PEPTIDOMIMETIC MACROCYCLES AND FORMULATIONS THEREOF

Information

  • Patent Application
  • 20160101145
  • Publication Number
    20160101145
  • Date Filed
    September 24, 2015
    8 years ago
  • Date Published
    April 14, 2016
    8 years ago
Abstract
Aqueous pharmaceutical formulations, for parenteral administration, comprising peptidomimetic macrocycle or a pharmaceutically acceptable salt thereof wherein the peptidomimetic macrocycle binds to MDM2 and/or MDMX proteins are disclosed. Also disclosed are methods of treating diseases and disorders using the aqueous pharmaceutical formulations disclosed herein.
Description
BACKGROUND OF THE DISCLOSURE

The human transcription factor protein p53 induces cell cycle arrest and apoptosis in response to DNA damage and cellular stress, and thereby plays a critical role in protecting cells from malignant transformation. The E3 ubiquitin ligase MDM2 (also known as HDM2 or human double minute 2) negatively regulates p53 function through a direct binding interaction that neutralizes the p53 transactivation activity, leads to export from the nucleus of p53 protein, and targets p53 for degradation via the ubiquitylation-proteasomal pathway. Loss of p53 activity, either by deletion, mutation, or MDM2 overexpression, is the most common defect in human cancers. Tumors that express wild type p53 are vulnerable to pharmacologic agents that stabilize or increase the concentration of active p53. In this context, inhibition of the activities of MDM2 has emerged as a validated approach to restore p53 activity and resensitize cancer cells to apoptosis in vitro and in vivo. MDMX (also known as MDM4, HDM4 or human double minute 4) has more recently been identified as a similar negative regulator of p53, and studies have revealed significant structural homology between the p53 binding interfaces of MDM2 and MDMX. MDMX has also been observed to be overexpressed in human tumors. The p53-MDM2 and p53-MDMX protein-protein interactions are mediated by the same 15-residue alpha-helical transactivation domain of p53, which inserts into hydrophobic clefts on the surface of MDM2 and MDMX. Three residues within this domain of wild type p53 (F19, W23, and L26) are essential for binding to MDM2 and MDMX.


There remains a considerable need for compounds capable of binding to and modulating the activity of p53, MDM2 and/or MDMX. Provided herein are aqueous pharmaceutical formulations comprising p53-based peptidomimetic macrocycles that modulate an activity of p53. Also provided herein are aqueous pharmaceutical formulations comprising p53-based peptidomimetic macrocycles that inhibit the interactions between p53, MDM2 and/or MDMX proteins. Further, provided herein are aqueous pharmaceutical formulations comprising p53-based peptidomimetic macrocycles that can be used for treating diseases including but not limited to cancer and other hyperproliferative diseases.


SUMMARY OF THE DISCLOSURE

In one aspect, the disclosure provides an aqueous pharmaceutical formulation comprising a peptidomimetic macrocycle that binds to MDM2 and/or MDMX proteins or a pharmaceutically acceptable salt thereof, a buffering agent, a tonicity agent, and a stabilizing agent wherein the amount of the peptidomimetic macrocycle in the aqueous pharmaceutical formulation is equal to or greater than 15 mg/mL and wherein the aqueous pharmaceutical formulation comprises less than 2% w/v of any micelle forming agent. The micelle forming agent can be solutol-HS-15. In some examples, the peptidomimetic macrocycle forms a micelle in absence of a surfactant.


In another aspect, the disclosure provides an aqueous pharmaceutical formulation comprising (i) a peptidomimetic macrocycle or a pharmaceutically acceptable salt thereof, wherein the amount of the peptidomimetic macrocycle in the aqueous pharmaceutical formulation is equal to or greater than 15 mg/mL; (ii) a buffering agent; (iii) a stabilizing agent; and (iv) a tonicity agent, wherein the molar ratio of the peptidomimetic macrocycle to the buffering agent is in the range of 0.01-2.5.


In another aspect, the disclosure provides an aqueous pharmaceutical formulation comprising a peptidomimetic macrocycle that binds to a target protein with a KD value of 1×10−7 M or less, or a pharmaceutically acceptable salt thereof, a buffering agent, a tonicity agent, and a stabilizing agent wherein the amount of the peptidomimetic macrocycle in the aqueous pharmaceutical formulation is equal to or greater than 15 mg/mL and wherein the aqueous pharmaceutical formulation comprises less than 2% w/v of any micelle forming agent, wherein the peptidomimetic macrocycle or pharmaceutically acceptable salt thereof has: (a) a length value of from 10 to 24 amino acids, (b) a von Heijne value of from 2 to 10, (c) a net charge of from −4 to +2, (d) a percent alanine content of from 15% to 50%, (e) or any combination of (a)-(d).


In some embodiments, the peptidomimetic macrocycle or pharmaceutically acceptable salt thereof is not precipitated in the formulation. In some embodiments, an aqueous solubility of the peptidomimetic macrocycle is determined by evaluating the turbidity of a solution comprising the peptidomimetic macrocycle. In some embodiments, the peptidomimetic macrocycle or pharmaceutically acceptable salt thereof has an amphipathicity that falls in a range that is optimal for cell permeability.


In some embodiments, the peptidomimetic macrocycle or pharmaceutically acceptable salt thereof has a length value of from 14 to 20 amino acids. In some embodiments, the peptidomimetic macrocycle or pharmaceutically acceptable salt thereof has a von Heijne value of from 2 to 9. In some embodiments, the peptidomimetic macrocycle or pharmaceutically acceptable salt thereof has a von Heijne value of from 3 to 8. In some embodiments, the peptidomimetic macrocycle or pharmaceutically acceptable salt thereof has a von Heijne value of from 4 to 7. In some embodiments, the peptidomimetic macrocycle or pharmaceutically acceptable salt thereof has a net charge of from −2 to 0. In some embodiments, the peptidomimetic macrocycle or pharmaceutically acceptable salt thereof has a percent alanine content of from 15% to 40%. In some embodiments, the peptidomimetic macrocycle or pharmaceutically acceptable salt thereof has a percent alanine content of from 20% to 40%. In some embodiments, the peptidomimetic macrocycle or pharmaceutically acceptable salt thereof has a percent alanine content of from 25% to 40%. In some embodiments, the peptidomimetic macrocycle or pharmaceutically acceptable salt thereof has a length value of from 14 to 20 amino acids, a von Heijne value of from 4 to 7, a net charge of from −2 to 0, and a percent alanine content of from 25% to 40%. In some embodiments, the peptidomimetic macrocycle or pharmaceutically acceptable salt thereof is soluble, does not have off-target effects, or a combination thereof.


In some embodiments, the peptidomimetic macrocycle or pharmaceutically acceptable salt thereof comprises a first C-terminal amino acid that is hydrophobic. In some embodiments, the peptidomimetic macrocycle or pharmaceutically acceptable salt thereof comprises a second C-terminal amino acid that is hydrophobic. In some embodiments, the peptidomimetic macrocycle or pharmaceutically acceptable salt thereof comprises a third C-terminal amino acid that is hydrophobic. In some embodiments, the peptidomimetic macrocycle or pharmaceutically acceptable salt thereof comprises a fourth C-terminal amino acid that is hydrophobic. In some embodiments, the peptidomimetic macrocycle or pharmaceutically acceptable salt thereof comprises a fifth C-terminal amino acid that is hydrophobic. In some embodiments, the peptidomimetic macrocycle or pharmaceutically acceptable salt thereof comprises a sixth C-terminal amino acid that is hydrophobic.


In some embodiments, the first amino acid connected to the crosslinker is N-terminal to the second amino acid connected to the crosslinker, and wherein the peptidomimetic macrocycle or pharmaceutically acceptable salt thereof comprises 1, 2, 3, 4, 5, 6, 7, or 8 amino acids that are C-terminal to the second amino acid connected to the crosslinker.


In some embodiments, the first amino acid connected to the crosslinker is N-terminal to the second amino acid connected to the crosslinker, and wherein the peptidomimetic macrocycle or pharmaceutically acceptable salt thereof comprises 1, 2, 3, 4, 5, or 6 hydrophobic amino acids that are C-terminal to the second amino acid connected to the crosslinker.


In some embodiments, the first amino acid connected to the crosslinker is N-terminal to the second amino acid connected to the crosslinker, and wherein the peptidomimetic macrocycle or pharmaceutically acceptable salt thereof comprises 1, 2, or 3 glutamines that are C-terminal to the second amino acid connected to the crosslinker.


In some embodiments, the amino acid that is hydrophobic is a small hydrophobic amino acid. In some embodiments, the amino acid that is hydrophobic is an alanine, a D-alanine, or an Aib.


In some embodiments, the peptidomimetic macrocycle or pharmaceutically acceptable salt thereof is a helical polypeptide. In some embodiments, the peptidomimetic macrocycle or pharmaceutically acceptable salt thereof comprises an α-helix. In some embodiments, the peptidomimetic macrocycle or pharmaceutically acceptable salt thereof comprises an amphipathic α-helix.


In some embodiments, the first amino acid connected to the crosslinker or the second amino acid connected to the crosslinker is an α,α-disubstituted amino acid. In some embodiments, the first amino acid connected to the crosslinker and the second amino acid connected to the crosslinker are α,α-disubstituted amino acids. In some embodiments, the first amino acid connected to the crosslinker and the second amino acid connected to the crosslinker are separated by two amino acids. In some embodiments, the first amino acid connected to the crosslinker and the second amino acid connected to the crosslinker are separated by three amino acids. In some embodiments, the first amino acid connected to the crosslinker and the second amino acid connected to the crosslinker are separated by six amino acids. In some embodiments, the crosslinker spans 1 turn of an α-helix of the peptidomimetic macrocycle. In some embodiments, the crosslinker spans 2 turns of an α-helix of the peptidomimetic macrocycle. In some embodiments, the length of the crosslinker is from about 5 Å to about 9 Å per turn of an α-helix of the peptidomimetic macrocycle. In some embodiments, the peptidomimetic macrocycle or pharmaceutically acceptable salt thereof provides a therapeutic effect. In some embodiments, an ability of the peptidomimetic macrocycle or pharmaceutically acceptable salt thereof to penetrate cell membranes by an energy-dependent process is improved relative to a corresponding uncrosslinked peptidomimetic macrocycle. In some embodiments, the ability of the peptidomimetic macrocycle or pharmaceutically acceptable salt thereof to penetrate cell membranes by an energy-independent process is improved relative to a corresponding uncrosslinked peptidomimetic macrocycle. In some embodiments, the energy-dependent process is primary active transport, secondary transport, endocytosis, or a combination thereof. In some embodiments, the energy-dependent process is active transport. In some embodiments, the energy-independent process is passive diffusion, facilitated diffusion, filtration, or a combination thereof. In some embodiments, the energy-independent process is passive transport.


In some embodiments, the peptidomimetic macrocycle or pharmaceutically acceptable salt thereof binds to HDM2 with a KD value of 1×10−7 M or less. In some embodiments, the peptidomimetic macrocycle or pharmaceutically acceptable salt thereof binds to HDM2 or HDM4 with a KD value of 1×10−7 M or less. In some embodiments, the peptidomimetic macrocycle or pharmaceutically acceptable salt thereof binds to HDM4 with a KD value of 1×10−7 M or less. In some embodiments, the peptidomimetic macrocycle or pharmaceutically acceptable salt thereof binds to a PB1 peptide binding site of a PA protein with a KD value of 1×10−7 M or less. In some embodiments, the peptidomimetic macrocycle or pharmaceutically acceptable salt thereof binds to a PB2 peptide binding site of a PB1 protein with a KD value of 1×10−7 M or less. In some embodiments, the peptidomimetic macrocycle or pharmaceutically acceptable salt thereof binds to viral polymerase, for example, a RNA-dependent RNA polymerase with a KD value of 1×10−7 M or less. In some embodiments, the peptidomimetic macrocycle or pharmaceutically acceptable salt thereof inhibits an influenza RNA-dependent RNA polymerase. In some embodiments, the virus is influenza virus. In some embodiments, the peptidomimetic macrocycle is capable of competing with the binding of a peptide of the sequence MDVNPTLLFLKVPAQ or MERIKELRNLM to the viral RNA-dependent RNA polymerase. In some embodiments, the peptidomimetic macrocycle or pharmaceutically acceptable salt thereof binds to MCL-1, BCL-XL, BCL-2, or a combination thereof with a KD value of 1×10−7 M or less. In some embodiments, the peptidomimetic macrocycle or pharmaceutically acceptable salt thereof binds to MCL-1 with a KD value of 1×10−7 M or less. In some embodiments, the peptidomimetic macrocycle or pharmaceutically acceptable salt thereof binds to BCL-XL with a KD value of 1×10−7 M or less. In some embodiments, the peptidomimetic macrocycle or pharmaceutically acceptable salt thereof binds to BCL-2 with a KD value of 1×10−7 M or less.


In some embodiments, the peptidomimetic macrocycle or pharmaceutically acceptable salt thereof has an IC50 value of 100 nM or less to a target protein. In some embodiments, the peptidomimetic macrocycle or pharmaceutically acceptable salt thereof has an EC50 value of 100 μM or less.


In some embodiments, the peptidomimetic macrocycle or pharmaceutically acceptable salt thereof has an IC50 value of 10 nM or less to a target protein. In some embodiments, the peptidomimetic macrocycle or pharmaceutically acceptable salt thereof has an EC50 value of 10 μM or less. In some embodiments, the peptidomimetic macrocycle or pharmaceutically acceptable salt thereof has an IC50 value of 1 nM or less to a target protein. In some embodiments, the peptidomimetic macrocycle or pharmaceutically acceptable salt thereof has an EC50 value of 1 μM or less.


In some embodiments, the peptidomimetic macrocycle or pharmaceutically acceptable salt thereof has a penetration efficiency value of 100 or less. In some embodiments, the peptidomimetic macrocycle or pharmaceutically acceptable salt thereof has a penetration efficiency value of 10 or less. In some embodiments, the peptidomimetic macrocycle or pharmaceutically acceptable salt thereof has a penetration efficiency value of 1 or less.


In some embodiments, the peptidomimetic macrocycle penetrates cell membranes by an energy-dependent process and binds to an intracellular target with a KD value of 1×10−7 M or less. In some embodiments, the energy-dependent process comprises primary active transport, secondary transport, or endocytosis. In some embodiments, the energy-dependent process comprises active transport. In some embodiments, the peptidomimetic macrocycle penetrates cell membranes by an energy-independent process and binds to an intracellular target with a KD value of 1×10−7 M or less. In some embodiments, the energy-independent process comprises passive diffusion, facilitated diffusion, or filtration. In some embodiments, the energy-independent process comprises passive transport.


In some embodiments, the amount of the buffering agent in the aqueous pharmaceutical formulations of the disclosure is 0.001-10% w/v, the stabilizing agent in the aqueous pharmaceutical formulations of the disclosure is 0.001-10% w/v and, the amount of the tonicity agent in the aqueous pharmaceutical formulations of the disclosure 1.0-10% w/v.


The pharmaceutically acceptable salt of the peptidomimetic macrocycle can be a sodium salt. In some examples, the pharmaceutically acceptable salt of the peptidomimetic macrocycle can be a potassium, lithium, calcium, zinc or magnesium salt.


Any suitable amount of the peptidomimetic macrocycle can be used in the aqueous pharmaceutical formulations of the disclosure. In some examples, the amount of the peptidomimetic macrocycle present in the aqueous pharmaceutical formulation can be from about 0.1-10% w/v. For example, the amount of the peptidomimetic macrocycle present in the aqueous pharmaceutical formulation can be about 1% w/v, 1.5% w/v, or 2% w/v. In some examples, the concentration of the peptidomimetic macrocycle present in the aqueous pharmaceutical formulation is about 15-100 mg/mL. In some examples, the concentration of the peptidomimetic macrocycle present in the aqueous pharmaceutical formulation is about 15-50 mg/mL. In some examples, the concentration of the peptidomimetic macrocycle present in the aqueous pharmaceutical formulation is about 15, 20, 25, or 50 mg/mL.


Any suitable buffering agent can be used in the aqueous pharmaceutical formulations described herein. In some examples, the buffering agent is selected from a group consisting of ammonia solution, calcium carbonate, tribasic calcium phosphate, citric acid dihydrate, citric acid monohydrate, dibasic sodium phosphate, diethanolamine, malic acid, monobasic sodium phosphate, monoethanolamine, monosodium glutamate, phosphoric acid, phosphate-citrate buffer (dibasic sodium phosphate and citric acid), potassium citrate, sodium acetate, sodium bicarbonate, sodium borate, sodium citrate dehydrate, sodium hydroxide, sodium lactate, sodium carbonate, and triethanolamine (tris(hydroxymethyl)aminomethane). In some examples, the buffering agent is a phosphate buffer. In some examples, the buffering agent is selected from a group consisting of phosphoric acid, dibasic sodium phosphate, monobasic sodium phosphate or a mixture thereof. In some examples, the buffering agent is 20 mM phosphate buffer


The amount of the buffering agent in the aqueous pharmaceutical formulations of the disclosure can be from about 0.001-10% w/v. In some examples, the amount of the buffering agent in the aqueous pharmaceutical formulations of the disclosure is from about 0.01-10% w/v. In some examples, the amount of the buffering agent in the aqueous pharmaceutical formulations of the disclosure is from about 0.01-5% w/v. In some examples, the amount of the buffering agent in the aqueous pharmaceutical formulations of the disclosure is from about 0.01-1% w/v. In some examples, the amount of the buffering agent present in the aqueous pharmaceutical formulations of the disclosure is about 0.2% w/v.


The stabilizing agent in the aqueous pharmaceutical formulations of the disclosure can be a non-ionic stabilizing agent. In some examples, the stabilizing agent is a fatty acid ester. In some examples, the stabilizing agent can be a surfactant. In some for examples, the stabilizing agent is a non-ionic surfactant. In some for examples, the stabilizing agent is an anti-oxidant. In some examples the stabilizing agent can be selected from a group consisting of polyoxyethylene glycol alkyl ethers, polyoxypropylene glycol alkyl ethers, glucoside alkyl ethers, polyoxyethylene glycol octylphenol ethers, polyoxyethylene glycol alkylphenol ethers, glycerol alkyl esters, polyoxyethylene glycol sorbitan alkyl esters, sorbitan alkyl esters, cocamide MEA, cocamide DEA, dodecyldimethylamine oxide, block copolymers of polyethylene glycol and polypropylene glycol, and polyethoxylated tallow amine. In some examples, the stabilizing agent can be a polyoxyethylene sorbitan fatty acid ester. In some examples, stabilizing agent can be polysorbate 20, polysorbate 21, polysorbate 40, polysorbate 60, polysorbate 61, polysorbate 65, polysorbate 80, polysorbate 81, polysorbate 85 or polysorbate 120. In some examples, the stabilizing agent can be polysorbate 20.


The amount of the stabilizing agent present in the aqueous pharmaceutical formulation is from about 0.001-10% w/v, for example from about 0.01-0.05% w/v. In some examples, the amount of the stabilizing agent present in the aqueous pharmaceutical formulations is about 0.03% w/v. In some examples, the aqueous pharmaceutical formulations comprise 250-350 ppm polysorbate 20. The aqueous pharmaceutical formulation of the disclosure can be a solution. In some examples, the aqueous pharmaceutical formulations can be sterile. In some examples, the aqueous pharmaceutical formulations can be colorless. In some examples, the aqueous pharmaceutical formulations can be a frozen solution. In some examples, the aqueous pharmaceutical formulation can be refrigerated solution.


In some examples, the aqueous pharmaceutical formulations can be particulate-free. In some examples, the aqueous pharmaceutical formulations comprise less than about 6,000 particles of size ≧10 μm in about 5 mL of the aqueous formulation. In some examples, the aqueous pharmaceutical formulations comprise less than about 600 particles of size ≧25 μm in about 5 mL of the aqueous formulation.


In some examples, the aqueous pharmaceutical formulations are dissolved into a diluent prior to administration into a subject. The diluent can be water for injection. In some examples, thee diluent can be solution of dextrose in water. The amount of the diluent can be from about 50-99% w/v. In some examples, the amount of the diluent can be about 90% w/v.


In some examples, the tonicity agent in the aqueous pharmaceutical formulations of the disclosure can be a non-ionic tonicity agent. In some examples, the tonicity agent can be a sugar or a sugar alcohol. In some examples, the tonicity agent can be a mono- or a disaccharide. In some cases, the tonicity agent can be selected from a groups consisting of glucose, fructose, galactose, sucrose, lactose, maltose, trehalose, and mixtures thereof. In some examples, the tonicity agent can be mannitol, glycerin, or a combination thereof. In some examples the tonicity agent can be D-trehalose.


The amount of the tonicity agent present in the aqueous pharmaceutical formulations can be from about 1-15% w/v. In some examples, the amount of the tonicity agent present in the aqueous pharmaceutical formulations can be about 8% w/v. The concentration of the tonicity agent can be from about 200-300 mM. In some examples, the concentration of the tonicity agent is 240 mM.


The pH of the aqueous pharmaceutical formulations of the disclosure can be from about 4.0-9.0. In some examples the pH of the aqueous pharmaceutical formulations of the disclosure is from about 4.5-8.5. In some examples the pH of the aqueous pharmaceutical formulations of the disclosure is from about 5.0-8.0. In some examples the pH of the aqueous pharmaceutical formulations of the disclosure is from about 5.5-7.5. In some examples the pH of the aqueous pharmaceutical formulations of the disclosure is from about 7.0-7.5.


The aqueous pharmaceutical formulations of the disclosure can be stable for at least two years at a temperature of about −20° C.-25° C. In some examples, the aqueous pharmaceutical formulations can be stable for at least one year at a temperature of about −20° C.-25° C. In some examples, the aqueous pharmaceutical formulations can be stable for at least 6 months at a temperature of about −20° C.-25° C. In some examples, the aqueous pharmaceutical formulations can be stable for at least 3 months at a temperature of about −20° C.-25° C. In some examples, the aqueous pharmaceutical formulations can be stable for at least 3 months at a temperature of about 45° C. In some examples, the aqueous pharmaceutical formulations can be stable for at least 6 months at a temperature of about 45° C. In some examples, the aqueous pharmaceutical formulations can be stable for at least 3 weeks at a temperature of about 75° C. In some examples, the aqueous pharmaceutical formulations can be stable for at least 1.5 weeks at a temperature of about 75° C.


In some examples, the aqueous pharmaceutical formulations upon storage for 24 months at from about 2° C.-8° C. can comprise at least 95% of the initial amount of the peptidomimetic macrocycle. In some examples, the aqueous pharmaceutical formulations upon storage for 12 months at from about 2° C.-8° C. can comprise at least 95% of the initial amount of the peptidomimetic macrocycle. In some examples, the aqueous pharmaceutical formulations upon storage for 6 months at from about 2° C.-8° C. can comprise at least 95% of the initial amount of the peptidomimetic macrocycle. In some cases, the aqueous pharmaceutical formulations upon storage for 3 months at from about 2° C.-8° C. can comprise at least 95% of the initial amount of the peptidomimetic macrocycle.


The osmolality of the aqueous pharmaceutical formulations of the disclosure can be from about 100-600 milliosmoles per kilogram, for example from about 220-400 milliosmoles per kilogram.


The endotoxin level of the aqueous pharmaceutical formulations of the disclosure can be at most 2.0, 4.0, 6.0, 8.0 or 10 EU/mL2. In some examples, the endotoxin level of the aqueous pharmaceutical formulations can be at most 4.5 EU/mL2.


The aqueous pharmaceutical formulations of the disclosure can be contained in a container. The container can be a single use container or a multi-use container. In some examples, the container can be a glass vial. In some examples, the container is a pre-filled syringe to be used alone or in an injection device. In some examples, the container is a cartridge for a pen injection system, or a glass ampoule. In some examples, the container is a 20 mL, 10 mL, or a 5 mL glass serum vial. The glass vial can comprise borosilicate glass or polycarbonate. The container can comprise stopper and/or cap. The stopper can be a rubber stopper. The container can comprise a seal for example an aluminum seal.


