NS3
TFQVAHLHAPTGSGK
8.35
2220








TMLVCGDDLVVICES

2221







NS5B
TPCAAEESKLPINAL

2222








TPCAAEESKLPINPL

2223







NS3
TPLLYRLGAVQNEVT
0.32
2224







NS3
TRGLLGCIITSLTGR
7.05
2225







NS5B
TTIMAKNEVFCVQPE
0.55
2226







NS3
TTTVPQDAVSRSQRR

2227







NS3
TVDFSLDPTFTIETT

2228







NS4A
TWVLVGGVLAALAAY
0.15
2229







NS4B
VDILAGYGAGVAGAL
3.69
2230







NS3
VESMETTMRSPVFTD

2231







NS5B
VFCVQPEKGGRKPAR

2232







NS4A
VGGVLAALAAYCLTT
1.2
2233







NS3
VGIFRAAVCTRGVAK
3.8
2234







NS3
VLVLNPSVAATLGFG
9.61
2235







NS4B
VNLLPAILSPGALVV
0.4
2236







NS5B
VNSWLGNIIMYAPTL
1.42
2237







NS4B
VQWMNRLIAFASRGN
1.59
2238







NS4B
VVGVVCAAILRRHVG
5.03
2239








VVVVATDALMTGFTG
4.37
2240








VVVVATDALMTGFTG

2240







NS3
VVVVATDALMTGYTG
4.37
2241







NS3
VVVVATDALMTGYTG

2241







P7
VWPLLLLLLALPPRA
0.29
2242







NS5B
VYYLTRDPTTPLARA

2243







NS3
WDQMWKCLIRLKPTL
3.69
2244







NS3
WESVFTGLTHIDAHF
1.73
2245







NS3
WKCLIRLKPTLHGPT
2.95
2246







NS4A
WVLVGGVLAALAAYC
0.021
2247







NS3
YDIIICDECHSTDST

2248







NS3
YGKFLADGGCSGGAY

2249







P7
YGVWPLLLLLLALPP
1.2
2250







C
YIPLVGAPLGGAARA
0.072
2251







NS3
YKVLVLNPSVAATLG
0.18
2252







E1
YYSMVGNWAKVLIVM
2.56
2253

















TABLE 13







Selection of predicted CTL epitopes















Immun
Immun
SEQ



Genotype
Ki (nM)
mice
recall
ID NO





HLA-A0101


AATLGFGAY
1b/1a
694
+

557





AGDNFPYLV
1b
high


24





ALGLNAVAYY
1b
14286


822





ATDALMTGY
1b
4

+
1





ATDALMTGYT
1b
227

+
877





AVMGSSYGF
1b/1a
16100


16





CTCGSSDLY
1b/1a
14


940





CYDAGCAWY
1b/1a
3072


13





DASGKRVYY
1b
5625


10





DNFPYLVAY
1b
1111


8





DSSVLCECY
1b/1a
454

+
17





ECYDAGCAWY
1b/1a
20000


1002





EPEPDVAVL
1b/1a
high


1024





EVDGVRLHRY

167


1037





FADLMGYIP
1b/1a/3a
high


4





FTDNSSPPA
1b/1a
10

+
7





FTDNSSPPAV
1b/1a
45

+
1086





FTEAMTRYS
1b/1a/3a
1803


9





FTEAMTRYSA
1b/1a/3a
1857

+
1087





GAPITYSTY
1b
high


11





GLDVSVIPT
1b/1a/3a
high


29





GLSAFSLHSY

61


1154





HIDAHFLSQ
1b/1a/3a
high


1221





HSAKSKFGY
1b/1a
615
+

1241





ITTGAPITY
1b
403


6





ITYSTYGKF
1b/1a
high


26





IVDVQYLYG
1b/1a/3a
6146


1311





KCDELAAKL
1b/1a
20000


1318





KSTKVPAAY
1b/1a/3a
858


25





LADGGCSGGAY

60


1359





LCECYDAGC
1b/1a/3a
high


1366





LDPTFTIET
1b/1a
high


30





LGLNAVAYY
1b
high


18





LHGPTPLLY
1b/1a/3a
20000


219





LSAFSLHSY
1b/1a
28
+

1456





LTCGFADLM
1b/1a/3a
759


2





LTCGFADLMGY
1b/1a/3a
11


1465





LTDPSHITA
1b/1a
15


1467





LTDPSHITAE
1b/1a
237

+
1468





LTHIDAHFL
1b/1a/3a
high


5





LTHPITKYI
1b
high


23





LTHPITKYIM
1b
20000


1469





LVDILAGYGA
1b/1a
258.5
+
+
1478





MGSSYGFQY
1b/1a
917


22





NSWLGNIIMY
1b/3a
1857


1534





PAAYAAQGY
1b/1a
1457


12





PAETSVRLR
1b
high


27





PGDPPQPEY
1b/1a
14188


19





PTDPRRRSR
1b/1a
high


55





PTDPRRRSRN
1b/1a
17816


1586





PTLHGPTPLLY

452


1587





PVESMETTM
1b
high


15





QAETAGARL
1b/1a
high


60





RSELSPLLL
1b/1a
106

+
1700





RSELSPLLLS
1b/1a
1853


1701





RVCEKMALY
1b/1a
2384


3





RVFTEAMTRY
1b
3490


1712





SLDPTFTIET
1b/1a
high


1741





STEDLVNLL
1b/1a
8223


1787





STEDLVNLLP
1b/1a
high


1788





TLHGPTPLLY
1b/1a/3a
343
+

1833





TRDPTTPLAR
1b/1a
high


1865





TSCGNTLTCY
1b/1a
246


1867





VAATLGFGAY
1b/1a
122
+

1887





VATDALMTGY
1b
452

+
1894





VIDTLTCGF
1b/1a/3a
1017


28





VIDTLTCGFA
1b/1a/3a
110.5


1914





VPAAYAAQGY
1b/1a
20000


1943





VTLTHPITK
1b
high


21





VTLTHPITKY
1b
183


1976





YAPTLWARM
1b
high


14





HLA-A0201


ALAHGVRVL
1b/1a
627


72





ALSTGLIHL
1b/1a/3a
329


825





ALYDVVSTL
1b
19
+

67





AQPGYPWPL
1b/1a/3a
382


65





CLVDYPYRL
1b/1a
437
+

922





DLCGSVFLV
1b/1a
789


963





DLMGYIPLV
1b/1a/3a
36
+

66





FIPVESMET

934


1059





FLLALLSCL
1b/1a
136
+

361





FLLALLSCLT
1b/1a
132

+
1070





FLLLADARV
1b/1a/3a
20
+

1072





GLGWAGWLL

27


1150





GLLGCIITSL
1b/1a
26
+
+
1151





GMFDSSVLC
1b/1a
71
+

71





GTQEDAASL
1b
1295


88





HLHQNIVDV
1b/1a/3a
500


1227





HMWNFISGI
1b/1a
12
+

1233





ILAGYGAGV
1b/1a/3a
88
+

1269





ILSPGALVV
1b/1a/3a
238


1275





IMACMSADL
1b
66


90





IMAKNEVFCV
1b/1a/3a
199


1278





IMYAPTLWA
1b
46


84





KLQDCTMLV
1b
4.6
+

75





KVLVLNPSV
1b/1a
50
+

73





LLFLLLADA
1b/1a
16


1395





LLFNILGGWV
1b/1a
4.1
+

1396





LLGCIITSL
1b/1a
56


1397





LLSCLTIPA
1b
12


70





LTHIDAHFL
1b/1a/3a
181

+
5





LVLNPSVAA
1b/1a/3a
1679


82





MALYDVVST
1b
1142


85





NIIMYAPTL
1b
70
+
+
87





NLPGCSFSI
1b/1a/3a
70


93





PLLLLLLAL
1b/1a
6554


1557





QIVGGVYLL
1b/1a
219
+

91





QMWKCLIRL
1b/1a
153
+

238





RLGAVQNEV
1b/1a
221
+
+
265





RLHGLSAFSL
1b/1a
179


1659





RLIVFPDLGV
1b/1a
89

+
1661





RLVVLATAT
1b/1a
16737


86





RLYIGGPLT
1b
536


79





SMVGNWAKV
1b/1a
158
+

1753





SVFTGLTHI
1b/3a
84
+

76





TILGIGTVL
1b
207


89





TLHGPTPLL
1b/1a/3a
68
+

81





TLWARMILM
1b/1a
8
+
+
92





VLVGGVLAA
1b/1a
219

+
1933





VLVGGVLAAL
1b/1a
26
+
+
1934





VVATDALMT
1b/1a
high


44





VVSTLPQAV
1b
884


68





WLGNIIMYA
1b/3a
14.5


62





WMNRLIAFA
1b/1a/3a
122


2015





YIPLVGAPL
1b/1a
77
+

69





YLFNWAVRT
1b/1a/3a
29
+

2043





YLLPRRGPRL
1b/1a
140
+
+
2047





YLNTPGLPV
1b
6.2
+

74





YLVAYQATV
1b/1a
19.5
+

63





YLVTRHADV
1b/1a
292
+

2053





YQATVCARA
1b/1a/3a
20
+

83





HLA-A1101


AAYAAQGYK
1b/1a
13*
+

56





ALGLNAVAY
1b



51





ALYDVVSTL
1b
16468


67





ASAACRAAK
1b
15*
+

155





AVCTRGVAK
1b/1a/3a
48*
+

156





DLGVRVCEK
1b/1a/3a



154





FLVNAWKSK
1b
1778


150





GIFRAAVCTR
1b/1a/3a
129


1141





GLNAVAYYR
1b/3a
44*


145





GMFDSSVLC
1b/1a



71





GNTLTCYLK
1b
160


40





GVAGALVAFK




1193





GVLAALAAY
1b/1a/3a
545


1196





GVVCAAILR
1b/1a
38
+

1205





GVVCAAILRR
1b/1a
215
+

1206





HLHAPTGSGK
1b/1a
501*


1226





HLIFCHSKK
1b/1a/3a
1531*


148





HLIFCHSKKK
1b/1a/3a
423


1228





HMWNFISGI
1b/1a
7293


1233





IVFPDLGVR
1b/1a
770


168





KTKRNTNRR
1b/1a
646*


164





KTSERSQPR
1b/1a/3a
147*
+

167





KVLVDILAGY
1b/1a
163*
+

1350





LFNWAVRTK
1b/1a/3a
7567


1380





LGFGAYMSK
1b/1a
22*


50





LIFCHSKKK
1b/1a/3a
104*
+

47





LLYRLGAVQ
1b/1a



200





LVNAWKSKK
1b
50*
+

146





QLFTFSPRR
1b/1a
197*
+

1609





RLGVRATRK
1b/1a/3a
221*
+

144





RLLAPITAY
1b/1a/3a
222*


1662





RMYVGGVEHR
1b/1a
15


1672





RQPIPKARR
1b/1a/3a
*


159





RVCEKMALY
1b/1a
160*
+

3





RVFTEAMTR
1b
21*
+

39





RVLEDGVNY
1b/1a
893


45





SQLSAPSLK
1b/1a/3a
14*


1781





STNPKPQRK
1b/1a
14*
+

158





TLGFGAYMSK
1b/1a
44*


1831





VAGALVAFK
1b/1a
46


1890





VQPEKGGRK
1b/1a
1460


157





VTLTHPITK
1b
7.7*


21





WLLSPRGSR
1b/1a/3a



163





WMNSTGFTK
1b/1a/3a
138*


2016





YLFNWAVRTK
1b/1a/3a
164*


2044





YLKASAACR
1b



161





YLLPRRGPR
1b/1a
*


149










*= binds A0301 with Ki < 1000 nM















HLA-A2402







AIKGGRHLI

336


813





ALYDVVSTL
1b
340


67





AQGYKVLVL
1b/1a
2164


130





AVMGSSYGF
1b/1a
8
+

16





AWKSKKCPM

6675


898





AYAAQGYKV
1b/1a
30


277





AYAAQGYKVL
1b/1a
2102


900





AYMSKAHGV
1b
30


244





CLIRLKPTL
1b/1a
113
+

122





CYSIEPLDL
1b/1a
786


951





ELAAKLSAL

932


1016





EPEPDVAVL
1b/1a
high


1024





ETTMRSPVF

219
+

1034





FSLDPTFTI
1b/1a
74


106





FWAKHMWNF
1b/1a
2
+

1095





FWAKHMWNFI
1b/1a
69.5
+

1096





FWESVFTGL
1b/3a
15


234





GFADLMGYI
1b/1a/3a
75


236





GFSYDTRCF
1b/1a/3a
40


281





GLGWAGWLL

46
+

1150





GLTHIDAHF
1b/1a/3a
3


258





GQIVGGVYL
1b/1a
17682


127





GYGAGVAGAL
1b/1a
high


1210





GYIPLVGAPL
1b/1a
high


1211





IFLLALLSCL
1b/1a
high


1266





IIMYAPTLW
1b
0.8
+

246





KAHGVDPNI
1b
17123


242





KCDELAAKL
1b/1a
high


1318





KFPGGGQIV
1b/1a/3a
164


284





KGSSGGPLL

625


1325





KLQDCTMLV

2776


1333





KYIMACMSA
1b
6475


239





LFNWAVRTKL
1b/1a
1699


1381





LLPRRGPRL

226
+

1406





LTHPITKYI
1b
403
+

23





LWARMILMTHF

177
+

1483





LYGNEGLGW

3.45


1487





MGSSYGFQY

9808


1496





MYTNVDQDL
1b/1a/3a
31
+

1512





MYVGGVEHRL
1b/1a
291


1513





NFISGIQYL
1b/1a
293


1521





NIIMYAPTL
1b
249
+

87





NLGKVIDTL
1b/1a/3a
93


283





NLPGCSFSI
1b/1a/3a
8
+

93





PAVPQTFQV
1b
991


282





PFYGKAIPI

2


1553





PLLYRLGAV

high


1558





PVNSWLGNI
1b/1a/3a
319


256





QFKQKALGL
1b/1a
high


1602





QFKQKALGLL
1b/1a
4208


1603





QMWKCLIRL
1b/1a
439


238





QWMNRLIAF
1b/1a/3a
177


1623





QYLAGLSTL
1b/1a/3a
35
+

1625





QYSPGQRVEF
1b/1a
298
+

1626





RALAHGVRV

high


1628





RLGAVQNEV

3062


1656





RMILMTHFF
1b/1a
6
+

59





RPDYNPPLL
1b/1a/3a
high


1677





RSELSPLLL
1b/1a
high


1700





RVEFLVNAW

261
+

1710





SFSIFLLAL
1b/1a/3a
70
+

250





SFSIFLLALL
1b/1a
9635


1730





SWDQMWKCL
1b/1a
550


279





TAGARLVVL
1b/1a
3194


249





TILGIGTVL

2070


1826





TLHGPTPLL
1b/1a/3a
217
+

81





TLWARMILM
1b/1a
2101


92





TWAQPGYPW

8


1883





TYSTYGKF

147.5
+

1885





TYSTYGKFL
1b/1a/3a
540


241





VIKGGRHLI

53
+

1916





VILDSFDPL
1b/1a
high


1918





VMGSSYGF

23
+

1938





WLGNIIMYA
1b/3a
15318


62





YAAQGYKVL
1b/1a
1636


95





YGKAIPIEV

high


2034





YIPLVGAPL

512


2038





YLNTPGLPV

372
+

2048





YLVAYQATV

1844


2052





YYRGLDVSV
1b/1a/3a
31
+

271





YYRGLDVSVI
1b/1a/3a
2
+

2083





HLA-B0702


AAKLSALGL
1b
277
+

402





AAQGYKVLVL
1b/1a
5524


777





AARALAHGV
1b/1a
209


403





ALAHGVRVL
1b/1a
7950


72





APLGGAARA
1b/1a
115


384





APLGGAARAL
1b/1a
1
+

836





APPPSWDQM
1b/1a
281
+

381





APTGSGKST
1b/1a/3a
370


397





APTLWARM
1b/1a
13


852





APTLWARMI
1b/1a
11
+

371





APTLWARMIL
1b/1a
1
+

853





APTLWARMILM
1b/1a
423


854





ATLGFGAYM
1b/1a
12973


32





AVMGSSYGF
1b/1a
4400


16





DPPQPEYDL
1b/1a
HIGH


543





DPRRRSRNL
1b/1a/3a
18
+

370





DPTTPLARA
1b/1a
13058


980





EARQAIRSL
1b
291


388





EPDVAVLTSM
1b/1a
454*


1023





EPEPDVAVL
1b/1a
HIGH*


1024





EVIKGGRHL
1b/1a
HIGH


376





GPGEGAVQWM
1b/1a/3a
4747


1163





GPRLGVRAT
1b/1a/3a
128
+

387





GPTPLLYRL
1b/1a/3a
209
+

307





HPITKYIMA
1b
1106*


396





HPNIEEVAL
1b/1a
230*
+

1237





IPFYGKAI

458


1283





IPLVGAPL

25*
+

1289





IPTSGDVVV
1b/1a
3152*


415





KPARLIVF

367


1336





KPTLHGPTPL
1b/1a/3a
6
+

1343





LPAILSPGAL
1b/1a/3a
255*
+

1418





LPALSTGLI
1b/1a
233
+

1419





LPCEPEPDV
1b/1a/3a
HIGH


1421





LPCSFTTLPA
1b/1a
423


1424





LPGCSFSI

500


1425





LPGCSFSIF
1b/1a/3a
29*
+

375





LPGCSFSIFL
1b/1a/3a
558


1426





LPGNPAIASL
1b/1a
266


1428





LPINALSNSL
1b/1a
12*
+

1430





LPRRGPRL

1


1442





LPRRGPRLG
1b/1a/3a
124
+

380





LPRRGPRLGV
1b/1a/3a
3
+

450





LPVCQDHLEF
1b/1a
1564*


1444





LPYIEQGM

423


1445





NAVAYYRGL
1b/1a/3a
HIGH


400





NPAIASLMA
1b/1a
676


1527





NPAIASLMAF
1b/1a
121*


1528





NPSVAATLGF
1b/1a/3a
1197


1532





PPHSAKSKF
1b/1a
HIGH


1568





PPQPEYDLEL
1b/1a
HIGH


1575





PPVVHGCPL
1b/1a
433
+

1582





QPRGRRQPI
1b/1a/3a
1
+

390





RPDYNPPLL
1b/1a/3a
143
+

1677





RPSGMFDSSV
1b/1a
14
+

1687





SAACRAAKL
1b
106
+

121





SPGALVVGV
1b/1a/3a
627


1759





SPGQRVEFL
1b/1a
38


373





SPRGSRPSW
1b/1a/3a
11
+

386





SVFTGLTHI
1b/3a
HIGH


76





TPAETSVRL
1b
375


383





TPCTCGSSDL
1b/1a
168


1843





TPGERPSGM
1b
199
+

372





TPLLYRLGA
1b/1a
74


389





TPLLYRLGAV
1b/1a
458


1851





VAYYRGLDV
1b/1a/3a
1417


394





WPLLLLLLAL
1b/1a
1474


2018





YAAQGYKVL
1b/1a
313
+

95










*= binds B3501 with Ki < 1000 nM















HLA-B0801







AIRSLTERL
1b
3621


473





AQGYKVLVL
1b/1a
1920


130





ARRGREILL
1b/1a
3039


865





CLRKLGVPPL
1b/1a
549


921





DLCGSVFL
1b/1a
11347


962





DLMGYIPLV
1b/1a/3a
1966


66





DPRRRSRN
1b/1a/3a
12066


974





DPRRRSRNL
1b/1a/3a
111


370





DPRRRSRNLG
1b/1a/3a



975





DQMWKCLIRL
1b/1a



982





DTRCFDSTV
1b/1a/3a
13145


466





DVKFPGGGQI
1b/1a/3a
14129


990





EARQAIRSL
1b
9


388





ESENKVVIL
1b/1a
HIGH


1030





FPYLVAYQA
1b/1a
12

+
443





GCSFSIFL
1b/1a/3a
6708


1111





GKRVYYLTR
1b/1a
HIGH


172





GRRGIYRFV
1b
4984


464





HPITKYIMA
1b
59

+
396





HSKKKCDEL
1b/1a
76

+
455





HSKKKCDELA
1b/1a



1243





IPKARRPE
1b/1a
1214


1286





IPKARRPEG
1b/1a
874


409





IPKARRPEGR
1b/1a



1287





IPLVGAPL
1b/1a
20


1288





ITKYIMACM
1b
2610


305





ITYSTYGKFL
1b/1a



1310





LIRLKPTLH
1b/1a
62


205





LLPRRGPRL
1b/1a
183


132





LPRRGPRL
1b/1a/3a
6

+
1441





LPRRGPRLGV
1b/1a/3a



450





LTHPITKYI
1b
HIGH


23





LTRDPTTPL
1b/1a
4322


1475





NAVAYYRGL
1b/1a/3a
11365


400





NAWKSKKCPM
1b



1514





NIRTGVRTI
1b/1a
619

+
436





NPKPQRKTK
1b/1a



404





NPKPQRKTKR
1b/1a



1531





PARLIVFPDL
1b/1a
5747


1545





QFKQKALGL
1b/1a
65


1602





QMWKCLIRL
1b/1a
8712


238





QPRGRRQP
1b/1a/3a
HIGH


1615





QPRGRRQPI
1b/1a/3a
3


390





QPRGRRQPIP
1b/1a/3a



1616





QRKTKRNTNR
1b/1a



1618





QRRGRTGRG
1b/1a/3a
314


456





QTRGLLGCI
1b/1a
HIGH


1621





QTRGLLGCII
1b/1a
17793


1622





RSRNLGKVI
1b/1a/3a
17415


318





RTKLKLTPI
1b/1a
2


1705





SARRGREIL
1b/1a
6454


1718





SARRGREILL
1b/1a
133

+
1719





SGKRVYYLTR
1b



1733





SGKSTKVPAA
1b/1a/3a



1734





SPGQRVEFL
1b/1a
120


373





SVRLRAYLN
1b
3314


459





TAGARLVVL
1b/1a
16


249





TGRGRRGIYR
1b



1825





TIMAKNEVF
1b/1a/3a
6


1827





TLWARMILM
1b/1a
59

+
92





VAYYRGLDV
1b/1a/3a
278

+
394





VSARRGREI
1b/1a
192

+
1969





VTFDRLQVL
1b/1a/3a
4358


1975





WAKHMWNFI
1b/1a
104


1993





WARMILMTH
1b/1a
166

+
287





WARPDYNPPL
1b/1a/3a
1030


1998





YGKAIPIEVI
1b



2035





YLKGSSGGPL
1b/1a
10


2046





YLLPRRGPRL
1b/1a
142


2047





YRRCRASGV
1b/1a/3a
11


475





YRRCRASGVL
1b/1a/3a



2066





HLA-B3501


APPPSWDQM
1b/1a
17771*


381





APTLWARMI
1b/1a
HIGH*


371





AVMGSSYGF
1b/1a
HIGH


16





DPPQPEYDL
1b/1a
HIGH


543





EPEPDVAVL
1b/1a
HIGH


1024





FPGGGQIVG
1b/1a/3a
2596


407





FPGGGQIVGG
1b/1a/3a



1077





FPYLVAYQA
1b/1a
18


443





FSLDPTFTI
1b/1a



106





GPGEGAVQW
1b/1a/3a
HIGH


1162





GPTPLLYRL
1b/1a/3a
17916*


307





HPNIEEVAL
1b/1a
7*
+

1237





IPFYGKAIPI
1b/3a



1284





IPLVGAPL

295*
+

1289





IPVESMETTM




1296





LPALSTGLI
1b/1a
HIGH*


1419





LPCEPEPDV
1b/1a/3a
HIGH


1421





LPGCSFSIF
1b/1a/3a
90*
+

375





LPGCSFSIFL
1b/1a/3a
1494*


1426





LPINALSNSL
1b/1a
137*
+

1430





LPVCQDHLEF
1b/1a
104
+

1444





MGSSYGFQY
1b/1a
2607


22





MPSTEDLVNL
1b



1505





NPSVAATLGF
1b/1a/3a
1401


1532





QAVMGSSYGF
1b



1599





QPRGRRQPI
1b/1a/3a
HIGH*


390





RPDYNPPLL
1b/1a/3a
HIGH*


1677





RVLEDGVNY
1b/1a
HIGH


45





SALGLNAVAY
1b



1717





SPGQRVEFL
1b/1a
HIGH*


373





TPAETSVRL
1b
1643*


383





YDAGCAWYEL
1b/1a



2030










*= binds B0702 with Ki < 1000 nM















HLA-B4403







AATLGFGAY
1b/1a
17055


557





ADLEVVTST
1b/1a
HIGH


786





AEAALENLV
1b/1a/3a
126


790





AEQFKQKAL
1b/1a
67


794





AEQFKQKALG
1b/1a
3058


795





AETAGARLV
1b/1a
122
+

582





AETAGARLVV
1b/1a
2704


796





AETSVRLRAY
1b



799





AGYSGGDIY
1b/1a
HIGH


809





AQPGYPWPL
1b/1a/3a
HIGH


65





CECYDAGCA
1b/1a
13219


589





CECYDAGCAW
1b/1a
1056


910





CEKMALYDV
1b/1a
7759


581





CEPEPDVAV
1b/1a
high


912





CEPEPDVAVL
1b/1a
HIGH


913





DELAAKLSA
1b
12653


569





DGGCSGGAY
1b/1a/3a
HIGH


959





DQRPYCWHY
1b/1a
HIGH


984





DSSVLCECY
1b/1a
HIGH


17





FDITKLLLA
1b/1a
HIGH


1053





GEIPFYGKA
1b/1a/3a
HIGH


1116





GEIPFYGKAI
1b/1a/3a
354
+

1117





GEPGDPDLS
1b/1a/3a
HIGH


1128





GGQIVGGVY
1b/1a/3a
HIGH


1137





GQIVGGVYL
1b/1a
HIGH


127





HSAKSKFGY
1b/1a
HIGH


1241





IEVIKGGRHL
1b



1265





LEDGVNYAT
1b/1a
HIGH


31





LEDRDRSEL
1b/1a
high


1368





LEFWESVFT
1b



129





LEFWESVFTG
1b



1371





LELITSCSS
1b/1a/3a
HIGH


1372





LEVVTSTWV
1b/1a
HIGH


1377





LEVVTSTWVL
1b/1a
5346


1378





LSAFSLHSY
1b/1a
3145


1456





METTMRSPVF
1b



1493





NEGMGWAGWL
1b



1517