The aqueous pharmaceutical formulations of the disclosure can be prepared by adding the peptidomimetic macrocycle or a pharmaceutically acceptable salt thereof to water or an aqueous solution, wherein the peptidomimetic macrocycle is capable of binding to the MDM2 and/or MDMX proteins. The pharmaceutically acceptable salt can be a sodium salt, potassium salt or calcium salt. In some examples, the aqueous pharmaceutical formulations can be prepared by dissolving a sodium salt of the peptidomimetic macrocycle in water. The method can further comprise adding a buffering agent and a stabilizing agent.


The aqueous pharmaceutical formulations of the disclosure can be suitable for administration to a subject without reconstitution or dilution. In some examples, the aqueous pharmaceutical formulations can require reconstitution prior to administration to a subject. Reconstitution can involve dilution with an aqueous solution, for example with a solution of dextrose in water.


In some embodiments, the micelle forming agent in solutol-HS-15. In some embodiments, the peptidomimetic macrocycle forms a micelle in absence of a surfactant. In some embodiments, the the aqueous pharmaceutical formulation does not form micelle.


The aqueous pharmaceutical formulations of the disclosure can further comprise a preservative. The preservative can be selected from a group consisting of benzalkonium chloride, EDTA and combination thereof. In some examples, the preservative can be selected from a group consisting of phenol, meta-cresol and combination thereof.


The aqueous pharmaceutical formulations of the disclosure can further comprise a co-solvent. The co-solvent can be selected from a group consisting of dimethyl sulfoxide (DMSO), N-methylpyrrolidone (NMP), dimethylacetamide (DMA) and combinations thereof.


The molecular weight of the peptidomimetic macrocycle can be in the range of 1800-2000 D. In some examples, the peptidomimetic macrocycle has an observed mass (m/e) in the range of 900-1000 D.


In another aspect the disclosure provides an aqueous pharmaceutical formulation comprising a peptidomimetic macrocycle that binds to MDM2 and/or MDMX proteins or a pharmaceutically acceptable salt thereof, phosphate buffering agent, D-trehalose, and polysorbate 20, wherein the peptidomimetic macrocycle comprises an amino acid sequence which is at least about 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95% identical to an amino acid sequence in any of Table 1, Table 1a, Table 1b, and Table 1c, In some examples, the amount of the peptidomimetic macrocycle in the aqueous pharmaceutical formulation can be equal to or greater than 15 mg/mL. In some examples, the amount of D-trehalose in the aqueous pharmaceutical formulations can be about 8% w/v. The amount of polysorbate 20 in the aqueous pharmaceutical formulations can be about 0.03% w/v. In some examples, the aqueous pharmaceutical formulations comprise less than 2% w/v of any micelle forming agent.


The peptidomimetic macrocycle in the aqueous pharmaceutical formulations can comprise an amino acid sequence which is at least about 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95% identical to an amino acid sequence in any of Table 1, Table 1a, Table 1b, and Table 1c, and wherein the peptidomimetic macrocycle has the formula:




embedded image


wherein:

    • each A, C, and D is independently an amino acid;
    • each B is independently an amino acid,




embedded image


[—NH-L3-CO—], [—NH-L3-SO2—], or [—NH-L3-];

    • each E is independently an amino acid selected from the group consisting of Ala (alanine), D-Ala (D-alanine), Aib (α-aminoisobutyric acid), Sar (N-methyl glycine), and Ser (serine);


each R1 and R2 is independently —H, alkyl, alkenyl, alkynyl, arylalkyl, cycloalkyl, cycloalkylalkyl, heteroalkyl, or heterocycloalkyl, unsubstituted or substituted with halo; or forms a macrocycle-forming linker L′ connected to the alpha position of one of said D or E amino acids;

    • each R3 independently is hydrogen, alkyl, alkenyl, alkynyl, arylalkyl, heteroalkyl, cycloalkyl, heterocycloalkyl, cycloalkylalkyl, cycloaryl, or heterocycloaryl, optionally substituted with R5; each L and L′ is independently a macrocycle-forming linker;


each L3 is independently alkylene, alkenylene, alkynylene, heteroalkylene, cycloalkylene, heterocycloalkylene, cycloarylene, heterocycloarylene, or [—R4—K—R4-]n, each being optionally substituted with R5;


each R4 is independently alkylene, alkenylene, alkynylene, heteroalkylene, cycloalkylene, heterocycloalkylene, arylene, or heteroarylene;


each K is independently O, S, SO, SO2, CO, CO2, or CONR3;


each R5 is independently halogen, alkyl, —OR6, —N(R6)2, —SR6, —SOR6, —SO2R6, —CO2R6, a fluorescent moiety, a radioisotope or a therapeutic agent;


each R6 is independently —H, alkyl, alkenyl, alkynyl, arylalkyl, cycloalkylalkyl, heterocycloalkyl, a fluorescent moiety, a radioisotope or a therapeutic agent;


each R7 is independently —H, alkyl, alkenyl, alkynyl, arylalkyl, cycloalkyl, heteroalkyl, cycloalkylalkyl, heterocycloalkyl, cycloaryl, or heterocycloaryl, optionally substituted with R5, or part of a cyclic structure with a D residue;


each R8 is independently —H, alkyl, alkenyl, alkynyl, arylalkyl, cycloalkyl, heteroalkyl, cycloalkylalkyl, heterocycloalkyl, cycloaryl, or heterocycloaryl, optionally substituted with R5, or part of a cyclic structure with an E residue;


each v is independently an integer from 1-1000;


each w is independently an integer from 3-1000;


u is an integer from 1-10;


each x, y and z is independently an integer from 0-10; and


each n is independently an integer from 1-5.


In some embodiments, the peptidomimetic macrocycle has formula:




embedded image


wherein:


each of Xaa3, Xaa5, Xaa6, Xaa7, Xaa8, Xaa9, and Xaa10 is individually an amino acid, wherein at least three of Xaa3, Xaa5, Xaa6, Xaa7, Xaa8, Xaa9, and Xaa10 are the same amino acid as the amino acid at the corresponding position of the sequence Phe3-X4-His5-Tyr6-Trp7-Ala8-Gln9-Leu10-X11-Ser12 or Phe3-X4-Glu5-Tyr6-Trp7-Ala8-Gln9-Leu10/Cba10-X11-Ala12, where each X is an amino acid;


each D and E is independently an amino acid;


each R1 and R2 are independently —H, alkyl, alkenyl, alkynyl, arylalkyl, cycloalkyl, cycloalkylalkyl, heteroalkyl, or heterocycloalkyl, unsubstituted or substituted with halo-; or at least one of R1 and R2 forms a macrocycle-forming linker L′ connected to the alpha position of one of said D or E amino acids;


each L or L′ is independently a macrocycle-forming linker;


each R5 is independently halogen, alkyl, —OR6, —N(R6)2, —SR6, —SORE, —SO2R6, —CO2R6, a fluorescent moiety, a radioisotope or a therapeutic agent;


each R6 is independently —H, alkyl, alkenyl, alkynyl, arylalkyl, cycloalkylalkyl, heterocycloalkyl, a fluorescent moiety, a radioisotope or a therapeutic agent;


R7 is —H, alkyl, alkenyl, alkynyl, arylalkyl, cycloalkyl, heteroalkyl, cycloalkylalkyl, heterocycloalkyl, cycloaryl, or heterocycloaryl, optionally substituted with R5, or part of a cyclic structure with a D residue;


R8 is —H, alkyl, alkenyl, alkynyl, arylalkyl, cycloalkyl, heteroalkyl, cycloalkylalkyl, heterocycloalkyl, cycloaryl, or heterocycloaryl, optionally substituted with R5, or part of a cyclic structure with an E residue;


v is an integer from 1-1000; and


w is an integer from 0-1000.


In some examples, at least one of the macrocycle-forming linker in the Formulas provided herein has a formula -L1-L2-, wherein


L1 and L2 are independently alkylene, alkenylene, alkynylene, heteroalkylene, cycloalkylene, heterocycloalkylene, cycloarylene, heterocycloarylene, or [—R4—K—R4-]11, each being optionally substituted with R5;


each R4 is independently alkylene, alkenylene, alkynylene, heteroalkylene, cycloalkylene, heterocycloalkylene, arylene, or heteroarylene;


each K is independently O, S, SO, SO2, CO, CO2, or CONR3; and


each R3 independently is hydrogen, alkyl, alkenyl, alkynyl, arylalkyl, heteroalkyl, cycloalkyl, heterocycloalkyl, cycloalkylalkyl, cycloaryl, or heterocycloaryl, optionally substituted with R5;


each n is independently an integer from 1-5.


In some embodiments w is an integer from 3-1000, for example 3-500, 3-200, 3-100, 3-50, 3-30, 3-20, or 3-10. In some examples, Xaa5 is Glu or an amino acid analog thereof. In some examples each E is independently an amino acid selected from Ala (alanine), D-Ala (D-alanine), Aib (α-aminoisobutyric acid), Sar (N-methyl glycine), and Ser (serine). In some examples, [D]v is -Leu1-Thr2. In some examples, w is 3-6. In some examples, w is 6-10. In some examples, w is 6. In some examples, v is 1-10. In some examples, v is 2-10. In some examples, v is 2-5. In some examples, v is 2.


In some examples, L1 and L2 in the Formulas above are independently alkylene, alkenylene, alkynylene, heteroalkylene, cycloalkylene, heterocycloalkylene, cycloarylene, or heterocycloarylene, each being optionally substituted with R5. In some examples, L1 and L2 are independently alkylene or alkenylene. In some examples, L is alkylene, alkenylene, or alkynylene. In some examples, L is alkylene. In some examples, L is C3-C16 alkylene. In some examples, L is C10-C14 alkylene.


In some examples, R1 and R2 in the Formulas above are independently —H, alkyl, alkenyl, alkynyl, arylalkyl, cycloalkyl, cycloalkylalkyl, heteroalkyl, or heterocycloalkyl, unsubstituted or substituted with halo-. In some examples, R1 and R2 are H. In some examples, R1 and R2 are independently alkyl. In some examples, R1 and R2 are methyl.


In some examples, x+y+z in the Formulas here is 6.


In some examples, in the Formulas here, u is 1.


In some examples, each E is Ser or Ala or an analog thereof.


In some examples, the aqueous pharmaceutical formulations comprise at least one amino acid which is an amino acid analog.


In some examples, the peptidomimetic macrocycle in the aqueous pharmaceutical formulations is a peptidomimetic macrocycle shown in Table 1c.


In another aspect, the disclosure provides a method of treating cancer in a subject, the method comprising administering to the subject a therapeutically effective amount of an aqueous pharmaceutical formulation of the disclosure.


In another aspect, the disclosure provides a method of treating cancer in a subject comprising administering to the subject an aqueous pharmaceutical formulation a peptidomimetic macrocycle peptidomimetic macrocycle that is capable of binding to the MDM2 and/or MDMX proteins and wherein the amount of the peptidomimetic macrocycle in the aqueous pharmaceutical formulation is greater than 15 mg/mL and wherein the aqueous pharmaceutical formulation contains less than 2% w/v of any micelle forming agent. The aqueous pharmaceutical formulation can further comprise a buffering agent, a stabilizing agent, and/or tonicity agent.


The cancer can be selected from the group consisting of head and neck cancer, melanoma, lung cancer, breast cancer, and glioma. In some examples, the cancer is selected from a group consisting of bladder cancer, bone cancer, breast cancer, cervical cancer, CNS cancer, colon cancer, ocular tumor, renal cancer, liver cancer, lung cancer, pancreatic cancer, choriocarcinoma (tumor of the placenta), prostate cancer, sarcoma, skin cancer, soft tissue cancer, gastric cancer, gall bladder cancer, biliary cancer, renal cancer, neoblastoma, or neuroendocrine cancer.


In another aspect, the disclosure provides a method of modulating the activity of p53 and/or MDM2 and/or MDMX in a subject comprising administering to the subject an aqueous pharmaceutical formulation comprising a peptidomimetic macrocycle capable of binding to the MDM2 and/or MDMX proteins, wherein the amount of the peptidomimetic macrocycle in the aqueous pharmaceutical formulation is greater than 15 mg/mL and wherein the aqueous pharmaceutical formulation contains less than 2% w/v of any micelle forming agent. The aqueous pharmaceutical formulation can further comprise a buffering agent, a tonicity agent, and/or a stabilizing agent.


In another aspect, the disclosure provides a method of antagonizing the interaction between p53 and MDM2 and/or between p53 and MDMX proteins in a subject, the method comprising administering to the subject a aqueous pharmaceutical formulation comprising a peptidomimetic macrocycle capable of binding to the MDM2 and/or MDMX proteins, wherein the amount of the peptidomimetic macrocycle in the aqueous pharmaceutical formulation is greater than 15 mg/mL and wherein the aqueous pharmaceutical formulation contains less than 2% w/v of any micelle forming agent. The aqueous pharmaceutical formulation can further comprise a buffering agent, a stabilizing agent and/or a tonicity agent.


In another aspect, the disclosure provides a method of making an aqueous pharmaceutical formulation comprising adding greater than 15 mg/mL of a peptidomimetic macrocycle or a pharmaceutically acceptable salt thereof to water or an aqueous solution, wherein the peptidomimetic macrocycle is capable of binding to the MDM2 and/or MDMX proteins and wherein the aqueous pharmaceutical formulation comprises less than 2% w/v of any micelle forming agent. In some examples, the method comprises adding a sodium salt of the peptidomimetic macrocycle to water or an aqueous solution. The aqueous solution can comprise a buffering agent. The aqueous solution can also comprise a tonicity agent. The aqueous solution can further comprise a stabilizing agent.


The method can further comprise adjusting the pH of the solution comprising the buffering agent and the stabilizing agent during the addition of the peptidomimetic macrocycle. The pH can be adjusted by addition of a pH adjusting agent. In some examples, the pH is adjusted to be in the range of from about 6.0-8.0.


The amount of the pH adjusting agent added can be from about 0.01-10% w/v, for example about 0.09% w/v. The pH adjusting agent can comprise an acid or a base. In some examples, the pH adjusting agent comprises phosphoric acid. In some examples, the pH adjusting agent comprises sodium hydroxide, for example 0.1 N NaOH.


The method can further comprise filtration of the aqueous pharmaceutical formulation obtained after the addition of the peptidomimetic macrocycle to the aqueous solution. The filtration is performed under vacuum or under pressure. The filtration can comprise sterilizing filtration. In some examples, the filtration comprises use of membrane filter. In some examples, the membrane filter comprises cellulose or cellulose derivative, cellulosic ester (MCE), comprise polytetrafluoroethylene (PTFE), polyvinylidene, polyvinylidene chloride, or polyvinylidene fluoride. The membrane filter can have a pore size in the range from about 10 nm-10 μm, for example 0.2 μm. The filtration can result in clarification of the aqueous formulation. The filtering can involve passing the aqueous pharmaceutical formulation through one or more membrane filters.


In another aspect, the disclosure provides a kit comprising, in suitable container means, an aqueous pharmaceutical formulation comprising a peptidomimetic macrocycle and instructions for administration of the aqueous pharmaceutical formulation to a human subject, wherein the peptidomimetic macrocycle is capable of binding to MDM2 and/or MDMX proteins and wherein the amount of the peptidomimetic macrocycle in the aqueous pharmaceutical formulation is greater than 15 mg/mL and the aqueous pharmaceutical formulation comprises less than 2% w/v of any micelle forming agent. The instructions can be for intravenous administration of the aqueous formulation.


In some embodiments, the amount of aqueous pharmaceutical formulation made is about 1 liter to about 100 liters. In some embodiments, the amount of aqueous pharmaceutical formulation made is about 10 litres to about 100 litres. In some embodiments the amount of aqueous pharmaceutical formulation made is about 10 liters to about 50 liters.


A kit for formulating an aqueous pharmaceutical formulation comprising, in suitable container means, a peptidomimetic macrocycle capable of binding to the MDM2 and/or MDMX proteins or a pharmaceutically acceptable salt thereof, wherein the amount of the peptidomimetic macrocycle in the aqueous pharmaceutical formulation is greater than 15 mg/mL and the aqueous pharmaceutical formulation comprises less than 2% w/v of any micelle forming agent.


INCORPORATION BY REFERENCE

All publications, patents, and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication, patent, or patent application was specifically and individually indicated to be incorporated by reference.





BRIEF DESCRIPTION OF THE DRAWINGS

The novel features of the disclosure are set forth with particularity in the appended claims. A better understanding of the features and advantages of the present disclosure will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the disclosure are utilized, and the accompanying drawings of which:



FIG. 1. Shows a flow diagram of the manufacturing process of an exemplary aqueous pharmaceutical formulation of the disclosure.



FIG. 2. Shows the observation pictures for Example 5.



FIG. 3 Shows a plot of viable SJSA-1 cells (%) vs. log concentration (μM) of indicated peptide after incubation of the cells with the peptide for 72 hr in 10% serum.



FIG. 4 Shows the 12-month stability results for Aileron peptide-1. The data support greater than 2 year shelf life at −20-5° C.





DETAILED DESCRIPTION OF THE DISCLOSURE

While preferred embodiments of the present disclosure have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the disclosure. It should be understood that various alternatives to the embodiments of the disclosure described herein can be employed in practicing the disclosure. It is intended that the following claims define the scope of the disclosure and that methods and structures within the scope of these claims and their equivalents be covered thereby.


DEFINITIONS

As used herein, the term “macrocycle” refers to a molecule having a chemical structure including a ring or cycle formed by at least 9 covalently bonded atoms.


As used herein, the term “peptidomimetic macrocycle” or “crosslinked polypeptide” refers to a compound comprising a plurality of amino acid residues joined by a plurality of peptide bonds and at least one macrocycle-forming linker which forms a macrocycle between a first naturally-occurring or non-naturally-occurring amino acid residue (or analog) and a second naturally-occurring or non-naturally-occurring amino acid residue (or analog) within the same molecule. Peptidomimetic macrocycle include embodiments where the macrocycle-forming linker connects the a carbon of the first amino acid residue (or analog) to the a carbon of the second amino acid residue (or analog). The peptidomimetic macrocycles optionally include one or more non-peptide bonds between one or more amino acid residues and/or amino acid analog residues, and optionally include one or more non-naturally-occurring amino acid residues or amino acid analog residues in addition to any which form the macrocycle. A “corresponding uncrosslinked polypeptide” when referred to in the context of a peptidomimetic macrocycle is understood to relate to a polypeptide of the same length as the macrocycle and comprising the equivalent natural amino acids of the wild-type sequence corresponding to the macrocycle.


As used herein, the term “pharmaceutically acceptable salt” refers to those salts which are suitable for pharmaceutical use, preferably for use in humans and lower animals without undue irritation, allergic response and the like. Pharmaceutically acceptable salts of amines, carboxylic acids, and other types of compounds, are well known in the art. For example, S. M. Berge, et al., describe pharmaceutically acceptable salts in detail in J Pharmaceutical Sciences, 66: 1-19 (1977), incorporated herein by reference. The salts can be prepared in situ during the final isolation and purification of the peptidomimetic macrocycles of the invention, or separately by reacting a free base or free acid function with a suitable reagent, as described generally below. For example, a free base function can be reacted with a suitable acid. Suitable pharmaceutically acceptable salts can, include metal salts such as alkali metal salts, e. g. sodium, potassium, and lithium salts; and alkaline earth metal salts, e. g. calcium or magnesium salts. Examples of pharmaceutically acceptable, nontoxic acid addition salts are salts of an amino group formed with inorganic acids such as hydrochloric acid, hydrobromic acid, hydroiodic acid, phosphoric acid, sulfuric acid and perchloric acid or with organic acids such as acetic acid, oxalic acid, maleic acid, tartaric acid, citric acid, succinic acid or malonic acid or by using other methods used in the art such as ion exchange. Other pharmaceutically acceptable salts include adipate, alginate, ascorbate, aspartate, benzoate, bisulfate, borate, butyrate, camphorate, camphorsulfonate, citrate, cyclopentanepropionate, digluconate, dodecylsulfate, formate, fumarate, glucoheptonate, glycerophosphate, gluconate, hernisulfate, heptanoate, hexanoate, hydroiodide, 2-hydroxy-ethanesulfonate, lactobionate, lactate, laurate, lauryl sulfate, malate, maleate, malonate, methanesulfonate, nicotinate, nitrate, oleate, oxalate, palmitate, pectinate, persulfate, 3-phenylpropionate, phosphate, picrate, pivalate, propionate, stearate, succinate, sulfate, tartrate, thiocyanate, p-toluenesulfonate, undecanoate, valerate salts, and the like.


As used herein, the term “stability” can refer to chemical stability and/or physical stability. As used herein, the phrase chemical stability means the ability of a compound to maintain its chemical identity over time. Accordingly, stability implies the ability of a chemical species to resist oxidation or other degradation, for example. As used herein, the phrase physical stability means the ability of a composition to maintain consistent physical properties over time. The ability of a composition to maintain a consistent disintegration time over time is exemplary of physical stability. In some embodiments, stability can also refer to the maintenance of a defined secondary structure in solution by a peptidomimetic macrocycle as measured by circular dichroism, NMR or another biophysical measure, or resistance to proteolytic degradation in vitro or in vivo. Non-limiting examples of secondary structures contemplated herein are α-helices, 310 helices, β-turns, and β-pleated sheets.


The term “amino acid” refers to a molecule containing both an amino group and a carboxyl group. Suitable amino acids include, without limitation, both the D- and L-isomers of the naturally-occurring amino acids, as well as non-naturally occurring amino acids prepared by organic synthesis or other metabolic routes. The term amino acid, as used herein, includes, without limitation, α-amino acids, natural amino acids, non-natural amino acids, and amino acid analogs.


The term “α-amino acid” refers to a molecule containing both an amino group and a carboxyl group bound to a carbon which is designated the α-carbon.


The term “β-amino acid” refers to a molecule containing both an amino group and a carboxyl group in a β configuration.


The term “naturally occurring amino acid” refers to any one of the twenty amino acids commonly found in peptides synthesized in nature, and known by the one letter abbreviations A, R, N, C, D, Q, E, G, H, I, L, K, M, F, P, S, T, W, Y and V.


The following table shows a summary of the properties of natural amino acids:


















3-
1-
Side-
Side-chain




Letter
Letter
chain
charge
Hydropathy


Amino Acid
Code
Code
Polarity
(pH 7.4)
Index




















Alanine
Ala
A
nonpolar
neutral
1.8


Arginine
Arg
R
polar
positive
−4.5


Asparagine
Asn
N
polar
neutral
−3.5


Aspartic acid
Asp
D
polar
negative
−3.5


Cysteine
Cys
C
polar
neutral
2.5


Glutamic acid
Glu
E
polar
negative
−3.5


Glutamine
Gln
Q
polar
neutral
−3.5


Glycine
Gly
G
nonpolar
neutral
−0.4


Histidine
His
H
polar
positive (10%)
−3.2






neutral (90%)



Isoleucine
Ile
I
nonpolar
neutral
4.5


Leucine
Leu
L
nonpolar
neutral
3.8


Lysine
Lys
K
polar
positive
−3.9


Methionine
Met
M
nonpolar
neutral
1.9


Phenylalanine
Phe
F
nonpolar
neutral
2.8


Proline
Pro
P
nonpolar
neutral
−1.6


Serine
Ser
S
polar
neutral
−0.8


Threonine
Thr
T
polar
neutral
−0.7


Tryptophan
Trp
W
nonpolar
neutral
−0.9


Tyrosine
Tyr
Y
polar
neutral
−1.3


Valine
Val
V
nonpolar
neutral
4.2









“Hydrophobic amino acids” include small hydrophobic amino acids and large hydrophobic amino acids. “Small hydrophobic amino acid” are glycine, alanine, proline, and analogs thereof. “Large hydrophobic amino acids” are valine, leucine, isoleucine, phenylalanine, methionine, tryptophan, and analogs thereof. “Polar amino acids” are serine, threonine, asparagine, glutamine, cysteine, tyrosine, and analogs thereof. “Charged amino acids” are lysine, arginine, histidine, aspartate, glutamate, and analogs thereof.