PEKGGRKPA
1b/1a
high


1550





PESDAAARVT
1b/1a/3a
high


1551





PEYDLELIT
1b/1a
high


587





RGVAKAVDF
1b/1a
HIGH


317





RMILMTHFF
1b/1a
389
+

59





SCGNTLTCY
1b/1a
11574


1722





SELSPLLLS
1b/1a
10368


1725





SELSPLLLST
1b/1a
2177


1726





TEAMTRYSA
1b/1a/3a
4934


586





TEDLVNLLPA
1b/1a
high


1818





TERLYIGGPL
1b



1820





TLWARMILM
1b/1a
10410


92





VDFSLDPTF
1b/1a/3a
1462


350





VEFLVNAWKS
1b



1900





VESENKVVI
1b/1a
1702


1901





VESENKVVIL
1b/1a
10100


1902





VMGSSYGFQY
1b/1a



1939





WESVFTGLTH
1b/3a



2002





WETARHTPV
1b/1a/3a
HIGH


577





WLGNIIMYA
1b/3a
1949


62





HLA-Cw0301


AALENLVVL
1b



776





ADLMGYIPL
1b/1a/3a



2085





AILGPLMVL
1b



816





AKVLIVMLL
1b



2097





ALYDVVSTL
1b
54.38


67





ARLIVFPDL
1b/1a
18558


643





AVIPDREVL
1b



891





CLIRLKPTL
1b/1a
2108


122





CQVPAPEFF
1b



2094





CWVALTPTL
1b



950





ERLYIGGPL
1b
17523


428





ESYSSMPPL
1b/1a



2089





EVIKGGRHL
1b/1a
8355


376





FLLALLSCL
1b/1a
1229


361





FQVGLNQYL
1b



2100





FWESVFTGL
1b/3a
10265


234





GALVAFKVM
1b



2086





GAVFVGLAL
1b



1107





GAVQNEVTL
1b/1a



347





GAVQWMNRL
1b/1a/3a



1109





GEIPFYGKA
1b/1a/3a



1116





GEMPSTEDL
1b



2084





GQIVGGVYL
1b/1a
70.23


127





GSIGLGKVL
1b



1186





GSVFLVSQL
1b



1189





HGILSFLVF
1b



2095





ILMTHFFSI
1b



1273





ITYSTYGKF
1b/1a
4273


26





LSVEEACKL
1b



2092





NAVAYYRGL
1b/1a/3a
1814


400





NFISGIQYL
1b/1a
1070


1521





NIIMYAPTL
1b
32.21


87





NQYLVGSQL
1b



2099





QAGDNFPYL
1b



551





QIIERLHGL
1b



2091





QIVGGVYLL
1b/1a
124


91





QNIVDVQYL
1b/1a/3a



2098





QYLAGLSTL
1b/1a/3a



1625





RAYLNTPGL
1b
512.8


434





SDVESYSSM
1b



2088





SGMFDSSVL
1b/1a



135





SPLTTQHTL
1b



1767





SSLTITQLL
1b



1785





STLPGNPAI
1b/1a



2096





TALNCNDSL
1b



1812





TALVVSQLL
1b



1813





TILGIGTVL
1b
57.24


89





TMLVNGDDL
1b



2101





TPIPAASQL
1b



1848





TRVPYFVRA
1b



2087





TTIRRHVDL
1b



1874





VILDSFDPL
1b/1a
49.21


1918





VLYREFDEM
1b/1a



2090





VRVCEKMAL
1b/1a
high


632





WAVRTKLKL
1b/1a



1999





WHYPCTVNF
1b/3a



2093





YAAQGYKVL
1b/1a
2155


95





YALYGVWPL
1b



2025





YVLLLFLLL
1b



2073





HLA-Cw0401


AWETARHTPV
1b/1a/3a
2297


897





AYAAQGYKV
1b/1a
high


277





AYAAQGYKVL
1b/1a
high


900





CYSIEPLDL
1b/1a
702


951





DFSLDPTFTI
1b/1a
high


958





DPPQPEYDL
1b/1a
high


543





EFWESVFTGL
1b
46.5


1010





EPEPDVAVL
1b/1a
high


1024





EYDLELITS
1b/1a
high


597





FADLMGYIPL
1b/1a/3a
613

+
1048





FWAKHMWNF
1b/1a
124

+
1095





FWESVFTGL
1b/3a
2


234





GFADLMGYI
1b/1a/3a
569


236





GPTPLLYRL
1b/1a/3a
high


307





HPNIEEVAL
1b/1a
high


1237





MYAPTLWARM
1b
high


1511





NFISGIQYL
1b/1a
37.5


1521





PWPLYGNEGM
1b
1083


1590





QFKQKALGL
1b/1a
high


1602





QYLAGLSTL
1b/1a/3a
8058


1625





QYSPGQRVEF
1b/1a
high


1626





RPDYNPPLL
1b/1a/3a
356


1677





SFSIFLLAL
1b/1a/3a
396


250





SFSIFLLALL
1b/1a
10188

+
1730





SPGQRVEFL
1b/1a
high


373





SWDQMWKCL
1b/1a
66


279





SWDQMWKCLI
1b/1a
989


1804





TYSTYGKFL
1b/1a/3a
18449


241





VFPDLGVRV
1b/1a
787

+
349





HLA-Cw0602


AAQGYKVLV
1b/1a
6319


115





AEQFKQKAL
1b/1a
high


794





ALAHGVRVL
1b/1a
3308


72





AQGYKVLVL
1b/1a
high


130





ARALAHGVRV
1b/1a
9879


862





ARHTPVNSWL
1b/1a/3a
high


863





ARLIVFPDL
1b/1a
high


643





ARMILMTHF
1b/1a
high


641





ARMILMTHFF
1b/1a
high


864





ARVTQILSSL
1b
high


868





AYAAQGYKV
1b/1a
high


277





AYAAQGYKVL
1b/1a
high


900





AYMSKAHGV
1b
high


244





AYYRGLDVSV
1b/1a/3a
1074

+
907





CLIRLKPTL
1b/1a
high


122





DLVNLLPAI
1b/1a
high


968





DRSELSPLL
1b/1a
high


986





DVAVLTSML
1b/1a
high


989





EARQAIRSL
1b
high


388





EPEPDVAVL
1b/1a
high


1024





ERLYIGGPL
1b
high


428





ESENKVVIL
1b/1a
high


1030





ETSVRLRAY
1b
high


46





EVIKGGRHL
1b/1a
12838


376





FADLMGYIPL
1b/1a/3a
high


1048





FKQKALGLL
1b/1a
high


1062





FLLALLSCL
1b/1a
high


361





FQYSPGQRV
1b/1a
387

+
111





FRAAVCTRGV
1b/1a/3a
486


1081





FSIFLLALL
1b/1a
high


362





FYGKAIPIEV
1b
5690


1100





GGGQIVGGV
1b/1a/3a
high


1136





GPTPLLYRL
1b/1a/3a
high


307





GQIVGGVYLL
1b/1a
high


1178





GRGRRGIYRF
1b
high


1181





GRKPARLIV
1b/1a/3a
2037


507





GRKPARLIVF
1b/1a
8955


1182





GRRGIYRFV
1b
575.5


464





HMWNFISGI
1b/1a
high


1233





IFLLALLSCL
1b/1a
high


1266





IKGGRHLIF
1b/1a
high


311





IMACMSADL
1b
high


90





IRSLTERLY
1b
318


624





IRSLTERLYI
1b
6225


1301





KCDELAAKL
1b/1a
high


1318





LGKVLVDIL
1b/1a
high


1382





LLGCIITSL
1b/1a
high


1397





LRAYLNTPGL
1b
high


1454





LVNLLPAIL
1b/1a
high


1481





MALYDVVSTL
1b
high


1492





MYAPTLWARM
1b
high


1511





NAVAYYRGL
1b/1a/3a
10829


400





NFISGIQYL
1b/1a
6642


1521





QMWKCLIRL
1b/1a
high


238





QTRGLLGCI
1b/1a
high


1621





QYSPGQRVEF
1b/1a
high


1626





RALAHGVRVL
1b/1a
7337


1629





RKPARLIVF
1b/1a
8281


646





RMILMTHFF
1b/1a
high


59





SFSIFLLAL
1b/1a/3a
high


250





SKKCPMGFSY
1b
high


1739





SPGALVVGV
1b/1a/3a
high


1759





STEDLVNLL
1b/1a
high


1787





STWVLVGGV
1b/1a
high


1793





SWDQMWKCL
1b/1a
high


279





TLPALSTGL
1b/1a
high


1835





TYSTYGKFL
1b/1a/3a
4859


241





VAYYRGLDV
1b/1a/3a
231


394





VIKGGRHLIF
1b/1a
17503


1917





VKFPGGGQIV
1b/1a/3a
417.5


1920





VLVDILAGY
1b/1a
high


1931





VRVCEKMAL
1b/1a
high


632





VRVCEKMALY
1b/1a
high


1967





VTFDRLQVL
1b/1a/3a
1131.5


1975





WAQPGYPWPL
1b/1a/3a
high


1996





WARMILMTHF
1b/1a
high


1997





WKSKKCPMGF
1b
high


2013





YAAQGYKVL
1b/1a
1784


95





YAAQGYKVLV
1b/1a
9209


2024





YLLPRRGPRL
1b/1a
high


2047





YRLGAVQNEV
1b/1a
216.5


2065





YRRCRASGV
1b/1a/3a
634

+
475





YRRCRASGVL
1b/1a/3a



2066





YYRGLDVSV
1b/1a/3a



271





YYRGLDVSVI
1b/1a/3a



2083





HLA-Cw0702


AATLGFGAY
1b/1a
high


557





ARHTPVNSWL
1b/1a/3a
122


863





ARLIVFPDL
1b/1a
298


643





ARMILMTHF
1b/1a
155


641





ARMILMTHFF
1b/1a
272


864





ARVTQILSSL
1b
488


868





AYAAQGYKV
1b/1a
12544


277





AYAAQGYKVL
1b/1a
4955


900





AYYRGLDVSV
1b/1a/3a
23

+
907





CYDAGCAWY
1b/1a
1091.3


13





DGGCSGGAY
1b/1a/3a
high


959





DPPQPEYDL
1b/1a
high


543





DQRPYCWHY
1b/1a
709.5


984





DREVLYREF
1b/1a
high


985





DSSVLCECY
1b/1a
high


17





DYPYRLWHY
1b/1a/3a
0.2


997





FRKHPEATY
1b/1a/3a
0.2


1082





FYGKAIPIEV
1b
31

+
1100





GFADLMGYI
1b/1a/3a
high


236





GFSYDTRCF
1b/1a/3a
high


281





GGQIVGGVY
1b/1a/3a
high


1137





GPTPLLYRL
1b/1a/3a
11601


307





GRKPARLIVF
1b/1a
753


1182





GVAGALVAF
1b/1a
6162


1191





GVLAALAAY
1b/1a/3a
high


1196





GYIPLVGAPL
1b/1a
2403


1211





HQNIVDVQY
1b/1a/3a
14194


1239





HSAKSKFGY
1b/1a
high


1241





HYVPESDAAA
1b/1a/3a
high


1254





IRSLTERLY
1b
25


624





KKCDELAAKL
1b/1a
high


1327





KSTKVPAAY
1b/1a/3a
high


25





KYIMACMSA
1b
7210


239





LHGPTPLLY
1b/1a/3a
31


219





LLGCIITSL
1b/1a
9762


1397





LPGCSFSIF
1b/1a/3a
10440


375





LRAYLNTPGL
1b
236

+
1454





LSAFSLHSY
1b/1a
high


1456





LVGGVLAAL
1b/1a
high


1479





LYGNEGMGWA
1b
5108


1488





MYAPTLWARM
1b
548

+
1511





MYTNVDQDL
1b/1a/3a
81


1512





NFPYLVAYQA
1b/1a
5300


1522





NIVDVQYLY
1b/1a/3a
56


1523





NLGKVIDTL
1b/1a/3a
high


283





QPGYPWPLY
1b/1a/3a
high


216





RLLAPITAY
1b/1a/3a
4821


1662





SCGNTLTCY
1b/1a
high


1722





SFSIFLLAL
1b/1a/3a
312


250





SFSIFLLALL
1b/1a
high


1730





SKKCPMGFSY
1b
901


1739





SPGALVVGV
1b/1a/3a
high


1759





SWLGNIIMY
1b/3a
high


665





TYSTYGKFL
1b/1a/3a
239


241





VLVDILAGY
1b/1a
high


1931





VRVCEKMAL
1b/1a
279


632





VRVCEKMALY
1b/1a
2586


1967





WARMILMTHF
1b/1a
855


1997





YAPTLWARM
1b
high


14





YRRCRASGVL
1b/1a/3a
83

+
2066





YYRGLDVSV
1b/1a/3a
12


271





YYRGLDVSVI
1b/1a/3a
87


2083





Immun mice = immunogenicity in transgenic or surrogate mice


Immun recall = immunoreactivity in human recall assay


High = Ki > 20.000 nM


Tg = transgenic mice













TABLE 14







Selection of HLA-DRB1*0101 and -DRB1*0301 predicted peptides




















0101
0301
0401

SEQ





Cons
Cons
IC50
IC50
IC50

ID


Sequence
Cons 3a
1b/1a
1b/1a/3a
nM
nM
nM
Immun
NO



















ADLMGYIPLVGAPLG

X
X
8333



2105






GHRMAWDMMMNWSPT

X
X
183



2142





SKGWRLLAPITAYAQ

X
X
0.40



2213





RAAVCTRGVAKAVDF

X
X
619



2199





GYKVLVLNPSVAATL

X
X
8.4



2157





VLVLNPSVAATLGFG

X
X
3.0
1431
6.5
+
2235





WESVFTGLTHIDAHF

X
X
122



2245





KPTLHGPTPLLYRLG

X
X
156
1510
4861
+
2164





IQYLAGLSTLPGNPA

X
X
3.4

2.6
+
2162





AVQWMNRLIAFASRG

X
X
2
17313
1009
+
2113





MNRLIAFASRGNHVS

X
X
57
9529
813
+
2182





ASQLSAPSLKATCTT

X
X
329



2111





TTIMAKNEVFCVQPE

X
X
3727



2226





GIQYLAGLSTLPGNP

X
X




2143





LPAILSPGALVVGVV

X
X




2172





DLVNLLPAILSPGA

X
X




2121





YKVLVLNPSVAATLG

X
X




2252





LVVLATATPPGSVTV

X
X
73
4230
4
+
2180





STTILGIGTVLDQAE

X
X




2217





VNLLPAILSPGALVV

X
X
2.3
12603
1558
+
2236





GGVLAALAAYCLTTG

X
X




2141





KVLVLNPSVAATLGF

X
X




2165





LPALSTGLIHLHQNI

X
X




2173





VGGVLAALAAYCLTT

X
X




2233





GQGWRLLAPITAYSQ

X
X




2150





VQWMNRLIAFASRGN

X
X




2238





GPRLGVRATRKTSER

X
X

18887

+
2149





LTHIDAHFLSQTKQA

X
X




2175





LTHIDAHFLSQTKQS

X
X




2176





VGIFRAAVCTRGVAK

X
X




2234





LVAYQATVCARAQAP

X
X




2178





LVNLLPAILSPGALV

X
X




2179





AVGIFRAAVCTRGVA

X
X
29
10143
31
+
2112





GLGWAGWLLSPRGSR

X
X




2145





GCGWAGWLLSPRGSR

X
X




2138





GMGWAGWLLSPRGSR

X
X




2147





RLVVLATATPPGSVT

X
X




2203





GKYLFNWAVRTKLKL

X
X




2144





GHRMAWDMMMNWSPT

X
X

919


2142





DSSVLCECYDAGCAW

X
X




2123





PTHYVPESDAAARVT

X
X

4954


2193





GSQLPCEPEPDVAVL

X
X




2152





QPEYDLELITSCSSN

X
X




2198





RLGVRATRKTSERSQ

X
X

16443
5868
+
2201





YGKFLADGGCSGGAY

X
X
5082
2565
21
+
2249





HLIFCHSKKKCDELA

X
X



+
2158





LIRLKPTLHGPTPLL

X
X




2171





MPPLEGEPGDPDL

X
X




2183





QKKVTFDRLQVLDDH

X
X




2197





PMGFSYDTRCFDSTV

X
X




2191





RPEYDLELITSCSSN

X
X




2204





ARAAWETARHTPVNS

X
X
1402

14756
+
2108





GVNYATGNLPGCSFS

X

4564



2155





GCSFSIFLLALLSCL

X

1634



2139





FTTLPALSTGLIHLH

X

1.3

2080

2132





PQTFQVAHLHAPTGS

X

22



2192





AQGYKVLVLNPSVAA

X

4.6
5169
1.6
+
2107





GTVLDQAETAGARLV

X





2154





GARLVVLATATPPGS

X

173



2137





DVVVVATDALMTGYT

X

456



2125





VVVVATDALMTGYTG

X

1082



2241





TWVLVGGVLAALAAY

X

6.9

369
+
2229





LAGYGAGVAGALVAF

X

137



2166





GALVVGVVCAAILRR

X

314



2136





LTSMLTDPSHITAET

X

12.50



2177





DADLIEANLLWRQEM

X

574



2117





RQEMGGNITRVESEN

X





2205





GSSYGFQYSPGQRVE

X

11



2153





PTLWARMILMTHFFS

X

788
3424
178
+
2194





ASCLRKLGVPPLRVW

X

4.9



2110





WVLVGGVLAALAAYC

X





2247





EPDVAVLTSMLTDPS

X





2127





PCSFTTLPALSTGLI

X





2189





GDNFPYLVAYQATVC

X





2140





YIPLVGAPLGGAARA

X





2251





PYLVAYQATVCARAQ

X





2195





ARLVVLATATPPGSV

X





2109





STKVPAAYAAQGYKV

X





2216





FNILGGWVAAQLAPP

X





2128





SIFLLALLSCLTIPA

X





2212





LSTLPGNPAIASLMA

X





2174





STWVLVGGVLAALAA

X





2218





NPAIASLMAFTASIT

X





2186





VWPLLLLLLALPPRA

X





2242





GAGVAGALVAFKVMS

X





2135





GAGVAGALVAFKIMS

X





2134





TPLLYRLGAVQNEVT

X





2224





PGALVVGVVCAAILR

X





2190





RSELSPLLLSTTEWQ

X





2206





EDLVNLLPAILSPG

X





2126





ACKLTPPHSAKSKFG

X





2103





YGVWPLLLLLLALPP

X





2250





GQIVGGVYLLPRRGP

X





2151





CQIYGACYSIEPLDL

X





2116





DLAVAVEPVVFSDME

X





2120





YYSMVGNWAKVLIVM

X





2253





IQRLHGLSAFSLHSY

X





2161





IERLHGLSAFSLHSY

X





2160





LHSYSPGEINRVASC

X





2170





WKCLIRLKPTLHGPT

X





2246





DVVVVATDALMTGFT

X





2124





WDQMWKCLIRLKPTL

X





2244





LFNILGGWVAAQLAP

X





2168





VDILAGYGAGVAGAL

X





2230





SFSIFLLALLSCLTI

X





2210





SFSIFLLALLSCLTV

X





2211





VVVVATDALMTGFTG

X





2240





FPYLVAYQATVCARA

X





2129





VVGVVCAAILRRHVG

X





2239





FSIFLLALLSCLTIP

X





2130





FSIFLLALLSCLTVP

X





2131





ADLIEANLLWRQEMG

X





2104





APTLWARMILMTHFF

X





2106





TRGLLGCIITSLTGR

X





2225





TFQVAHLHAPTGSGK

X





2220





RGLLGCIITSLTGRD

X





2200





GVRVLEDGVNYATGN

X

8713
266
132
+
2156





SAMYVGDLCGSVFLV

X





2208





SDLYLVTRHADVIPV

X





2209





VVVVATDALMTGYTG

X


93


2241





TVDFSLDPTFTIETT

X

10395
46
59
+
2228





GLPVCQDHLEFWESV

X


14286


2146





GMQLAEQFKQKALGL

X


4992


2148





LTSMLTDPSHITAET

X


567


2177





MSTNPKPQRKTK

X





2184





DLAVAVEPVVFSDME

X





2120





RSPVFTDNSSPPAVP

X

1676
1711
10
+
2207





YDIIICDECHSTDST

X





2248





DIIICDECHSTDSTT

X





2119





VVVVATDALMTGFTG

X





2240





MACMSADLEVVTSTW

X





2181





LGKVLVDILAGYGAG

X





2169





ITRVESENKVVILDS

X





2163





VFCVQPEKGGRKPAR

X




+
2232





RLIVFPDLGVRVCEK

X





2202





VYYLTRDPTTPLARA

X





2243





GACYSIEPLDLPQII

X





2133





SYTWTGALITPCAAE
X


5.63



2219





NSWLGNIIMYAPTLW
X


1.2



2187





VNSWLGNIIMYAPTL
X


1.42



2237





QDAVSRSQRRGRTGR
X






2196





MTGFTGDFDSVIDCN
X






2185





Immun = Immunogenicity


Cons. = presence of the “core” in the indicated consensus sequence






EXAMPLES
Example 1
Identification of CTL Specific HCV Peptides Using the Algonomics Algorithm

HLA Class I protein subclasses that should be targeted are defined: HLA-A01, 02, 03 and 24; HLA-B07, 08, 35 and 44; HLA-Cw04, -Cw06 and Cw07.


These HLA-Class I subclasses are modeled based on known homologue structures.


Based on X-ray data, an in depth analysis is performed of the main chain conformational changes in a given HLA-class I subclass for different peptides bound to said HLA-class I. This analysis results in rules that will be applied when generating backbone variability.


On the average 8 to 10 different HLA-class I peptide complexes for each of the HLA-class I subclasses are built based on a series of epitopes and using Algonomics flexible peptide docking tools (wherein the peptide main and side chains are considered flexible, as well as the side chains of the HLA molecules). This yields in total 88 to 110 different three-dimensional models.


By using the above rules for main chain flexibility and/or by using molecular dynamics techniques or main chain perturbation/relaxation approaches, about five different versions differing in main chain conformation in the neighborhood of the bound peptide of the above models are derived. Hence, about 500 different three-dimensional models of HLA-class I peptide complexes are generated.


For each of the HLA-class I peptide models a prediction of the sequence variability of the peptide moieties in the context with surrounding HLA molecules is made: thread through the peptide backbones all HCV protein sequences of interest for all known HCV genotypes and asses for each “threaded” peptide the likelihood that it can form a stable complex with the underlying HLA-class I.


This is done using Algonomics' advanced inverse folding tools which have been developed within the Extended Dead-End Elimination framework. The end-point of this analysis is a list of binding peptides for each of the 11 HLA-Class I subclasses.


Example 2
Identification of CTL Specific B07-Restricted Peptides Using 4 Different Algorithms

For the HLA B07, a selection of the best scoring peptides is retrieved from the 3 on-line prediction servers (BIMAS, Syfpeithi and nHLAPred) using HCV consensus sequence 1b, and from the PIC-algorithm described by Epimmune using 57 HCV sequences. These peptides can either be 8-mers, 9-mers, 10-mers and in some cases 11-mers. Four hundred peptides were retrieved from BIMAS, 250 peptide from Syfpeithi, 100 from nHLAPred and 58 from the PIC algorithm from Epimmune. Said peptides are given in Table 15.