The term “amino acid analog” refers to a molecule which is structurally similar to an amino acid and which can be substituted for an amino acid in the formation of a peptidomimetic macrocycle Amino acid analogs include, without limitation, β-amino acids and amino acids where the amino or carboxy group is substituted by a similarly reactive group (e.g., substitution of the primary amine with a secondary or tertiary amine, or substitution of the carboxy group with an ester).


The term “non-natural amino acid” refers to an amino acid which is not one of the twenty amino acids commonly found in peptides synthesized in nature, and known by the one letter abbreviations A, R, N, C, D, Q, E, G, H, I, L, K, M, F, P, S, T, W, Y and V. Non-natural amino acids or amino acid analogs include, without limitation, structures according to the following:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


Amino acid analogs include β-amino acid analogs. Examples of β-amino acid analogs include, but are not limited to, the following: cyclic β-amino acid analogs; β-alanine; (R)-β-phenylalanine; (R)-1,2,3,4-tetrahydro-isoquinoline-3-acetic acid; (R)-3-amino-4-(1-naphthyl)-butyric acid; (R)-3-amino-4-(2,4-dichlorophenyl)butyric acid; (R)-3-amino-4-(2-chlorophenyl)-butyric acid; (R)-3-amino-4-(2-cyanophenyl)-butyric acid; (R)-3-amino-4-(2-fluorophenyl)-butyric acid; (R)-3-amino-4-(2-furyl)-butyric acid; (R)-3-amino-4-(2-methylphenyl)-butyric acid; (R)-3-amino-4-(2-naphthyl)-butyric acid; (R)-3-amino-4-(2-thienyl)-butyric acid; (R)-3-amino-4-(2-trifluoromethylphenyl)-butyric acid; (R)-3-amino-4-(3,4-dichlorophenyl)butyric acid; (R)-3-amino-4-(3,4-difluorophenyl)butyric acid; (R)-3-amino-4-(3-benzothienyl)-butyric acid; (R)-3-amino-4-(3-chlorophenyl)-butyric acid; (R)-3-amino-4-(3-cyanophenyl)-butyric acid; (R)-3-amino-4-(3-fluorophenyl)-butyric acid; (R)-3-amino-4-(3-methylphenyl)-butyric acid; (R)-3-amino-4-(3-pyridyl)-butyric acid; (R)-3-amino-4-(3-thienyl)-butyric acid; (R)-3-amino-4-(3-trifluoromethylphenyl)-butyric acid; (R)-3-amino-4-(4-bromophenyl)-butyric acid; (R)-3-amino-4-(4-chlorophenyl)-butyric acid; (R)-3-amino-4-(4-cyanophenyl)-butyric acid; (R)-3-amino-4-(4-fluorophenyl)-butyric acid; (R)-3-amino-4-(4-iodophenyl)-butyric acid; (R)-3-amino-4-(4-methylphenyl)-butyric acid; (R)-3-amino-4-(4-nitrophenyl)-butyric acid; (R)-3-amino-4-(4-pyridyl)-butyric acid; (R)-3-amino-4-(4-trifluoromethylphenyl)-butyric acid; (R)-3-amino-4-pentafluoro-phenylbutyric acid; (R)-3-amino-5-hexenoic acid; (R)-3-amino-5-hexynoic acid; (R)-3-amino-5-phenylpentanoic acid; (R)-3-amino-6-phenyl-5-hexenoic acid; (S)-1,2,3,4-tetrahydro-isoquinoline-3-acetic acid; (S)-3-amino-4-(1-naphthyl)-butyric acid; (S)-3-amino-4-(2,4-dichlorophenyl)butyric acid; (S)-3-amino-4-(2-chlorophenyl)-butyric acid; (S)-3-amino-4-(2-cyanophenyl)-butyric acid; (S)-3-amino-4-(2-fluorophenyl)-butyric acid; (S)-3-amino-4-(2-furyl)-butyric acid; (S)-3-amino-4-(2-methylphenyl)-butyric acid; (S)-3-amino-4-(2-naphthyl)-butyric acid; (S)-3-amino-4-(2-thienyl)-butyric acid; (S)-3-amino-4-(2-trifluoromethylphenyl)-butyric acid; (S)-3-amino-4-(3,4-dichlorophenyl)butyric acid; (S)-3-amino-4-(3,4-difluorophenyl)butyric acid; (S)-3-amino-4-(3-benzothienyl)-butyric acid; (S)-3-amino-4-(3-chlorophenyl)-butyric acid; (S)-3-amino-4-(3-cyanophenyl)-butyric acid; (S)-3-amino-4-(3-fluorophenyl)-butyric acid; (S)-3-amino-4-(3-methylphenyl)-butyric acid; (S)-3-amino-4-(3-pyridyl)-butyric acid; (S)-3-amino-4-(3-thienyl)-butyric acid; (S)-3-amino-4-(3-trifluoromethylphenyl)-butyric acid; (S)-3-amino-4-(4-bromophenyl)-butyric acid; (S)-3-amino-4-(4-chlorophenyl)-butyric acid; (S)-3-amino-4-(4-cyanophenyl)-butyric acid; (S)-3-amino-4-(4-fluorophenyl)-butyric acid; (S)-3-amino-4-(4-iodophenyl)-butyric acid; (S)-3-amino-4-(4-methylphenyl)-butyric acid; (S)-3-amino-4-(4-nitrophenyl)-butyric acid; (S)-3-amino-4-(4-pyridyl)-butyric acid; (S)-3-amino-4-(4-trifluoromethylphenyl)-butyric acid; (S)-3-amino-4-pentafluoro-phenylbutyric acid; (S)-3-amino-5-hexenoic acid; (S)-3-amino-5-hexynoic acid; (S)-3-amino-5-phenylpentanoic acid; (S)-3-amino-6-phenyl-5-hexenoic acid; 1,2,5,6-tetrahydropyridine-3-carboxylic acid; 1,2,5,6-tetrahydropyridine-4-carboxylic acid; 3-amino-3-(2-chlorophenyl)-propionic acid; 3-amino-3-(2-thienyl)-propionic acid; 3-amino-3-(3-bromophenyl)-propionic acid; 3-amino-3-(4-chlorophenyl)-propionic acid; 3-amino-3-(4-methoxyphenyl)-propionic acid; 3-amino-4,4,4-trifluoro-butyric acid; 3-aminoadipic acid; D-β-phenylalanine; β-leucine; L-β-homoalanine; L-β-homoaspartic acid γ-benzyl ester; L-β-homoglutamic acid δ-benzyl ester; L-β-homoisoleucine; L-β-homoleucine; L-β-homomethionine; L-β-homophenylalanine; L-β-homoproline; L-β-homotryptophan; L-β-homovaline; L-Nω-benzyloxycarbonyl-β-homolysine; No)-L-β-homoarginine; O-benzyl-L-β-homohydroxyproline; O-benzyl-L-β-homoserine; O-benzyl-L-R-homothreonine; O-benzyl-L-R-homotyrosine; γ-trityl-L-β-homoasparagine; (R)-β-phenylalanine; L-β-homoaspartic acid γ-t-butyl ester; L-β-homoglutamic acid δ-t-butyl ester; L-Nω-R-homolysine; Nδ-trityl-L-R-homoglutamine; Nω-2,2,4,6,7-pentamethyl-dihydrobenzofuran-5-sulfonyl-L-β-homoarginine; O-t-butyl-L-β-homohydroxy-proline; O-t-butyl-L-β-homoserine; O-t-butyl-L-R-homothreonine; O-t-butyl-L-R-homotyrosine; 2-aminocyclopentane carboxylic acid; and 2-aminocyclohexane carboxylic acid.


Amino acid analogs include analogs of alanine, valine, glycine or leucine. Examples of amino acid analogs of alanine, valine, glycine, and leucine include, but are not limited to, the following: α-methoxyglycine; α-allyl-L-alanine; α-aminoisobutyric acid; α-methyl-leucine; β-(1-naphthyl)-D-alanine; β-(1-naphthyl)-L-alanine; β-(2-naphthyl)-D-alanine; β-(2-naphthyl)-L-alanine; β-(2-pyridyl)-D-alanine; β-(2-pyridyl)-L-alanine; β-(2-thienyl)-D-alanine; β-(2-thienyl)-L-alanine; β-(3-benzothienyl)-D-alanine; β-(3-benzothienyl)-L-alanine; β-(3-pyridyl)-D-alanine; β-(3-pyridyl)-L-alanine; β-(4-pyridyl)-D-alanine; β-(4-pyridyl)-L-alanine; R-chloro-L-alanine; β-cyano-L-alanin; β-cyclohexyl-D-alanine; R-cyclohexyl-L-alanine; β-cyclopenten-1-yl-alanine; β-cyclopentyl alanine; β-cyclopropyl-L-Ala-OH-dicyclohexylammonium salt; β-t-butyl-D-alanine; β-t-butyl-L-alanine; γ-aminobutyric acid; L-α,β-diaminopropionic acid; 2,4-dinitro-phenylglycine; 2,5-dihydro-D-phenylglycine; 2-amino-4,4,4-trifluorobutyric acid; 2-fluoro-phenylglycine; 3-amino-4,4,4-trifluoro-butyric acid; 3-fluoro-valine; 4,4,4-trifluoro-valine; 4,5-dehydro-L-leu-OH.dicyclohexylammonium salt; 4-fluoro-D-phenylglycine; 4-fluoro-L-phenylglycine; 4-hydroxy-D-phenylglycine; 5,5,5-trifluoro-leucine; 6-aminohexanoic acid; cyclopentyl-D-Gly-OH.dicyclohexylammonium salt; cyclopentyl-Gly-OH.dicyclohexylammonium salt; D-α,β-diaminopropionic acid; D-α-aminobutyric acid; D-α-t-butylglycine; D-(2-thienyl)glycine; D-(3-thienyl)glycine; D-2-aminocaproic acid; D-2-indanylglycine; D-allylglycine-dicyclohexylammonium salt; D-cyclohexylglycine; D-norvaline; D-phenylglycine; β-aminobutyric acid; β-aminoisobutyric acid; (2-bromophenyl)glycine; (2-methoxyphenyl)glycine; (2-methylphenyl)glycine; (2-thiazoyl)glycine; (2-thienyl)glycine; 2-amino-3-(dimethylamino)-propionic acid; L-α,β-diaminopropionic acid; L-α-aminobutyric acid; L-α-t-butylglycine; L-(3-thienyl)glycine; L-2-amino-3-(dimethylamino)-propionic acid; L-2-aminocaproic acid dicyclohexyl-ammonium salt; L-2-indanylglycine; L-allylglycine-dicyclohexyl ammonium salt; L-cyclohexylglycine; L-phenylglycine; L-propargylglycine; L-norvaline; N-α-aminomethyl-L-alanine; D-α,γ-diaminobutyric acid; L-α,γ-diaminobutyric acid; β-cyclopropyl-L-alanine; (N-γ-(2,4-dinitrophenyl))-L-α,β-diaminopropionic acid; (N-β-1-(4,4-dimethyl-2,6-dioxocyclohex-1-ylidene)ethyl)-D-α,β-diaminopropionic acid; (N-γ-1-(4,4-dimethyl-2,6-dioxocyclohex-1-ylidene)ethyl)-L-α,β-diaminopropionic acid; (N-γ-4-methyltrityl)-L-α,β-diaminopropionic acid; (N-β-allyloxycarbonyl)-L-α,β-diaminopropionic acid; (N-γ-1-(4,4-dimethyl-2,6-dioxocyclohex-1-ylidene)ethyl)-D-α,γ-diaminobutyric acid; (N-γ-1-(4,4-dimethyl-2,6-dioxocyclohex-1-ylidene)ethyl)-L-α,γ-diaminobutyric acid; (N-γ-4-methyltrityl)-D-α,γ-diaminobutyric acid; (N-γ-4-methyltrityl)-L-α,γ-diaminobutyric acid; (N-γ-allyloxycarbonyl)-L-α,γ-diaminobutyric acid; D-α,γ-diaminobutyric acid; 4,5-dehydro-L-leucine; cyclopentyl-D-Gly-OH; cyclopentyl-Gly-OH; D-allylglycine; D-homocyclohexylalanine; L-1-pyrenylalanine; L-2-aminocaproic acid; L-allylglycine; L-homocyclohexylalanine; and N-(2-hydroxy-4-methoxy-Bzl)-Gly-OH.


Amino acid analogs include analogs of arginine or lysine. Examples of amino acid analogs of arginine and lysine include, but are not limited to, the following: citrulline; L-2-amino-3-guanidinopropionic acid; L-2-amino-3-ureidopropionic acid; L-citrulline; Lys(Me)2-OH; Lys(N3)—OH; Nδ-benzyloxycarbonyl-L-ornithine; Nω-nitro-D-arginine; Nω-nitro-L-arginine; α-methyl-ornithine; 2,6-diaminoheptanedioic acid; L-ornithine; (Nδ-1-(4,4-dimethyl-2,6-dioxo-cyclohex-1-ylidene)ethyl)-D-ornithine; (Nδ-1-(4,4-dimethyl-2,6-dioxo-cyclohex-1-ylidene)ethyl)-L-ornithine; (Nδ-4-methyltrityl)-D-ornithine; (Nδ-4-methyltrityl)-L-ornithine; D-ornithine; L-ornithine; Arg(Me)(Pbf)-OH; Arg(Me)2-OH (asymmetrical); Arg(Me)2-OH (symmetrical); Lys(ivDde)-OH; Lys(Me)2-OH—HCl; Lys(Me3)-OH chloride; Nω-nitro-D-arginine; and Nω-nitro-L-arginine.


Amino acid analogs include analogs of aspartic or glutamic acids. Examples of amino acid analogs of aspartic and glutamic acids include, but are not limited to, the following: α-methyl-D-aspartic acid; α-methyl-glutamic acid; α-methyl-L-aspartic acid; γ-methylene-glutamic acid; (N-γ-ethyl)-L-glutamine; [N-α-(4-aminobenzoyl)]-L-glutamic acid; 2,6-diaminopimelic acid; L-α-aminosuberic acid; D-2-aminoadipic acid; D-α-aminosuberic acid; α-aminopimelic acid; iminodiacetic acid; L-2-aminoadipic acid; threo-β-methyl-aspartic acid; γ-carboxy-D-glutamic acid γ,γ-di-t-butyl ester; γ-carboxy-L-glutamic acid γ,γ-di-t-butyl ester; Glu(OA11)-OH; L-Asu(OtBu)-OH; and pyroglutamic acid.


Amino acid analogs include analogs of cysteine and methionine. Examples of amino acid analogs of cysteine and methionine include, but are not limited to, Cys(farnesyl)-OH, Cys(farnesyl)-OMe, α-methyl-methionine, Cys(2-hydroxyethyl)-OH, Cys(3-aminopropyl)-OH, 2-amino-4-(ethylthio)butyric acid, buthionine, buthioninesulfoximine, ethionine, methionine methylsulfonium chloride, selenomethionine, cysteic acid, [2-(4-pyridyl)ethyl]-DL-penicillamine, [2-(4-pyridyl)ethyl]-L-cysteine, 4-methoxybenzyl-D-penicillamine, 4-methoxybenzyl-L-penicillamine, 4-methylbenzyl-D-penicillamine, 4-methylbenzyl-L-penicillamine, benzyl-D-cysteine, benzyl-L-cysteine, benzyl-DL-homocysteine, carbamoyl-L-cysteine, carboxyethyl-L-cysteine, carboxymethyl-L-cysteine, diphenylmethyl-L-cysteine, ethyl-L-cysteine, methyl-L-cysteine, t-butyl-D-cysteine, trityl-L-homocysteine, trityl-D-penicillamine, cystathionine, homocystine, L-homocystine, (2-aminoethyl)-L-cysteine, seleno-L-cystine, cystathionine, Cys(StBu)-OH, and acetamidomethyl-D-penicillamine


Amino acid analogs include analogs of phenylalanine and tyrosine. Examples of amino acid analogs of phenylalanine and tyrosine include β-methyl-phenylalanine, β-hydroxyphenylalanine, α-methyl-3-methoxy-DL-phenylalanine, α-methyl-D-phenylalanine, α-methyl-L-phenylalanine, 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid, 2,4-dichloro-phenylalanine, 2-(trifluoromethyl)-D-phenylalanine, 2-(trifluoromethyl)-L-phenylalanine, 2-bromo-D-phenylalanine, 2-bromo-L-phenylalanine, 2-chloro-D-phenylalanine, 2-chloro-L-phenylalanine, 2-cyano-D-phenylalanine, 2-cyano-L-phenylalanine, 2-fluoro-D-phenylalanine, 2-fluoro-L-phenylalanine, 2-methyl-D-phenylalanine, 2-methyl-L-phenylalanine, 2-nitro-D-phenylalanine, 2-nitro-L-phenylalanine, 2;4;5-trihydroxy-phenylalanine, 3,4,5-trifluoro-D-phenylalanine, 3,4,5-trifluoro-L-phenylalanine, 3,4-dichloro-D-phenylalanine, 3,4-dichloro-L-phenylalanine, 3,4-difluoro-D-phenylalanine, 3,4-difluoro-L-phenylalanine, 3,4-dihydroxy-L-phenylalanine, 3,4-dimethoxy-L-phenylalanine, 3,5,3′-triiodo-L-thyronine, 3,5-diiodo-D-tyrosine, 3,5-diiodo-L-tyrosine, 3,5-diiodo-L-thyronine, 3-(trifluoromethyl)-D-phenylalanine, 3-(trifluoromethyl)-L-phenylalanine, 3-amino-L-tyrosine, 3-bromo-D-phenylalanine, 3-bromo-L-phenylalanine, 3-chloro-D-phenylalanine, 3-chloro-L-phenylalanine, 3-chloro-L-tyrosine, 3-cyano-D-phenylalanine, 3-cyano-L-phenylalanine, 3-fluoro-D-phenylalanine, 3-fluoro-L-phenylalanine, 3-fluoro-tyrosine, 3-iodo-D-phenylalanine, 3-iodo-L-phenylalanine, 3-iodo-L-tyrosine, 3-methoxy-L-tyrosine, 3-methyl-D-phenylalanine, 3-methyl-L-phenylalanine, 3-nitro-D-phenylalanine, 3-nitro-L-phenylalanine, 3-nitro-L-tyrosine, 4-(trifluoromethyl)-D-phenylalanine, 4-(trifluoromethyl)-L-phenylalanine, 4-amino-D-phenylalanine, 4-amino-L-phenylalanine, 4-benzoyl-D-phenylalanine, 4-benzoyl-L-phenylalanine, 4-bis(2-chloroethyl)amino-L-phenylalanine, 4-bromo-D-phenylalanine, 4-bromo-L-phenylalanine, 4-chloro-D-phenylalanine, 4-chloro-L-phenylalanine, 4-cyano-D-phenylalanine, 4-cyano-L-phenylalanine, 4-fluoro-D-phenylalanine, 4-fluoro-L-phenylalanine, 4-iodo-D-phenylalanine, 4-iodo-L-phenylalanine, homophenylalanine, thyroxine, 3,3-diphenylalanine, thyronine, ethyl-tyrosine, and methyltyrosine.


Amino acid analogs include analogs of proline. Examples of amino acid analogs of proline include, but are not limited to, 3,4-dehydro-proline, 4-fluoro-proline, cis-4-hydroxy-proline, thiazolidine-2-carboxylic acid, and trans-4-fluoro-proline.


Amino acid analogs include analogs of serine and threonine. Examples of amino acid analogs of serine and threonine include, but are not limited to, 3-amino-2-hydroxy-5-methylhexanoic acid, 2-amino-3-hydroxy-4-methylpentanoic acid, 2-amino-3-ethoxybutanoic acid, 2-amino-3-methoxybutanoic acid, 4-amino-3-hydroxy-6-methylheptanoic acid, 2-amino-3-benzyloxypropionic acid, 2-amino-3-benzyloxypropionic acid, 2-amino-3-ethoxypropionic acid, 4-amino-3-hydroxybutanoic acid, and α-methylserine.


Amino acid analogs include analogs of tryptophan. Examples of amino acid analogs of tryptophan include, but are not limited to, the following: α-methyl-tryptophan; β-(3-benzothienyl)-D-alanine; β-(3-benzothienyl)-L-alanine; 1-methyl-tryptophan; 4-methyl-tryptophan; 5-benzyloxy-tryptophan; 5-bromo-tryptophan; 5-chloro-tryptophan; 5-fluoro-tryptophan; 5-hydroxy-tryptophan; 5-hydroxy-L-tryptophan; 5-methoxy-tryptophan; 5-methoxy-L-tryptophan; 5-methyl-tryptophan; 6-bromo-tryptophan; 6-chloro-D-tryptophan; 6-chloro-tryptophan; 6-fluoro-tryptophan; 6-methyl-tryptophan; 7-benzyloxy-tryptophan; 7-bromo-tryptophan; 7-methyl-tryptophan; D-1,2,3,4-tetrahydro-norharman-3-carboxylic acid; 6-methoxy-1,2,3,4-tetrahydronorharman-1-carboxylic acid; 7-azatryptophan; L-1,2,3,4-tetrahydro-norharman-3-carboxylic acid; 5-methoxy-2-methyl-tryptophan; and 6-chloro-L-tryptophan.


In some embodiments, amino acid analogs are racemic. In some embodiments, the D isomer of the amino acid analog is used. In some embodiments, the L isomer of the amino acid analog is used. In other embodiments, the amino acid analog comprises chiral centers that are in the R or S configuration. In still other embodiments, the amino group(s) of a β-amino acid analog is substituted with a protecting group, e.g., tert-butyloxycarbonyl (BOC group), 9-fluorenylmethyloxycarbonyl (FMOC), tosyl, and the like. In yet other embodiments, the carboxylic acid functional group of a β-amino acid analog is protected, e.g., as its ester derivative. In some embodiments the salt of the amino acid analog is used.


A “non-essential” amino acid residue is a residue that can be altered from the wild-type sequence of a polypeptide without abolishing or substantially altering its essential biological or biochemical activity (e.g., receptor binding or activation). An “essential” amino acid residue is a residue that, when altered from the wild-type sequence of the polypeptide, results in abolishing or substantially abolishing the polypeptide's essential biological or biochemical activity.


A “conservative amino acid substitution” is one in which the amino acid residue is replaced with an amino acid residue having a similar side chain. Families of amino acid residues having similar side chains have been defined in the art. These families include amino acids with basic side chains (e.g., K, R, H), acidic side chains (e.g., D, E), uncharged polar side chains (e.g., G, N, Q, S, T, Y, C), nonpolar side chains (e.g., A, V, L, I, P, F, M, W), beta-branched side chains (e.g., T, V, I) and aromatic side chains (e.g., Y, F, W, H). Thus, a predicted nonessential amino acid residue in a polypeptide, for example, is replaced with another amino acid residue from the same side chain family. Other examples of acceptable substitutions are substitutions based on isosteric considerations (e.g. norleucine for methionine) or other properties (e.g. 2-thienylalanine for phenylalanine, or 6-Cl-tryptophan for tryptophan).