TABLE 15







Predicted CTL specific B07-restricted peptides













Peptide



SEQ


Prot
sequence
Score
GT
rank
ID NO











BIMAS













NS5B
RPRWFMLCL
800
1b
1
1684





C
DPRRRSRNL
800
1b/1a/3a
2
370





NS5B
RPRWFMLCLL
800
1b
1
1685





NS5B
APTLWARMIL
360
1b/1a
2
853





C
APLGGAARAL
240
1b/1a
3
836





NS5B
GVRVCEKMAL
200
1b/1a
4
1203





NS5B
RARSVRAKL
180
1b
3
1632





NS2
SARRGREIL
180
1b/1a
4
1718





C
QPRGRRQPI
120
1b/1a/3a
5
390





NS5B
RARPRWFML
120
1b
6
1631





NS5B
DPPQPEYDL
120
1b/1a
7
543





NS5A
LARGSPPSL
120
1b
8
1363





NS5B
AIRSLTERL
120
1b
9
473





NS5B
EARQAIRSL
120
1b
10
388





NS2
SARRGREILL
120
1b/1a
5
1719





NS5A
WARPDYNPPL
120
1b/1a/3a
6
1998





NS5B
RARSVRAKLL
120
1b
7
1633





NS4A
AVIPDREVL
90
1b
11
891





C
LPRRGPRLGV
90
1b/1a/3a
8
450





NS3
HPNIEEVAL
80
1b/1a
12
1237





NS3
TPAETSVRL
80
1b
13
383





NS5B
SPGQRVEFL
80
1b/1a
14
373





NS4B
SPLTTQHTL
80
1b
15
1767





NS3
GPTPLLYRL
80
1b/1a/3a
16
307





E2
GPWLTPRCL
80
1b
17
1173





NS5B
TPIPAASQL
80
1b
18
1848





NS5B
IPAASQLDL
80
1b
19
1280





NS4B
MPSTEDLVNL
80
1b
9
1505





NS2
VPYFVRAQGL
80
1b
10
1960





E2
SPGPSQKIQL
80
1b
11
1764





NS5A
SPAPNYSRAL
80
1b
12
1756





P7
WPLLLLLLAL
80
1b/1a
13
2018





NS3
KPTLHGPTPL
80
1b/1a/3a
14
1343





NS4B
LPAILSPGAL
80
1b/1a/3a
15
1418





NS4B
LPGNPAIASL
80
1b/1a
16
1428





C
LPGCSFSIFL
80
1b/1a/3a
17
1426





NS4B
SPLTTQHTLL
80
1b
18
1768





NS5B
TPCAAEESKL
80
1b
19
1840





NS3
TPCTCGSSDL
80
1b/1a
20
1843





NS5A
PPRRKRTVVL
80
1b
21
1579





NS3
VPQTFQVAHL
80
1b
22
1954





NS4B
LPYIEQGMQL
80
1b
23
1447





NS5B
LPINALSNSL
80
1b/1a
24
1430





NS5A
VPPVVHGCPL
80
1b
25
1953





E2
WTRGERCDL
60
1b/1a
20
2022





NS2
AVFVGLALL
60
1b
21
886





NS3
APPPSWDQM
60
1b/1a
22
381





NS5B
LTRDPTTPL
60
1b/1a
23
1475





E2
APRPCGIVPA
60
1b
26
847





E1
TIRRHVDLL
40
1b
24
1828





NS5B
HIRSVWKDL
40
1b
25
1223





NS5A
KSRKFPPAL
40
1b
26
1348





NS2
GGRDAIILL
40
1b
27
1138





NS5B
HIRSVWKDLL
40
1b
27
1224





NS5B
CLRKLGVPPL
40
1b/1a
28
921





P7
AAWYIKGRL
36
1b
28
782





E2/P7
AALENLVVL
36
1b
29
776





NS4B
AAARVTQIL
36
1b
30
773





NS3
AAKLSALGL
36
1b
31
402





NS2
AACGDIILGL
36
1b
29
774





NS3
AAQGYKVLVL
36
1b/1a
30
777





NS5B
AAKLQDCTML
36
1b
31
775





NS4A
VVIVGRIIL
30
1b
32
1982





NS2
NVRGGRDAI
30
1b
33
1538





NS3
GPKGPITQM
30
1b
34
1165





E2
DARVCACLWM
30
1b
32
954





NS4A
SVVIVGRIIL
30
1b
33
1803





NS5A
EPEPDVAVL
24
1b/1a
35
1024





NS5A
RPDYNPPLL
24
1b/1a/3a
36
1677





NS5B
APTLWARMI
24
1b/1a
37
371





NS5B
LSRARPRWFM
22.5
1b
34
1462





P7
LVPGAAYAL
20
1b
38
1482





NS3
VVVVATDAL
20
1b/1a
39
1988





E2
YVLLLFLLL
20
1b
40
2073





NS3/NS4A
EVVTSTWVL
20
1b/1a
41
1042





NS4A
LVGGVLAAL
20
1b/1a
42
1479





P7
GVWPLLLLL
20
1b
43
1207





C
GVNYATGNL
20
1b/1a
44
339





NS4B
RVTQILSSL
20
1b
45
1714





E2
YVGGVEHRL
20
1b/1a
46
2072





NS3
EVIKGGRHL
20
1b/1a
47
376





NS5A
TVSSALAEL
20
1b
48
1881





NS5B
SVGVGIYLL
20
1b
49
1799





NS5A
EVSVAAEIL
20
1b
50
1040





NS2
YVYDHLTPL
20
1b
51
2077





NS5A
DVAVLTSML
20
1b/1a
52
989





P7
SVAGAHGIL
20
1b
53
1796





NS2
FVGLALLTL
20
1b
54
1090





C
GPRLGVRAT
20
1b/1a/3a
55
387





E1
MVGNWAKVL
20
1b/1a
56
1510





NS4B
LVNLLPAIL
20
1b/1a
57
1481





NS2
YVQMAFMKL
20
1b
58
2074





NS3
TPGERPSGM
20
1b
59
372





C
WPLYGNEGM
20
1b
60
2019





NS5B
RVASCLRKL
20
1b
61
1707





E2
RVCACLWMML
20
1b
35
1709





NS4B
GPGEGAVQWM
20
1b/1a/3a
36
1163





NS5B
KVTFDRLQVL
20
1b/1a/3a
37
1352





NS5A
DVWDWICTVL
20
1b
38
995





NS3
DVVVVATDAL
20
1b/1a
39
994





NS5A
VVILDSFDPL
20
1b/1a
40
1981





E1
YPGHVSGHRM
20
1b
41
2063





E1
MVAGAHWGVL
20
1b
42
1509





P7
GVWPLLLLLL
20
1b
43
1208





NS4B
VVGVVCAAIL
20
1b/1a
44
1980





NS3
VPVESMETTM
20
1b
45
1958





NS5A
TVLTDFKTWL
20
1b
46
1880





NS2
NVRGGRDAII
20
1b
47
1539





NS3
CVTQTVDFSL
20
1b/1a
48
949





NS3
VVSTATQSFL
20
1b
49
1985





NS2
AILGPLMVL
18
1b
62
816





C
AARALAHGV
18
1b/1a
63
403





NS2
LAILGPLMVL
18
1b
50
1361





NS5B
AVRTKLKLT
15
1b/1a
64
895





NS2
ARRGREILL
12
1b/1a
65
865





NS3
NAVAYYRGL
12
1b/1a/3a
66
400





NS4B
GAVQWMNRL
12
1b/1a/3a
67
1109





NS3
QAGDNFPYL
12
1b
68
551





NS5B
ATTSRSASL
12
1b
69
879





NS5B
ALYDVVSTL
12
1b
70
67





NS5B
WAVRTKLKL
12
1b/1a
71
1999





NS2
TAACGDIIL
12
1b
72
1811





NS4A
LAALAAYCL
12
1b/1a/3a
73
1357





E2
ALSTGLIHL
12
1b/1a/3a
74
825





NS3
DAGCAWYEL
12
1b/1a
75
528





E2
CACLWMMLL
12
1b
76
909





NS5A
LASSSASQL
12
1b
77
1365





NS2
GAVFVGLAL
12
1b
78
1107





NS3
SGMFDSSVL
12
1b/1a
79
135





NS5B
ASGKRVYYL
12
1b
80
334





NS3
YAAQGYKVL
12
1b/1a
81
95





NS5B
GACYSIEPL
12
1b/1a
82
1103





NS2
ACGDIILGL
12
1b
83
784





E2
FAIKWEYVL
12
1b
84
1049





NS3
QAPPGARSL
12
1b
85
1598





C
AQPGYPWPL
12
1b/1a/3a
86
65





NS3
AQGYKVLVL
12
1b/1a
87
130





NS3
RAYLNTPGL
12
1b
88
434





NS2
WAHAGLRDL
12
1b
89
1992





NS4B
GAAVGSIGL
12
1b
90
1102





NS5A
ASQLSAPSL
12
1b/1a/3a
91
872





P7
GAHGILSFL
12
1b
92
1104





NS5B
SAACRAAKL
12
1b
93
121





NS3
GAVQNEVTL
12
1b/1a
94
347





E2
AIKWEYVLL
12
1b
95
814





NS3
TAGARLVVL
12
1b/1a
96
249





E1
WAKVLIVML
12
1b
97
1994





NS5B
ASTVKAKLL
12
1b
98
875





NS5A
YAPACKPLL
12
1b
99
2027





NS5B
RAATCGKYL
12
1b
100
1627





NS2
MAFMKLAAL
12
1b
101
1491





C
ALAHGVRVL
12
1b/1a
102
72





P7
ALYGVWPLL
12
1b
103
830





E1
TALVVSQLL
12
1b
104
1813





C
EGMGWAGWL
12
1b
105
1011





E2
TALNCNDSL
12
1b
106
1812





NS5B
KASTVKAKL
12
1b
107
1316





E1
VAGAHWGVL
12
1b
108
1889





P7
YALYGVWPL
12
1b
109
2025





NS5B
PARLIVFPDL
12
1b/1a
51
1545





P7
YALYGVWPLL
12
1b
52
2026





NS5B
ILMTHFFSIL
12
1b
53
1274





NS5B
LAQEQLEKAL
12
1b
54
1362





NS5B
ACYSIEPLDL
12
1b/1a
55
785





NS2
GAVFVGLALL
12
1b
56
1108





E2
AIKWEYVLLL
12
1b
57
815





NS5B
YATTSRSASL
12
1b
58
2029





NS3
YIMACMSADL
12
1b
59
2037





NS5B
QAIRSLTERL
12
1b
60
1597





P7
CAAWYIKGRL
12
1b
61
908





E2/P7
AQAEAALENL
12
1b
62
858





E1
WAKVLIVMLL
12
1b
63
1995





NS3
LAAKLSALGL
12
1b
64
1356





P7
ALYGVWPLLL
12
1b
65
831





NS5A
SASQLSAPSL
12
1b/1a/3a
66
1720





NS3
TAYSQQTRGL
12
1b
67
1814





E2/P7
EAALENLVVL
12
1b
68
998





NS5B
MALYDVVSTL
12
1b
69
1492





NS5B
CTMLVNGDDL
12
1b
70
942





C
RALAHGVRVL
12
1b/1a
71
1629





E2
FAIKWEYVLL
12
1b
72
1050





NS5B
DASGKRVYYL
12
1b
73
955





E1
GAHWGVLAGL
12
1b
74
1105





NS5B
KASTVKAKLL
12
1b
75
1317





C
EGMGWAGWLL
12
1b
76
1012





NS2
AQGLIRACML
12
1b
77
860





P7
AGAHGILSFL
12
1b
78
805





NS4B
AGAAVGSIGL
12
1b
79
804





P7
ASVAGAHGIL
12
1b
80
876





NS5B
ASAACRAAKL
12
1b
81
869





NS3
DQMWKCLIRL
12
1b/1a
82
982





NS4B
APPSAASAFV
12
1b
83
845





NS4B
DAAARVTQIL
12
1b
84
952





NS5B
AGTQEDAASL
12
1b
85
807





C
WAQPGYPWPL
12
1b/1a/3a
86
1996





NS5B
SLRVFTEAM
10
1b
110
495





C
GVRVLEDGV
10
1b/1a
111
447





E2
KVRMYVGGV
10
1b/1a
112
1351





NS5B
DVRNLSSKAV
10
1b
87
993





E1
AARNSSVPT
9
1b
113
778





NS5B
AAKLQDCTM
9
1b
114
440





E2
AARTTSGFT
9
1b
115
780





NS3
APPGARSLT
9
1b
116
839





NS3
AATLGFGAYM
9
1b/1a
88
781





E1
AARNSSVPTT
9
1b
89
779





E2
GPWLTPRCLV
9
1b
90
1174





NS5A
PPVVHGCPL
8
1b/1a
117
1582





E2
YPCTVNFTI
8
1b
118
2059





NS3
CPSGHAVGI
8
1b
119
931





NS5B
EPLDLPQII
8
1b
120
1027





E2
LPALSTGLI
8
1b/1a
121
1419





E2
GPSQKIQLI
8
1b
122
1171





NS5A
LPPTKAPPI
8
1b
123
1435





NS2
GPLMVLQAGI
8
1b
91
1168





NS3
IPFYGKAIPI
8
1b
92
1284





NS5B
TPVNSWLGNI
8
1b/1a/3a
93
1862





NS5B
PPQPEYDLEL
8
1b/1a
94
1575





NS5B
VVSTLPQAVM
7.5
1b
95
1986





NS3
AVDFVPVESM
6.75
1b
96
883





NS3
TLHGPTPLL
6
1b/1a/3a
124
81





C
APLGGAARA
6
1b/1a
125
384





NS5B
ESKLPINAL
6
1b
126
1031





C
SPRGSRPSW
6
1b/1a/3a
127
386





NS3
YSQQTRGLL
6
1b
128
2069





NS3
LSPRPVSYL
6
1b
129
1460





NS5B
CPMGFSYDT
6
1b
130
421





NS5A
LPCEPEPDV
6
1b/1a/3a
131
1421





NS2
ILLGPADSL
6
1b
132
1271





NS5A
APSLKATCT
6
1b/1a
133
848





NS5B
FNWAVRTKL
6
1b/1a
134
1076





NS3
TSVRLRAYL
6
1b
135
1870





NS3
APTGSGKST
6
1b/1a/3a
136
397





NS5A
LPRLPGVPF
6
1b
137
1439





NS4B
VVESKWRAL
6
1b
138
1979





E2
APRPCGIVP
6
1b
139
846





P7
YGVWPLLLL
6
1b
140
2036





NS5B
GGRKPARLI
6
1b/1a/3a
141
435





NS4B
AVQWMNRLI
6
1b/1a/3a
142
893





E1
MNWSPTTAL
6
1b
143
1503





NS5A
PPRRKRTVV
6
1b
144
1578





NS4B
APVVESKWRA
6
1b
97
856





NS3
APITAYSQQT
6
1b
98
835





NS2
VSARRGREIL
6
1b/1a
99
1970





NS5B
YLTRDPTTPL
6
1b/1a
100
2051





NS2
EILLGPADSL
6
1b
101
1013





NS2
AVHPELIFDI
6
1b
102
890





E1
MMNWSPTTAL
6
1b
103
1502





NS3
LLSPRPVSYL
6
1b
104
1409





E1
VPTTTIRRHV
6
1b
105
1956





NS5A
EPDVAVLTSM
6
1b/1a
106
1023





NS3
RRRGDSRGSL
6
1b/1a
107
1697





E2
GSWHINRTAL
6
1b
108
1190





NS5A
APSLKATCTT
6
1b
109
849





NS3
ETSVRLRAYL
6
1b
110
1033





NS4A
RPAVIPDREV
6
1b
111
1674





NS3
VVVATDALM
5
1b/1a
145
343





NS5B
GVRVCEKMA
5
1b/1a
146
498





NS3
GVRTITTGA
5
1b
147
1202





NS5B
DVRNLSSKA
5
1b
148
992





NS5A
GVWRGDGIM
5
1b/1a
149
1209





E2
RVCACLWMM
5
1b
150
1708





NS4A
EVLYREFDEM
5
1b/1a
112
1039





NS3
VVVVATDALM
5
1b/1a
113
1989





NS2
KVAGGHYVQM
5
1b
114
1349





NS3
SVRLRAYLNT
5
1b
115
1802





NS2
FVRAQGLIRA
5
1b
116
1092





E1
CVRENNSSRC
5
1b
117
948





E1
IVYEAADMIM
5
1b
118
1313





NS5A
GVRLHRYAPA
5
1b
119
1201





NS5A
ANLLWRQEM
4.5
1b/1a/3a
151
832





C
KARRPEGRA
4.5
1b
152
1315





NS3
AVGIFRAAV
4.5
1b/1a
153
887





NS2
AQGLIRACM
4.5
1b
154
859





NS5A
LARGSPPSLA
4.5
1b
120
1364





NS5B
EARQAIRSLT
4.5
1b
121
1001





NS5A
EANLLWRQEM
4.5
1b/1a
122
1000





NS2
RAQGLIRACM
4.5
1b
123
1630





NS3
AGPKGPITQM
4.5
1b
124
806





NS2
AVEPVVFSDM
4.5
1b
125
885





NS5A
LQSKLLPRL
4
1b
155
1449





E1
NSSRCWVAL
4
1b
156
1533





NS3
NIRTGVRTI
4
1b/1a
157
436





NS5B
SGGDIYHSL
4
1b
158
1731





E1
TTIRRHVDL
4
1b
159
1874





NS4B
SSLTITQLL
4
1b
160
1785





NS5A
VILDSFDPL
4
1b/1a
161
1918





NS2
LTCAVHPEL
4
1b
162
1464





NS5B
DLPQIIERL
4
1b
163
967





E2
CSFTTLPAL
4
1b/1a
164
936





NS5B
EINRVASCL
4
1b
165
1014





E1
GSVFLVSQL
4
1b
166
1189





C
TLTCGFADL
4
1b/1a/3a
167
363





NS5B
LTTSCGNTL
4
1b/1a
168
304





NS4B
FTASITSPL
4
1b
169
1085





NS2
CGGAVFVGL
4
1b
170
915





E2
TLPALSTGL
4
1b/1a
171
1835





NS5B
LSVGVGIYL
4
1b
172
1463





NS3
VTQTVDFSL
4
1b/1a
173
712





C
FSIFLLALL
4
1b/1a
174
362





C
RSRNLGKVI
4
1b/1a/3a
175
318





C
GQIVGGVYL
4
1b/1a
176
127





NS2
HLQVWVPPL
4
1b
177
1232





NS3
TCGSSDLYL
4
1b/1a
178
1816





C
GCSFSIFLL
4
1b/1a/3a
179
294





NS3
HSKKKCDEL
4
1b/1a
180
455





NS5B
NIIMYAPTL
4
1b
181
87





NS2
ITKLLLAIL
4
1b
182
1308





E2
RTTSGFTSL
4
1b
183
1706





NS3
QMWKCLIRL
4
1b/1a
184
238





NS5B
GTQEDAASL
4
1b
185
88





NS3
HSTDSTTIL
4
1b
186
1244





NS2
LSPYYKVFL
4
1b
187
1461





NS3
QTRGLLGCI
4
1b/1a
188
1621





C
NLGKVIDTL
4
1b/1a/3a
189
283





NS3
VSTATQSFL
4
1b
190
1973





NS3
KGSSGGPLL
4
1b/1a
191
260





NS3
LLGCIITSL
4
1b/1a
192
1397





C
YIPLVGAPL
4
1b/1a
193
69





NS3
IPTSGDVVV
4
1b/1a
194
415





E2
LQTGFLAAL
4
1b
195
1450





NS4B
VGVVCAAIL
4
1b/1a
196
1912





NS2
LIFDITKLL
4
1b
197
1386





NS2
FITRAEAHL
4
1b
198
1061





NS4B
SGIQYLAGL
4
1b/1a/3a
199
1732





NS4B
GSIGLGKVL
4
1b
200
1186





P7
RLVPGAAYAL
4
1b
126
1666





E2
VCACLWMMLL
4
1b
127
1896





NS5A
WLQSKLLPRL
4
1b
128
2014





NS5B
LLSVEEACKL
4
1b
129
1410





C
RNLGKVIDTL
4
1b/1a/3a
130
1673





E1
TTALVVSQLL
4
1b
131
1871





NS4A
VLAALAAYCL
4
1b/1a/3a
132
1921





NS3
YLKGSSGGPL
4
1b/1a
133
2046





NS4B
DLVNLLPAIL
4
1b/1a
134
969





NS3
CTCGSSDLYL
4
1b/1a
135
941





E1
TTIRRHVDLL
4
1b
136
1875





NS5B
LMTHFFSILL
4
1b
137
1415





NS5B
YSGGDIYHSL
4
1b
138
2067





NS3
GLLGCIITSL
4
1b/1a
139
1151





NS5B
RQKKVTFDRL
4
1b/1a/3a
140
1695





NS3
IPTSGDVVVV
4
1b/1a
141
1295





E2
VPASQVCGPV
4
1b
142
1946





C
GQIVGGVYLL
4
1b/1a
143
1178





NS2
ELIFDITKLL
4
1b
144
1018





NS5A
SLASSSASQL
4
1b
145
1740





NS2
TLSPYYKVFL
4
1b
146
1836





E2
QILPCSFTTL
4
1b
147
1606





NS4B
GLGKVLVDIL
4
1b/1a
148
1149





NS5B
YGACYSIEPL
4
1b/1a
149
2033





NS4B
EQFKQKALGL
4
1b/1a
150
1029





E1
CGSVFLVSQL
4
1b
151
916





NS3