The term “capping group” refers to the chemical moiety occurring at either the carboxy or amino terminus of the polypeptide chain of the subject peptidomimetic macrocycle. The capping group of a carboxy terminus includes an unmodified carboxylic acid (ie —COOH) or a carboxylic acid with a substituent. For example, the carboxy terminus can be substituted with an amino group to yield a carboxamide at the C-terminus Various substituents include but are not limited to primary and secondary amines, including pegylated secondary amines. Representative secondary amine capping groups for the C-terminus include:




embedded image


The capping group of an amino terminus includes an unmodified amine (ie —NH2) or an amine with a substituent. For example, the amino terminus can be substituted with an acyl group to yield a carboxamide at the N-terminus. Various substituents include but are not limited to substituted acyl groups, including C1-C6 carbonyls, C7-C30 carbonyls, and pegylated carbamates. Representative capping groups for the N-terminus include, but are not limited to, 4-FBzl (4-fluoro-benzyl) and the following:




embedded image


The term “member” as used herein in conjunction with macrocycles or macrocycle-forming linkers refers to the atoms that form or can form the macrocycle, and excludes substituent or side chain atoms. By analogy, cyclodecane, 1,2-difluoro-decane and 1,3-dimethyl cyclodecane are all considered ten-membered macrocycles as the hydrogen or fluoro substituents or methyl side chains do not participate in forming the macrocycle.


The symbol “custom-character” when used as part of a molecular structure refers to a single bond or a trans or cis double bond.


The term “amino acid side chain” refers to a moiety attached to the α-carbon (or another backbone atom) in an amino acid. For example, the amino acid side chain for alanine is methyl, the amino acid side chain for phenylalanine is phenylmethyl, the amino acid side chain for cysteine is thiomethyl, the amino acid side chain for aspartate is carboxymethyl, the amino acid side chain for tyrosine is 4-hydroxyphenylmethyl, etc. Other non-naturally occurring amino acid side chains are also included, for example, those that occur in nature (e.g., an amino acid metabolite) or those that are made synthetically (e.g., an α,α di-substituted amino acid).


The term “α,α di-substituted amino” acid refers to a molecule or moiety containing both an amino group and a carboxyl group bound to a carbon (the α-carbon) that is attached to two natural or non-natural amino acid side chains.


The term “polypeptide” encompasses two or more naturally or non-naturally-occurring amino acids joined by a covalent bond (e.g., an amide bond). Polypeptides as described herein include full length proteins (e.g., fully processed proteins) as well as shorter amino acid sequences (e.g., fragments of naturally-occurring proteins or synthetic polypeptide fragments).


The term “first C-terminal amino acid” refers to the amino acid which is closest to the C-terminus. The term “second C-terminal amino acid” refers to the amino acid attached at the N-terminus of the first C-terminal amino acid.


The term “macrocyclization reagent” or “macrocycle-forming reagent” as used herein refers to any reagent which can be used to prepare a peptidomimetic macrocycle by mediating the reaction between two reactive groups. Reactive groups can be, for example, an azide and alkyne, in which case macrocyclization reagents include, without limitation, Cu reagents such as reagents which provide a reactive Cu(I) species, such as CuBr, CuI or CuOTf, as well as Cu(II) salts such as Cu(CO2CH3)2, CuSO4, and CuCl2 that can be converted in situ to an active Cu(I) reagent by the addition of a reducing agent such as ascorbic acid or sodium ascorbate. Macrocyclization reagents can additionally include, for example, Ru reagents known in the art such as Cp*RuCl(PPh3)2, [Cp*RuCl]4 or other Ru reagents which can provide a reactive Ru(II) species. In other cases, the reactive groups are terminal olefins. In such embodiments, the macrocyclization reagents or macrocycle-forming reagents are metathesis catalysts including, but not limited to, stabilized, late transition metal carbene complex catalysts such as Group VIII transition metal carbene catalysts. For example, such catalysts are Ru and Os metal centers having a +2 oxidation state, an electron count of 16 and pentacoordinated. In other examples, catalysts have W or Mo centers. Various catalysts are disclosed in Grubbs et al., “Ring Closing Metathesis and Related Processes in Organic Synthesis” Acc. Chem. Res. 1995, 28, 446-452, U.S. Pat. No. 5,811,515; U.S. Pat. No. 7,932,397; U.S. Application No. 2011/0065915; U.S. Application No. 2011/0245477; Yu et al., “Synthesis of Macrocyclic Natural Products by Catalyst-Controlled Stereoselective Ring-Closing Metathesis,” Nature 2011, 479, 88; and Peryshkov et al., “Z-Selective Olefin Metathesis Reactions Promoted by Tungsten Oxo Alkylidene Complexes,” J. Am. Chem. Soc. 2011, 133, 20754. In yet other cases, the reactive groups are thiol groups. In such embodiments, the macrocyclization reagent is, for example, a linker functionalized with two thiol-reactive groups such as halogen groups. In some examples, the macrocyclization reagent include palladium reagents, for example Pd(PPh3)4, Pd(PPh3)2Cl2, Pd(dppe)Cl, Pd(dppp)Cl2, and Pd(dppf)Cl2. The term “halo” or “halogen” refers to fluorine, chlorine, bromine or iodine or a radical thereof.


The term “alkyl” refers to a hydrocarbon chain that is a straight chain or branched chain, containing the indicated number of carbon atoms. For example, C1-C10 indicates that the group has from 1 to 10 (inclusive) carbon atoms in it. In the absence of any numerical designation, “alkyl” is a chain (straight or branched) having 1 to 20 (inclusive) carbon atoms in it.


The term “alkylene” refers to a divalent alkyl (i.e., —R—).


The term “alkenyl” refers to a hydrocarbon chain that is a straight chain or branched chain having one or more carbon-carbon double bonds. The alkenyl moiety contains the indicated number of carbon atoms. For example, C2-C10 indicates that the group has from 2 to 10 (inclusive) carbon atoms in it. The term “lower alkenyl” refers to a C2-C6 alkenyl chain. In the absence of any numerical designation, “alkenyl” is a chain (straight or branched) having 2 to 20 (inclusive) carbon atoms in it.


The term “alkynyl” refers to a hydrocarbon chain that is a straight chain or branched chain having one or more carbon-carbon triple bonds. The alkynyl moiety contains the indicated number of carbon atoms. For example, C2-C10 indicates that the group has from 2 to 10 (inclusive) carbon atoms in it. The term “lower alkynyl” refers to a C2-C6 alkynyl chain. In the absence of any numerical designation, “alkynyl” is a chain (straight or branched) having 2 to 20 (inclusive) carbon atoms in it.


The term “aryl” refers to a 6-carbon monocyclic or 10-carbon bicyclic aromatic ring system wherein 0, 1, 2, 3, or 4 atoms of each ring are substituted by a substituent. Examples of aryl groups include phenyl, naphthyl and the like. The term “arylalkoxy” refers to an alkoxy substituted with aryl.


“Arylalkyl” refers to an aryl group, as defined above, wherein one of the aryl group's hydrogen atoms has been replaced with a C1-C5 alkyl group, as defined above. Representative examples of an arylalkyl group include, but are not limited to, 2-methylphenyl, 3-methylphenyl, 4-methylphenyl, 2-ethylphenyl, 3-ethylphenyl, 4-ethylphenyl, 2-propylphenyl, 3-propylphenyl, 4-propylphenyl, 2-butylphenyl, 3-butylphenyl, 4-butylphenyl, 2-pentylphenyl, 3-pentylphenyl, 4-pentylphenyl, 2-isopropylphenyl, 3-isopropylphenyl, 4-isopropylphenyl, 2-isobutylphenyl, 3-isobutylphenyl, 4-isobutylphenyl, 2-sec-butylphenyl, 3-sec-butylphenyl, 4-sec-butylphenyl, 2-t-butylphenyl, 3-t-butylphenyl and 4-t-butylphenyl.


“Arylamido” refers to an aryl group, as defined above, wherein one of the aryl group's hydrogen atoms has been replaced with one or more —C(O)NH2 groups. Representative examples of an arylamido group include 2-C(O)NH2-phenyl, 3-C(O)NH2-phenyl, 4-C(O)NH2-phenyl, 2-C(O)NH2-pyridyl, 3-C(O)NH2-pyridyl, and 4-C(O)NH2-pyridyl,


“Alkylheterocycle” refers to a C1-C5 alkyl group, as defined above, wherein one of the C1-C5 alkyl group's hydrogen atoms has been replaced with a heterocycle. Representative examples of an alkylheterocycle group include, but are not limited to, —CH2CH2-morpholine, —CH2CH2-piperidine, —CH2CH2CH2-morpholine, and —CH2CH2CH2-imidazole.


“Alkylamido” refers to a C1-C5 alkyl group, as defined above, wherein one of the C1-C5 alkyl group's hydrogen atoms has been replaced with a —C(O)NH2 group. Representative examples of an alkylamido group include, but are not limited to, —CH2—C(O)NH2, —CH2CH2—C(O)NH2, —CH2CH2CH2C(O)NH2, —CH2CH2CH2CH2C(O)NH2, —CH2CH2CH2CH2CH2C(O)NH2, —CH2CH(C(O)NH2)CH3, —CH2CH(C(O)NH2)CH2CH3, —CH(C(O)NH2)CH2CH3, —C(CH3)2CH2C(O)NH2, —CH2—CH2—NH—C(O)—CH3, —CH2—CH2—NH—C(O)—CH3—CH3, and —CH2—CH2—NH—C(O)—CH═CH2.


“Alkanol” refers to a C1-C5 alkyl group, as defined above, wherein one of the C1-C5 alkyl group's hydrogen atoms has been replaced with a hydroxyl group. Representative examples of an alkanol group include, but are not limited to, —CH2OH, —CH2CH2OH, —CH2CH2CH2OH, —CH2CH2CH2CH2OH, —CH2CH2CH2CH2CH2OH, —CH2CH(OH)CH3, —CH2CH(OH)CH2CH3, —CH(OH)CH3 and —C(CH3)2CH2OH.


“Alkylcarboxy” refers to a C1-C5 alkyl group, as defined above, wherein one of the C1-C5 alkyl group's hydrogen atoms has been replaced with a —COOH group. Representative examples of an alkylcarboxy group include, but are not limited to, —CH2COOH, —CH2CH2COOH, —CH2CH2CH2COOH, —CH2CH2CH2CH2COOH, —CH2CH(COOH)CH3, —CH2CH2CH2CH2CH2COOH, —CH2CH(COOH)CH2CH3, —CH(COOH)CH2CH3 and —C(CH3)2CH2COOH.


The term “cycloalkyl” as employed herein includes saturated and partially unsaturated cyclic hydrocarbon groups having 3 to 12 carbons, preferably 3 to 8 carbons, and more preferably 3 to 6 carbons, wherein the cycloalkyl group additionally is optionally substituted. Some cycloalkyl groups include, without limitation, cyclopropyl, cyclobutyl, cyclopentyl, cyclopentenyl, cyclohexyl, cyclohexenyl, cycloheptyl, and cyclooctyl.


The term “heteroaryl” refers to an aromatic 5-8 membered monocyclic, 8-12 membered bicyclic, or 11-14 membered tricyclic ring system having 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 1-9 heteroatoms if tricyclic, said heteroatoms selected from O, N, or S (e.g., carbon atoms and 1-3, 1-6, or 1-9 heteroatoms of O, N, or S if monocyclic, bicyclic, or tricyclic, respectively), wherein 0, 1, 2, 3, or 4 atoms of each ring are substituted by a substituent. Examples of heteroaryl groups include pyridyl, furyl or furanyl, imidazolyl, benzimidazolyl, pyrimidinyl, thiophenyl or thienyl, quinolinyl, indolyl, thiazolyl, and the like.


The term “heteroarylalkyl” or the term “heteroaralkyl” refers to an alkyl substituted with a heteroaryl. The term “heteroarylalkoxy” refers to an alkoxy substituted with heteroaryl.


The term “heteroarylalkyl” or the term “heteroaralkyl” refers to an alkyl substituted with a heteroaryl. The term “heteroarylalkoxy” refers to an alkoxy substituted with heteroaryl.


The term “heterocyclyl” refers to a nonaromatic 5-8 membered monocyclic, 8-12 membered bicyclic, or 11-14 membered tricyclic ring system having 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 1-9 heteroatoms if tricyclic, said heteroatoms selected from O, N, or S (e.g., carbon atoms and 1-3, 1-6, or 1-9 heteroatoms of O, N, or S if monocyclic, bicyclic, or tricyclic, respectively), wherein 0, 1, 2 or 3 atoms of each ring are substituted by a substituent. Examples of heterocyclyl groups include piperazinyl, pyrrolidinyl, dioxanyl, morpholinyl, tetrahydrofuranyl, and the like.


The term “substituent” refers to a group replacing a second atom or group such as a hydrogen atom on any molecule, compound or moiety. Suitable substituents include, without limitation, halo, hydroxy, mercapto, oxo, nitro, haloalkyl, alkyl, alkaryl, aryl, aralkyl, alkoxy, thioalkoxy, aryloxy, amino, alkoxycarbonyl, amido, carboxy, alkanesulfonyl, alkylcarbonyl, and cyano groups.


In some embodiments, the compounds disclosed herein contain one or more asymmetric centers and thus occur as racemates and racemic mixtures, single enantiomers, individual diastereomers and diastereomeric mixtures. All such isomeric forms of these compounds are included unless expressly provided otherwise. In some embodiments, the compounds disclosed herein are also represented in multiple tautomeric forms, in such instances, the compounds include all tautomeric forms of the compounds described herein (e.g., if alkylation of a ring system results in alkylation at multiple sites, the disclosure includes all such reaction products). All such isomeric forms of such compounds are included unless expressly provided otherwise. All crystal forms of the compounds described herein are included unless expressly provided otherwise.


As used herein, the terms “increase” and “decrease” mean, respectively, to cause a statistically significantly (i.e., p<0.1) increase or decrease of at least 5%.


As used herein, the recitation of a numerical range for a variable is intended to convey that the variable is equal to any of the values within that range. Thus, for a variable which is inherently discrete, the variable is equal to any integer value within the numerical range, including the end-points of the range. Similarly, for a variable which is inherently continuous, the variable is equal to any real value within the numerical range, including the end-points of the range. As an example, and without limitation, a variable which is described as having values between 0 and 2 takes the values 0, 1 or 2 if the variable is inherently discrete, and takes the values 0.0, 0.1, 0.01, 0.001, or any other real values ≧0 and ≦2 if the variable is inherently continuous.


As used herein, unless specifically indicated otherwise, the word “or” is used in the inclusive sense of “and/or” and not the exclusive sense of “either/or.”


The term “on average” represents the mean value derived from performing at least three independent replicates for each data point.


The term “biological activity” encompasses structural and functional properties of a macrocycle. Biological activity is, for example, structural stability, alpha-helicity, affinity for a target, resistance to proteolytic degradation, cell penetrability, intracellular stability, in vivo stability, or any combination thereof.


The term “binding affinity” refers to the strength of a binding interaction, for example between a peptidomimetic macrocycle and a target. Binding affinity can be expressed, for example, as an equilibrium dissociation constant (“KD”), which is expressed in units which are a measure of concentration (e.g. M, mM, μM, nM etc). Numerically, binding affinity and KD values vary inversely, such that a lower binding affinity corresponds to a higher KD value, while a higher binding affinity corresponds to a lower KD value. Where high binding affinity is desirable, “improved” binding affinity refers to higher binding affinity and therefore lower KD values.


The term “in vitro efficacy” refers to the extent to which a test compound, such as a peptidomimetic macrocycle, produces a beneficial result in an in vitro test system or assay. In vitro efficacy can be measured, for example, as an “IC50” or “EC50” value, which represents the concentration of the test compound which produces 50% of the maximal effect in the test system.


The term “ratio of in vitro efficacies” or “in vitro efficacy ratio” refers to the ratio of IC50 or EC50 values from a first assay (the numerator) versus a second assay (the denominator). Consequently, an improved in vitro efficacy ratio for Assay 1 versus Assay 2 refers to a lower value for the ratio expressed as IC50 (Assay 1)/IC50(Assay 2) or alternatively as EC50(Assay 1)/EC50(Assay 2). This concept can also be characterized as “improved selectivity” in Assay 1 versus Assay 2, which can be due either to a decrease in the IC50 or EC50 value for Target 1 or an increase in the value for the IC50 or EC50 value for Target 2.


“Micelle forming agent” as used herein can be an amphiphilic compound meaning a compound that contains both hydrophobic groups (tails) and hydrophilic groups (heads). Micelle forming agents include surfactant, for examples ionic, non-ionic, and zwitterionic surfactants.


The details of one or more particular embodiments of the invention are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of the invention will be apparent from the description and drawings, and from the claims.


The term “Xaa” is used in the Formulas described herein to refer to any amino acids. This term can sometimes be followed by a number subscript, for e.g. “Xaa6.” The number subscript in these cases may or may not refer to the position of the amino acids “Xaa” in a sequence. For example in some but not all cases Xaa6 can mean that the amino acid “Xaa” is present at the sixth position in a sequence.


OVERVIEW

In one aspect the disclosure provides aqueous pharmaceutical formulations, for parenteral administration, comprising peptidomimetic macrocycle or a pharmaceutically acceptable salt thereof, wherein the peptidomimetic macrocycle binds to MDM2 and/or MDMX proteins. The aqueous pharmaceutical formulations provided herein are aqueous solution ready for injection (for example intravenously) or aqueous concentrations ready for dilution and injection. In some embodiments, the aqueous pharmaceutical formulations disclosed herein do not contain micelles or are essentially free of micelles. In various embodiments, the aqueous pharmaceutical formulations disclosed herein comprise less than 2% w/v of a micelle forming agent. In some examples the aqueous pharmaceutical formulations disclosed herein comprise less than 2%, 1.9%, 1.8%, 1.7%, 1.6%, 1.5%, 1.4%, 1.3%, 1.2%, 1.1%, 1.0%, 0.9%, 08%, 0.7%, 0.6%, 0.5%, 0.4%, 0.3%, 0.2%, 0.1%, 0.09%, 0.08%, 0.07%, 0.06%, or 0.05% w/v of a micelle forming agent. In some embodiments, the micelle forming agent is sorbitol. In some embodiments, the micelle forming agent is polyethylene glycol-poly(lactic acid). In some embodiments, the micelle forming agent is 1,2-distearoyl-phosphatidylethanolamine-methyl-polyethyleneglycol conjugate. In some embodiments, no micelle forming agent is used, yet the molecule has micelle forming properties.


The aqueous pharmaceutical formulations comprise an aqueous diluent. In some examples, the diluent is water, purified water, water for injection, bacteriostatic water for injection, sterile water for injection, water for parenterals, PBS, and/or, sterile water for irrigation. In some embodiments, the diluent is water for injection. In some embodiments, the diluent is PBS. In some embodiments, the diluent is a solution of dextrose in water, for example 5% dextrose in water.


In various embodiments, the peptidomimetic macrocycle is a cross-linked peptide comprising at least one macrocycle-forming linker which forms a macrocycle between a first amino acid residue (or analog) and a second amino acid residue. In some embodiments, a peptidomimetic macrocycle has the Formula (I):




embedded image


wherein:


each A, C, and D is independently an amino acid;


each B is independently an amino acid,




embedded image


[—NH-L3-CO—], [—NH-L3-SO2—], or [—NH-L3-];


each E is independently an amino acid selected from the group consisting of Ala (alanine), D-Ala (D-alanine), Aib (α-aminoisobutyric acid), Sar (N-methyl glycine), and Ser (serine);


each R1 and R2 is independently —H, alkyl, alkenyl, alkynyl, arylalkyl, cycloalkyl, cycloalkylalkyl, heteroalkyl, or heterocycloalkyl, unsubstituted or substituted with halo; or forms a macrocycle-forming linker L′ connected to the alpha position of one of said D or E amino acids;


each R3 is independently hydrogen, alkyl, alkenyl, alkynyl, arylalkyl, heteroalkyl, cycloalkyl, heterocycloalkyl, cycloalkylalkyl, cycloaryl, or heterocycloaryl, optionally substituted with R5;


each L and L′ is independently a macrocycle-forming linker;


each L3 is independently alkylene, alkenylene, alkynylene, heteroalkylene, cycloalkylene, heterocycloalkylene, cycloarylene, heterocycloarylene, or [—R4—K—R4-]n, each being optionally substituted with R5;


each R4 is independently alkylene, alkenylene, alkynylene, heteroalkylene, cycloalkylene, heterocycloalkylene, arylene, or heteroarylene;


each K is independently O, S, SO, SO2, CO, CO2, or CONR3;


each R5 is independently halogen, alkyl, —OR6, —N(R6)2, —SR6, —SORE, —SO2R6, —CO2R6, a fluorescent moiety, a radioisotope or a therapeutic agent;


each R6 is independently —H, alkyl, alkenyl, alkynyl, arylalkyl, cycloalkylalkyl, heterocycloalkyl, a fluorescent moiety, a radioisotope or a therapeutic agent;


each R7 is independently —H, alkyl, alkenyl, alkynyl, arylalkyl, cycloalkyl, heteroalkyl, cycloalkylalkyl, heterocycloalkyl, cycloaryl, or heterocycloaryl, optionally substituted with R5, or part of a cyclic structure with a D residue;


each R8 is independently —H, alkyl, alkenyl, alkynyl, arylalkyl, cycloalkyl, heteroalkyl, cycloalkylalkyl, heterocycloalkyl, cycloaryl, or heterocycloaryl, optionally substituted with R5, or part of a cyclic structure with an E residue;


each v is independently an integer from 1-1000;


each w is independently an integer from 3-1000;


u is an integer from 1-10;


each x, y and z is independently an integer from 0-10; and


each n is independently an integer from 1-5.


In some embodiments, the macrocycle-forming linker (L or L′) has a formula -L1-L2-, wherein L1 and L2 are independently alkylene, alkenylene, alkynylene, heteroalkylene, cycloalkylene, heterocycloalkylene, cycloarylene, heterocycloarylene, or [—R4—K—R4-]n, each being optionally substituted with R5;


each R4 is independently alkylene, alkenylene, alkynylene, heteroalkylene, cycloalkylene, heterocycloalkylene, arylene, or heteroarylene;


each K is independently O, S, SO, SO2, CO, CO2, or CONR3; and


each R3 independently is hydrogen, alkyl, alkenyl, alkynyl, arylalkyl, heteroalkyl, cycloalkyl, heterocycloalkyl, cycloalkylalkyl, cycloaryl, or heterocycloaryl, optionally substituted with R5;


each n is an integer from 1-5.


In some embodiments the peptidomimetic macrocycle is a p53-based peptidomimetic macrocycle capable of binding to and modulating the activity of p53, MDM2 and/or MDMX. In some embodiments the peptidomimetic macrocycle is a p53-based peptidomimetic macrocycle that inhibits the interactions between p53, MDM2 and/or MDMX proteins. In some embodiments the peptidomimetic macrocycle is a p53-based peptidomimetic macrocycle that can be used for treating diseases including but not limited to cancer and other hyperproliferative diseases. In some examples, the peptidomimetic macrocycle has a Formula I and comprises an amino acid sequence which is at least about 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 99% or more identical to an amino acid sequence in any of Table 1, Table 1a, Table 1b, and Table 1c. In some examples, the peptidomimetic macrocycle in a peptidomimetic macrocycle from the any of Table 1, Table 1a, Table 1b, and Table 1c.