WQAPPGARSL
4
1b
152
2021





E2
RCLVDYPYRL
4
1b/1a
153
1635





NS2
KLLLAILGPL
4
1b
154
1331





NS5B
LTPIPAASQL
4
1b
155
1472





C
YLLPRRGPRL
4
1b/1a
156
2047





NS5A
IPPPRRKRTV
4
1b
157
1292





NS5B
GNIIMYAPTL
4
1b
158
1160





NS2
DITKLLLAIL
4
1b
159
961





NS2
PLRDWAHAGL
4
1b
160
1559





NS2
LLTCAVHPEL
4
1b
161
1413





NS5A
ITAETAKRRL
4
1b
162
1306





E2
SGPWLTPRCL
4
1b
163
1735





NS3
QMYTNVDQDL
4
1b/1a/3a
164
1611





NS5B
FSILLAQEQL
4
1b
165
1083





E2
RDRSELSPLL
4
1b/1a
166
1637





E2
TTLPALSTGL
4
1b/1a
167
1876





NS3
GPITQMYTNV
4
1b
168
1164





NS2
GGAVFVGLAL
4
1b
169
1135





NS3
QTRGLLGCII
4
1b/1a
170
1622





NS5A
STVSSALAEL
4
1b
171
1792





E2
RTALNCNDSL
4
1b
172
1703





NS3
LNAVAYYRGL
4
1b
173
1416





NS5B
VLTTSCGNTL
4
1b/1a
174
1930





E2
HQNIVDVQYL
4
1b/1a/3a
175
1240





NS4B
LTITQLLKRL
4
1b
176
1470





NS4B
ILSSLTITQL
4
1b
177
1276





NS5B
SPGQRVEFLV
4
1b/1a
178
1765





NS2
SCGGAVFVGL
4
1b
179
1721





NS3
LTPAETSVRL
4
1b
180
1471





NS5B
YSPGQRVEFL
4
1b/1a
181
2068





NS3
RPSGMFDSSV
4
1b/1a
182
1687





NS4A
STWVLVGGVL
4
1b/1a
183
1794





NS2
RGGRDAIILL
4
1b
184
1649





NS3
HGPTPLLYRL
4
1b/1a/3a
185
1219





NS5B
LLSVGVGIYL
4
1b
186
1412





C
CSFSIFLLAL
4
1b/1a/3a
187
935





C
DTLTCGFADL
4
1b/1a/3a
188
988





NS5B
YRRCRASGVL
4
1b/1a/3a
189
2066





NS4B
ISGIQYLAGL
4
1b/1a
190
1303





NS5B
TERLYIGGPL
4
1b
191
1820





NS4B/NS5A
CSTPCSGSWL
4
1b
192
937





E2
YTKCGSGPWL
4
1b
193
2071





E2
TPRCLVDYPY
4
1b/1a
194
1857





NS4B
SPGALVVGVV
4
1b/1a
195
1760





E1
SMVGNWAKVL
4
1b/1a
196
1754





NS5A
LPRLPGVPFF
4
1b
197
1440





E1
FCSAMYVGDL
4
1b
198
1052





E1
NNSSRCWVAL
4
1b
199
1526





NS4B
TSPLTTQHTL
4
1b
200
1869











Syfpeithi













NS5A
PPRRKRTVVL
26
1b
1
1579





C
APLGGAARAL
25
1b/1a
2
836





NS5A
LPRLPGVPF
25
1b
3
1439





NS5A
EPEPDVAVL
25
1b/1a
4
1024





NS5B
IPAASQLDL
25
1b
5
1280





NS5B
RPRWFMLCL
25
1b
6
1684





E2
APRPCGIVPA
24
1b
7
847





NS4B
MPSTEDLVNL
24
1b
8
1505





P7
WPLLLLLLAL
23
1b/1a
9
2018





NS3
KPTLHGPTPL
23
1b/1a/3a
10
1343





NS5A
SPAPNYSRAL
23
1b
11
1756





NS5B
PPQPEYDLEL
23
1b/1a
12
1575





NS5B
APTLWARMIL
23
1b/1a
13
853





NS5B
RPRWFMLCLL
23
1b
14
1685





NS3
HPNIEEVAL
23
1b/1a
15
1237





NS3
TPAETSVRL
23
1b
16
383





NS5A
RPDYNPPLL
23
1b/1a/3a
17
1677





NS5B
SPGQRVEFL
23
1b/1a
18
373





NS5B
DPPQPEYDL
23
1b/1a
19
543





C
LPGCSFSIFL
22
1b/1a/3a
20
1426





E2
SPGPSQKIQL
22
1b
21
1764





NS3
VPQTFQVAHL
22
1b
22
1954





NS4B
LPGNPAIASL
22
1b/1a
23
1428





NS4B
LPAILSPGAL
22
1b/1a/3a
24
1418





C
QPRGRRQPI
22
1b/1a/3a
25
390





C
DPRRRSRNL
22
1b/1a/3a
26
370





E2
TPSPVVVGT
22
1b/1a/3a
27
1860





NS3
GPKGPITQM
22
1b
28
1165





NS3
CPSGHAVGI
22
1b
29
931





NS5A
PPVVHGCPL
22
1b/1a
30
1582





C
LPRRGPRLGV
21
1b/1a/3a
31
450





NS3
CPSGHAVGIF
21
1b
32
932





NS3
NPSVAATLGF
21
1b/1a/3a
33
1532





NS3
IPTSGDVVVV
21
1b/1a
34
1295





NS3
RPSGMFDSSV
21
1b/1a
35
1687





NS4B
SPLTTQHTLL
21
1b
36
1768





NS5A
LPRLPGVPFF
21
1b
37
1440





NS5A
APSLKATCTT
21
1b
38
849





NS5A
VPPVVHGCPL
21
1b
39
1953





NS5B
TPCAAEESKL
21
1b
40
1840





C
APLGGAARA
21
1b/1a
41
384





NS3
APPGARSLT
21
1b
42
839





NS3
APTGSGKST
21
1b/1a/3a
43
397





NS3
GPTPLLYRL
21
1b/1a/3a
44
307





NS4B
PPSAASAFV
21
1b
45
1580





NS4B
SPGALVVGV
21
1b/1a/3a
46
1759





NS5A
APSLKATCT
21
1b/1a
47
848





NS5A
PPRRKRTVV
21
1b
48
1578





NS5B
TPIPAASQL
21
1b
49
1848





E2
TPSPVVVGTT
20
1b/1a/3a
50
1861





E2
LPCSFTTLPA
20
1b/1a
51
1424





NS2
VPYFVRAQGL
20
1b
52
1960





NS3
TPCTCGSSDL
20
1b/1a
53
1843





NS4B
LPYIEQGMQL
20
1b
54
1447





NS4B
APPSAASAFV
20
1b
55
845





NS4B
SPGALVVGVV
20
1b/1a
56
1760





NS5A
VPAPEFFTEV
20
1b
57
1944





NS5A
EPEPDVAVLT
20
1b/1a
58
1025





NS5B
LPINALSNSL
20
1b/1a
59
1430





C
GPRLGVRAT
20
1b/1a/3a
60
387





E2
GPWLTPRCL
20
1b
61
1173





NS3
IPTSGDVVV
20
1b/1a
62
415





NS4B
SPLTTQHTL
20
1b
63
1767





NS5A
LPCEPEPDV
20
1b/1a/3a
64
1421





NS5A
DPSHITAET
20
1b
65
976





NS5B
DPTTPLARA
20
1b/1a
66
980





E1
IPQAVVDMVA
19
1b
67
1294





E2
PPQGNWFGCT
19
1b
68
1574





NS5A
KPLLREEVTF
19
1b
69
1339





NS5A
EPDVAVLTSM
19
1b/1a
70
1023





NS5A
PPPRRKRTVV
19
1b
71
1573





NS5B
QPEKGGRKPA
19
1b/1a
72
1612





E1
IPQAVVDMV
19
1b
73
1293





NS3
APPPSWDQM
19
1b/1a
74
381





NS3
TPLLYRLGA
19
1b/1a
75
389





NS4B
NPAIASLMA
19
1b/1a
76
1527





NS4B
APPSAASAF
19
1b
77
844





NS5A
DPDYVPPVV
19
1b
78
971





NS5A
IPPPRRKRT
19
1b
79
1291





NS5B
CPMGFSYDT
19
1b
80
421





E2
VPASQVCGPV
18
1b
81
1946





E2
YPCTVNFTIF
18
1b
82
2060





NS3
APITAYSQOT
18
1b
83
835





NS3
PPAVPQTFQV
18
1b
84
1564





NS3
AAQGYKVLVL
18
1b/1a
85
777





NS3
DPNIRTGVRT
18
1b/1a
86
973





NS3
VPHPNIEEVA
18
1b/1a
87
1951





NS3
IPFYGKAIPI
18
1b
88
1284





NS3
LPVCQDHLEF
18
1b/1a
89
1444





NS4A
RPAVIPDREV
18
1b
90
1674





NS4B
APVVESKWRA
18
1b
91
856





NS4B
NPAIASLMAF
18
1b/1a
92
1528





NS4B
GPGEGAVQWM
18
1b/1a/3a
93
1163





NS5A
DPSHITAETA
18
1b
94
977





NS5A
IPPPRRKRTV
18
1b
95
1292





NS5B
QPEYDLELIT
18
1b/1a
96
1614





C
LPGCSFSIF
18
1b/1a/3a
97
375





E2
GPSQKIQLI
18
1b
98
1171





E2
LPALSTGLI
18
1b/1a
99
1419





P7
WPLLLLLLA
18
1b/1a
100
2017





NS2
AILGPLMVL
18
1b
101
816





NS4B
LPAILSPGA
18
1b/1a/3a
102
1417





NS5A
SPAPNYSRA
18
1b
103
1755





NS5A
KPLLREEVT
18
1b
104
1338





NS5A
PPSLASSSA
18
1b
105
1581





NS5A
SPDADLIEA
18
1b
106
1758





NS5A
LPPTKAPPI
18
1b
107
1435





NS5B
LTRDPTTPL
18
1b/1a
108
1475





NS5B
APTLWARMI
18
1b/1a
109
371





NS5B
SPGEINRVA
18
1b/1a
110
1761





C
KPQRKTKRNT
17
1b/1a/3a
111
1341





E1
VPTTTIRRHV
17
1b
112
1956





E1
YPGHVSGHRM
17
1b
113
2063





E2
GPWLTPRCLV
17
1b
114
1174





NS2
GPLMVLQAGI
17
1b
115
1168





NS2
EPVVFSDMET
17
1b
116
1028





NS3
GPITQMYTNV
17
1b
117
1164





NS3
VPVESMETTM
17
1b
118
1958





NS3
ETAGARLVVL
17
1b/1a
119
1032





NS3
DPTFTIETTT
17
1b/1a
120
979





NS3
TPGERPSGMF
17
1b
121
1845





NS3
FPYLVAYQAT
17
1b/1a
122
1079





NS3
TPLLYRLGAV
17
1b/1a
123
1851





NS4B
VPESDAAARV
17
1b/1a/3a
124
1948





NS5A
CPCQVPAPEF
17
1b
125
927





NS5A
LPCEPEPDVA
17
1b/1a
126
1422





NS5B
SPGQRVEFLV
17
1b/1a
127
1765





NS5B
DPTTPLARAA
17
1b/1a
128
981





NS5B
TPLARAAWET
17
1b/1a/3a
129
1850





NS5B
PPLRVWRHRA
17
1b
130
1571





E2
APRPCGIVP
17
1b
131
846





NS2
SPYYKVFLA
17
1b
132
1780





NS2
HPELIFDIT
17
1b
133
1235





NS2
TPLRDWAHA
17
1b
134
1852





NS3
SPPAVPQTF
17
1b
135
1770





NS3
AQGYKVLVL
17
1b/1a
136
130





NS3
VPHPNIEEV
17
1b/1a
137
1950





NS3
TPGERPSGM
17
1b
138
372





NS3
TLHGPTPLL
17
1b/1a/3a
139
81





NS5A
FPPALPIWA
17
1b
140
1078





NS5A
PRRKRTVVL
17
1b
141
1583





NS5A
EPGDPDLSD
17
1b/1a
142
1026





NS5B
TPIDTTIMA
17
1b/1a
143
1847





NS5B
EPLDLPQII
17
1b
144
1027





P7
ALYGVWPLLL
16
1b
145
831





NS2
SCGGAVFVGL
16
1b
146
1721





NS2
TLSPYYKVFL
16
1b
147
1836





NS2
AACGDIILGL
16
1b
148
774





NS3
APPGARSLTP
16
1b
149
840





NS3
RRRGDSRGSL
16
1b/1a
150
1697





NS3
GPLLCPSGHA
16
1b
151
1167





NS3
TPPGSVTVPH
16
1b/1a
152
1854





NS3
KQAGDNFPYL
16
1b
153
1346





NS5A
SPPSLASSSA
16
1b
154
1771





NS5B
TPPHSAKSKF
16
1b/1a
155
1856





NS5B
TPVNSWLGNI
16
1b/1a/3a
156
1862





NS5B
CLRKLGVPPL
16
1b/1a
157
921





C
PRRGPRLGV
16
1b/1a/3a
158
449





C
WPLYGNEGM
16
1b
159
2019





C
SPRGSRPSW
16
1b/1a/3a
160
386





E1
MNWSPTTAL
16
1b
161
1503





E2
RPCGIVPAS
16
1b
162
1676





E2
GPPCNIGGV
16
1b
163
1169





E2
YPCTVNFTI
16
1b
164
2059





NS2
ARRGREILL
16
1b/1a
165
865





NS2
ILLGPADSL
16
1b
166
1271





NS3
VPVESMETT
16
1b
167
1957





NS3
PPAVPQTFQ
16
1b
168
1563





NS3
DPTFTIETT
16
1b/1a
169
978





NS3
RPSGMFDSS
16
1b/1a
170
1686





NS3
FPYLVAYQA
16
1b/1a
171
443





NS3
HPITKYIMA
16
1b
172
396





NS5A
KSRKFPPAL
16
1b
173
1348





NS5A
CPLPPTKAP
16
1b
174
928





NS5A
APPIPPPRR
16
1b
175
843





NS5A
PPPRRKRTV
16
1b
176
1572





NS5B
PPHSAKSKF
16
1b/1a
177
1568





NS5B
QPEYDLELI
16
1b/1a
178
1613





C
FPGGGQIVGG
15
1b/1a/3a
179
1077





C
QPRGRRQPIP
15
1b/1a/3a
180
1616





C
RPSWGPTDPR
15
1b/1a
181
1690





E1
NNSSRCWVAL
15
1b
182
1526





E1
SPRRHETVQD
15
1b
183
1778





E2
AIKWEYVLLL
15
1b
184
815





E2/P7
EAALENLVVL
15
1b
185
998





P7
AYALYGVWPL
15
1b
186
901





NS2
AHLQVWVPPL
15
1b
187
811





NS3
AYSQQTRGLL
15
1b
188
906





NS3
SPRPVSYLKG
15
1b
189
1776





NS3
AYAAQGYKVL
15
1b/1a
190
900





NS3
ETSVRLRAYL
15
1b
191
1033





NS4B
AFTASITSPL
15
1b
192
802





NS4B
ILGGWVAAQL
15
1b/1a
193
1270





NS5A
APACKPLLRE
15
1b
194
834





NS5A
VESENKVVIL
15
1b/1a
195
1902





NS5A
RKSRKFPPAL
15
1b
196
1655





NS5A
WARPDYNPPL
15
1b/1a/3a
197
1998





NS5B
EESKLPINAL
15
1b
198
1009





NS5B
EKGGRKPARL
15
1b/1a
199
1015





NS5B
ASAACRAAKL
15
1b
200
869





NS5B
APPGDPPQPE
15
1b/1a
201
842





NS5B
DASGKRVYYL
15
1b
202
955





NS5B
SPGEINRVAS
15
1b
203
1762





C
AQPGYPWPL
15
1b/1a/3a
204
65





C
QPGYPWPLY
15
1b/1a/3a
205
216





C
ALAHGVRVL
15
1b/1a
206
72





C
SFSIFLLAL
15
1b/1a/3a
207
250





E1
NSSRCWVAL
15
1b
208
1533





E1
AHWGVLAGL
15
1b
209
812





E2
WTRGERCDL
15
1b/1a
210
2022





E2/P7
AALENLVVL
15
1b
211
776





P7
ALYGVWPLL
15
1b
212
830





P7
YGVWPLLLL
15
1b
213
2036





NS2
CGGAVFVGL
15
1b
214
915





NS2
ACGDIILGL
15
1b
215
784





NS3
AYSQQTRGL
15
1b
216
905





NS3
KGSSGGPLL
15
1b/1a
217
260





NS3
TILGIGTVL
15
1b
218
89





NS3
TAGARLVVL
15
1b/1a
219
249





NS3
TPPGSVTVP
15
1b/1a
220
1853





NS3
PPGSVTVPH
15
1b/1a
221
1567





NS3
TPGLPVCQD
15
1b/1a/3a
222
1846





NS4A
LVGGVLAAL
15
1b/1a
223
1479





NS4A
AVIPDREVL
15
1b
224
891





NS4A
IPDREVLYR
15
1b/1a
225
1282





NS4B
LPGNPAIAS
15
1b/1a
226
1427





NS4B
MPSTEDLVN
15
1b
227
1504





NS5A
LPGVPFFSC
15
1b
228
1429





NS5A
GPCTPSPAP
15
1b
229
1161





NS5A
APACKPLLR
15
1b
230
833





NS5A
EPDVAVLTS
15
1b/1a
231
1022





NS5A
LARGSPPSL
15
1b
232
1363





NS5A
HHDSPDADL
15
1b
233
1220





NS5A
PPALPIWAR
15
1b
234
1562





NS5B
ESKLPINAL
15
1b
235
1031





NS5B
KPARLIVFP
15
1b/1a
236
1337





NS5B
AIRSLTERL
15
1b
237
473





NS5B
APPGDPPQP
15
1b/1a
238
841





NS5B
PPGDPPQPE
15
1b/1a
239
1565





NS5B
ASGKRVYYL
15
1b
240
334





NS5B
RARSVRAKL
15
1b
241
1632





C
GPRLGVRATR
14
1b/1a/3a
242
1170





C
RPEGRAWAQP
14
1b
243
1678





C
EGMGWAGWLL
14
1b
244
1012





C
SPRGSRPSWG
14
1b/1a/3a
245
1773





C
RALAHGVRVL
14
1b/1a
246
1629





C/E1
IPASAYEVRN
14
1b
247
1281





E1
FCSAMYVGDL
14
1b
248
1052





E1
VGDLCGSVFL
14
1b/1a
249
1910





E1
MVAGAHWGVL
14
1b
250
1509











nHLAPred













NS4B
LPAILSPGA
1.000
1b/1a/3a
1
1417





NS4B
PPSAASAFV
1.000
1b
2
1580





NS5B
DPTTPLARA
1.000
1b/1a
3
980





NS3
PPGSVTVPH
1.000
1b/1a
4
1567





NS5B
DPPQPEYDL
1.000
1b/1a
5
543





NS5B
SPGQRVEFL
1.000
1b/1a
6
373





C
SPRGSRPSW
1.000
1b/1a/3a
7
386





NS3
IPTSGDVVV
1.000
1b/1a
8
415





NS5A
RPDYNPPLL
1.000
1b/1a/3a
9
1677





NS5B
MTHFFSILL
1.000
1b
10
1508





NS2
FLARLIWWL
1.000
1b
11
1063





NS5B
TPPHSAKSK
1.000
1b/1a
12
1855





E1
VPTTTIRRH
1.000
1b
13
1955





NS5A
APACKPLLR
1.000
1b
14
833





NS3
SPPAVPQTF
1.000
1b
15
1770





C
DPRRRSRNL
1.000
1b/1a/3a
16
370





NS3
VPQTFQVAH
1.000
1b
17
410





E2
SPGPSQKIQ
1.000
1b
18
1763





C
RPQDVKFPG
1.000
1b/1a/3a
19
552





NS5B
RHTPVNSWL
1.000
1b/1a/3a
20
298





NS5B
LMTHFFSIL
1.000
1b
21
1414





NS5A
SPAPNYSRA
1.000
1b
22
1755





C
LPGCSFSIF
1.000
1b/1a/3a
23
375





NS3
TPAETSVRL
1.000
1b
24
383





C
FPGGGQIVG
1.000
1b/1a/3a
25
407





NS3
IMACMSADL
1.000
1b
26
90





NS4B
SPLTTQHTL
1.000
1b
27
1767





NS5A
PPVVHGCPL
1.000
1b/1a
28
1582





NS5A
FPPALPIWA
1.000
1b
29
1078





NSSB
IPAASQLDL
1.000
1b
30
1280





NS3
HPNIEEVAL
1.000
1b/1a
31
1237





NS5B
TPIPAASQL
1.000
1b
32
1848





NS5B
RPRWFMLCL
1.000
1b
33
1684





NS3
VPHPNIEEV
1.000
1b/1a
34
1950





NS5A
LPPTKAPPI
1.000
1b
35
1435





NS5A
PPPRRKRTV
1.000
1b
36
1572





NS5A
PPRRKRTVV
1.000
1b
37
1578





E2
YPCTVNFTI
1.000
1b
38
2059





E2
GPWLTPRCL
1.000
1b
39
1173





NS3
GPTPLLYRL
1.000
1b/1a/3a
40
307





NS5A
LPRLPGVPF
1.000
1b
41
1439





C
QPIPKARRP
0.990
1b/1a
42
479





NS5A
PPALPIWAR
0.990
1b
43
1562





E2
RPIDKFAQG
0.990
1b
44
1679





C
LPRRGPRLG
0.990
1b/1a/3a
45
380





NS5A
PPIPPPRRK
0.990
1b
46
1570





NS5B
LPQIIERLH
0.990
1b
47
1438





E1
SPRRHETVQ
0.990
1b
48
1777





NS5A
APPIPPPRR
0.990
1b
49
843





NS3
PPAVPQTFQ
0.990
1b
50
1563





P7/NS2
PPRAYAMDR
0.990
1b
51
1576





E2
CPTDCFRKH
0.990
1b/1a/3a
52
934





E2
GPPCNIGGV
0.990
1b
53
1169





NS4B
NPAIASLMA
0.990
1b/1a
54
1527





NS3
HPITKYIMA
0.990
1b
55
396





NS2
SPYYKVFLA
0.990
1b
56
1780





NS5B
KPARLIVFP
0.990
1b/1a
57
1337





NS5A
LPCEPEPDV
0.990
1b/1a/3a
58
1421





NS3
IPVRRRGDS
0.990
1b/1a
59
1297





NS4B/NS5A
TPCSGSWLR
0.990
1b/1a
60
1841





C
GPTDPRRRS
0.990
1b/1a
61
1172





E2
LPALSTGLI
0.990
1b/1a
62
1419





NS4B
LPYIEQGMQ
0.990
1b
63
1446





E1
TPGCVPCVR
0.980
1b/1a
64
1844





E1
IPQAVVDMV
0.980
1b
65
1293





C
IPLVGAPLG
0.980
1b/1a
66
442





NS5A
CPCGAQITG
0.980
1b
67
926





E2
RPYCWHYAP
0.980
1b
68
1691





NS5A
IPPPRRKRT
0.980
1b
69
1291





C
QPRGRRQPI
0.980
1b/1a/3a
70
390





NS4B
LPGNPAIAS
0.980
1b/1a
71
1427





NS5B
TPIDTTIMA
0.980
1b/1a
72
1847





E2
RPPQGNWFG
0.980
1b
73
1680





P7/NS2
LPPRAYAMD
0.980
1b
74
1434





NS5A
DPDYVPPVV
0.970
1b
75
971





NS3
IPIEVIKGG
0.970
1b
76
561





C
KPQRKTKRN
0.970
1b/1a/3a
77
1340





NS5A
VPPVVHGCP
0.970
1b
78
1952





NS5A
APNYSRALW
0.970
1b
79
838





NS5B
TPLARAAWE
0.970
1b/1a/3a
80
1849





NS3
SPRPVSYLK
0.970
1b
81
1775





NS3
TPLLYRLGA
0.970
1b/1a
82
389





E2
GPSQKIQLI
0.970
1b
83
1171





E1
YPGHVSGHR
0.970
1b
84
2062





NS4B
SPTHYVPES
0.960
1b/1a/3a
85
1779





NS5B
LPQAVMGSS
0.960
1b
86
1436





NS5A
LPGVPFFSC
0.960
1b
87
1429





C
IPKARRPEG
0.960
1b/1a
88
409





NS4B
SPGALVVGV
0.960
1b/1a/3a
89
1759





NS3
KPTLHGPTP
0.960
1b/1a/3a
90
1342





NS5A
EPGDPDLSD
0.960
1b/1a
91
1026





NS5A
LPIWARPDY
0.960
1b
92
1431





NS5B
PPHSAKSKF
0.960
1b/1a
93
1568





NS3
TPCTCGSSD
0.960
1b/1a
94
1842





NS4A
IPDREVLYR
0.960
1b/1a
95
1282





NS5B
TPCAAEESK
0.960
1b
96
1839





NS3
CPSGHAVGI
0.950
1b
97
931





NS3
DPNIRTGVR
0.950
1b/1a
98
972





NS5B
CPMGFSYDT
0.950
1b
99
421





NS5A
TPSPAPNYS
0.950
1b
100
1859











Epimmune













NS5B
APTLWARMIL
1.24
1b/1a
1
853





C
SPRGSRPSW
1.64
1b/1a/3a
2
386





E2
RPCGIVPAL
1.89

3
1675





C
QPRGRRQPI
2.95
1b/1a/3a
4
390





C
APLGGAARAL
3.46
1b/1a
5
836





NS4B
LPAILSPGAL
4.39
1b/1a/3a
6
1418





C
LPRRGPRLGV
4.88
1b/1a/3a
7
450





C
APLGGVARAL
5.53

8
837





NS4B
NPAIASLMAF
7.2
1b/1a
9
1528





P7
WPLLLLLLAL
7.45
1b/1a
10
2018





NS5B
SPAQRVEFL
7.57

11
1757





NS3
KPTLHGPTPL
7.91
1b/1a/3a
12
1343





NS3
IPFYGKAIPL
7.94
1a
13
1285





C
SPRGSRPNW
10.81

14
1772





C
DPRRRSRNL
12.09
1b/1a/3a
15
370





NS5B
APTLWARMI
13.88
1b/1a
16
371





E2
YPCTVNFTL
16.54
3a
17
2061





NS5B
SPGQRVEFL
21.27
1b/1a
18
373





NS5A
VPPVVHGCPL
26.04
1b
19
1953





NS3
IPFYGKAIPI
29.35
1b/3a
20
1284






PPRKKRTVV
30.59
1a
21
1577





C
LPGCSFSIFL
31.72
1b/1a/3a
22
1426





NS3
RPSGMFDSSV
37.43
1b/1a
23
1687





E2
APRPCGIVPA
38.12
1b
24
847





NS3
HPITKYIMA
38.64
1b
25
396





E2
YPCTVNFSI
41.7

26
2058





NS4B
LPYIEQGMQL
43.26
1b
27
1447





NS5B
LPINALSNSL
45.73
1b/1a
28
1430





NS3
KPTLQGPTPL
47.48

29
1344





NS3
HPVTKYIMA
47.89

30
1238






CPAGHAVGIF
56.36
1a
31
925






CPSGHVVGI
61.68

32
933





E2
GPWLTPRCL
64.48
1b
33
1173





E2
YPCTVNFTI
70.75
1b
34
2059





NS5A
RPDYNPPLL
72.65
1b/1a/3a
35
1677





NS4B
APPSAASAFV
75.67
1b
36
845






GPKGPVTQM
86.45

37
1166





C
LPGCSFSIF
101.3
1b/1a/3a
38
375





E2
GPWLTPRCM
104.59
3a
39
1175





E2
TPRCLVDYPY
237.55
1b/1a
40
1857





E1
YPGHVSGHRM
264.06
1b
41
2063





E2
YPCTVNFTIF
307.31
1b
42
2060





E2
TPRCMVDYPY
445.13
3a
43
1858





NS5A
EPDVAVLTSM
597.05
1b/1a
44
1023





NS5B
TPPHSAKSKF
699.16
1b/1a
45
1856





NS3
TPGERPSGMF
699.46
1b
46
1845





NS3
TPGERPSGM
833.63
1b
47
372





NS3
APPPSWDQM
933.01
1b/1a
48
381





NS4B
GPGEGAVQWM
976.39
1b/1a/3a
49
1163





NS3
NPSVAATLGF
1610.36
1b/1a/3a
50
1532





NS3
VPAAYAAQGY
2733.82
1b/1a
51
1943





NS5B
PPHSARSKF
4228.63
3a
52
1569





NS5A
LPIWARPDY
4289.5
1b/3a
53
1431





NS3
LPVCQDHLEF
5715.31
1b/1a
54
1444





NS5B
PPHSAKSKF
9169.56
1b/1a
55
1568





P7
VPGAAYALY
27777.1
1b
56
1949





C
QPGYPWPLY
39918.4
1b/1a/3a
57
216





NS5B
PPGDPPQPEY
633519.2
1b/1a
58
1566





Prot: protein


GT = genotype






Those peptides that are present in at least the consensus sequence of genotype 1a and 1b, are selected. Table 15 contains all these peptides, with their score, and designated rank number, of each of the prediction servers in separate columns, and their occurrence in the different genotypes.


A selection according to genotype and rank number results in 232 different peptide sequences, i.e. 150+113+45+28=336. The table 16 contains the selection of peptides for which min. 2 out of 4 prediction servers give a rank=<100. This renders 40 different sequences. Said peptides are finally incorporated in Table 13.


The selection of potential HLA B07 peptide binders is summarized as follows:


BIMAS (B7):



  • output prediction server: 200 9-mers
    • 200 10-mers

  • BIMAS results: paste 9-mers+10-mers, sort on BIMAS score
    • →400 peptides, rank number for 9- and 10-mers separately (2×1-200) →BIMAS ranking for peptides with same score unknown

  • BIMAS selection: selection on genotype (at least in 1b+1a consensus):
    • →150 peptides



Syfpeithi (B0702):



  • output prediction server: 3002 9-mers
    • 3001 10-mers

  • Syfpeithi results: paste 9-mers+10-mers, sort on Syfpeithi score
    • →select 250 peptides, 1 ranking 1-250 (126 9-mers+124 10-mers)
    • →Syfpeithi ranking for peptides with same score unknown

  • Syfpeithi selection: selection on genotype (at least in 1b+1a consensus):
    • →113 peptides


      nHLAPred (B0702):

  • output prediction server: 200 9-mers
    • no 10-mers

  • nHLAPred results: →select 100 peptides, ranking 1-100
    • →nHLAPred ranking for peptides with same score unknown

  • nHLAPred selection: selection on genotype (at least in 1b+1a consensus):
    • →45 peptides



EPMN (B07):



  • EPMN results: 85 peptides (38 9-mers+47 10-mers) with motif OK
    • PIC between 0.17 and 633519; 64 with PIC=<100

  • EPMN selection: →selection on genotype:select 58 peptides, that are present in at least 1/32
    • 1b sequences EPMN used for predictions

  • EPMN 2nd selection: selection on genotype (at least in 1b+1a consensus):
    • →28 peptides (16 with PIC=<100)










TABLE 16







Selected B07 predicted peptides













Peptide
Number


SEQ ID


Protein
sequence
of pred.
Ki
Genotype
NO















C
DPRRRSRNL
4
18
1b/1a/3a
370





C
QPRGRRQPI
4
1
1b/1a/3a
390





NS5A
RPDYNPPLL
4
143
1b/1a/3a
1677





NS5B
SPGQRVEFL
4
38
1b/1a
373





C
LPRRGPRLGV
3
3
1b/1a/3a
450





NS3
GPTPLLYRL
3
209
1b/1a/3a
307





NS3
KPTLHGPTPL
3
6
1b/1a/3a
1343





NS4B
LPAILSPGAL
3
255
1b/1a/3a
1418





C
LPGCSFSIFL
3
558
1b/1a/3a
1426





NS4B
GPGEGAVQWM
3
4747
1b/1a/3a
1163





NS5B
APTLWARMIL
3
1
1b/1a
853





C
APLGGAARAL
3
1
1b/1a
836





NS5B
DPPQPEYDL
3
high
1b/1a
543





NS3
HPNIEEVAL
3
230
1b/1a
1237





P7
WPLLLLLLAL
3
1474
1b/1a
2018





NS5B
LPINALSNSL
3
12
1b/1a
1430





NS3
APPPSWDQM
3
281
1b/1a
381





C
LPGCSFSIF
3
high
1b/1a/3a
375





C
GPRLGVRAT
2
128
1b/1a/3a
387





C
SPRGSRPSW
2
11
1b/1a/3a
386





NS5A
LPCEPEPDV
2
high
1b/1a/3a
1421





NS4B
LPGNPAIASL
2
266
1b/1a
1428





NS3
TPCTCGSSDL
2
168
1b/1a
1843





NS3
AAQGYKVLVL
2
5524
1b/1a
777





NS5A
EPEPDVAVL
2
high
1b/1a
1024





NS5B
APTLWARMI
2
11
1b/1a
371





NS5A
PPVVHGCPL
2
433
1b/1a
1582





E2
LPALSTGLI
2
233
1b/1a
1419





NS5B
PPQPEYDLEL
2
high
1b/1a
1575





NS5A
EPDVAVLTSM
2
454
1b/1a
1023





NS3
IPTSGDVVV
2
3152
1b/1a
415





NS3
RPSGMFDSSV
2
14
1b/1a
1687





NS4B
SPGALVVGV
2
627
1b/1a/3a
1759





NS5B
DPTTPLARA
2
13058
1b/1a
980





NS4B
NPAIASLMA
2
676
1b/1a
1527





NS3
TPLLYRLGA
2
74
1b/1a
389





NS5B
PPHSAKSKF
2
high
1b/1a
1568





NS3
NPSVAATLGF
2
1197
1b/1a/3a
1532





NS4B
NPAIASLMAF
2
121
1b/1a
1528





NS3
LPVCQDHLEF
2
1564
1b/1a
1444









Example 3
HLA Class I Competition Cell-Based Binding Assays

The interaction of the peptides with the binding groove of the HLA molecules is studied using competition-based cellular peptide binding assays as described by Kessler et al. (2003). Briefly, Epstein-Barr virus (EBV)-transformed B cell lines (B-LCLs) expressing the class I allele of interest are used. EBV transformation is done according to standard procedures (Current Protocols in Immunology, 1991, Wiley Interscience). Naturally bound class I peptide are eluted from the B-LCLs by acid-treatment to obtain free class I molecules. Subsequently, B-LCLs are incubated with a mixture of fluorescein (F1)-labelled reference peptide, and titrating amounts of the competing test peptide. The reference peptide should have a known, high affinity for the HLA-molecule. Cell-bound fluorescence is determined by flow cytometry. The inhibition of binding of the F1-labelled reference peptide is determined and IC50-values are calculated (IC50=concentration of competing peptide that is able to occupy 50% of the HLA molecules). The affinity (Kd) of the reference peptide is determined in a separate experiment in which the direct binding of different concentrations of reference peptide is monitored and data are analysed using a model for one-site binding interactions. The inhibition constant (Ki) of the competing peptides (reflecting their affinity) is calculated as:







K
i

=


IC





50


1
+


[

F





1


-


pep

]

/
Kd







[F1-pep]: concentration of the F1-labeled peptide used in the competition experiment.


The predicted peptides were synthesized using standard technology and tested for binding to B-LCLs with the corresponding HLA-allele. F1-labelled reference peptides are synthesized as Cys-derivatives and labelling is performed with 5-(iodoacetamido) fluorescein at pH 8.3 (50 mM Bicarbonate/1 mM EDTA buffer). The labelled peptides were desalted and purified by C18 RP-HPLC. Labelled peptides were analysed by mass spectrometry.


As an example, the interaction of a predicted strong binding peptide with HLA-A02 is shown. An HLA-A02 positive B-LCL (JY, Kessler et al., 2003) is used for analysing the competition of the F1-labelled reference peptide FLPSDC(F1)FPSV and the predicted peptides (SEQ ID NO 62 to SEQ ID NO 93). The binding of the reference peptide to HLA A02 is shown in FIG. 3. Analysing the data according to a one-site binding model reveals an affinity of the reference peptide of about 10 nM. A typical competition experiment is shown in FIG. 4. This particular set up was used for all class C binding peptides as well as part of the HLA A24 binding peptides. Table 13 contains the calculated inhibition constants (Ki).


Example 4
HLA Class I and II Competition Binding Assays Using Soluble HLA

The following example of peptide binding to soluble HLA molecules demonstrates quantification of binding affinities of HLA class I and class II peptides.


Epstein-Barr virus (EBV)-transformed homozygous cell lines, fibroblasts or transfectants were used as sources of HLA class I molecules. Cell lysates were prepared and HLA molecules purified in accordance with disclosed protocols (Sidney et al., 1998; Sidney et al., 1995; Sette, et al., 1994).


HLA molecules were purified from lysates by affinity chromatography. The lysate was passed over a column of Sepharose CL-4B beads coupled to an appropriate antibody.


The antibodies used for the extraction of HLA from cell lysates are W6/32 (for HLA-A, -B and -C), B123.2 (for HLA-B and -C) and LB3.1 (for HLA-DR).


The anti-HLA column was then washed with 10 mM Tris-HCL, pH8, in 1% NP-40, PBS, and PBS containing 0.4% n-octylglucoside and HLA molecules were eluted with 50 mM diethylamine in 0.15M NaCl containing 0.4% n-octylglucoside, pH 11.5. A 1/25 volume of 2M Tris, pH6.8, was added to the eluate to reduce the pH to +/−pH8. Eluates were then concentrated by centrifugation in Centriprep 30 concentrators (Amicon, Beverly, Mass.). Protein content was evaluated by a BCA protein assay (Pierce Chemical Co., Rockford, Ill.) and confirmed by SDS-PAGE.