Any suitable dosage of peptidomimetic macrocycles can be formulated in the aqueous pharmaceutical formulations of the present disclosure. Generally, the peptidomimetic macrocycle (or, in embodiments comprising two or more peptidomimetic macrocycles, each of the peptidomimetic macrocycle) is present in the aqueous pharmaceutical formulation in an amount greater than or equal to 1 mg/mL. For example greater than or equal to 5 mg/mL, 10 mg/mL, 15 mg/mL, 20 mg/mL, 30 mg/mL, 40 mg/mL, and 50 mg/mL. In some examples, the peptidomimetic macrocycle is present in the aqueous pharmaceutical formulation in an amount ranging from about 15 mg/mL to about 100 mg/mL. In some embodiments, the peptidomimetic macrocycle is present in the aqueous pharmaceutical formulation in an amount ranging from about 15 mg/mL to about 60 mg/mL. In some embodiments, the peptidomimetic macrocycle is present in the aqueous pharmaceutical formulation in an amount ranging from about 20 mg/mL to about 50 mg/mL. In some embodiments, the peptidomimetic macrocycle is present in the aqueous pharmaceutical formulation in an amount ranging from about 50 mg/mL to about 100 mg/mL. In some embodiments, the peptidomimetic macrocycles is present in the aqueous pharmaceutical formulation in an amount ranging from about 15 mg/mL to about 20 mg/mL. In some embodiments, the peptidomimetic macrocycles is present in the aqueous pharmaceutical formulation in an amount ranging from about 15 mg/mL to about 30 mg/mL. It will be readily apparent to those of skill that the peptidomimetic macrocycle dosage can be varied depending on several conditions including the peptidomimetic macrocycle used, the subject to be treated, and the disease, disorder or condition to be treated.


The aqueous pharmaceutical formulations disclosed herein can additionally comprise a buffering agent. The buffering agent can be any agent capable of maintaining the pH of the aqueous formulation in the range of 4.0-9.0. For example, the buffering agent is selected from a group consisting of ammonia solution, calcium carbonate, tribasic calcium phosphate, citric acid monohydrate, dibasic sodium phosphate, diethanolamine, malic acid, monobasic sodium phosphate, monoethanolamine, monosodium glutamate, phosphoric acid, potassium citrate, sodium acetate, sodium bicarbonate, sodium borate, sodium citrate dehydrate, sodium hydroxide, sodium lactate and triethanolamine. In some embodiments, the buffering agent can be monobasic sodium phosphate, dibasic sodium phosphate, or a mixture thereof. The pH of the formulation can be in the range of 4.0-9.0. For example, the pH can be in the range of about 4.5-8.5, about 5.0-8.0, about 5.5-7.5, about 7.0-7.5, about 7.0-8.0, about 7.0-9.0, or about 8.0-9.0. In some embodiments, the pH of the formulations is about 7.0. In some embodiments, the pH of the formulations is about 7.5. In some embodiments, the pH of the formulations is about 8.0.


The aqueous pharmaceutical formulations disclosed herein can comprise a stabilizing agent. The stabilizing agent can be any pharmaceutically acceptable stabilizing agent. Such stabilizing agent can include, for example antioxidants and/or surfactants. In some embodiments, the stabilizing agent is a non-ionic stabilizing agent, for example as non-ionic surfactant. In some embodiments, the stabilizing agent is a fatty acid ester. The stabilizing agent can be selected from a group consisting of polyoxyethylene glycol alkyl ethers, polyoxypropylene glycol alkyl ethers, glucoside alkyl ethers, polyoxyethylene glycol octylphenol ethers, polyoxyethylene glycol alkylphenol ethers, glycerol alkyl esters, polyoxyethylene glycol sorbitan alkyl esters, sorbitan alkyl esters, cocamide MEA, cocamide DEA, dodecyldimethylamine oxide, block copolymers of polyethylene glycol and polypropylene glycol, and polyethoxylated tallow amine. In some examples, the stabilizing agent is a polyoxyethylene sorbitan fatty acid ester, for example polysorbate 20, polysorbate 21, polysorbate 40, polysorbate 60, polysorbate 61, polysorbate 65, polysorbate 80, polysorbate 81, polysorbate 85 or polysorbate 120.


In some embodiments, the tonicity of the instant aqueous pharmaceutical formulations can be adjusted, for example the tonicity of the formulations can be such that the formulations are isotonic with the physiologic fluid. Such formulations can further comprise one or more tonicity adjusting agent (tonicity agent) to adjust the tonicity of the formulations. Any pharmaceutically acceptable tonicity agent can be used. In some examples the tonicity agents are selected from a group consisting of electrolytes, monosaccharides, disaccharides, polysaccharides, and water-soluble glucans. In some examples the tonicity agent in NaCl or KCl. In some examples the tonicity agent is selected from a group consisting of fructose, glucose, mannose, mannitol, sorbose, xylose, maltose, lactose, sucrose, trehalose, dextran, pullulan, dextrin, cyclodextrin, soluble starch, hydroxyethyl starch and carboxymethylcellulose. In some embodiments, the tonicity agent is trehalose.


In some examples, the formulations of the present disclosure further comprise one or more additional excipients. For example a preservative or a co-solvent.


Also provided herein are methods of making the aqueous pharmaceutical formulations disclosed herein. The method comprises adding a peptidomimetic macrocycle or a pharmaceutically acceptable salt thereof to an aqueous solution. The aqueous solution can comprise one or more of a buffering agent, a stabilizing agent, and a tonicity agent. The method can further comprise adding a pH adjusting agent to maintain the pH of the mixture at a specified level. In some embodiments, the method comprises adding a desired amount of the peptidomimetic macrocycle or a pharmaceutically acceptable salt (for example sodium, potassium or lithium salt) thereof to water. In some embodiments, the method comprises adding a desired amount of the peptidomimetic macrocycle or a pharmaceutically acceptable salt thereof to an aqueous solution comprising a buffering agent, a stabilizing agent, and a tonicity agent.


Also provided herein is a method for treating a disease, condition or disorder that can be treated, alleviated, or prevented by administering to a subject an aqueous pharmaceutical formulation as described herein. The method comprises, administering to the subject the aqueous pharmaceutical formulation in an amount effective to treat, alleviate or prevent the disease, condition, or disorder. In some embodiments, the disease, condition, or disorder is a p53 mediated disease, condition, or disorder. In some embodiments, the disease, condition, or disorder is a MDM2 and/or MDMX mediated disease, condition, or disorder. In some embodiments, the disease, condition, or disorder is a hyperproliferative disease and/or an inflammatory disorder. In some embodiments, the disease, condition, or disorder is cancers and neoplastic conditions. In some examples, the cancer is selected from a group consisting of pancreatic cancer, bladder cancer, colon cancer, liver cancer, colorectal cancer, breast cancer, prostate cancer, renal cancer, hepatocellular cancer, lung cancer, ovarian cancer, cervical cancer, gastric cancer, esophageal cancer, head and neck cancer, melanoma, neuroendocrine cancers, CNS cancers, brain tumors, bone cancer, skin cancer, ocular tumor, rectal cancer, choriocarcinoma (tumor of the placenta), sarcoma and soft tissue cancer, testicular cancer, gall bladder cancer, and biliary cancer. In some examples, the cancer is selected from a group consisting of bladder cancer, bone cancer, breast cancer, cervical cancer, CNS cancer, colon cancer, ocular tumor, renal cancer, liver cancer, lung cancer, pancreatic cancer, choriocarcinoma (tumor of the placenta), prostate cancer, sarcoma, skin cancer, soft tissue cancer, gastric cancer, gall bladder cancer, biliary cancer, renal cancer, neoblastoma, or neuroendocrine cancer. Non-limiting examples of ocular tumor include choroidal nevus, choroidal melanoma, choroidal metastasis, choroidal hemangioma, choroidal osteoma, iris melanoma, uveal melanoma, melanocytoma, metastasis retinal capillary hemangiomas, congenital hypertrophy of the RPE, RPE adenoma or retinoblastoma. In some cases, the cancer is selected from non-small cell lung cancer, small-cell lung cancer, colon cancer, CNS cancer, melanoma, ovarian cancer, renal cancer, prostate cancer and breast cancer. In some examples, the cancer is breast cancer. In some examples, the cancer is gall bladder cancer. In some examples, the cancer is biliary cancer. In some examples, the cancer is neuroendocrine cancer. In some examples, the cancer is bone cancer. In some examples, the cancer is the bone cancer is osteosarcoma. In some examples, the cancer is skin cancer. In some examples, the cancer is melanoma.


In another aspect, the present disclosure provides kits for treating a disease, condition or disorder, wherein the kit comprises the aqueous pharmaceutical disclosed herein. The formulations can be packaged in any suitable container, for example a bottle or a vial. In some examples, the formulations can be packed in glass serum vial. In some examples, the formulations can be packed in serum vials composed of borosilicate glass. In some examples, the formulations are packed in a 1 mL, a 2 mL, a 3 mL, a 4 mL, a 5 mL, a 10 mL, a 20 mL, a 30 mL, or a 50 mL glass vial. The bottles and/or vials can be equipped with stoppers and/or seals. For example, the formulations can be packaged into glass vials equipped with Teflon stoppers and/or a flip-off cap. The flip-off cap can be a plastic cap. The glass container can be an ampoule. The formulations can be packaged in multidose form or in single dose form. In some cases, the formulations are packaged in multidose forms. In some embodiments the formulations are packaged as single dose units. In some embodiments, the kit further comprises instructions, wherein the instructions direct the administration of the formulation to treat the subject in need thereof. The kit can also include a device for administration of the formulation.


Aqueous Pharmaceutical Formulations of Peptidomimetic Macrocycles for Parenteral Administration

In one aspect, the disclosure provides aqueous pharmaceutical formulations, suitable for parenteral administration, comprising peptidomimetic macrocycles, as described herein and an aqueous diluent. The aqueous pharmaceutical formulations provided herein can be suitable for intravenous, intra-arterial, intrathecal, or subcutaneous administration. In some embodiments, the aqueous pharmaceutical formulations are suitable for intravenous administration. The aqueous pharmaceutical formulations described herein can provide improved solubility and/or stability of the peptidomimetic macrocycle. In particular embodiments, the aqueous pharmaceutical formulations provide increased solubility of the peptidomimetic macrocycles compared to the solubility of the peptidomimetic macrocycles peptide in water alone.


In some examples, the aqueous diluent is water, purified water, water for injection, bacteriostatic water for injection, sterile water for injection, water for parenterals, sterile water for irrigation, various sterile solution of electrolytes and or dextrose. In some embodiments, the diluent is a pH buffered solution (e.g. phosphate-buffered saline), sterile saline solution, Ringer's solution or dextrose solution. In some embodiments, the diluent is water for injection. In some embodiments, the diluent is a solution of dextrose in water, for example 5% dextrose in water.


The aqueous pharmaceutical formulations my further comprise a co-solvent. A co-solvent is any solvent that facilitates/enhances the solubility of the peptidomimetic macrocycles (or of the one or more excipients) in the aqueous diluent. The co-solvent is preferably water miscible. In some embodiments, the co-solvent is ethyl alcohol, glycerin, polyethylene glycol, or propylene glycol. In some embodiments, the co-solvent is dimethyl sulfoxide (DMSO), N-methylpyrrolidone (NMP), dimethylacetamide (DMA) or a combination thereof.


The aqueous pharmaceutical formulations provided herein are aqueous solution ready for injection (for example intravenously) or aqueous concentrations ready for dilution and injection. In some embodiments, the aqueous pharmaceutical formulations disclosed herein do not contain micelles or are essentially free of micelles. In various embodiments, the aqueous pharmaceutical formulations disclosed herein comprise less than 2% w/v of a micelle forming agent. In some examples the aqueous pharmaceutical formulations disclosed herein comprise less than 2%, 1.9%, 1.8%, 1.7%, 1.6%, 1.5%, 1.4%, 1.3%, 1.2%, 1.1%, 1.0%, 0.9%, 08%, 0.7%, 0.6%, 0.5%, 0.4%, 0.3%, 0.2%, 0.1%, 0.09%, 0.08%, 0.07%, 0.06%, or 0.05% w/v of a micelle forming agent. In some examples the aqueous pharmaceutical formulations disclosed herein comprise 0.0001%-2%, 0.0005%-2%, 0.001%-2%, 0.005%-2%, 0.01%-2%, 0.05%-2%, 0.1%-2%, 0.2%-2%, 0.3%-2%, 0.4%-2%, 0.5%-2%, 0.6%-2%, 0.7%-2%, 0.8%-2%, 0.9%-2%, 1.0%-2%, 1.1%-2%, 1.2%-2%, 1.3%-2%, 1.4%-2%, 1.5%-2%, 1.6%-2%, 1.7%- 2%, 1.8%-2%, 1.9%-2%, 0.0001%-1.8%, 0.0005%-1.8%, 0.001%-1.8%, 0.005%-1.8%, 0.01%-1.8%, 0.05%-1.8%, 0.1%-1.8%, 0.2%-1.8%, 0.3%-1.8%, 0.4%-1.8%, 0.5%-1.8%, 0.6%-1.8%, 0.7%-1.8%, 0.8%-1.8%, 0.9%-1.8%, 1.0%-1.8%, 1.1%-1.8%, 1.2%-1.8%, 1.3%-1.8%, 1.4%-1.8%, 1.5%-1.8%, 1.6%-1.8%, 0.0001%-1.6%, 0.0005%-1.6%, 0.001%-1.6%, 0.005%-1.6%, 0.01%-1.6%, 0.05%-1.6%, 0.1%-1.6%, 0.2%-1.6%, 0.3%-1.6%, 0.4%-1.6%, 0.5%-1.6%, 0.6%-1.6%, 0.7%-1.6%, 0.8%-1.6%, 0.9%-1.6%, 1.0%-1.6%, 1.1%-1.6%, 1.2%-1.6%, 1.3%-1.6%, 1.4%-1.6%, 1.5%-1.6%, 0.0001%-1.4%, 0.0005%-1.4%, 0.001%-1.4%, 0.005%-1.4%, 0.01%-1.4%, 0.05%-1.4%, 0.1%-1.4%, 0.2%-1.4%, 0.3%-1.4%, 0.4%-1.4%, 0.5%-1.4%, 0.6%-1.4%, 0.7%-1.4%, 0.8%-1.4%, 0.9%-1.4%, 1.0%-1.4%, 1.1%-1.4%, 1.2%-1.4%, 1.3%-1.4%, 0.0001%-1.2%, 0.0005%-1.2%, 0.001%-1.2%, 0.005%-1.2%, 0.01%-1.2%, 0.05%-1.2%, 0.1%-1.2%, 0.2%-1.2%, 0.3%-1.2%, 0.4%-1.2%, 0.5%-1.2%, 0.6%-1.2%, 0.7%-1.2%, 0.8%-1.2%, 0.9%-1.2%, 1.0%-1.2%, 1.1%-1.2%, 0.0001%-1%, 0.0005%-1%, 0.001%-1%, 0.005%-1%, 0.01%-1%, 0.05%-1%, 0.1%-1%, 0.2%-1%, 0.3%-1%, 0.4%-1%, 0.5%-1%, 0.6%-1%, 0.7%-1%, 0.0001%-0.8%, 0.0005%-0.8%, 0.001%-0.8%, 0.005%-0.8%, 0.01%-0.8%, 0.05%-0.8%, 0.1%-0.8%, 0.2%-0.8%, 0.3%-0.8%, 0.4%-0.8%, 0.5%-0.8%, 0.6%-0.8%, 0.7%-0.8%, 0.0001%-0.6%, 0.0005%-0.6%, 0.001%-0.6%, 0.005%-0.6%, 0.01%-0.6%, 0.05%-0.6%, 0.1%-0.6%, 0.2%-0.6%, 0.3%-0.6%, 0.4%-0.6%, 0.5%-0.6%, 0.0001%-0.4%, 0.0005%-0.4%, 0.001%-0.4%, 0.005%-0.4%, 0.01%-0.4%, 0.05%-0.4%, 0.1%-0.4%, 0.2%-0.4%, 0.3%-0.4%, 0.0001%-0.2%, 0.0005%-0.2%, 0.001%-0.2%, 0.005%-0.2%, 0.01%-0.2%, 0.05%-0.2%, 0.1%-0.2%, 0.0001%-0.1%, 0.0005%-0.1%, 0.001%-0.1%, 0.005%-0.1%, 0.01%-0.1%, 0.05%-0.1, 0.0001%-0.05%, 0.0005%-0.05%, 0.001%-0.05%, 0.005%-0.05%, 0.01%-0.05%, 0.0001%-0.01%, 0.0005%-0.01%, 0.001%-0.01%, 0.005%-0.01%, 0.0001%-0.005%, 0.0005%-0.005%, 0.001%-0.005%, 0.0001%-0.001%, 0.0005%-0.001%, or 0.0001%-0.0005% w/v of a micelle forming agent. In some embodiments, the micelle forming agent is sorbitol. In some embodiments, the micelle forming agent is Polyethylene glycol-Poly(lactic acid). In some embodiments, the micelle forming agent is 1,2-Distearoyl-phosphatidylethanolamine-methyl-polyethyleneglycol conjugate. In some embodiments, no micelle-forming agent is added in the formulation, but the molecule has micelle-forming properties.


The aqueous pharmaceutical formulations disclosed herein can additionally comprise one or more excipients suitable for aqueous pharmaceutical formulations. Exemplary excipients that can be present in the aqueous pharmaceutical formulations described herein are described below.


Buffering Agents

The aqueous pharmaceutical formulation of the disclosure can comprise one or more buffering agent, for example a pharmaceutically acceptable buffering agent. Buffering agent can be used to control pH of the formulation and/or to maintain stability of the peptidomimetic macrocycle. The pH range of the aqueous pharmaceutical formulation can be pH 2 to pH 12, pH 4 to pH 9, pH 5 to pH9, or pH 6 to pH 8. In some embodiments the aqueous solution is buffered to a pH of about 5.0-9.0. In some embodiments the aqueous pharmaceutical formulation is buffered to a pH of about 6.0-8.0. In some embodiments the pH of the aqueous pharmaceutical formulation is in the range of about 6.5-8.0, about 7.0-8.0, about 7.5-8.0, about 6.0-7.5, about 6.5-7.5, about 7.0-7.5, 6.0-7.0, about 6.5-7.0, about 7.0-7.5, or about 7.5-8.0. In some embodiments the aqueous solution is buffered to a pH of about 6.0, about 6.5, about 7.0, about 7.5, about 8.0 or about 8.5. In some embodiments the aqueous pharmaceutical formulation is buffered to a pH of about 7.0, about 7.1, about 7.2, about 7.3, about 7.4, about 7.5, about 7.6, about 7.7, about 7.8, about 7.9, or about 8.0. In some embodiments the aqueous pharmaceutical formulation is buffered to a pH of about 7.3-7.5.


Any buffering that can be safe for injection into mammalian tissue, particularly into humans, can be used in the pharmaceutical formulation of the disclosure. Buffering agent can be any agent capable of driving an acidic or basic solution to a certain pH state, and then preventing a change from that state. Buffering agents that can be used in the instant aqueous pharmaceutical formulations include citrate, acetate, phosphate, maleate, tartrate, borate, carbonate, bicarbonate, succinate, or glutamate buffers.


In some examples, the buffering agent is lithium lactate, magnesium lactate, sodium lactate, potassium lactate, calcium lactate, lithium phosphate, sodium phosphate, potassium phosphate, calcium phosphate, sodium polyphosphate, potassium polyphosphate, sodium pyrophosphate, potassium pyrophosphate, disodium hydrogenphosphate, dipotassium hydrogenphosphate, trisodium phosphate, tripotassium phosphate, potassium metaphosphate, lithium maleate, sodium maleate, potassium maleate, calcium maleate, lithium tartarate, sodium tartarate, potassium tartarate, calcium tartarate, lithium succinate, sodium succinate, potassium succinate, calcium succinate, lithium acetate, sodium acetate, potassium acetate, calcium acetate, sodium bicarbonate, potassium bicarbonate, magnesium hydroxide, magnesium glucomate, aluminum hydroxide, aluminum hydroxide/sodium bicarbonate coprecipitate, sodium citrate, sodium tartarate, sodium carbonate, magnesium oxide, magnesium hydroxide, magnesium carbonate, magnesium silicate, calcium glycerophosphate, calcium cholride, calcium hydroxide, calcium lactate, calcium carbonate, calcium bicarbonate, or mixture thereof.


In some examples, the buffering agent is a citrate buffer. Non-limiting examples of suitable citrate buffers include lithium citrate monohydrate, sodium citrate monohydrate, potassium citrate monohydrate, calcium citrate monohydrate, lithium citrate dihydrate, sodium citrate dihydrate, potassium citrate dihydrate, calcium citrate dihydrate, lithium citrate trihydrate, sodium citrate trihydrate, potassium citrate trihydrate, calcium citrate trihydrate, lithium citrate tetrahydrate, sodium citrate tetrahydrate, potassium citrate tetrahydrate, calcium citrate tetrahydrate, lithium citrate pentahydrate, sodium citrate pentahydrate, potassium citrate pentahydrate, calcium citrate pentahydrate, lithium citrate hexahydrate, sodium citrate hexahydrate, potassium citrate hexahydrate, calcium citrate hexahydrate, lithium citrate heptahydrate, sodium citrate heptahydrate, potassium citrate heptahydrate, or calcium citrate heptahydrate.


In some examples, the buffering agent is a phosphate buffer. Non-limiting examples of suitable phosphate buffering agents that can be used in the formulations of the instant disclosure include, without limitation, monobasic sodium phosphate, dibasic sodium phosphate, monobasic potassium phosphate, dibasic potassium phosphate, sodium pyrophosphate, potassium pyrophosphate, disodium hydrogenphosphate, dipotassium hydrogenphosphate, potassium metaphosphate, calcium phosphate, tribasic, calcium phosphate, dibasic anhydrous, calcium phosphate dibasic, hydrate, In one embodiment, the buffering agent is a phosphate buffer. In one embodiment buffering agent is NaH2PO4. In one embodiment, the buffering agent is Na2HPO4. In one embodiment the buffering agent is a mixture of NaH2PO4 and Na2HPO4. In one embodiment buffering agent is KH2PO4. In one embodiment, the buffering agent is K2HPO4. In one embodiment the buffering agent is a mixture of KH2PO4 and K2HPO4.


Tonicity Adjusting Agents

The aqueous pharmaceutical formulations disclosed herein can comprise one or more tonicity adjusting agents in order to adjust the tonicity/osmolarity of the formulations. For example, the tonicity/osmolarity of the aqueous pharmaceutical formulations can be adjusted to be isotonic with human plasma. This can help to avoid damage to the tissues. In various embodiments, the osmolarity of the aqueous pharmaceutical formulations disclosed herein can be in the range of 250 to 1000 mOsM. For example, the osmolarity of the formulations can be about 250-300 mOsM, 250-350 mOsM, 250-400 mOsM, 250-450 mOsM, 250-500 mOsM, 250-550 mOsM, 250-600 mOsM, 250-650 mOsM, 250-700 mOsM, 250-750 mOsM, 250-800 mOsM, 250-850 mOsM, 250-900 mOsM, 250-950 mOsM, 300-350 mOsM, 300-400 mOsM, 300-450 mOsM, 300-500 mOsM, 300-550 mOsM, 300-600 mOsM, 300-650 mOsM, 300-700 mOsM, 300-750 mOsM, 300-800 mOsM, 300-850 mOsM, 300-900 mOsM, 300-950 mOsM, 300-1000 mOsM, 350-400 mOsM, 350-450 mOsM, 350-500 mOsM, 350-550 mOsM, 350-600 mOsM, 350-650 mOsM, 350-700 mOsM, 350-750 mOsM, 350-800 mOsM, 350-850 mOsM, 350-900 mOsM, 350-950 mOsM, 350-1000 mOsM, 400-450 mOsM, 400-500 mOsM, 400-550 mOsM, 400-600 mOsM, 400-650 mOsM, 400-700 mOsM, 400-750 mOsM, 400-800 mOsM, 400-850 mOsM, 400-900 mOsM, 400-950 mOsM, 400-1000 mOsM, 450-500 mOsM, 450-550 mOsM, 450-600 mOsM, 450-650 mOsM, 450-700 mOsM, 450-750 mOsM, 450-800 mOsM, 450-850 mOsM, 450-900 mOsM, 450-950 mOsM, 450-1000 mOsM, 500-550 mOsM, 500-600 mOsM, 500-650 mOsM, 500-700 mOsM, 500-750 mOsM, 500-800 mOsM, 500-850 mOsM, 500-900 mOsM, 500-950 mOsM, 500-1000 mOsM, 550-600 mOsM, 550-650 mOsM, 550-700 mOsM, 550-750 mOsM, 550-800 mOsM, 550-850 mOsM, 550-900 mOsM, 550-950 mOsM, 550-1000 mOsM, 600-650 mOsM, 600-700 mOsM, 600-750 mOsM, 600-800 mOsM, 600-850 mOsM, 600-900 mOsM, 600-950 mOsM, 600-1000 mOsM, 650-700 mOsM, 650-750 mOsM, 650-800 mOsM, 650-850 mOsM, 650-900 mOsM, 650-950 mOsM, 650-1000 mOsM, 700-750 mOsM, 700-800 mOsM, 700-850 mOsM, 700-900 mOsM, 700-950 mOsM, 700-1000 mOsM, 750-800 mOsM, 750-850 mOsM, 750-900 mOsM, 750-950 mOsM, 750-1000 mOsM, 800-850 mOsM, 800-900 mOsM, 800-950 mOsM, 800-1000 mOsM, 850-900 mOsM, 850-950 mOsM, 850-1000 mOsM, 900-950 mOsM, 900-1000 mOsM, or 950-1000 mOsM. In some embodiments, the osmolarity of the formulations is in the range of 250 to 450 mOsM. For example the osmolarity of the formulations can be about 250 mOsM, about 300 mOsM, about 350 mOsM, about 400 mOsM, or about 450 mOsM. In some embodiments, the formulation is isotonic with biologic fluids, i.e., the osmolarity is about 300 mOsM.