A detailed description of the protocol utilized to measure the binding of peptides to Class I: and Class II MHC has been published (Sette et al., 1994; Sidney et al., 1998). Briefly, purified MHC molecules (5 to 500 nM) were incubated with various unlabeled peptide inhibitors and 1-10 nM 125I-radiolabeled probe peptides for 48 h in PBS containing 0.05% Nonidet P-40 (NP40) in the presence of a protease inhibitor cocktail. All assays were at pH7 with the exception of DRB1*0301, which was performed at pH 4,5, and DRB1*1601 (DR2w21 1) and DRB4*0101 (DRw53), which were performed at pH5.


Following incubation, MHC-peptide complexes were separated from free peptide by gel filtration on 7.8 mm×15 cm TSK200 columns (TosoHaas 16215, Montgomeryville, Pa.). The eluate from the TSK columns was passed through a Beckman 170 radioisotope detector, and radioactivity was plotted and integrated using a Hewlett-Packard 3396A integrator, and the fraction of peptide bound was determined. Alternatively, MHC-peptide complexes were separated from free peptide by capturing onto ELISA plates coated with anti-HLA antibodies. After free peptide has been washed away, remaining reactivities were measured using the same method as above.


Radiolabeled peptides were iodinated using the chloramine-T method.


Typically, in preliminary experiments, each MHC preparation was titered in the presence of fixed amounts of radiolabeled peptides to determine the concentration of HLA molecules necessary to bind 10-20% of the total radioactivity. All subsequent inhibition and direct binding assays were performed using these HLA concentrations.


Since under these conditions [label]<[HLA] and IC50≧[HLA], the measured IC50 values are reasonable approximations of the true KD values. Peptide inhibitors are typically tested at concentrations ranging from 120 μg/ml to 1.2 ng/ml, and are tested in two to four completely independent experiments. To allow comparison of the data obtained in different experiments, a relative binding figure is calculated for each peptide by dividing the IC50 of a positive control for inhibition by the IC50 for each tested peptide (typically unlabeled versions of the radiolabeled probe peptide). For database purposes, and inter-experiment comparisons, relative binding values are compiled. These values can subsequently be converted back into IC50 nM values by dividing the IC50 nM of the positive controls for inhibition by the relative binding of the peptide of interest. This method of data compilation has proven to be the most accurate and consistent for comparing peptides that have been tested on different days, or with different lots of purified MHC.


This particular set up was used for all class A and B binding peptides (except for some HLA A24 binding peptides, where the cell-based binding assay was used). Table 13 contains the IC 50 values.


Because the antibody used for HLA-DR purification (LB3.1) is alpha-chain specific, beta-1 molecules are not separated from beta-3 (and/or beta-4 and beta-5) molecules. The beta-1 specificity of the binding assay is obvious in the cases of DRB1*0101 (DR1), DRB1*0802 (DR8w2), and DRB1*0803 (DR8w3), where no beta-3 is expressed. It has also been demonstrated for DRB1*0301 (DR3) and DRB3*0101 (DR52a), DRB1*0401 (DR4w4), DRB1*0404 (DR4w14), DRB1*0405 (DR4w15), DRB1*1101 (DR5), DRB1*1201 (DR5w12), DRB1*1302 (DR6w19) and DRB1*0701 (DR7). The problem of beta chain specificity for DRB1*1501 (DR2w2beta-1), DRB5*0101 (DR2w2beta-2), DRB1*1601 (DR2w21beta-1), DRB5*0201 (DR51Dw21), and DRB4*0101 (DRw53) assays is circumvented by the use of fibroblasts. Development and validation of assays with regard to DRbeta molecule specificity have been described previously (see, e.g., Southwood et al., 1998). Table 14 contains the IC50 values.


Example 5
Use of Peptides to Evaluate Human Recall Responses for CD8 Epitopes

The peptide epitopes of the invention are used as reagents to evaluate T cell responses, such as acute or recall responses, in patients. Such an analysis may be performed on patients who have recovered from infection, who are chronically infected with HCV, or who have been vaccinated with an HCV vaccine.


For example, PBMC are collected from patients recovered from infection and HLA typed. Appropriate peptide epitopes of the invention that are preferably binding with strong or intermediate affinity (more preferably below the threshold affinity) are then used for analysis of samples derived from patients who bear that HLA type.


PBMC from these patients are separated on density gradients and plated. PBMC are stimulated with peptide on different time points. Subsequently, the cultures are tested for cytotoxic activity.


Cytotoxicity assays are performed in the following manner. Target cells (either autologous or allogeneic EBV-transformed B-LCL that are established from human volunteers or patients; Current Protocols in Immunology, 1991) are incubated overnight with the synthetic peptide epitope, and labelled with 51Cr (Amersham Corp., Arlington Heights, Ill.) after which they are washed and radioactivity is counted. Percent cytotoxicity is determined from the formula: 100×[(experimental release−spontaneous release)/maximum release−spontaneous release)]. Maximum release is determined by lysis of targets.


The results of such an analysis indicate the extent to which HLA-restricted CTL populations have been stimulated by previous exposure to HCV or an HCV vaccine.


Alternatively, human in vitro CTL recall responses in chronic and resolved HCV patients towards HLA-restricted HCV-specific CTL-epitopes may be evaluated in the human IFNγ ELISPOT assay. As an example, in vitro recall responses of cells from HLA-A02 donors (homozygous or heterozygous) to a selected set of HLA-A02 restricted peptides are described. Basically, in vitro CTL recall responses are visualized in the IFN-gamma ELISPOT assay after overnight incubation of human PBMC with HLA-restricted peptides. The same has been done for HLA-A*01, HLA-B*08 and HLA-Cw04, Cw06 and Cw07.


Materials and Methods
Human PBMC

PBMC from healthy donors that are used to determine the cut off value for each individual peptide, are isolated according to the standard procedures.


PBMC from chronically infected HCV patients and (therapy) resolved HCV patients are used to determine the HCV-specific responses. All donors are HLA-A02 positive.


For use in the IFNγ ELISPOT assay, PBMC are thawed following standard procedures, washed twice with RPMI medium supplemented with 10% inactivate Fetal Calf Serum (iFCS) and counted with Trypan Blue in a Biirker Counting Chambre. Cells are resuspended in complete RPMI medium (=RPMI medium+NEAA+NaPy+Gentamycin+beta-MeOH) supplemented with 10% iFCS to the appropriate cell density.


HLA-A02 Restricted CTL Peptides

A selection of HLA-A02-restricted HCV peptides was made based on their affinity (IC50). The tested peptides are indicated in Table B. GILGFVFTL is a HLA-A02-restricted immunodominant Influenza-specific epitope that is used as a control peptide. All peptides are dissolved in 100% DMSO at 5 or 10 mg/ml and stored in aliquots at −20° C.


Shortly before use, peptides are further diluted in complete RPMI medium supplemented with 10% iFCS and used in the IFNγ ELISPOT assay at a final concentration of 10 μg/ml.


Cytokines

Lyophilized human IL-7 (R&D 207-IL) and human IL-15 (R&D 215-IL) is reconstituted in RPMI medium supplemented with 10% iFCS at 5 μg/ml and stored in aliquots at −70° C.


Both cytokines are used in the IFNγ ELISPOT assay at final concentrations of 0.5 ng/ml per cytokine.


Human IFNγ ELISPOT

To pre-wet the membrane of the ELISPOT plates, 50 μl ethanol 99% p.a. is added to each well. After 10 minutes at room temperature, the ethanol is removed by washing all wells twice with purified water and once with PBS.


Pre-wetted 96-well ELISPOT plates are coated overnight with an anti-human IFNγ antibody (Mabtech Mab-1-D1K) and blocked for 2 hours with RPMI medium supplemented with 10% iFCS.


PBMC are resuspended in complete RPMI medium supplemented with 10% iFCS and seeded in triplicate in the coated ELISPOT plates at the required cell density between 3×105 cells/well and 4×105 cells/well. Cells are incubated with HLA-A02-restricted (CTL) peptides at 10 μg peptide/ml or with a polyclonal stimulus phytohemagglutinin (PHA) at 2 μg/ml as positive control, with and without cytokines.


After 23 hours incubation, all cells are lysed, washed away and the plates are further developed with biotinylated anti-human IFNγ antibody (Mabtech Mab 7-B6-1-bio) and streptavidin-HRP (BD 557630). Spots are visualized using AEC (BD 551951) as substrate. Rinsing the plates with tap water stops the color reaction. After drying the plates, the number of spots/well is determined using an A.EL.VIS ELISPOT reader. Every spot represents one IFNγ-producing CD8+ cell.


Method for Data-Analysis

A peptide is considered positive in human recall if at least one patient shows an active response (=response above cut-off level P80) to that peptide and whereby this active response is seen both with and without the addition of the cytokine cocktail (IL-7+IL-15).


Cut-off values are determined by measuring the immune response in healthy individuals (n=20) and are based on statistical p80 and p90 values (=80%, resp. 90% of the back-ground immune responses are below this cut-off value after ranking the back-ground immune response for each individual peptide). Overall, higher cut-offs are measured after addition of cytokines.


Results

Table B contains the results for a set of HLA-A02 binding peptides. The result “+” is also indicated in Table 13.
















TABLE B






# Subj
# Subj
# Subj
# Subj

Immune



Sequence
>P80 − Cyt
>P80 + Cyt
>P90 − Cyt
>P90 + Cyt
#Match
recall







SMVGNWAKV
1
1
1
0
0







YLLPRRGPRL
4
8
4
5
4
+





DLMGYIPLV
6
0
2
0
0





QIVGGVYLL
0
0
0
0
0





YIPLVGAPL
1
0
1
0
0





NLPGCSFSI
3
0
3
0
0





FLLALLSCL
4
0
1
0
0





LLSCLTIPA
4
2
2
2
0





WLGNIIMYA
2
1
1
1
0





YLVAYQATV
1
0
0
0
0





LTHIDAHFL
3
1
2
0
1
+





ALYDVVSTL
0
0
0
1
0





GMFDSSVLC
2
0
2
0
0





KVLVLNPSV
1
1
0
0
0





YLNTPGLPV
0
2
0
2
0





KLQDCTMLV
0
2
0
1
0





SVFTGLTHI
2
0
1
0
0





TLHGPTPLL
0
0
0
0
0





YQATVCARA
1
1
0
0
0





IMYAPTLWA
0
1
0
1
0





NIIMYAPTL
1
4
1
3
1
+





IMACMSADL
0
5
0
0
0





TLWARMILM
2
1
2
1
1
+





QMWKCLIRL
0
0
0
0
0





RLGAVQNEV
3
3
1
3
1
+





LLGCIITSL
0
0
0
0
0





HMWNFISGI
4
5
0
1
3
+





CLVDYPYRL
2
1
1
1
0





VLVGGVLAA
3
7
3
2
3
+





YLFNWAVRT
0
3
0
0
0





GLLGCIITSL
3
2
3
0
2
+





VLVGGVLAAL
2
7
2
5
2
+





IMAKNEVFCV
1
2
0
1
0





RLIVFPDLGV
2
5
1
3
2
+





LLFLLLADA
2
2
1
2
0





FLLALLSCLT
5
5
4
3
1
+









The class II restricted HTL responses may also be analyzed in a comparable way.


Example 6
Activity of CTL Epitopes in Transgenic (Tg) or Surrogate Mice

This example illustrates the induction of CTLs in transgenic mice by use of one or more HCV CTL epitopes. The epitope composition can comprise any combination of CTL epitopes as described in the current invention, and more specific as given in Table 13.


Similarly, a surrogate mouse can be used when no transgenic animals are available.


Surrogate mice are non-transgenic animals that express MHC molecules resembling specific human HLA molecules and as such are useful for the evaluation of human CTL and/or HTL epitopes. Examples of surrogate mice are: CB6F1 for HLA-A24, CBA for HLA-B44, PLJ for HLA-A01 and Balb/c for HLA-DR.


HLA-B07 and B35 Epitopes


For this specific example, the experiment is performed to evaluate the immunogenicity of the peptides with Ki <1000 nM disclosed in Table 13, section B07 and B35.


The HLA-B7 restricted CTL response induced by peptides which bind to B7 or B35 emulsified in IFA in HLA-B7 Tg mice (F1, crossed with Balb/c) is evaluated. As a comparison, a group of naïve mice were included. The magnitude of CTL responses to the HLA-B7 and -B35 restricted epitopes in immunized HLA-B7/Kb transgenic mice are compared to the response in naïve animals.


Experimental Set-Up

HLA-B7/Kb transgenic mice (BALB/c x HLA-B7/Kb.C57BL/6 Fl mice; H2bxd), both male and female, were utilized. Mice were used between 8 and 14 weeks of age. Each group consisted of 3 mice and the naïve group consisted of 4 mice. Each set up was repeated in two independent experiments.


The immunization and testing scheme is shown in Table 17. In general, HLA-B7/Kb mice were immunized with a pool of B7-restricted CTL peptides emulsified in Incomplete Freund's Adjuvant (IFA). Nine peptide pools, each consisting of 4 to 6 CTL peptides, of similar binding affinity at a dose of 25 μg/peptide and 120 μg of the HTL epitope, HBV Core 128 (TPPAYRPPNAPIL) (known HTL epitope in these animals), were tested. Each experiment tested three of the pools, and each pool was tested in two independent experiments. Naïve animals (non-immunized HLA-B7/Kb transgenic mice) were included in each experiment as a control group. The mice were immunized with 100 μl of the emulsion sub-cutaneously at the base of the tail. Eleven to 14 days after immunization, the mice were euthanized, and the spleens were removed.









TABLE 17





Immunization and testing schedule for peptide


immunogenicity experiments using experiment 6 as an example.





















Spleens were disrupted with a 15-ml tissue grinder and the resulting single cell suspension was treated with DNAse solution (10 μl/spleen of 30 mg/ml DNAse in PBS), washed in RPMI-1640 with 2% FCS, and counted. Splenocytes were then incubated at 4° C. for 15-20 minutes in 300 μl MACS buffer (PBS with 0.5% BSA and 2 mM EDTA) with 35 μl of MACS CD8a(Ly-2) Microbeads/108 cells according to the manufacturer's specifications. The cells were then applied to a MACS column (Milltenyi) and washed four times. The cells were removed from the column in culture medium consisting of RPMI 1640 medium with HEPES (Gibco Life Technologies) supplemented with 10% FBS, 4 mM L-glutamine, 50 μM 2-ME, 0.5 mM sodium pyruvate, 100 μg/ml streptomycin and 100 U/ml penicillin. (RPMI-10), washed, and counted again.


The responses to CTL epitopes were evaluated using an IFN-γ ELISPOT assay. Briefly, IP membrane-based 96-well plates (Millipore, Bedford Mass.) were coated overnight at 4° C. with α-mouse IFN-γ monoclonal antibody (Mabtech MabAN18) at a concentration of 10 μg/ml in PBS. After washing 3 times with PBS, RPMI-10 was added to each well, and the plates were incubated at 37° C. for 1 hour to block the plates. The purified CD8+ cells were applied to the blocked membrane plates at a cell concentration of 4×105cells/well.


The peptides were dissolved in RPMI-10 (final peptide concentration 10 μg/ml), and mixed with target cells (105 HLA-B7/Kb transfected Jurkat cells/well). Controls of media only and Con A (10 μg/ml) were also utilized. The target cell/peptide mixture was layered over the effector cells in the membrane plates, which were incubated for 20 hours at 37° C. with 5% CO2.


Media and cells were then washed off the ELISPOT plates with PBS+0.05% Tween-20, and the plates were incubated with α-mouse biotinylated α-IFN-γ antibody (Mabtech MabR4-6A2-Biotin) at a final concentration of 1 μg/ml for 4 hours at 37° C. After washing, the plates were incubated with Avidin-Peroxidase Complex (Vectastain), prepared according to the manufacturer's instructions, and incubated at room temperature for 1 hour. Finally, the plates were developed with AEC (1 tablet 3-Amino-9-ethylcarbazole dissolved in 2.5 ml dimethylformamid, and adjusted to 50 ml with acetate buffer; 25 μl of 30% H2O2 was added to the AEC solution), washed, and dried. Spots were counted using AID plate reader.


Data-Analysis

Each peptide was tested for recognition in both the immunized group and the naïve group.


Data was collected in triplicate for each experimental condition.


The raw data for the media control were averaged for each group (both naïve and immunized). Net spots were calculated by subtracting the average media control for each group from the raw data points within the group. The average and standard error were then calculated for each peptide, and the average and standard error were normalized to 106 cells (by multiplying by a factor of 2.5). Finally, a type 1, one-tailed T test was performed to compare the data from immunized groups to that from naïve controls. Data was considered to be significantly different from the naïve controls if p≦0.1. The data are reported as the number of peptide-specific IFN-γ producing cells/106 CD8+ cells.


Data from two replicate experiments are compared. Peptides with discordant data (i.e. positive in one experiment and negative in the other) are repeated in a third experiment. The data from two or more experiments may be averaged as described above.


Peptide Immunogenicity Results for B7 and B35-Restricted Peptides.

The data are shown in Tables 18 (B7) and 19 (B35), and represent responses in 2-4 independent experiments. Twenty-six peptides showed a positive response when compared with the response in naïve mice (p≦0.1).


Ten of the peptides that were tested bound both B7 and B35 (6 peptides) or B35 only (4 peptides). Of the 6 peptides that bound both B7 and B35, four were immunogenic in the HLA-B7/Kb transgenic mice (Table 2). The 4 peptides that bound B35 only were all negative in the B7 transgenic mice.










TABLE 18







Immunogenicity data for HCV-derived peptides binding to HLA-B7.



The peptides are sorted by peptide position, and the data are


reported in IFN-δ SFC/106 CD8+


splenocytes. Responses that are significant (p ≦ 0.1)


are bolded. These are indicated in Table 13 as “+”.









Naïve













nM IC50
Immunized


# of













Sequence
B*0702
B*3501
SFC/106 ± St Error
SFC/106 ± St Error
Ttest
Exp.

















LPRRGPRLG
124


138.1 ± 25.1

8.1 ± 5.9
0.00
4






LPRRGPRLGV
2.6


499.2 ± 28.5

11.3 ± 1.6 
0.00
2





GPRLGVRAT
128


161.3 ± 71.9

8.8 ± 7.5
0.03
2





QPRGRRQPI
1.2

96.7 ± 20.3
2.1 ± 1.2
0.00
2





SPRGSRPSW
11


266.3 ± 9.5 

2.9 ± 1.3
0.00
2





DPRRRSRNL
18


16.5 ± 8.1

3.5 ± 7.9
0.10
4





IPLVGAPL
25
295

206.7 ± 39.1

2.1 ± 2.6
0.00
2





APLGGAARA
115

10.4 ± 4.5
2.9 ± 2.8
0.11
2





APLGGAARAL
0.80
1048

116.3 ± 26.4

4.2 ± 2.8
0.00
2





LPGCSFSIF
29
90

15.4 ± 5.0

2.1 ± 0.8
0.02
2





LPALSTGLI
233

82.9 ± 21.3
3.3 ± 3.5
0.00
2





TPCTCGSSDL
168
7976
 7.5 ± 7.4
7.9 ± 5.4
0.46
4





APTGSGKST
370

 4.6 ± 2.6
9.2 ± 6.0
0.20
2





YAAQGYKVL
313
5836
68.3 ± 29.1
1.3 ± 5.7
0.03
4





HPNIEEVAL
230
7.4

17.5 ± 5.2

3.3 ± 4.2
0.01
2





AAKLSALGL
277


15.0 ± 4.0

0.4 ± 3.1
0.00
2





TPGERPSGM
199

45.0 ± 22.0
7.5 ± 5.7
0.06
4





RPSGMFDSSV
14


104.2 ± 27.7

1.7 ± 7.5
0.00
4





TPAETSVRL
375
1643
10.8 ± 6.7
7.5 ± 4.4
0.17
2





APPPSWDQM
281
17.771

489.6 ± 15.8

4.6 ± 3.3
0.00
2





KPTLHGPTPL
5.8
14.102

291.3 ± 67.4

7.1 ± 3.4
0.00
2





GPTPLLYRL
209
17.916

59.6 ± 6.3

7.1 ± 5.9
0.00
2





TPLLYRLGA
74

 1.5 ± 6.9
6.9 ± 7.8
0.19
4





LPGNPAIASL
266
3539
17.1 ± 4.4
9.2 ± 6.1
0.22
2





NPAIASLMAF
121
312
 5.4 ± 1.7
4.6 ± 3.0
0.34
2





LPAILSPGAL
255
550

14.6 ± 3.9

3.3 ± 4.1
0.04
2





EPDVAVLTSM
454
150
 8.8 ± 3.6
6.3 ± 5.7
0.32
2





RPDYNPPLL
143


163.3 ± 47.2

6.7 ± 7.3
0.01
2





PPVVHGCPL
433


30.8 ± 9.6

7.9 ± 5.9
0.07
2





LPINALSNSL
12
137

223.8 ± 50.3

1.7 ± 1.8
0.00
2





SPGQRVEFL
38

12.7 ± 8.3
11.5 ± 6.8 
0.43
4





SAACRAAKL
106


286.3 ± 32.4

8.8 ± 4.4
0.00
2





APTLWARMI
11


302.1 ± 48.8

25.0 ± 5.4 
0.00
4





APTLWARMIL
1.2


859.2 ± 25.5

5.0 ± 3.8
0.00
2

















TABLE 19







Immunogenicity data for HCV-derived peptides binding to HLA-B35.



The peptides are sorted by peptide position, and the data


are reported in IFN-δ SFC/106 CD8 splenocytes.


Responses that are significant (p ≦ 0.1) are bolded. These are


indicated in Table 13 as “+”.









Naïve













nM IC50
Immunized


# of













Sequence
B*0702
B*3501
SFC/106 ± St Error
SFC/106 ± St Error
Ttest
Exp.

















IPLVGAPL
25
295

206.7 ± 39.1

2.1 ± 2.6
0.00
2






LPGCSFSIF
29
90

15.4 ± 5.0

2.1 ± 0.8
0.02
2





HPNIEEVAL
230
7.4

17.5 ± 5.2

3.3 ± 4.2
0.01
2





IPTSGDVVV
3152
380
 7.5 ± 3.8
14.2 ± 3.6 
0.18
2





LPVCQDHLEF
1564
104

13.3 ± 5.2

2.5 ± 3.1
0.08
2





FPYLVAYQA
1336
18
−0.8 ± 4.9
4.6 ± 3.9
0.20
2





NPAIASLMAF
121
312
 5.4 ± 1.7
4.6 ± 3.0
0.34
2





EPEPDVAVL

194
 8.3 ± 4.9
8.8 ± 6.3
0.47
2





EPDVAVLTSM
454
150
 8.8 ± 3.6
6.3 ± 5.7
0.32
2





LPINALSNSL
12
137

223.8 ± 50.3

1.7 ± 1.8
0.00
2









HLA-A01, A02, A03/A11, A24 and B44 Epitopes

Comparable experiments in the respective Tg or surrogate animals were performed for all the peptides with Ki<1000 nM disclosed in Table 13. The results are indicated in Tables 20-25.










TABLE 20







Immunogenicity data for HCV-derived peptides binding to



HLA-A01 in surrogate mice (PLJ)









Naïve














IC50 nM
Immunized


# of



Sequence
A*0101
SFC/106 ± St Error
SFC/106 ± St Error
Ttest
Exp.
















VIDTLTCGFA
38
−5.0 ± 10.0
 8.8 ± 10.3
0.06
2






RSELSPLLL
106
−5.0 ± 8.2 
−3.8 ± 9.5 
0.41
2





CTCGSSDLY
14
4.2 ± 7.1
−7.9 ± 1.5 
0.07
2





FTDNSSPPA
10
−4.2 ± 9.9 
0.8 ± 4.4
0.26
2





FTDNSSPPAV
45
 5.8 ± 12.9
−12.1 ± 2.2 
0.10
2





VAATLGFGAY
48

477.9 ± 30.2 

4.2 ± 6.8

0.00

2





AATLGFGAY
694

725.8 ± 105.8

17.1 ± 6.7 

0.00

2





ITTGAPITY
910
13.3 ± 9.4 
7.9 ± 8.0
0.24
2





VATDALMTGY
452
13.3 ± 18.0
−3.3 ± 8.7 
0.17
2





ATDALMTGY
4.0
0.4 ± 8.6
−6.3 ± 7.2 
0.16
2





ATDALMTGYT
227
−20.8 ± 11.7 
9.6 ± 8.6
0.00
2





DSSVLCECY
719
17.5 ± 14.7
10.0 ± 3.6 
0.27
2





TLHGPTPLLY
343

260.0 ± 33.7 

22.5 ± 10.6

0.00

2





LVDILAGYGA
98

81.3 ± 31.1

20.8 ± 6.5 

0.03

2





LTDPSHITA
15
−8.3 ± 6.3 
−2.5 ± 7.7 
0.26
2





LTDPSHITAE
237
7.5 ± 5.7
12.9 ± 8.5 
0.26
2





HSAKSKFGY
615

37.1 ± 6.0 

4.2 ± 6.4

0.00

2





TSCGNTLTCY
246
−3.8 ± 6.9 
−7.5 ± 7.9 
0.27
2





FTEAMTRYSA
464
15.4 ± 14.4
5.4 ± 3.8
0.28
2





LSAFSLHSY
28

387.9 ± 15.9 

−1.7 ± 7.0 

0.00

2

















TABLE 21







Immunogenicity data for HCV-derived peptides binding to



HLA-A02 in HLA-A02 Tg mice









Naïve












nM IC50
Immunized


# of













Sequence
A*0201
SFC/106 ± St Error
SFC/106 ± St Error
Ttest
Exp.
















QIVGGVYLL
228

3.8 ± 1.4

0.0 ± 0.4

0.01

2






YLLPRRGPRL
140

73.8 ± 27.6

0.4 ± 0.5

0.02

2





DLMGYIPLV
83
3.8 ± 1.8
0.8 ± 0.6
0.07
2





YIPLVGAPL
337

19.2 ± 6.7 

3.9 ± 3.4

0.01

3





NLPGCSFSI
83
0.8 ± 1.7
0.0 ± 0.6
0.30
2





FLLALLSCLT
132
−0.8 ± 0.0 
0.0 ± 0.9
0.19
2





FLLALLSCL
136

270.3 ± 72.9 

−3.1 ± 1.8 

0.00

3





LLSCLTIPA
12
−4.2 ± 4.4 
−1.4 ± 2.6 
0.10
3





SMVGNWAKV
158

30.0 ± 2.4 

2.1 ± 1.1

0.00

2





CLVDYPYRL
437

271.4 ± 87.5 

−0.6 ± 2.2 

0.01

3





ALSTGLIHL
329
1.3 ± 0.8
0.8 ± 0.6
0.35
2





LLFLLLADA
16
3.3 ± 5.9
−0.6 ± 2.4 
0.18
3





FLLLADARV
20

25.8 ± 7.1 

0.0 ± 0.4

0.01

2





GLLGCIITSL
26

241.4 ± 66.5 

−2.2 ± 2.2 

0.00

3





LLGCIITSL
56
−3.3 ± 2.4 
2.2 ± 3.3
0.05
3





YLVTRHADV
292

34.2 ± 2.7 

0.8 ± 0.6

0.00

2





KVLVLNPSV
50

10.4 ± 5.6 

−2.1 ± 3.1 

0.04

2





GMFDSSVLC
114

211.9 ± 95.1 

−2.8 ± 1.3 

0.03

3





YLNTPGLPV
6.2

419.4 ± 102.3

0.8 ± 3.0

0.00

3





SVFTGLTHI
101

674.2 ± 161.2

−4.2 ± 3.7 

0.00

2





LTHIDAHFL
1937
−3.3 ± 2.9 
0.3 ± 2.3
0.00
3





YLVAYQATV
29

22.5 ± 5.8 

0.8 ± 0.9

0.01

2





YQATVCARA
20

187.1 ± 68.8 

−8.8 ± 1.4 

0.02

2





QMWKCLIRL
153

418.1 ± 107.4

−1.1 ± 2.4 

0.00

3





TLHGPTPLL
68

99.4 ± 32.9

−0.3 ± 2.8 

0.01

3





RLGAVQNEV
221

96.9 ± 34.8

0.6 ± 3.5

0.01

3





IMACMSADL
66
38.1 ± 22.3
0.8 ± 3.4
0.07
3





VLVGGVLAA
219
7.9 ± 3.3
1.3 ± 2.0
0.10
2





VLVGGVLAAL
26

243.9 ± 65.3 

1.9 ± 3.4

0.00

3





HMWNFISGI
12

374.2 ± 91.6 

−1.1 ± 3.2 

0.00

3





LLFNILGGWV
4.1

17.9 ± 3.7 

0.4 ± 0.5

0.00

2





ILAGYGAGV
88

5.4 1.5

0.0 ± 0.4

0.01

2





IMAKNEVFCV
199
3.6 ± 4.0
−0.6 ± 1.9 
0.17
3





RLIVFPDLGV
89
−1.9 ± 5.2 
3.6 ± 3.5
0.02
3





ALYDVVSTL
19

88.6 ± 25.7

−1.4 ± 2.4 

0.00

3





KLQDCTMLV
4.6

218.1 ± 53.4 

−1.9 ± 2.5 

0.00

3





NIIMYAPTL
70

335.8 ± 152.5

−0.8 ± 3.3 

0.03

3





IMYAPTLWA
46
−0.8 ± 2.6 
0.8 ± 3.2
0.24
3





TLWARMILM
11

180.0 ± 51.3 

0.0 ± 0.4

0.01

2





YLFNWAVRT
29

196.1 ± 54.9 

−1.4 ± 2.3 

0.00

3

















TABLE 22







Immunogenicity data for HCV-derived peptides binding to



HLA-A03 and/or All in HLA-All Tg mice









Naïve











nM IC50
Immunized


# of













Sequnce
A0301
A1101
SFC/106 ± St Error
SFC/106 ± St Error
Ttest
Exp.

















STNPKPQRK
7.2
14

428.8 ± 76.0 

4.2 ± 6.3

0.00

2






KTKRNTNRR
283
646
6.7 ± 3.9
5.4 ± 4.6
0.43
2





RLGVRATRK
12
221
5.0 ± 8.2
2.1 ± 3.3
0.40
2





KTSERSQPR
41
147

1041.7 ± 170.9 

6.7 ± 6.1

0.00

2





QLFTFSPRR
15
197

17.1 ± 6.3 

3.3 ± 6.7

0.03

2





WMNSTGFTK
277
138
 1.3 ± 2.47
0.4 ± 3.5
0.41
2





RLLAPITAY
4.6
222
4.2 ± 3.5
0.0 ± 3.0
0.23
2





GIFRAAVCTR
3382
129
 0.0 ± 2.45
1.3 ± 3.6
0.32
2





AVCTRGVAK
136
48

437.9 ± 93.67

1.7 ± 4.8

0.00

2





HLHAPTGSGK
5.3
501
7.5 ± 4.9
5.0 ± 3.9
0.39
2





AAYAAQGYK
13
13

301.3 ± 36.7 

−0.4 ± 2.7 

0.00

2





TLGFGAYMSK
134
44
10.8 ± 3.95
7.5 ± 4.5
0.15
2





LGFGAYMSK
113
22
0.8 ± 51
−0.4 ± 4.2 
0.41
2





HLIFCHSKK
30
1531
−5.8 ± 6.6 
−1.3 ± 4.4 
0.33
2





LIFCHSKKK
27
104

120.8 ± 41.70

7.5 ± 3.1

0.02

2





GLNAVAYYR
9.2
44
 7.5 ± 2.27
7.5 ± 6.0
0.50
2





KVLVDILAGY
72
163

6.3 ± 4.1

−3.8 ± 3.7 

0.02

2





GVVCAAILR
5875
38

162.9 ± 26.7 

−2.5 ± 3.0 

0.00

2





GVVCAAILRR
1066
215

598.8 ± 43.0 

2.1 ± 6.0

0.00

2





SQLSAPSLK
81
14
4.2 ± 5.2
0.0 ± 4.2
0.16
2





RVCEKMALY
53
160

131.7 ± 32.8 

3.3 ± 5.0

0.01

2





LVNAWKSKK
68
50

23.8 ± 5.90

2.5 ± 4.3

0.04

2





GNTLTCYLK
16.809
160
5.4 ± 4.6
5.0 ± 5.3
0.48
2





ASAACRAAK
51
15

223.8 ± 17.8 

10.4 ± 8.2 

0.00

2





RVFTEAMTR
45
21

173.3 ± 12.6 

4.2 ± 3.9

0.00

2





YLFNWAVRTK
65
164
0.4 ± 6.2
−0.4 ± 3.9 
0.45
2

















TABLE 23







Immunogenicity data for HCV-derived peptides binding to



HLA-B44 in surrogate mice (CBA)









Naïve












nM IC50
Immunized


# of













Sequence
B*4402
SFC/106 ± St Error
SFC/106 ± St Error
Ttest
Exp.
















AEAALENLV
126
−5.4 ± 6.2 
−3.75 ± 4.1 
0.39
2






AETAGARLV
176

1295.4 ± 114.1 

−6.3 ± 72 

0.00

2





AETAGARLV
68

697.5 ± 36.8 

27.5 ± 14.2

0.00

2





GEIPFYGKAI
354

799.6 ± 116.4

15.4 ± 8.0 

0.00

2





AEQFKOKAL
67
7.9 ± 6.7
13.8 ± 5.5 
0.29
2





AEQFKQKAL
201
10.0 ± 8.3 
35.0 ± 16.8
0.06
2





TEAMTRYSA
2302
12.9 ± 20.8
10.8 ± 6.5 
0.46
2





RMILMTHFF
389

11.3 ± 5.0 

−17.9 ± 3.8 

0.00

2
















TABLE 24







Immunogenicity data for HCV-derived peptides


binding to HLA-A24 in surrogate mice (Balb/c)










Sequence
SFC/106 ± SE







LLPRRGPRL

64.2 ± 12.5








YIPLVGAPL

64.6 ± 10.7








SFSIFLLAL
185 ± 69.3







PFYGKAIPI

168.8 ± 60.1 








VIKGGRHLI

191.3 ± 73.5 








YYRGLDVSVI

41.7 ± 10.2








FSLDPTFTI

134.2 ± 19.2 








YLNTPGLPV

544.2 ± 48.3 








CLIRLKPTL

60 ± 28.2








FWAKHMWNF

45.4 ± 6.1 








FWAKHMWNFI

293.3 ± 48.8 








QYLAGLSTL

865.4 ± 183.5








GFSYDTRCF

56.3 ± 22.4








RMILMTHFF

128.3 ± 24.8 











HLA-A24 Epitopes

In this experiment, a slightly different approach is used for the evaluation of the immunogenicity of the HLA-A24 binding epitopes in that the analysis of the peptide responses is performed in individual mice. ELISPOT results are reported as number of peptide-specific IFN-gamma producing cells per million (CD8 selected) spleen cells per mouse and the average delta values of triplicates (by subtracting the negative control conditions without stimulus) of the responses in the reacting animals are calculated. A peptide is considered to be immunogenic in the mouse model if at least one animal shows a significant positive response to that peptide.









TABLE 25







Immunogenicity data for HCV-derived peptides


binding to HLA-A24 in HLA A24 Tg mice










ELISPOT















average pos.






result
Immun


Sequence
# subjects
# pos
(SFC/106)
mice














MYTNVDQDL
5
5
659
+





SFSIFLLAL
4
4
150
+





LLPRRGPRL
5
5
63
+





RMILMTHFF
5
4
169
+





CLIRLKPTL
5
2
121
+





FWAKHMWNF
5
2
244
+





TLHGPTPLL
5
4
73
+





RVEFLVNAW
5
4
70
+





QYLAGLSTL
5
1
243
+





LWARMILMTHF
5
3
68
+





VIKGGRHLI
4
1
276
+





AVMGSSYGF
5
1
240
+





IIMYAPTLW
5
3
48
+





GLGWAGWLL
2
4
47
+





YLNTPGLPV
5
2
40
+





ETTMRSPVF
5
2
36
+





NIIMYAPTL
5
2
35
+





TYSTYGKF
5
1
53
+





FWAKHMWNFI
5
1
49
+





NLPGCSFSI
5
1
42
+





VMGSSYGF
5
1
36
+





QYSPGQRVEF
5
1
33
+





LTHPITKYI
5
1
31
+





YYRGLDVSVI
5
0
neg
0





GLTHIDAHF
5
0
neg
0





FWESVFTGL
5
0
neg
0





AYMSKAHGV
5
0
neg
0





YYRGLDVSV
5
0
neg
0





GFSYDTRCF
5
0
neg
0





AYAAQGYKV
5
0
neg
0





NLGKVIDTL
5
0
neg
0





KFPGGGQIV
5
0
neg
0





QWMNRLIAF
5
0
neg
0





MYVGGVEHRL
5
0
neg
0





NFISGIQYL
5
0
neg
0





AIKGGRHLI
5
0
neg
0





ALYDVVSTL
5
0
neg
0





QMWKCLIRL
5
0
neg
0





FSLDPTFTI
4
0
neg
0





GFADLMGYI
4
0
neg
0









Example 7
Activity of HTL Epitopes in Transgenic (Tg) and Surrogate Mice

The experiments to test the immunogenicity of HLA-DR peptides differs slightly from example 6 in that complete Freund's is used as the adjuvant. Peptides are tested in either DRB1*0401-Tg mice or surrogate mice such as Balb/c and CBA. In this particular example, HLA-restricted peptide responses are analyzed in pooled samples.


The data for the DR4 transgenic mice are shown in table 26 and represent responses in 2 independent experiments. Seventeen of the peptides gave positive responses (defined as >10 SFC/106 CD4+ cells and p A105) in these mice.


The data for the H2bxd background (Balb/c) are shown in table 27 and represent responses in 2 independent experiments. Seven of the peptides give positive responses (defined as >10 SFC/106 CD4+ cells and p≦0.05) in these mice.


The data for the CBA mice (H2k) are shown in table 28 and represent responses in 2 independent experiments. Twelve of the peptides give positive responses (defined as >10 SFC/106 CD4+ cells and p≦0.05) in these mice.









TABLE 26







Immunogenicity in DR4 Tg mice













DRB1
Immunized
Naïve




Sequence
*0401
SFC/106 ± St Error
SFC/106 ± St Error
Ttest















GPRLGVRATRKTSER

2.1 ± 3.0
3.3 ± 2.4
0.38






RLGVRATRKTSERSQ
5868

15.0 ± 4.9 

0.0 ± 1.2

0.02






GVRVLEDGVNYATGN
132

147.1 ± 61.9 

2.5 ± 1.3

0.03






FTTLPALSTGLIHLH
2080

142.9 ± 43.3 

4.6 ± 2.4

0.01






AVGIFRAAVCTRGVA
31

631.3 ± 132.1

0.0 ± 0.5

0.00






RSPVFTDNSSPPAVP
10

423.3 ± 93.0 

0.4 ± 1.0

0.00






AQGYKVLVLNPSVAA
1.6

69.2 ± 15.9

−0.4 ± 1.0 

0.00






VLVLNPSVAATLGFG
6.5

67.5 ± 11.9

2.5 ± 3.6

0.00






YGKFLADGGCSGGAY
21

989.6 ± 19.5 

1.7 ± 1.2

0.00






LVVLATATPPGSVTV
4.0

111.7 ± 42.3 

2.5 ± 1.1

0.03






HLIFCHSKKKCDELA


22.1 ± 8.5 

2.9 ± 1.5

0.04






TVDFSLDPTFTIETT
59

130.0 ± 36.9 

5.8 ± 2.4

0.01






KPTLHGPTPLLYRLG
4861

23.3 ± 8.0 

1.3 ± 1.1

0.01






TWVLVGGVLAALAAY
369

623.3 ± 98.9 

−0.8 ± 0.5 

0.00






IQYLAGLSTLPGNPA
2.6

1435.8 ± 111.5 

2.9 ± 3.1

0.00






VNLLPAILSPGALVV
1558

613.3 ± 59.4 

−0.8 ± 1.6 

0.00






AVQWMNRLIAFASRG
1009

1006.7 ± 70.1 

4.2 ± 5.6

0.00






MNRLIAFASRGNHVS
813
1.3 ± 3.9
0.0 ± 1.4
0.40





VFCVQPEKGGRKPAR

−0.4 ± 1.7 
2.1 ± 1.1
0.09





ARAAWETARHTPVNS
14.766
2.9 ± 3.4
0.8 ± 0.9
0.28





PTLWARMILMTHFFS
178

1442.9 ± 107.2 

2.5 ± 2.0

0.00

















TABLE 27







immunogenicity in Balb/c (H2bxd)












Immunized
Naïve




Sequence
SFC/106 ± St Error
SFC/106 ± St Error
T test





GPRLGVRATRKTSER
0.8 ± 1.2
−0.8 ± 0.0
0.12






RLGVRATRKTSERSQ
2.1 ± 2.1
−0.4 ± 0.4
0.10





GVRVLEDGVNYATGN
1.3 ± 1.1
−0.8 ± 0.4
0.02





FTTLPALSTGLIHLH
5.8 ± 2.2
−0.4 ± 0.5
0.02





AVGIFRAAVCTRGVA

1330.4 ± 111.9

 0.8 ± 0.5

0.00






RSPVFTDNSSPPAVP
−5.0 ± 0.6 
 0.4 ± 0.4
0.00





AQGYKVLVLNPSVAA

68.8 ± 17.5

−1.3 ± 0.0

0.01






VLVLNPSVAATLGFG

238.8 ± 84.6 

 0.8 ± 0.8

0.02






YGKFLADGGCSGGAY
−1.7 ± 3.5 
 1.7 ± 0.8
0.15





LVVLATATPPGSVTV
−5.8 ± 0.8 
 1.3 ± 0.9
0.00





HLIFCHSKKKCDELA
5.8 ± 3.8
 0.4 ± 0.4
0.11





TVDFSLDPTFTIETT
−0.4 ± 0.5 
−0.4 ± 0.5
0.50





KPTLHGPTPLLYRLG

43.3 ± 12.0

−0.8 ± 0.4

0.01






TWVLVGGVLAALAAY

263.8 ± 35.0 

−0.8 ± 0.4

0.00






IQYLAGLSTLPGNPA
0.0 ± 0.5
 0.0 ± 0.5
0.50





VNLLPAILSPGALVV
6.7 ± 2.4
−0.4 ± 0.4
0.01





AVQWMNRLIAFASRG

286.3 ± 69.0 

−0.4 ± 0.4

0.00






MNRLIAFASRGNHVS

95.0 ± 31.9

 0.4 ± 0.6

0.02






VFCVQPEKGGRKPAR
9.6 ± 6.8
 1.3 ± 0.9
0.11





ARAAWETARHTPVNS
3.3 ± 2.4
 0.4 ± 0.4
0.15





PTLWARMILMTHFFS
2.5 ± 1.5
 0.8 ± 1.1
0.12
















TABLE 28







immunogenicity in CRA (H2k) mice












Immunized
Naïve




Sequence
SFC/106 ± St Error
SFC/106 ± St Error
Ttest





GPRLGVRATRKTSER

175.4 ± 27.9

−4.6 ± 9.7 

0.00







RLGVRATRKTSERSQ

189.6 ± 57.2

 3.3 ± 12.8

0.02






GVRVLEDGVNYATGN
−67.92 ± 63.7 
−20.00 ± 9.6   
0.35





FTTLPALSTGLIHLH
−106.67 ± 28.3 
−24.58 ± 4.9   
0.03





AVGIFRAAVCTRGVA

148.3 ± 76.3

17.1 ± 17.5

0.06






RSPVFTDNSSPPAVP
90.8 ± 35.9
−0.4 ± 10.7

0.02






AQGYKVLVLNPSVAA
−90.83 ± 46.9 
−29.17 ± 6.3   
0.11





VLVLNPSVAATLGFG
−40.83 ± 24.9 
−28.33 ± 2.5   
0.40





YGKFLADGGCSGGAY

138.3 ± 42.6

 4.2 ± 16.4

0.02






LVVLATATPPGSVTV
 27.9 ± 23.4
33.3 ± 39.6
0.44





HLIFCHSKKKCDELA

167.1 ± 37.9

−9.2 ± 7.5 

0.00






TVDFSLDPTFTIETT
−95.00 ± 78.0 
−7.50 ± 25.7 
0.32





KPTLHGPTPLLYRLG
−52.50 ± 48.7 
−24.58 ± 8.6   
0.48





TWVLVGGVLAALAAY

593.33 ± 26.5 

−32.08 ± 5.0   

0.00






IQYLAGLSTLPGNPA
−22.5 ± 10.5
−0.4 ± 5.0 
0.06





VNLLPAILSPGALVV
 10.0 ± 37.6
33.3 ± 45.3
0.36





AVQWMNRLIAFASRG

450.0 ± 94.2

12.5 ± 17.6

0.00






MNRLIAFASRGNHVS

255.0 ± 27.9

25.0 ± 26.5

0.00






VFCVQPEKGGRKPAR

247.5 ± 59.4

−7.1 ± 11.4

0.00






ARAAWETARHTPVNS
93.3 ± 30.8
−8.3 ± 5.3 

0.01






PTLWARMILMTHFFS

114.6 ± 43.6

−11.3 ± 4.1 

0.01










As shown in FIG. 7, a close relationship between binding and immunogenicity is detected. It can be concluded that all the peptides with binding affinity of less than 500 nM are immunogenic. Hence, the threshold affinity for DRB1 is 500 nM.