The tonicity adjusting agents can be ionic tonicity adjusting agents or non-ionic tonicity adjusting agents. In some embodiments, the isotonic agent is an ionic-isotonic agent. In some embodiments, the isotonic agent is a non-ionic isotonic agent. In some embodiments, the isotonic agent is a mixture of one or more ionic and/or non-ionic isotonic agent. In a some embodiment of the disclosure the isotonic agent is selected from the group consisting of a salt (e.g. sodium chloride, boric acid, sodium nitrate, potassium nitrate), a sugar or sugar alcohol, an amino acid (e.g. L-glycine, L-histidine, arginine, lysine, isoleucine, aspartic acid, tryptophan, threonine), an alditol (e.g. glycerol (glycerine), 1,2-propanediol (propyleneglycol), 1,3-propanediol, 1,3-butanediol, polyethyleneglycol (e.g. PEG400), or mixtures thereof. Any sugar such as mono-, di-, or polysaccharides, or water-soluble glucans, including for example fructose, glucose, mannose, sorbose, xylose, maltose, lactose, sucrose, trehalose, dextran, pullulan, dextrin, cyclodextrin, soluble starch, hydroxyethyl starch and carboxymethylcellulose-Na can be used. In some examples, the tonicity adjusting agent is selected from a group consisting of dextrose, glycerin, mannitol, trehalose, potassium chloride and sodium chloride. In some example, the tonicity adjusting agent is trehalose, for example D-trehalose. In some example, the tonicity adjusting agent is sodium chloride. In some example, the tonicity adjusting agent is potassium chloride. The use of an tonicity adjusting agent in aqueous pharmaceutical formulations is well-known to the skilled person. For convenience reference is made to Remington: The Science and Practice of Pharmacy, 19th edition, 1995.


Stabilizing Agent

The aqueous pharmaceutical formulations described herein comprise a stabilizing agent. Non-limiting examples of stabilizing agents that can be used include acacia, agar, albumin, alginic acid, aluminum stearate, ammonium alginate, arabinose, arginine HCL, ascorbic acid, ascorbyl palmitate, bentonite, butylated hydroxytoluene, calcium alginate, calcium stearate, carboxymethylcellulose calcium, carboxymethylcellulose sodium, carrageenan, cellobiose, cellulose ceratonia, colloidal silicon dioxide, cyclodextrins, diethanolamine, dextran, edentates, ethylcellulose, ethylene glycol palmitostearate, fructose, gentiobiose, glucose, glucosamine, glycine, glycerin monostearate, hydroxypropyl cellulose, hydroxyethyl starch, hypromellose, hyaluronic acid, invert sugar, isomaltose, lactose, lecithin, magnesium aluminum silicate, mannose, mannitol, maltose, mineral oil and lanolin alcohols, monoethanolamine, N-methyl pyrollidone, pectin, polacrilin potassium, poloxamer (for example poloxamer 124, poloxamer 188, poloxamer 237, poloxamer 338, or poloxamer 407), polyoxyethylene sobitan fatty acid esters, polyvinyl alcohol, potassium alginate, potassium chloride, povidone (for example povidone K-12, povidone K-15, povidone K-17, povidone K-25, povidone K-20, povidone K-60, povidone K-90, or povidone K-120), propyl gallate, propylene glycol, propylene glycol alginate, raffinose, sodium acetate, sodium alginate, sodium borate, sodium chloride, sodium stearyl fumarate, sorbitol, stearyl alcohol, sucrose, sulfobutylether β-cyclodextrin, starch, trehalose, white wax, xanthan gum, xylitol, yellow wax and zinc acetate.


In some embodiments, the stabilizing agent is a polyoxyethylene sobitan fatty acid ester, for example polysorbate 20, polysorbate 21, polysorbate 40, polysorbate 60, polysorbate 61, polysorbate 65, polysorbate 80, polysorbate 81, polysorbate 85 or polysorbate 120. In some embodiments, the stabilizing agent is polysorbate 20. In some embodiments, the stabilizing agent is polysorbate 21. In some embodiments, the stabilizing agent is polysorbate 40. In some embodiments, the stabilizing agent is polysorbate 60. In some embodiments, the stabilizing agent is polysorbate 61. In some embodiments, the stabilizing agent is polysorbate 65. In some embodiments, the stabilizing agent is polysorbate 80. In some embodiments, the stabilizing agent is polysorbate 81. In some embodiments, the stabilizing agent is polysorbate 85. In some embodiments, the stabilizing agent is polysorbate 120.


Preservatives-Antioxidants, Antimicrobial and Chelating Agents

The aqueous pharmaceutical formulations disclosed herein can comprise one or more antioxidants in order to prevent/minimize the oxidation of the peptidomimetic macrocycle and/or the excipients present in the formulation The antioxidants can also be used as a stabilizing agent. The anti-oxidants which can be used to form aqueous pharmaceutical formulations the disclosure include, but are not limited to, propyl, octyl and dodecyl esters of gallic acid, butylated hydroxyanisole (BHA, usually purchased as a mixture of ortho and meta isomers), green tea extract, uric acid, cysteine, pyruvate, nordihydroguaiaretic acid, ascorbic acid, salts of ascorbic acid such as ascorbyl palmitate and sodium ascorbate, ascorbyl glucosamine, vitamin E (i.e., tocopherols such as a-tocopherol), derivatives of vitamin E (e.g., tocopheryl acetate), retinoids such as retinoic acid, retinol, trans-retinol, cis-retinol, mixtures of trans-retinol and cis-retinol, 3-dehydroretinol and derivatives of vitamin A (e.g., retinyl acetate, retinal and retinyl palmitate, also known as tetinyl palmitate), sodium citrate, sodium sulfite, sodium thiosulfate, sodium bisulfate, lycopene, anthocyanids, bioflavinoids (e.g., hesperitin, naringen, rutin and quercetin), superoxide dismutase, glutathione peroxidase, butylated hydroxytoluene (BHT), indole-3-carbinol, pycnogenol, melatonin, sulforaphane, pregnenolone, lipoic acid and 4-hydroxy-5-methyl-3 [2H]-furanone. In various embodiments, one or more of the above antioxidants are excluded, or are present in less than effective amounts.


In some embodiments the antioxidant is ascorbic acid, citric acid, acetylcysteine, sulfurous acid salts (such as bisulfite, metasulfite), and monothioglyercol.


The aqueous pharmaceutical formulations can comprise one or more antimicrobial agent. Suitable antimicrobial agents that can be used include alcohol, benzalkonium chloride, benzyl alcohol, boric acid, bronopol, butylated hydroxyanisole, butylparaben, carbon dioxide, bentonite, cetrimide, cetylpyridinium chloride, chlorbutanol, chlorhexidine, chlorobutanol, chlorocresol, chloroxylenol, cresol (meta cresol), dimethyl ether, ethylparaben, glycerin, hexetidine, imidurea, inactivation by magnesium trisilicate, isopropyl alcohol, lactic acid, methylparaben, monothioglycerol, parabens (methyl, propyl, butyl), phenol, phenoxyethanol, phenylethyl alcohol, phenylmercuric salts (acetate, borate, nitrate) phenylmercuric borate, phenylmercuric nitrate, potassium benzoate, potassium metabisulfite, potassium sorbate, propionic acid, propyl gallate, propylene glycol, propylparaben, sodium acetate, sodium benzoate, sodium borate, sodium lactate, sodium metabisulfite, sodium propionate, sodium sulfite, sorbic acid, synergists, edetic acid, thimerosal, xylitol, or other agents known to those skilled in the art. In some embodiments, the antimicrobial agent used is methyl paraben, ethyl paraben, propyl paraben, or a combination thereof. In some embodiments, the antimicrobial agent used is benzalkonium chloride.


The aqueous pharmaceutical formulations disclosed herein can comprise one or more chelating agents. Non-limiting examples of chelating agents which can be used to form aqueous pharmaceutical formulations of the disclosure include, but are not limited to, ethylene diaminetetraacetic acid (EDTA), EDTA disodium, calcium disodium edetate, EDTA trisodium, albumin, transferrin, desferoxamine, desferal, desferoxamine mesylate, EDTA tetrasodium and EDTA dipotassium, sodium metasilicate, citric acid monohydrate, fumaric acid, malic acid, maltol, or combinations of any of these. In some embodiments, the formulations of the current disclosure contain no or essentially no chelating agents. In some further embodiments, the formulations are solutions containing no chelating agents.


In some embodiments, the aqueous pharmaceutical formulations of the disclosure comprise no or essentially no preservatives. In some further embodiments, the aqueous pharmaceutical formulations are solutions containing no preservatives.


Surfactants

The solubility of the components of the present formulations can be enhanced by a surfactant or other appropriate co-solvent in the composition. Such co-solvents include polysorbate 20, 60, and 80, Pluronic® F68, F-84 and P-103, cyclodextrin, or other agents known to those skilled in the art. Such co-solvents can be employed at a level of from about 0.01% to 2% by weight. In addition, the surfactant can be used to prevent aggregation of the compound.


Surfactants which can be used to form aqueous pharmaceutical formulations include, but are not limited to, hydrophilic surfactants, lipophilic surfactants, and mixtures thereof. That is, a mixture of hydrophilic surfactants can be employed, a mixture of lipophilic surfactants can be employed, or a mixture of at least one hydrophilic surfactant and at least one lipophilic surfactant can be employed.


In some embodiments of the disclosure, the surfactant can be the sodium salt form of the compound, which can include the monosodium salt form. Suitable sodium salt surfactants can be selected based on desirable properties, including high speed of polymerization, small resultant particle sizes suitable for delivery, good polymerization yields, stability including freeze-thaw and shelf-life stability, improved surface tension properties, and lubrication properties.


The surfactant can be any suitable, non-toxic compound that is non-reactive with the medicament and that substantially reduces the surface tension between the medicament, the excipient and the site of administration. Some useful surfactants are: oleic acid available under the trade names Mednique 6322 and Emersol 6321 (from Cognis Corp., Cincinnati, Ohio); cetylpyridinium chloride (from Arrow Chemical, Inc. Westwood, N.J.); soya lecithin available under the trade name Epikuron 200 (from Lucas Meyer Decatur, Ill.); polyoxyethylene(20) sorbitan monolaurate available under the tradename Tween 20 (from ICI Specialty Chemicals, Wilmington, Del.); polyoxyethylene(20) sorbitan monostearate available under the tradename Tween 60 (from ICI); polyoxyethylene(20) sorbitan monooleate available under the tradename Tween 80 (from ICI); polyoxyethylene (10) stearyl ether available under the tradename Brij 76 (from ICI); polyoxyethylene (2) oleyl ether available under the tradename Brij 92 (frown ICI); Polyoxyethylene-polyoxypropylene-ethylenediamine block copolymer available under the tradename Tetronic 150 R1 (from BASF); polyoxypropylene-polyoxyethylene block copolymers available under the trade names Pluronic L-92, Pluronic L-121 end Pluronic F68 (from BASF); castor oil ethoxylate available under the tradename Alkasurf CO-40 (from Rhone-Poulenc Mississauga Ontario, Canada); and mixtures thereof.


A suitable hydrophilic surfactant can generally have an HLB value of at least 10, while suitable lipophilic surfactants can generally have an HLB value of or less than about 10. An empirical parameter used to characterize the relative hydrophilicity and hydrophobicity of non-ionic amphiphilic compounds is the hydrophilic-lipophilic balance (“HLB” value). Surfactants with lower HLB values are more lipophilic or hydrophobic, and have greater solubility in oils, while surfactants with higher HLB values are more hydrophilic, and have greater solubility in aqueous solutions. Hydrophilic surfactants are generally considered to be those compounds having an HLB value greater than about 10, as well as anionic, cationic, or zwitterionic compounds for which the HLB scale is not generally applicable. Similarly, lipophilic (i.e., hydrophobic) surfactants are compounds having an HLB value equal to or less than about 10. However, HLB value of a surfactant is merely a rough guide generally used to enable formulation of industrial, pharmaceutical and cosmetic emulsions.


Hydrophilic surfactants can be either ionic or non-ionic. Suitable ionic surfactants include, but are not limited to, alkylammonium salts; fusidic acid salts; fatty acid derivatives of amino acids, oligopeptides, and polypeptides; glyceride derivatives of amino acids, oligopeptides, and polypeptides; lecithins and hydrogenated lecithins; lysolecithins and hydrogenated lysolecithins; phospholipids and derivatives thereof; lysophospholipids and derivatives thereof; carnitine fatty acid ester salts; salts of alkylsulfates; fatty acid salts; sodium docusate; acyl lactylates; mono- and di-acetylated tartaric acid esters of mono- and di-glycerides; succinylated mono- and di-glycerides; citric acid esters of mono- and di-glycerides; and mixtures thereof.


Within the aforementioned group, some ionic surfactants include, by way of example: lecithins, lysolecithin, phospholipids, lysophospholipids and derivatives thereof; carnitine fatty acid ester salts; salts of alkylsulfates; fatty acid salts; sodium docusate; acyl lactylates; mono- and di-acetylated tartaric acid esters of mono- and di-glycerides; succinylated mono- and di-glycerides; citric acid esters of mono- and di-glycerides; and mixtures thereof.


Ionic surfactants can be the ionized forms of lecithin, lysolecithin, phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, phosphatidic acid, phosphatidylserine, lysophosphatidylcholine, lysophosphatidylethanolamine, lysophosphatidylglycerol, lysophosphatidic acid, lysophosphatidylserine, PEG-phosphatidylethanolamine, PVP-phosphatidylethanolamine, lactylic esters of fatty acids, stearoyl-2-lactylate, stearoyl lactylate, succinylated monoglycerides, mono/diacetylated tartaric acid esters of mono/diglycerides, citric acid esters of mono/diglycerides, cholylsarcosine, caproate, caprylate, caprate, laurate, myristate, palmitate, oleate, ricinoleate, linoleate, linolenate, stearate, lauryl sulfate, teracecyl sulfate, docusate, lauroyl carnitines, palmitoyl carnitines, myristoyl carnitines, and salts and mixtures thereof.


Hydrophilic non-ionic surfactants can include, but not limited to, alkylglucosides; alkylmaltosides; alkylthioglucosides; lauryl macrogolglycerides; polyoxyalkylene alkyl ethers such as polyethylene glycol alkyl ethers; polyoxyalkylene alkylphenols such as polyethylene glycol alkyl phenols; polyoxyalkylene alkyl phenol fatty acid esters such as polyethylene glycol fatty acids monoesters and polyethylene glycol fatty acids diesters; polyethylene glycol glycerol fatty acid esters; polyglycerol fatty acid esters; polyoxyalkylene sorbitan fatty acid esters such as polyethylene glycol sorbitan fatty acid esters; hydrophilic transesterification products of a polyol with at least one member of the group consisting of glycerides, vegetable oils, hydrogenated vegetable oils, fatty acids, and sterols; polyoxyethylene sterols, derivatives, and analogues thereof; polyoxyethylated vitamins and derivatives thereof; polyoxyethylene-polyoxypropylene block copolymers; and mixtures thereof; polyethylene glycol sorbitan fatty acid esters and hydrophilic transesterification products of a polyol with at least one member of the group consisting of triglycerides, vegetable oils, and hydrogenated vegetable oils. The polyol can be glycerol, ethylene glycol, polyethylene glycol, sorbitol, propylene glycol, pentaerythritol, or a saccharide.


Other hydrophilic-non-ionic surfactants include, without limitation, PEG-10 laurate, PEG-12 laurate, PEG-20 laurate, PEG-32 laurate, PEG-32 dilaurate, PEG-12 oleate, PEG-15 oleate, PEG-20 oleate, PEG-20 dioleate, PEG-32 oleate, PEG-200 oleate, PEG-400 oleate, PEG-15 stearate, PEG-32 distearate, PEG-40 stearate, PEG-100 stearate, PEG-20 dilaurate, PEG-25 glyceryl trioleate, PEG-32 dioleate, PEG-20 glyceryl laurate, PEG-30 glyceryl laurate, PEG-20 glyceryl stearate, PEG-20 glyceryl oleate, PEG-30 glyceryl oleate, PEG-30 glyceryl laurate, PEG-40 glyceryl laurate, PEG-40 palm kernel oil, PEG-50 hydrogenated castor oil, PEG-40 castor oil, PEG-35 castor oil, PEG-60 castor oil, PEG-40 hydrogenated castor oil, PEG-60 hydrogenated castor oil, PEG-60 corn oil, PEG-6 caprate/caprylate glycerides, PEG-8 caprate/caprylate glycerides, polyglyceryl-10 laurate, PEG-30 cholesterol, PEG-25 phyto sterol, PEG-30 soya sterol, PEG-20 trioleate, PEG-40 sorbitan oleate, PEG-80 sorbitan laurate, polysorbate 20, polysorbate 80, POE-9 lauryl ether, POE-23 lauryl ether, POE-10 oleyl ether, POE-20 oleyl ether, POE-20 stearyl ether, tocopheryl PEG-100 succinate, PEG-24 cholesterol, polyglyceryl-10oleate, Tween 40, Tween 60, sucrose monostearate, sucrose monolaurate, sucrose monopalmitate, PEG 10-100 nonyl phenol series, PEG 15-100 octyl phenol series, and poloxamers.


Suitable lipophilic surfactants include, by way of example only: fatty alcohols; glycerol fatty acid esters; acetylated glycerol fatty acid esters; lower alcohol fatty acids esters; propylene glycol fatty acid esters; sorbitan fatty acid esters; polyethylene glycol sorbitan fatty acid esters; sterols and sterol derivatives; polyoxyethylated sterols and sterol derivatives; polyethylene glycol alkyl ethers; sugar esters; sugar ethers; lactic acid derivatives of mono- and di-glycerides; hydrophobic transesterification products of a polyol with at least one member of the group consisting of glycerides, vegetable oils, hydrogenated vegetable oils, fatty acids and sterols; oil-soluble vitamins/vitamin derivatives; and mixtures thereof. Within this group, some lipophilic surfactants include glycerol fatty acid esters, propylene glycol fatty acid esters, and mixtures thereof, or are hydrophobic transesterification products of a polyol with at least one member of the group consisting of vegetable oils, hydrogenated vegetable oils, and triglycerides.


In some embodiments the formulations of the disclosure contain no surfactants. In some embodiments, the formulations of the disclosure are intravenous formulations containing no surfactants. In some further embodiments the formulations contain substantially no surfactant, i.e. contain less than approximately 0.0001% by weight of surfactants. In some embodiments, the formulations contain essentially no surfactants.


If desired, however, the formulations can contain surface-active agents conventionally employed, such as oleic acid, lecithin, sorbitan trioleate, cetylpyridinium chloride, benzalkonium chloride, polyoxyethylene (20) sorbitan monolaurate, polyoxyethylene (20) sorbitan monostearate, polyoxyethylene (20) sorbitan mono-oleate, polyoxypropylene/polyoxyethylene block copolymers, polyoxypropylene/polyoxyethylene/ethylene diamine block copolymers, ethoxylated castor oil and the like, where the proportion of surface-active agents, if present, can be about 0.0001 to 1% by weight, or about 0.001 to 0.1% by weight, based on the total formulation. Other suitable surfactant/emulsifying agents would be known to one of skill in the art and are listed in the CTFA International Cosmetic Ingredient Dictionary and Handbook, Vol. 2, 7th Edition (1997).


The aqueous pharmaceutical formulations of the disclosure can further include other pharmacological active ingredients as far as they do not contradict the purpose of the present disclosure. The aqueous pharmaceutical formulations for example can comprise solubilizing agents, bulking agents, dissolution enhancers, wetting agents, emulsifiers, suspending agents, antibacterial agents, sweeteners, perfuming agents, flavoring agents, and combinations thereof.


Some of the excipients or additives can have more than one possible function or use, depending on their properties and the nature of the formulation. In a combination of plural active ingredients, their respective contents can be suitably increased or decreased in consideration of their effects and safety.


Peptidomimetic Macrocycles

In some embodiments, a peptidomimetic macrocycle has the Formula (I):




embedded image


wherein:


each A, C, and D is independently an amino acid;


each B is independently an amino acid,




embedded image


[—NH-L3-CO—], [—NH-L3-SO2—], or [—NH-L3-];


each E is independently an amino acid selected from the group consisting of Ala (alanine), D-Ala (D-alanine), Aib (α-aminoisobutyric acid), Sar (N-methyl glycine), and Ser (serine);


each R3 independently is hydrogen, alkyl, alkenyl, alkynyl, arylalkyl, heteroalkyl, cycloalkyl, heterocycloalkyl, cycloalkylalkyl, cycloaryl, or heterocycloaryl, optionally substituted with R5;


each R1 and R2 is independently —H, alkyl, alkenyl, alkynyl, arylalkyl, cycloalkyl, cycloalkylalkyl, heteroalkyl, or heterocycloalkyl, unsubstituted or substituted with halo-; or forms a macrocycle-forming linker L′ connected to the alpha position of one of said D or E amino acids;


each L and L′ is independently a macrocycle-forming linker;


each L3 is independently alkylene, alkenylene, alkynylene, heteroalkylene, cycloalkylene, heterocycloalkylene, cycloarylene, heterocycloarylene, or [—R4—K—R4-]11, each being optionally substituted with R5;


each R4 is independently alkylene, alkenylene, alkynylene, heteroalkylene, cycloalkylene, heterocycloalkylene, arylene, or heteroarylene;


each K is independently O, S, SO, SO2, CO, CO2, or CONR3;


each R5 is independently halogen, alkyl, —OR6, —N(R6)2, —SR6, —SORE, —SO2R6, —CO2R6, a fluorescent moiety, a radioisotope or a therapeutic agent;


each R6 is independently —H, alkyl, alkenyl, alkynyl, arylalkyl, cycloalkylalkyl, heterocycloalkyl, a fluorescent moiety, a radioisotope or a therapeutic agent;


each R7 is independently —H, alkyl, alkenyl, alkynyl, arylalkyl, cycloalkyl, heteroalkyl, cycloalkylalkyl, heterocycloalkyl, cycloaryl, or heterocycloaryl, optionally substituted with R5, or part of a cyclic structure with a D residue;


each R8 is independently —H, alkyl, alkenyl, alkynyl, arylalkyl, cycloalkyl, heteroalkyl, cycloalkylalkyl, heterocycloalkyl, cycloaryl, or heterocycloaryl, optionally substituted with R5, or part of a cyclic structure with an E residue;


each v is independently an integer;


each w is independently an integer from 3-1000;


u is an integer from 1-10;


each x, y and z is independently an integer from 0-10; and


each n is independently an integer from 1-5.


In some embodiments, each v and w is independently integers between 1-30. In some embodiments, w is an integer from 3-1000, for example 3-500, 3-200, 3-100, 3-50, 3-30, 3-20, or 3-10. In some embodiments, the sum of x+y+z is 3 or 6. In some embodiments, the sum of x+y+z is 3. In other embodiments, the sum of x+y+z is 6.


In some embodiments, peptidomimetic macrocycles are also provided of the formula:




embedded image


wherein:


each of Xaa3, Xaa5, Xaa6, Xaa7, Xaa8, Xaa9, and Xaa10 is individually an amino acid, wherein at least three of Xaa3, Xaa5, Xaa6, Xaa7, Xaa8, Xaa9, and Xaa10 are the same amino acid as the amino acid at the corresponding position of the sequence Phe3-X4-His5-Tyr6-Trp7-Ala8-Gln9-Leu10-X11-Ser12, where each X is an amino acid;


each D and E is independently an amino acid;


each R1 and R2 is independently —H, alkyl, alkenyl, alkynyl, arylalkyl, cycloalkyl, cycloalkylalkyl, heteroalkyl, or heterocycloalkyl, unsubstituted or substituted with halo-; or at least one of R1 and R2 forms a macrocycle-forming linker L′ connected to the alpha position of one of said D or E amino acids;


each L or L′ is independently a macrocycle-forming linker;


each R5 is independently halogen, alkyl, —OR6, —N(R6)2, —SR6, —SORE, —SO2R6, —CO2R6, a fluorescent moiety, a radioisotope or a therapeutic agent;


each R6 is independently —H, alkyl, alkenyl, alkynyl, arylalkyl, cycloalkylalkyl, heterocycloalkyl, a fluorescent moiety, a radioisotope or a therapeutic agent;


each R7 is independently —H, alkyl, alkenyl, alkynyl, arylalkyl, cycloalkyl, heteroalkyl, cycloalkylalkyl, heterocycloalkyl, cycloaryl, or heterocycloaryl, optionally substituted with R5, or part of a cyclic structure with a D residue;


each R8 is independently —H, alkyl, alkenyl, alkynyl, arylalkyl, cycloalkyl, heteroalkyl, cycloalkylalkyl, heterocycloalkyl, cycloaryl, or heterocycloaryl, optionally substituted with R5, or part of a cyclic structure with an E residue;


v is an integer from 1-1000, for example 1-500, 1-200, 1-100, 1-50, 1-30, 1-20 or 1-10; and


w is an integer from 3-1000, for example 3-500, 3-200, 3-100, 3-50, 3-30, 3-20, or 3-10.


In some embodiments, each v and w is independently an integer between 1-30. In some embodiments, w is an integer from 3-1000, for example 3-500, 3-200, 3-100, 3-50, 3-30, 3-20, or 3-10. In some embodiments, the sum of x+y+z is 3 or 6. In some embodiments, the sum of x+y+z is 3. In other embodiments, the sum of x+y+z is 6.


In some embodiments of any of the Formulas described herein, at least three of Xaa3, Xaa5, Xaa6, Xaa7, Xaa8, Xaa9, and Xaa10 are the same amino acid as the amino acid at the corresponding position of the sequence Phe3-X4-His5-Tyr6-Trp7-Ala8-Gln9-Leu10-X11-Ser12. In other embodiments, at least four of Xaa3, Xaa5, Xaa6, Xaa7, Xaa8, Xaa9, and Xaa10 are the same amino acid as the amino acid at the corresponding position of the sequence Phe3-X4-His5-Tyr6-Trp7-Ala8-Gln9-Leu10-X11-Ser12. In other embodiments, at least five of Xaa3, Xaa5, Xaa6, Xaa7, Xaa8, Xaa9, and Xaa10 are the same amino acid as the amino acid at the corresponding position of the sequence Phe3-X4-His5-Tyr6-Trp7-Ala8-Gln9-Leu10-X11-Ser12. In other embodiments, at least six of Xaa3, Xaa5, Xaa6, Xaa7, Xaa8, Xaa9, and Xaa10 are the same amino acid as the amino acid at the corresponding position of the sequence Phe3-X4-His5-Tyr6-Trp7-Ala8-Gln9-Leu10-X11-Ser12. In other embodiments, at least seven of Xaa3, Xaa5, Xaa6, Xaa7, Xaa8, Xaa9, and Xaa10 are the same amino acid as the amino acid at the corresponding position of the sequence Phe3-X4-His5-Tyr6-Trp7-Ala8-Gln9-Leu10-X11-Ser12.


In some embodiments, a peptidomimetic macrocycle has the Formula:




embedded image


wherein:

    • each of Xaa3, Xaa5, Xaa6, Xaa7, Xaa8, Xaa9, and Xaa10 is individually an amino acid, wherein at least three of Xaa3, Xaa5, Xaa6, Xaa7, Xaa8, Xaa9, and Xaa10 are the same amino acid as the amino acid at the corresponding position of the sequence Phe3-X4-Glu5-Tyr6-Trp7-Ala8-Gln9-Leu10/Cba10-X11-Ala12, where each X is an amino acid;
    • each D is independently an amino acid;
    • each E is independently an amino acid, for example an amino acid selected from Ala (alanine), D-Ala (D-alanine), Aib (α-aminoisobutyric acid), Sar (N-methyl glycine), and Ser (serine);


each R1 and R2 are independently —H, alkyl, alkenyl, alkynyl, arylalkyl, cycloalkyl, cycloalkylalkyl, heteroalkyl, or heterocycloalkyl, unsubstituted or substituted with halo-; or at least one of R1 and R2 forms a macrocycle-forming linker L′ connected to the alpha position of one of said D or E amino acids;


each L or L′ is independently a macrocycle-forming linker;


each R5 is independently halogen, alkyl, —OR6, —N(R6)2, —SR6, —SORE, —SO2R6, —CO2R6, a fluorescent moiety, a radioisotope or a therapeutic agent;


each R6 is independently —H, alkyl, alkenyl, alkynyl, arylalkyl, cycloalkylalkyl, heterocycloalkyl, a fluorescent moiety, a radioisotope or a therapeutic agent;


each R7 is independently —H, alkyl, alkenyl, alkynyl, arylalkyl, cycloalkyl, heteroalkyl, cycloalkylalkyl, heterocycloalkyl, cycloaryl, or heterocycloaryl, optionally substituted with R5, or part of a cyclic structure with a D residue;


each R8 is independently —H, alkyl, alkenyl, alkynyl, arylalkyl, cycloalkyl, heteroalkyl, cycloalkylalkyl, heterocycloalkyl, cycloaryl, or heterocycloaryl, optionally substituted with R5, or part of a cyclic structure with an E residue;


v is an integer from 1-1000, for example 1-500, 1-200, 1-100, 1-50, 1-30, 1-20, or 1-10;


w is an integer from 3-1000, for example 3-500, 3-200, 3-100, 3-50, 3-30, 3-20, or 3-10; and.


In some embodiments of the above Formula, at least three of Xaa3, Xaa5, Xaa6, Xaa7, Xaa8, Xaa9, and Xaa10 are the same amino acid as the amino acid at the corresponding position of the sequence Phe3-X4-Glu5-Tyr6-Trp7-Ala8-Gln9-Leu10/Cba10-X11-Ala12. In other embodiments of the above Formula, at least four of Xaa3, Xaa5, Xaa6, Xaa7, Xaa8, Xaa9, and Xaa10 are the same amino acid as the amino acid at the corresponding position of the sequence Phe3-X4-Glu5-Tyr6-Trp7-Ala8-Gln9-Leu10/Cba10-X11-Ala12. In other embodiments of the above Formula, at least five of Xaa3, Xaa5, Xaa6, Xaa7, Xaa8, Xaa9, and Xaa10 are the same amino acid as the amino acid at the corresponding position of the sequence Phe3-X4-Glu5-Tyr6-Trp7-Ala8-Gln9-Leu10/Cba10-X11-Ala12. In other embodiments of the above Formula, at least six of Xaa3, Xaa5, Xaa6, Xaa7, Xaa8, Xaa9, and Xaa10 are the same amino acid as the amino acid at the corresponding position of the sequence Phe3-X4-Glu5-Tyr6-Trp7-Ala8-Gln9-Leu10/Cba10-X11-Ala12. In other embodiments of the above Formula, at least seven of Xaa3, Xaa5, Xaa6, Xaa7, Xaa8, Xaa9, and Xaa10 are the same amino acid as the amino acid at the corresponding position of the sequence Phe3-X4-Glu5-Tyr6-Trp7-Ala8-Gln9-Leu10/Cba10-X11-Ala12


In some embodiments, w is an integer from 3-10, for example 3-6, 3-8, 6-8, or 6-10. In some embodiments, w is 3. In other embodiments, w is 6. In some embodiments, v is an integer from 1-10, for example 2-5. In some embodiments, v is 2.


In one embodiment, the peptidomimetic macrocycle of Formula (I) is Formula (Ia):




embedded image


or a pharmaceutically-acceptable salt thereof wherein:


each of Xaa6, Xaa7, Xaa8, Xaa10, Xaa11, Xaa12, and Xaa13 is independently an amino acid, wherein at least three, four, five, or each of Xaa6, Xaa7, Xaa8, Xaa10, Xaa11, Xaa12, are the same amino acid as the amino acid at the corresponding position of the sequence X5-Thr6-Leu7-Leu8-X9-Leu10-Lys11/Ala11-Val12/Ala12, where each of X5 and X9 is independently an amino acid.


In some embodiments, the peptidomimetic macrocycle of Formula (Ia) is Formula (Ia-1):




embedded image


or a pharmaceutically-acceptable salt thereof, wherein each Xaa14 is independently an amino acid.


In some embodiments, the peptidomimetic macrocycle of Formula (Ia) is Formula (Ia-2):




embedded image


or a pharmaceutically-acceptable salt thereof, wherein each Xaa14 and Xaa15 is independently an amino acid.


In one embodiment, the peptidomimetic macrocycle of Formula (I) is Formula (Ib):




embedded image


or a pharmaceutically-acceptable salt thereof, wherein: each of Xaa6, Xaa7, Xaa8, Xaa9, Xaa10, Xaa11 and Xaa13 is independently an amino acid, wherein at least three, four, five, or each of Xaa6, Xaa7, Xaa8, Xaa9, Xaa10, and Xaa11 are the same amino acid as the amino acid at the corresponding position of the sequence X5-Thr6-Leu7-Leu5-Phe9-Leu10-Lys11/Ala11-X12, where each of X5 and X12 is independently an amino acid.


In some embodiments, the peptidomimetic macrocycle of Formula (Ib) is Formula (Ib-1):




embedded image


or a pharmaceutically-acceptable salt thereof, wherein each Xaa14 is independently an amino acid.


In some embodiments, the peptidomimetic macrocycle of Formula (Ib) is Formula (Ib-2):




embedded image


or a pharmaceutically-acceptable salt thereof, wherein each Xaa14 and Xaa15 is independently an amino acid.


In some embodiments, the invention provides a peptidomimetic macrocycle of Formula (IX):




embedded image


wherein the peptidomimetic macrocycle binds MCL-1 selectively over another protein that has a BH3 domain, wherein:


each A, C, D, and E is independently a natural or non-natural amino acid;


each B is independently a natural or non-natural amino acid, amino acid analog,




embedded image


[—NH-L3-SO2—], or [—NH-L3-];


each L is independently a macrocycle-forming linker;


each L′ is independently alkylene, alkenylene, alkynylene, heteroalkylene, cycloalkylene, heterocycloalkylene, arylene, or heteroarylene, each being optionally substituted with R5, or a bond, or together with R1 and the atom to which both R1 and L′ are bound forms a ring;


each L″ is independently alkylene, alkenylene, alkynylene, heteroalkylene, cycloalkylene, heterocycloalkylene, arylene, or heteroarylene, each being optionally substituted with R5, or a bond, or together with R2 and the atom to which both R2 and L″ are bound forms a ring;


each R1 is independently —H, alkyl, alkenyl, alkynyl, arylalkyl, cycloalkyl, cycloalkylalkyl, heteroalkyl, or heterocycloalkyl, unsubstituted or substituted with halo-, or together with L′ and the atom to which both R1 and L′ are bound forms a ring;


each R2 is independently —H, alkyl, alkenyl, alkynyl, arylalkyl, cycloalkyl, cycloalkylalkyl, heteroalkyl, or heterocycloalkyl, unsubstituted or substituted with halo-, or together with L″ and the atom to which both R2 and L″ are bound forms a ring;


each R3 is independently hydrogen, alkyl, alkenyl, alkynyl, arylalkyl, heteroalkyl, cycloalkyl, heterocycloalkyl, cycloalkylalkyl, aryl, or heteroaryl, optionally substituted with R5;


each L3 is independently alkylene, alkenylene, alkynylene, heteroalkylene, cycloalkylene, heterocycloalkylene, arylene, heteroarylene, or [—R4—K—R4-]n, each being optionally substituted with R5;


each R4 is independently alkylene, alkenylene, alkynylene, heteroalkylene, cycloalkylene, heterocycloalkylene, arylene, or heteroarylene;


each K is independently O, S, SO, SO2, CO, CO2, or CONR3;


each n is independently an integer from 1-5;


each R5 is independently halogen, alkyl, —OR6, —N(R6)2, —SR6, —SORE, —SO2R6, —CO2R6, a fluorescent moiety, a radioisotope, or a therapeutic agent;


each R6 is independently —H, alkyl, alkenyl, alkynyl, arylalkyl, cycloalkylalkyl, heterocycloalkyl, a fluorescent moiety, a radioisotope, or a therapeutic agent;


each R7 is independently —H, alkyl, alkenyl, alkynyl, arylalkyl, cycloalkyl, heteroalkyl, cycloalkylalkyl, heterocycloalkyl, aryl, or heteroaryl, optionally substituted with R5, or part of a cyclic structure with a D residue;


each R8 is independently —H, alkyl, alkenyl, alkynyl, arylalkyl, cycloalkyl, heteroalkyl, cycloalkylalkyl, heterocycloalkyl, aryl, or heteroaryl, optionally substituted with R5, or part of a cyclic structure with an E residue;


each v and w is independently an integer from 1-1000;


u is an integer from 1-10; and


each x, y and z is independently an integer from 0-10, or


a pharmaceutically-acceptable salt thereof.


In some embodiments, the invention provides a peptidomimetic macrocycle having the formula:




embedded image


wherein:


each D and E is independently an amino acid residue;


each R1 and R2 are independently alkyl, alkenyl, alkynyl, arylalkyl, cycloalkyl, cycloalkylalkyl, heteroalkyl, or heterocycloalkyl, each being optionally substituted with halo-; —H, or at least one of R1 and R2 forms a macrocycle-forming linker L′ connected to the alpha position of one of the D or E amino acid residues;


each L is a macrocycle-forming linker of the formula -L1-L2- or -L1-L2-L3-;


each L1, L2, and L3 are independently alkylene, alkenylene, alkynylene, heteroalkylene, cycloalkylene, heterocycloalkylene, arylene, heteroarylene, or [—R4—K—R4-]n, each being optionally substituted with R5;


each R3 is independently —H, alkyl, alkenyl, alkynyl, arylalkyl, cycloalkyl, heteroalkyl, cycloalkylalkyl, heterocycloalkyl, aryl, or heteroaryl, each being optionally substituted with R5;


each R4 is independently alkylene, alkenylene, alkynylene, heteroalkylene, cycloalkylene, heterocycloalkylene, arylene, or heteroarylene, each being optionally substituted with R5;


each K is independently O, S, SO, SO2, CO, CO2, or CONR3;


each R5 is independently halogen, alkyl, —OR6, —N(R6)2, —SR6, —SORE, —SO2R6, —CO2R6, a fluorescent moiety, a radioisotope, or a therapeutic agent;


each R6 is independently —H, alkyl, alkenyl, alkynyl, arylalkyl, cycloalkylalkyl, heterocycloalkyl, a fluorescent moiety, a radioisotope, or a therapeutic agent;


R7 is —H, alkyl, alkenyl, alkynyl, arylalkyl, cycloalkyl, heteroalkyl, cycloalkylalkyl, heterocycloalkyl, aryl, or heteroaryl, each being optionally substituted with R5, or part of a cyclic structure with a D residue;


R8 is —H, alkyl, alkenyl, alkynyl, arylalkyl, cycloalkyl, heteroalkyl, cycloalkylalkyl, heterocycloalkyl, aryl, or heteroaryl, each being optionally substituted with R5, or part of a cyclic structure with an E residue;


each of Xaa′ and Xaa2 is independently an amino acid residue or absent;


Xaa3 is Ala, Aib, Asp, Asn, Cys, Glu, Gln, His, Ile, Lys, Leu, Met, Arg, Ser, Thr, Val, Trp, Tyr, or an analog of any of the foregoing;


v is an integer from 1-1000;


w is an integer from 0-1000; and


n is an integer from 1-5, or


a pharmaceutically-acceptable salt thereof.


In some embodiments, the invention provides a peptidomimetic macrocycle of the formula:




embedded image


wherein:


each D and E is independently an amino acid residue;


R1 and R2 are independently alkyl, alkenyl, alkynyl, arylalkyl, cycloalkyl, cycloalkylalkyl, heteroalkyl, or heterocycloalkyl, each being optionally substituted with halo-; —H, or at least one of R1 and R2 forms a macrocycle-forming linker L′ connected to the alpha position of one of the D or E amino acid residues;


each L or L′ is independently a macrocycle-forming linker of the formula -L1-L2- or -L1-L2-L3-; L1, L2, and L3 are independently alkylene, alkenylene, alkynylene, heteroalkylene, cycloalkylene, heterocycloalkylene, arylene, heteroarylene, or [—R4—K—R4-]n, each being optionally substituted with R5; each R3 is independently —H, alkyl, alkenyl, alkynyl, arylalkyl, cycloalkyl, heteroalkyl, cycloalkylalkyl, heterocycloalkyl, aryl, or heteroaryl, each being optionally substituted with R5;


each R4 is independently alkylene, alkenylene, alkynylene, heteroalkylene, cycloalkylene, heterocycloalkylene, arylene, or heteroarylene, each being optionally substituted with R5;


each K is independently O, S, SO, SO2, CO, CO2, or CONR3;


each R5 is independently halogen, alkyl, —OR6, —N(R6)2, SR6, —SOR6, —SO2R6, —CO2R6, a fluorescent moiety, a radioisotope, or a therapeutic agent;


each R6 is independently —H, alkyl, alkenyl, alkynyl, arylalkyl, cycloalkylalkyl, heterocycloalkyl, a fluorescent moiety, a radioisotope, or a therapeutic agent;


R7 is —H, alkyl, alkenyl, alkynyl, arylalkyl, cycloalkyl, heteroalkyl, cycloalkylalkyl, heterocycloalkyl, aryl, or heteroaryl, each being optionally substituted with R5, or part of a cyclic structure with a D residue;


R8 is —H, alkyl, alkenyl, alkynyl, arylalkyl, cycloalkyl, heteroalkyl, cycloalkylalkyl, heterocycloalkyl, aryl, or heteroaryl, each being optionally substituted with R5, or part of a cyclic structure with an E residue;


each of Xaa1 and Xaa2 is independently an amino acid residue or absent;


v is an integer from 1-1000;


w is an integer from 0-1000; and


n is an integer from 1-5, or


a pharmaceutically-acceptable salt thereof.


In some embodiments, the invention provides a peptidomimetic macrocycle comprising an amino acid sequence of formula:











X1-X2-X3-X4-X5-X6-X7-X8-X9-X10-X11-X12-X13-X14-







X15-X16-X17-X18-X19-X20-X21






wherein:


X1 is Ile, Arg, Ala, Lys, Pro, Leu, Asp, Glu, His, Ser, Gln, Phe, an analog thereof, or absent;


X2 is Trp, Arg, Ala, Asn, Phe, Pro, Leu, Ser, Lys, Tyr, His, Cou, Cou2, Cou4, Cou7, an analog thereof, a crosslinked amino acid, or absent;


X3 is Ile, Ala, Leu, Phe, Tyr, Val, Asp, Trp, Pro, Gln, Chg, Ac5c, Ac6c, Tba, Bip, Cha, Adm, hCha, an analog thereof, or absent;


X4 is Ala, Gln, Asp, Val, Gly, Ser, Leu, Phe, Cha, A4, an analog, thereof, a crosslinked amino acid, or absent;


X5 is Gln, Ala, Leu, Phe, Tyr, Gly, Ile, Val, Arg, Glu, Pro, Asp, MO, MO2, an analog thereof, a crosslinked amino acid, or absent;


X6 is Glu, Gln, His, Ala, Ser, Arg, Ile, Leu, Thr, Phe, Val, Tyr, Gly, Nle, St, an analog thereof, or absent;


X7 is Ala, Leu, Phe, Ile, 2Nal, 1Nal, 3cf, Chg, Cha, Adm, hCha, Igl, Bip, an analog thereof, or absent;


X8 is Arg, Ala, Asp, Glu, Thr, His, Gln, Gly, Asn, Phe, Cit, St, an analog thereof, a crosslinked amino acid, or absent;


X9 is Arg, Ala, Asp, Lys, Asn, Gly, Ser, Gln, Cys, Nle, St, an analog thereof, or a crosslinked amino acid;


X10 is Ile, Val, Ala, Asp, Asn, Phe, Tba, hL, hhL, Nle, Chg, Cha, an analog thereof, or a crosslinked amino acid;


X11 is Gly, Val, Ala, Leu, Ile, Asp, Glu, Cha, Aib, Abu, an analog thereof, or a crosslinked amino acid;


X12 is Asp, Ala, Asn, Gly, Arg, Glu, Lys, Leu, Nle, an analog thereof, or a crosslinked amino acid;


X13 is Ala, Glu, Gln, Leu, Lys, Asp, Tyr, Ile, Ser, Cys, St, Sta5, Aib, Nle, an analog thereof, or a crosslinked amino acid;


X14 is Phe, Ala, Leu, Val, Tyr, Glu, His, Ile, Nle, 1Nal, 2Nal, Chg, Cha, BiP, an analog thereof, or a crosslinked amino acid;


X15 is Asn, Gln, Ser, His, Glu, Asp, Ala, Leu, Ile, St, Nle, Aib, an analog thereof, a crosslinked amino acid, or absent;


X16 is Ala, Glu, Asp, Arg, Lys, Phe, Gly, Gln, Aib, Cha, St, an analog thereof, a crosslinked amino acid, or absent;


X17 is Phe, Tyr, Ala, Leu, Asn, Ser, Gln, Arg, His, Thr, Cou2, Cou3, Cou7, Dpr, Amf, Damf, Amye, an analog thereof, a crosslinked amino acid, or absent;


X18 is Tyr, Ala, Ile, Phe, His, Arg, Lys, Trp, Orn, Amf, Amye, Cha, 2Nal, an analog thereof, or absent;


X19 is Ala, Lys, Arg, His, Ser, Gln, Glu, Asp, Thr, Aib, Cha, an analog thereof, a crosslinked amino acid, or absent; and


X20 is Arg, His, Ala, Thr, Lys, Amr, an analog thereof, a crosslinked amino acid, or absent; and


X21 is Arg, His, Ala, Amr, an analog thereof, or absent, or


a pharmaceutically-acceptable salt thereof,


wherein at least two of the amino acids of the amino acid sequence are a crosslinked amino acid.