Example 8
Immunogenicity of CTL Epitopes Embedded in a Nested Epitope

This example illustrates the induction of CTL responses to a selection of epitopes embedded in a nested epitope, when injected into susceptible mice. Similar experiments can be performed to illustrate the induction of HTL responses to epitopes embedded in a nested epitope.


For this example, the A24 specific T cell responses in HLA A24 Tg mice injected with nested epitopes containing A24 restricted epitopes is measured. The magnitude of the CTL response to the individual HLA-A24 restricted epitopes is determined and compared with the response measured towards these epitopes in cells from mice immunized with a buffer/adjuvant (CFA) control. All HLA-A24 epitopes binding with an affinity (Ki) of less than 500 nM were tested.


The immunogenicity of epitopes embedded in these nested epitopes and restricted to other HLA-class I types can be evaluated in a comparable way in susceptible mice.


In Vivo Experimental Set-Up

Two groups of 5 mice (age 8 to 10 weeks, randomized females and males) are included of which animals from each group receive either a single injection with a nested epitope emulsified in CFA or—as a negative control—the buffer without peptide and emulsified in CFA. All injections were performed subcutaneously at the base of the tail. In this particular experiment, the nested epitope FWAKHMWNFISGIQYLAGLSTLPGNPA (SEQ ID NO 2278) was evaluated (table 29).









TABLE 29







nested epitope evaluated in A24 Tg mice












Dose/



Mice
Sequence
adjuvant
group





HLA A24 Tg
FWAKHMWNFISGIQYLAGLST
50 μg/CFA
05 040/3



LPGNPA





HLA A24 Tg
PBS
—/CFA
05 040/5









In Vitro Experimental Set-Up

Spleen cells from all individual animals are isolated 11 to 14 days after injection. A direct ex vivo IFN-γ ELISPOT assay is used as a surrogate CTL readout. To this, CD8 spleen cells from each individual mouse are purified by positive magnetic bead selection on (part of) the spleen cells.

    • For the group 05 040/3, the response in the purified CD8 spleen cells (2.105 cells/well) from each individual mouse is evaluated by presenting the HLA-A24-specific peptides (10 μg/ml) on antigen presenting cells expressing the HLA-A24/Kb molecule (104 cells/well) and on gamma-irradiated syngeneic spleen cells (2.105 cells/well). After loading, the excess of peptide is removed by washing.
    • For the group 05 040/5, the spleen cells from each mouse are pooled prior to CD8 purification. An IFN-γ ELISPOT using the same conditions as mentioned above is performed to determine the baseline response against all peptides tested.









TABLE 30







overview read out












HLA-A24 restricted CTL





epitopes tested for immune



group
response
SEQ ID NO







05 040/3
FWAKHMWNF
1095




FWAKHMWNFI
1096




NFISGIQYL
1521




QYLAGLSTL
1625







05 040/5
FWAKHMWNF
1095




FWAKHMWNFI
1096




NFISGIQYL
1521




QYLAGLSTL
1625










Methods for Data-Analysis

ELISPOT results are reported as number of peptide-specific IFN-γ producing cells per million (CD8/CD4 selected) spleen cells per mouse or pooled group. Based on the average/median delta values of triplicates (by subtracting the negative control conditions without stimulus), a descriptive comparison between different groups/experimental set-ups for each epitope tested is made.


In addition, non-specific background responses in control-immunized mice are used as an additional negative control to determine the immunogenicity of the individual epitopes.


Acceptation Criteria

For the in vivo part of the experiment, all mice are evaluated (general welfare document) and weighted at the beginning and end of the study.


The acceptance of the in vitro-generated experimental results are based on well-documented viability and positive response after polyclonal stimulation of the cells. Results are shown for the 4 tested HLA-A24 epitopes in the individual mice.










TABLE 31







immunoreactivity of the embedded epitopes in the 5 animals



injected with the nested epitope















HLA-A24 restricted









CTL epitopes tested


group
for immune response
Subject 1
Subject 2
Subject 3
Subject 4
Subject 5





05 040/3
FWAKHMWNF
+++
++
+++
++
+++




FWAKHMWNFI
+++
++
+++
++
+++



NFISGIQYL
++



++



QYLAGLSTL




++





+: 0-10 SFC/106 CD8 cells


++: 10-100 SFC/106 CD8 cells


+++: >100 SFC/106 CD8 cells






REFERENCES



  • Alexander, J. et al., J Immunol. 159:4753, 1997

  • Alexander J. et al., Hum Immunol 64(2): 211-223, 2003

  • Altman et al., Science 174:94-96, 1996

  • An, L. and Whitton, J. L., J. Virol. 71:2292, 1997

  • Arndt et al., Immuno.l Res., 16: 261-72, 1997

  • Barton, G. M. & Medzhitov, R. Toll-like receptors and their ligands. Curr. Top. Microbiol. Immunol. 270, 81-92, 2002

  • Bertoni, R. et al., J Clin. Invest. 100:503, 1997

  • Beaucage & Caruthers, Tetrahedron Letts. 22:1859-1862, 1981

  • Blum et al., Grit. Rev. Immunol., 17: 411-17, 1997

  • Brooks et al., J Immunol, 161: 5252-5259, 1998

  • Brown. J. et al., (1993) Nature 364, 33-39

  • Busch et al., Int. Immunol. 2:443, 1990

  • Buus et al., Science 242: 1065, 1988

  • Byl, B. et al. OM197-MP-AC induces the maturation of human dendritic cells and promotes a primary T cell response. Int Immunopharmacol. 3, 417-425, 2003

  • Celis, E. et al., Proc. Natl. Acad. Sci. USA 91:2105, 1994

  • Ceppellini et al., Nature 339:392, 1989

  • Cerundolo et al., J Immunol. 21:2069, 1991

  • Christnick et al., Nature 352:67, 1991

  • Collins et al., J. Immunol. 148:3336-3341, 1992

  • del Guercio et al., J Immunol. 154:685, 1995

  • Diepolder, H. M. et al., J Virol. 71:6011, 1997

  • Donnelly J J, Ulmer J B, Shiver J W, Liu M A. DNA vaccines. Annu Rev Immunol. 1997; 15:617-48.

  • Donnelly J J, Ulmer J B, Liu M A. DNA vaccines. Life Sci. 1997a; 60(3):163-72.

  • Doolan, D. L. et al., Immunity 7:97, 1997

  • Falk, K. et al., (1991) Nature 351, 290-296)

  • Felgner, et al., Proc. Nat'l Acad. Sci. USA 84:7413, 1987

  • Fries et al., Proc. Natl. Acad. Sci. (USA) 89:358, 1992

  • Grakoui, A., Wychowski, C., Lin, C., Feinstone, S. M. & Rice, C. M. Expression and identification of hepatitis C virus polyprotein cleavage products. J. Virol. 67, 1385-1395, 1993

  • Gruters R A , van Baalen C A, Osterhaus A D. Vaccine. 2002 May 6; 20(15):2011-5. The advantage of early recognition of HIV-infected cells by cytotoxic T-lymphocytes.

  • Hammer et al., J Exp. Med. 180:2353, 1994

  • Hanke, R. et al., Vaccine 16:426, 1998

  • Henderson et al, Science 255: 1264, 1992

  • Hill et al., J Immunol. 147:189, 1991

  • Hill et al., J Immunol. 152, 2890, 1994

  • Hoffmann et al., Hepatology, 21(3):632-8, 1995

  • Hunt, et al., Science 225: 1261, 1992

  • Houssaint E, Saulquin X, Scotet E, Bonneville M Biomed Pharmacother. 2001 September; 55(7): 373-80. Immunodominant CD8 T cell response to Epstein-Barr virus.

  • Ishioka, et al., J. Immunol. (1999) 162(7):3915-3925

  • Jardetzky, et al., Nature 353: 326, 1991

  • Johnson, D. A. et al. Synthesis and biological evaluation of a new class of vaccine adjuvants: aminoalkyl glucosaminide 4-phosphates (AGPs). Bioorg. Med. Chem. Lett 9, 2273-2278, 1999

  • Kessler et al. Human Immunol, 64: 245-255, 2003

  • Khilko et al., J Biol. Chem. 268:15425, 1993

  • Kawashima, I. et al., Human Immunol. 59:1, 1998

  • Knauf M J. et al, J Biol. Chem. October 15; 263(29):15064-70, 1988

  • Kriegler M. Gene transfer and expression: a laboratory manual. W.H. Freeman and Company, New York, 1991: 60-61 and 165-172.

  • Lamonaca et al., Hepatology, 30:1088-1098

  • Latron, F. et al., (1992) Science 257, 964-967

  • Lim, J. S. et al. (1996) Mol. Immunol. 33, 221-230

  • Lukacher A E, Braciale V L, Braciale T J. J Exp Med. 1984 Sep. 1; 160(3):814-26. In vivo effector function of influenza virus-specific cytotoxic T lymphocyte clones is highly specific.

  • Ljunggren et al., Nature 346:476, 1990

  • Lauer, G. M. & Walker, B. D. Hepatitis C virus infection. N. Engl J. Med. 345, 41-52, 2001

  • Madden, D. R. et al., (1992) Cell 70, 1035-1048

  • Mannino & Gould-Fogerite, BioTechniques 6(7): 682, 1988

  • Marshall et al., J Immunol. 152:4946, 1994

  • Matsumura, M. et al., (1992) Science 257, 927-934

  • Michelletti et al., Immunology, 96: 411-415, 1999

  • Murray N, McMichael A. Curr Opin Immunol. 1992 August; 4(4):401-7. Antigen presentation in virus infection.

  • Nabel et al., Proc. Natl. Acad. Sci. (USA) 89:5157, 1992

  • Niedermann et al., Immunity, 2: 289-99, 1995

  • Ogg et al., Science 279:2103-2106, 1998

  • Parker et al., J Immunol. 149:1896, 1992

  • Pearson & Reanier, J. Chrom. 255:137-149, 1983

  • Perma et al., J Exp. Med. 174:1565-1570, 1991

  • Persing, D. et al. Taking toll: lipid A mimetics as adjuvants and immunomodulators. Trends Microbiol. 10, S32, 2002

  • Reay et al., EMBO J 11:2829, 1992

  • Rehermann, B. et al., J Exp. Med. 181:1047, 1995

  • Reddy et al., J. Immunol. 148:1585, 1992

  • Riedl, P., Buschle, M., Reimann, J. & Schirmbeck, R. Binding immune-stimulating oligonucleotides to cationic peptides from viral core antigen enhances their potency as adjuvants. Eur. J. Immunol. 32, 1709-1716, 2002

  • Rognan, D. et al., (1999) J. Med. Chem. 42, 30 4650-4658

  • Rosenberg et al (1997), Science 278:1447-1450

  • Rotzschke and Falk, Immunol. Today 12: 447, 1991

  • Saper, M. A. et al., (1991) J. Mol. Biol. 219, 277-312

  • Schaeffer et al. Proc. Natl. Acad. Sci. USA 86:4649-4653, 1989

  • Schumacher et al., Cell 62:563, 1990

  • Sercarz, et al., Annu. Rev. Immunol 11: 729-766, 1993

  • Sette, et al, J Immunol 153:5586-5592, 1994

  • Sette, et al., Mol. Immunol. 31: 813 (1994).

  • Sette and Sidney (1990), Immunogenetics 50: 201-212

  • Sidney et al., Current Protocols in Immunology, Ed., John Wiley & Sons, NY, Section 18.3 (1998)

  • Sidney, et al., J Immunol. 154: 247 (1995)

  • Shiffman, M. L. Improvement in liver histopathology associated with interferon therapy in patients with chronic hepatitis C. Viral Hepatitis Reviews 5, 27-43, 1999

  • Shimotohno, K. et al. Processing of the hepatitis C virus precursor protein. J. Hepatol. 22, 87-92, 1995

  • Southwood et al. J Immunology 160:3363-3373, 1998

  • Stemmer W P et al. Gene 164: 49-53, 1995

  • Stover et al., Nature 351:456-460, 1991

  • Szoka, et al., Ann. Rev. Biophys. Bioeng. 9:467, 1980

  • Threlkeld, S. C. et al., J Immunol. 159:1648, 1997

  • Tigges M A, Koelle D, Hartog K, Sekulovich R E , Corey L, Burke R L J Virol. 1992 March; 66(3):1622-34. Human CD8+ herpes simplex virus-specific cytotoxic T-lymphocyte clones recognize diverse virion protein antigens.

  • Thomson, S. A. et al., J Immunol. 157:822, 1996

  • Townsend et al., Cell 62:285, 1990

  • Tsai S L, Huang S N. J Gastroenterol Hepatol. 1997 October; 12(9-10):S227-35. T cell mechanisms in the immunopathogenesis of viral hepatitis B and C.

  • Tsai, V. et al., J Immunol. 158:1796, 1997

  • Qi-Liang Cai et al. Vaccine 23: 267-277, 2004

  • van der Burg et al., J Immunol, 156: 3308-3314, 1996

  • Van Devanter et. al., Nucleic Acids Res. 12:6159-616S, 1984

  • Velders M P et al. J Immunol, 166(9): 5366-73, 2001

  • Yewdell et al., Aurz. Rev. Immunol., 17: 51-88, 1997

  • Walewski, J. L., Keller, T. R., Stump, D. D. & Branch, A. D. Evidence for a new hepatitis C virus antigen encoded in an overlapping reading frame. RNA. 7, 710-721, 2001

  • Wentworth, P. A. et al., Mol. Immunol. 32:603, 1995

  • Wentworth, P. A. et al., J Immunol. 26:97, 1996

  • Wentworth, P. A. et al., Int. Immunol. 8:651, 1996

  • Wertheimer A M et al., Hepatology, 37: 577-589

  • Whitton, J. L. et al., J. Prol. 67:348, 1993

  • Xu, Z. et al. Synthesis of a novel hepatitis C virus protein by ribosomal frameshift. EMBO J. 20, 3840-3848, 2001


Claims
  • 1. A method for inducing an immune response in a subject against HCV which comprises administration of a nested epitope or the nucleic acid or polynucleotide encoding the same, or the vector including said nucleic acid or polynucleotide, or a composition including any of the same, or any combination thereof.
  • 2. The method according to claim 1, wherein the nested epitope consists of an amino acid sequence as identified by any one of SEQ ID NOs: 2254 to 2278, or a CTL and/or HTL epitope thereof.
  • 3. The method according to claim 1, wherein the nested epitope consists of 9 to 35 amino acids.
  • 4. The method according to claim 1, wherein the composition is a pharmaceutical composition.
  • 5. The method according to claim 4, wherein the composition further comprises at least one of a pharmaceutically acceptable carrier, adjuvant or vehicle.
  • 6. The method according to claim 1, wherein the composition further comprises one or more peptides, or the nucleic acid encoding the same, or the vector including said nucleic acid.
  • 7. The method according to claim 6, wherein the peptides, or the nucleic acids encoding the same, or the vector including said nucleic acid are present in an admixture.
  • 8. The method according to claim 6, wherein the composition is a polyepitopic peptide, or the polynucleotide encoding the same, or the vector including said polynucleotide.
  • 9. The method according to claim 1, for the treatment of a subject with or at risk of HCV.
  • 10. The method according to claim 1, wherein the immune response is a cellular immune response.
  • 11. The method according to claim 10, wherein the cellular immune response is a cytotoxic and/or helper T cell response.
  • 12. A method for inducing an immune response in a subject against HCV which comprises administration of a nested epitope consisting of an amino acid sequence as identified by SEQ ID NO: 2276, or a CTL and/or HTL epitope thereof, or the nucleic acid or polynucleotide encoding the same, the vector including said nucleic acid or polynucleotide, or a composition including any of the same, or any combination thereof.
  • 13. The method according to claim 12, wherein the epitope consists of 8 to 38 amino acids.
  • 14. The method according to claim 12, wherein the epitope comprises at least one CTL and/or HTL epitope selected from the group consisting of: SEQ ID NO:87. SEQ ID NO:256, SEQ ID NO:62, SEQ ID NO:246, SEQ ID NO:84, SEQ ID NO: 1511, SEQ ID NO:852, SEQ ID NO:371, SEQ ID NO:853, SEQ ID NO:854, SEQ ID NO: 2194, SEQ ID NO:92. SEQ ID NO:1483, SEQ ID NO:287, SEQ ID NO:1997, SEQ ID NO:641, SEQ ID NO:864, and SEQ ID NO:59.
  • 15. The method according to claim 14, wherein the nested epitope further comprises at least one CTL and/or HTL epitope.
  • 16. The method according to claim 12, wherein the composition is a pharmaceutical composition.
  • 17. The method according to claim 16, wherein the composition further comprises at least one of a pharmaceutically acceptable carrier, adjuvant or vehicle.
  • 18. The method according to claim 12, wherein the composition further comprises one or more peptides, or the nucleic acid encoding the same, or the vector including said nucleic acid.
  • 19. The method according to claim 18, wherein the peptides, or the nucleic acid encoding the same, or the vector including said nucleic acid are present in an admixture.
  • 20. The method according to claim 18, wherein the composition is a polyepitopic peptide, or the polynucleotide encoding the same, or the vector including said polynucleotide.
  • 21. The method according to claim 12, for the treatment of a subject with or at risk of HCV.
  • 22. The method according to claim 12, wherein the immune response is a cellular immune response.
  • 23. The method according to claim 22, wherein the cellular immune response is a cytotoxic and/or helper T cell response.
  • 24. A method for inducing an immune response in a subject against HCV which comprises administration of at least one epitope consisting of an amino acid sequence selected from the group consisting of: SEQ ID NO:87, SEQ ID NO:256, SEQ ID NO:62, SEQ ID NO:246, SEQ ID NO:84, SEQ ID NO:1511, SEQ ID NO:852, SEQ ID NO:371, SEQ ID NO:853, SEQ ID NO:854, SEQ ID NO: 2194, SEQ ID NO:92, SEQ ID NO:1483, SEQ ID NO:287, SEQ ID NO:1997, SEQ ID NO:641, SEQ ID NO:864, and SEQ ID NO:59, or the nucleic acid encoding the same, the vector including said nucleic acid, or a composition including any of the same, or any combination thereof,
  • 25. The method according to claim 24, wherein the composition is a pharmaceutical composition.
  • 26. The method according to claim 25, wherein the composition further comprises at least one of a pharmaceutically acceptable carrier, adjuvant or vehicle.
  • 27. The method according to claim 24, wherein the composition further comprises one or more peptides, or the nucleic acid encoding the same, or the vector including said nucleic acid.
  • 28. The method according to claim 27, wherein the peptides, or the nucleic acid encoding the same, or the vector including said nucleic acid are present in an admixture.
  • 29. The method according to claim 27, wherein the composition is a polyepitopic peptide, or the polynucleotide encoding the same, or the vector including said polynucleotide.
  • 30. The method according to claim 24, for the treatment of a subject with or at risk of HCV.
  • 31. The method according to claim 24, wherein the immune response is a cellular immune response.
  • 32. The method according to claim 31, wherein the cellular immune response is a cytotoxic and/or helper T cell response.
Priority Claims (3)
Number Date Country Kind
04012951.2 Jun 2004 EP regional
04447239.7 Oct 2004 EP regional
05102441.2 Mar 2005 EP regional
Parent Case Info

This application a continuation of application Ser. No. 11/140,487 (U.S. Patent Application Publication No. 2006-0093617-A1), filed May 31, 2005 (pending), which claims priority to EP 04012951.2, filed 1 Jun. 2004; EP 04447239.7, filed 28 Oct. 2004; EP 05102441.2, filed 25 Mar. 2005; and U.S. Provisional Application Nos. 60/576,310, filed 3 Jun. 2004; 60/622,782, filed 29 Oct. 2004; and 60/665,395, filed 25 Mar. 2005, the entire contents of each of which is hereby incorporated by reference in this application.

Provisional Applications (3)
Number Date Country
60576310 Jun 2004 US
60622782 Oct 2004 US
60665395 Mar 2005 US
Continuations (1)
Number Date Country
Parent 11140487 May 2005 US
Child 12574214 US