In some embodiments, the invention provides a peptidomimetic macrocycle comprising an amino acid sequence with C-terminal amino acid residues that are -His-His, wherein the peptidomimetic macrocycle comprises a crosslink connecting at least two amino acid residues, or a pharmaceutically-acceptable salt thereof. In an embodiment of any of the Formulas described herein, of the macrocycle-forming linker (L or L′) has a formula L1-L2-, wherein


L1 and L2 are independently alkylene, alkenylene, alkynylene, heteroalkylene, cycloalkylene, heterocycloalkylene, cycloarylene, heterocycloarylene, or [—R4—K—R4-]n, each being optionally substituted with R5;


each R4 is independently alkylene, alkenylene, alkynylene, heteroalkylene, cycloalkylene, heterocycloalkylene, arylene, or heteroarylene;


each K is independently O, S, SO, SO2, CO, CO2, or CONR3;


each R3 independently is hydrogen, alkyl, alkenyl, alkynyl, arylalkyl, heteroalkyl, cycloalkyl, heterocycloalkyl, cycloalkylalkyl, cycloaryl, or heterocycloaryl, optionally substituted with R5; and n is an integer from 1-5.


In some embodiments, L (or L′) is a macrocycle-forming linker of the formula




embedded image


Exemplary embodiments of such macrocycle-forming linkers L are shown below.




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


In an embodiment of any of the Formulas described herein, L1 and L2, either alone or in combination, form a triazole or a thioether.


In an embodiment of any of the Formulas described herein, L1 and L2, either alone or in combination, do not form a triazole or a thioether.


In one example, at least one of R1 and R2 is alkyl, unsubstituted or substituted with halo-. In another example, both R1 and R2 are independently alkyl, unsubstituted or substituted with halo-. In some embodiments, at least one of R1 and R2 is methyl. In other embodiments, R1 and R2 are methyl.


In some embodiments, x+y+z is at least 3. In other embodiments, x+y+z is 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10. In some embodiments, the sum of x+y+z is 3 or 6. In some embodiments, the sum of x+y+z is 3. In other embodiments, the sum of x+y+z is 6. Each occurrence of A, B, C, D or E in a macrocycle or macrocycle precursor is independently selected. For example, a sequence represented by the formula [A]x, when x is 3, encompasses embodiments where the amino acids are not identical, e.g. Gln-Asp-Ala as well as embodiments where the amino acids are identical, e.g. Gln-Gln-Gln. This applies for any value of x, y, or z in the indicated ranges. Similarly, when u is greater than 1, each compound can encompass peptidomimetic macrocycles which are the same or different. For example, a compound can comprise peptidomimetic macrocycles comprising different linker lengths or chemical compositions.


In some embodiments, the peptidomimetic macrocycle comprises a secondary structure which is an α-helix and R8 is —H, allowing intrahelical hydrogen bonding. In some embodiments, at least one of A, B, C, D or E is an α,α-disubstituted amino acid. In one example, B is an α,α-disubstituted amino acid. For instance, at least one of A, B, C, D or E is 2-aminoisobutyric acid. In other embodiments, at least one of A, B, C, D or E is




embedded image


In other embodiments, the length of the macrocycle-forming linker L as measured from a first Cα to a second Cα is selected to stabilize a desired secondary peptide structure, such as an α-helix formed by residues of the peptidomimetic macrocycle including, but not necessarily limited to, those between the first Cα to a second Cα.


In some embodiments, a peptidomimetic macrocycle of Formula (I) has Formula:




embedded image


wherein:


each A, C, D, and E is independently a natural or non-natural amino acid;


each B is independently a natural or non-natural amino acid, amino acid analog,




embedded image


[—NH-L3-CO—], [—NH-L3-SO2—], or [—NH-L3-];


each L is independently a macrocycle-forming linker;


each L′ is independently alkylene, alkenylene, alkynylene, heteroalkylene, cycloalkylene, heterocycloalkylene, arylene, or heteroarylene, each being optionally substituted with R5, or a bond, or together with R1 and the atom to which both R1 and L′ are bound forms a ring;


each L″ is independently alkylene, alkenylene, alkynylene, heteroalkylene, cycloalkylene, heterocycloalkylene, arylene, or heteroarylene, each being optionally substituted with R5, or a bond, or together with R2 and the atom to which both R2 and L″ are bound forms a ring;


each R1 is independently —H, alkyl, alkenyl, alkynyl, arylalkyl, cycloalkyl, cycloalkylalkyl, heteroalkyl, or heterocycloalkyl, unsubstituted or substituted with halo-, or together with L′ and the atom to which both R1 and L′ are bound forms a ring;


each R2 is independently —H, alkyl, alkenyl, alkynyl, arylalkyl, cycloalkyl, cycloalkylalkyl, heteroalkyl, or heterocycloalkyl, unsubstituted or substituted with halo-, or together with L″ and the atom to which both R2 and L″ are bound forms a ring;


each R3 is independently hydrogen, alkyl, alkenyl, alkynyl, arylalkyl, heteroalkyl, cycloalkyl, heterocycloalkyl, cycloalkylalkyl, aryl, or heteroaryl, optionally substituted with R5;


each L3 is independently alkylene, alkenylene, alkynylene, heteroalkylene, cycloalkylene, heterocycloalkylene, arylene, heteroarylene, or [—R4—K—R4-]n, each being optionally substituted with R5;


each R4 is alkylene, alkenylene, alkynylene, heteroalkylene, cycloalkylene, heterocycloalkylene, arylene, or heteroarylene;


each K is independently O, S, SO, SO2, CO, CO2, or CONR3;


each n is independently an integer from 1-5;


each R5 is independently halogen, alkyl, —OR6, —N(R6)2, —SR6, —SORE, —SO2R6, —CO2R6, a fluorescent moiety, a radioisotope or a therapeutic agent;


each R6 is independently —H, alkyl, alkenyl, alkynyl, arylalkyl, cycloalkylalkyl, heterocycloalkyl, a fluorescent moiety, a radioisotope or a therapeutic agent;


each R7 is independently —H, alkyl, alkenyl, alkynyl, arylalkyl, cycloalkyl, heteroalkyl, cycloalkylalkyl, heterocycloalkyl, aryl, or heteroaryl, optionally substituted with R5, or part of a cyclic structure with a D residue;


each R8 is independently —H, alkyl, alkenyl, alkynyl, arylalkyl, cycloalkyl, heteroalkyl, cycloalkylalkyl, heterocycloalkyl, aryl, or heteroaryl, optionally substituted with R5, or part of a cyclic structure with an E residue; each v and w is independently an integer from 1-1000, for example 1-500, 1-200, 1-100, 1-50, 1-40, 1-25, 1-20, 1-15, or 1-10; and each u, x, y and z is independently an integer from 0-10.


In some embodiments, the peptidomimetic macrocycles have the Formula I:




embedded image


wherein:


each A, C, D, and E is independently a natural or non-natural amino acid;


each B is independently a natural or non-natural amino acid, amino acid analog,




embedded image


[—NH-L3-CO—], [—NH-L3-SO2—], or [—NH-L3-];


each R1 and R2 is independently —H, alkyl, alkenyl, alkynyl, arylalkyl, cycloalkyl, cycloalkylalkyl, heteroalkyl, or heterocycloalkyl, unsubstituted or substituted with halo-;


each R3 is independently hydrogen, alkyl, alkenyl, alkynyl, arylalkyl, heteroalkyl, cycloalkyl, heterocycloalkyl, cycloalkylalkyl, aryl, or heteroaryl, optionally substituted with R5;


each L is independently a macrocycle-forming linker of the formula




embedded image


each L1, L2 and L3 is independently alkylene, alkenylene, alkynylene, heteroalkylene, cycloalkylene, heterocycloalkylene, arylene, heteroarylene, or [—R4—K—R4-]n, each being optionally substituted with R5;


each R4 is alkylene, alkenylene, alkynylene, heteroalkylene, cycloalkylene, heterocycloalkylene, arylene, or heteroarylene;


each K is independently O, S, SO, SO2, CO, CO2, or CONR3;


each R5 is independently halogen, alkyl, —OR6, —N(R6)2, —SR6, —SORE, —SO2R6, —CO2R6, a fluorescent moiety, a radioisotope or a therapeutic agent;


each R6 is independently —H, alkyl, alkenyl, alkynyl, arylalkyl, cycloalkylalkyl, heterocycloalkyl, a fluorescent moiety, a radioisotope or a therapeutic agent;


each R7 is independently —H, alkyl, alkenyl, alkynyl, arylalkyl, cycloalkyl, heteroalkyl, cycloalkylalkyl, heterocycloalkyl, aryl, or heteroaryl, optionally substituted with R5, or part of a cyclic structure with a D residue;


each R8 is independently —H, alkyl, alkenyl, alkynyl, arylalkyl, cycloalkyl, heteroalkyl, cycloalkylalkyl, heterocycloalkyl, aryl, or heteroaryl, optionally substituted with R5, or part of a cyclic structure with an E residue;


each v and w is independently an integer from 1-1000;


each u, x, y and z is independently integers from 0-10; and


n is an integer from 1-5.


In one embodiment, the peptidomimetic macrocycle of Formula (I) is:




embedded image


wherein each R1 and R2 is independently independently —H, alkyl, alkenyl, alkynyl, arylalkyl, cycloalkyl, cycloalkylalkyl, heteroalkyl, or heterocycloalkyl, unsubstituted or substituted with halo-.


In related embodiments, the peptidomimetic macrocycle of Formula (I) is:




embedded image


wherein each R1′ and R2′ is independently an amino acid.


In other embodiments, the peptidomimetic macrocycle of Formula (I) is a compound of any of the formulas shown below:




embedded image


wherein “AA” represents any natural or non-natural amino acid side chain and “custom-character” is [D]v, [E]w as defined above, and n is an integer between 0 and 20, 50, 100, 200, 300, 400 or 500. In some embodiments, n is 0. In other embodiments, n is less than 50.


Exemplary embodiments of the macrocycle-forming linker L are shown below.




embedded image


In other embodiments, D and/or E in the compound of Formula I are further modified in order to facilitate cellular uptake. In some embodiments, lipidating or PEGylating a peptidomimetic macrocycle facilitates cellular uptake, increases bioavailability, increases blood circulation, alters pharmacokinetics, decreases immunogenicity and/or decreases the needed frequency of administration.


In other embodiments, at least one of [D] and [E] in the compound of Formula I represents a moiety comprising an additional macrocycle-forming linker such that the peptidomimetic macrocycle comprises at least two macrocycle-forming linkers. In a specific embodiment, a peptidomimetic macrocycle comprises two macrocycle-forming linkers. In an embodiment, u is 2.


In some embodiments, any of the macrocycle-forming linkers described herein can be used in any combination with any of the sequences shown in Table 1, Table 1a, Table 1b, and Table 1c and also with any of the R-substituents indicated herein.


In some embodiments, the peptidomimetic macrocycle comprises at least one α-helix motif. For example, A, B and/or C in the compound of Formula I include one or more α-helices. As a general matter, α-helices include between 3 and 4 amino acid residues per turn. In some embodiments, the α-helix of the peptidomimetic macrocycle includes 1 to 5 turns and, therefore, 3 to 20 amino acid residues. In specific embodiments, the α-helix includes 1 turn, 2 turns, 3 turns, 4 turns, or 5 turns. In some embodiments, the macrocycle-forming linker stabilizes an α-helix motif included within the peptidomimetic macrocycle. Thus, in some embodiments, the length of the macrocycle-forming linker L from a first Ca to a second Ca is selected to increase the stability of an α-helix. In some embodiments, the macrocycle-forming linker spans from 1 turn to 5 turns of the α-helix. In some embodiments, the macrocycle-forming linker spans approximately 1 turn, 2 turns, 3 turns, 4 turns, or 5 turns of the α-helix. In some embodiments, the length of the macrocycle-forming linker is approximately 5 Å to 9 Å per turn of the α-helix, or approximately 6 Å to 8 Å per turn of the α-helix. Where the macrocycle-forming linker spans approximately 1 turn of an α-helix, the length is equal to approximately 5 carbon-carbon bonds to 13 carbon-carbon bonds, approximately 7 carbon-carbon bonds to 11 carbon-carbon bonds, or approximately 9 carbon-carbon bonds. Where the macrocycle-forming linker spans approximately 2 turns of an α-helix, the length is equal to approximately 8 carbon-carbon bonds to 16 carbon-carbon bonds, approximately 10 carbon-carbon bonds to 14 carbon-carbon bonds, or approximately 12 carbon-carbon bonds. Where the macrocycle-forming linker spans approximately 3 turns of an α-helix, the length is equal to approximately 14 carbon-carbon bonds to 22 carbon-carbon bonds, approximately 16 carbon-carbon bonds to 20 carbon-carbon bonds, or approximately 18 carbon-carbon bonds. Where the macrocycle-forming linker spans approximately 4 turns of an α-helix, the length is equal to approximately 20 carbon-carbon bonds to 28 carbon-carbon bonds, approximately 22 carbon-carbon bonds to 26 carbon-carbon bonds, or approximately 24 carbon-carbon bonds. Where the macrocycle-forming linker spans approximately 5 turns of an α-helix, the length is equal to approximately 26 carbon-carbon bonds to 34 carbon-carbon bonds, approximately 28 carbon-carbon bonds to 32 carbon-carbon bonds, or approximately 30 carbon-carbon bonds. Where the macrocycle-forming linker spans approximately 1 turn of an α-helix, the linkage contains approximately 4 atoms to 12 atoms, approximately 6 atoms to 10 atoms, or approximately 8 atoms. Where the macrocycle-forming linker spans approximately 2 turns of the α-helix, the linkage contains approximately 7 atoms to 15 atoms, approximately 9 atoms to 13 atoms, or approximately 11 atoms. Where the macrocycle-forming linker spans approximately 3 turns of the α-helix, the linkage contains approximately 13 atoms to 21 atoms, approximately 15 atoms to 19 atoms, or approximately 17 atoms. Where the macrocycle-forming linker spans approximately 4 turns of the α-helix, the linkage contains approximately 19 atoms to 27 atoms, approximately 21 atoms to 25 atoms, or approximately 23 atoms. Where the macrocycle-forming linker spans approximately 5 turns of the α-helix, the linkage contains approximately 25 atoms to 33 atoms, approximately 27 atoms to 31 atoms, or approximately 29 atoms. Where the macrocycle-forming linker spans approximately 1 turn of the α-helix, the resulting macrocycle forms a ring containing approximately 17 members to 25 members, approximately 19 members to 23 members, or approximately 21 members. Where the macrocycle-forming linker spans approximately 2 turns of the α-helix, the resulting macrocycle forms a ring containing approximately 29 members to 37 members, approximately 31 members to 35 members, or approximately 33 members. Where the macrocycle-forming linker spans approximately 3 turns of the α-helix, the resulting macrocycle forms a ring containing approximately 44 members to 52 members, approximately 46 members to 50 members, or approximately 48 members. Where the macrocycle-forming linker spans approximately 4 turns of the α-helix, the resulting macrocycle forms a ring containing approximately 59 members to 67 members, approximately 61 members to 65 members, or approximately 63 members. Where the macrocycle-forming linker spans approximately 5 turns of the α-helix, the resulting macrocycle forms a ring containing approximately 74 members to 82 members, approximately 76 members to 80 members, or approximately 78 members.


In other embodiments, provided are peptidomimetic macrocycles of Formula (IV) or (IVa):




embedded image


wherein:


each A, C, D, and E is independently a natural or non-natural amino acid, and the terminal D and E independently optionally include a capping group;


each B is independently a natural or non-natural amino acid, amino acid analog,




embedded image


[—NH-L3-CO—], [—NH-L3-SO2—], or [—NH-L3-];


each R1 and R2 are independently —H, alkyl, alkenyl, alkynyl, arylalkyl, cycloalkyl, cycloalkylalkyl, heteroalkyl, or heterocycloalkyl, unsubstituted or substituted with halo-; or at least one of R1 and R2 forms a macrocycle-forming linker L′ connected to the alpha position of one of said D or E amino acids;


each R3 independently is hydrogen, alkyl, alkenyl, alkynyl, arylalkyl, heteroalkyl, cycloalkyl, heterocycloalkyl, cycloalkylalkyl, cycloaryl, or heterocycloaryl, optionally substituted with R5;


each L independently is a macrocycle-forming linker of the formula -L1-L2-;


each L1, L2 and L3 are independently alkylene, alkenylene, alkynylene, heteroalkylene, cycloalkylene, heterocycloalkylene, cycloarylene, heterocycloarylene, or [—R4—K—R4-]11, each being optionally substituted with R5;


each R4 is independently alkylene, alkenylene, alkynylene, heteroalkylene, cycloalkylene, heterocycloalkylene, arylene, or heteroarylene;


each K is independently O, S, SO, SO2, CO, CO2, or CONR3;


each R5 is independently halogen, alkyl, —OR6, —N(R6)2, —SR6, —SORE, —SO2R6, —CO2R6, a fluorescent moiety, a radioisotope or a therapeutic agent;


each R6 is independently —H, alkyl, alkenyl, alkynyl, arylalkyl, cycloalkylalkyl, heterocycloalkyl, a fluorescent moiety, a radioisotope or a therapeutic agent;


each R7 is independently —H, alkyl, alkenyl, alkynyl, arylalkyl, cycloalkyl, heteroalkyl, cycloalkylalkyl, heterocycloalkyl, cycloaryl, or heterocycloaryl, optionally substituted with R5;


each v and w are independently integers from 1-1000;


u is an integer from 1-10;


each x, y and z are independently integers from 0-10; and


each n independently is an integer from 1-5.


In one example, L1 and L2, either alone or in combination, do not form a triazole or a thioether.


In one example, at least one of R1 and R2 is alkyl, unsubstituted or substituted with halo-. In another example, both R1 and R2 are independently alkyl, unsubstituted or substituted with halo-. In some embodiments, at least one of R1 and R2 is methyl. In other embodiments, R1 and R2 are methyl.


In some embodiments, x+y+z is at least 1. In other embodiments, x+y+z is at least 2. In other embodiments, x+y+z is 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10. Each occurrence of A, B, C, D or E in a macrocycle or macrocycle precursor is independently selected. For example, a sequence represented by the formula [A]x, when x is 3, encompasses embodiments where the amino acids are not identical, e.g. Gln-Asp-Ala as well as embodiments where the amino acids are identical, e.g. Gln-Gln-Gln. This applies for any value of x, y, or z in the indicated ranges.


In some embodiments, the peptidomimetic macrocycle comprises a secondary structure which is an α-helix and R8 is —H, allowing intrahelical hydrogen bonding. In some embodiments, at least one of A, B, C, D or E is an α,α-disubstituted amino acid. In one example, B is an α,α-disubstituted amino acid. For instance, at least one of A, B, C, D or E is 2-aminoisobutyric acid. In other embodiments, at least one of A, B, C, D or E is




embedded image


In other embodiments, the length of the macrocycle-forming linker L as measured from a first Cα to a second Cα is selected to stabilize a desired secondary peptide structure, such as an α-helix formed by residues of the peptidomimetic macrocycle including, but not necessarily limited to, those between the first Cα to a second Cα.


Exemplary embodiments of the macrocycle-forming linker -L1-L2- are shown below.




embedded image


In some embodiments, L is a macrocycle-forming linker of the formula




embedded image


Exemplary embodiments of such macrocycle-forming linkers L are shown below.




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


Unless otherwise stated, any compounds (including peptidomimetic macrocycles, macrocycle precursors, and other compositions) are also meant to encompass compounds which differ only in the presence of one or more isotopically enriched atoms. For example, compounds having the described structures except for the replacement of a hydrogen by a deuterium or tritium, or the replacement of a carbon by 13C- or 14C-enriched carbon are within the scope of this disclosure.


In some embodiments, the compounds disclosed herein can contain unnatural proportions of atomic isotopes at one or more of atoms that constitute such compounds. For example, the compounds can be radiolabeled with radioactive isotopes, such as for example tritium (3H), iodine-125 (125I) or carbon-14 (14C). In other embodiments, one or more carbon atoms is replaced with a silicon atom. The compounds (including peptidomimetic macrocycles, macrocycle precursors, and other compositions) also include salts thereof. For example, salts of acidic and basic amino acids. All isotopic variations of the compounds disclosed herein, whether radioactive or not, are contemplated herein.


The compound or peptidomimetic macrocycles described herein can be at least 1% pure, at least 2% pure, at least 3% pure, at least 4% pure, at least 5% pure, at least 6% pure, at least 7% pure, at least 8% pure, at least 9% pure, at least 10% pure, at least 11% pure, at least 12% pure, at least 13% pure, at least 14% pure, at least 15% pure, at least 16% pure, at least 17% pure, at least 18% pure, at least 19% pure, at least 20% pure, at least 21% pure, at least 22% pure, at least 23% pure, at least 24% pure, at least 25% pure, at least 26% pure, at least 27% pure, at least 28% pure, at least 29% pure, at least 30% pure, at least 31% pure, at least 32% pure, at least 33% pure, at least 34% pure, at least 35% pure, at least 36% pure, at least 37% pure, at least 38% pure, at least 39% pure, at least 40% pure, at least 41% pure, at least 42% pure, at least 43% pure, at least 44% pure, at least 45% pure, at least 46% pure, at least 47% pure, at least 48% pure, at least 49% pure, at least 50% pure, at least 51% pure, at least 52% pure, at least 53% pure, at least 54% pure, at least 55% pure, at least 56% pure, at least 57% pure, at least 58% pure, at least 59% pure, at least 60% pure, at least 61% pure, at least 62% pure, at least 63% pure, at least 64% pure, at least 65% pure, at least 66% pure, at least 67% pure, at least 68% pure, at least 69% pure, at least 70% pure, at least 71% pure, at least 72% pure, at least 73% pure, at least 74% pure, at least 75% pure, at least 76% pure, at least 77% pure, at least 78% pure, at least 79% pure, at least 80% pure, at least 81% pure, at least 82% pure, at least 83% pure, at least 84% pure, at least 85% pure, at least 86% pure, at least 87% pure, at least 88% pure, at least 89% pure, at least 90% pure, at least 91% pure, at least 92% pure, at least 93% pure, at least 94% pure, at least 95% pure, at least 96% pure, at least 97% pure, at least 98% pure, at least 99% pure, at least 99.1% pure, at least 99.2% pure, at least 99.3% pure, at least 99.4% pure, at least 99.5% pure, at least 99.6% pure, at least 99.7% pure, at least 99.8% pure, or at least 99.9% pure on a chemical, optical, isomeric, enantiomeric, or diastereomeric basis. Purity can be assessed, for example, by HPLC, MS, LC/MS, melting point, or NMR.


Two or more peptides can share a degree of homology. A pair of peptides can have, for example, up to about 20% pairwise homology, up to about 25% pairwise homology, up to about 30% pairwise homology, up to about 35% pairwise homology, up to about 40% pairwise homology, up to about 45% pairwise homology, up to about 50% pairwise homology, up to about 55% pairwise homology, up to about 60% pairwise homology, up to about 65% pairwise homology, up to about 70% pairwise homology, up to about 75% pairwise homology, up to about 80% pairwise homology, up to about 85% pairwise homology, up to about 90% pairwise homology, up to about 95% pairwise homology, up to about 96% pairwise homology, up to about 97% pairwise homology, up to about 98% pairwise homology, up to about 99% pairwise homology, up to about 99.5% pairwise homology, or up to about 99.9% pairwise homology. A pair of peptides can have, for example, at least about 20% pairwise homology, at least about 25% pairwise homology, at least about 30% pairwise homology, at least about 35% pairwise homology, at least about 40% pairwise homology, at least about 45% pairwise homology, at least about 50% pairwise homology, at least about 55% pairwise homology, at least about 60% pairwise homology, at least about 65% pairwise homology, at least about 70% pairwise homology, at least about 75% pairwise homology, at least about 80% pairwise homology, at least about 85% pairwise homology, at least about 90% pairwise homology, at least about 95% pairwise homology, at least about 96% pairwise homology, at least about 97% pairwise homology, at least about 98% pairwise homology, at least about 99% pairwise homology, at least about 99.5% pairwise homology, at least about 99.9% pairwise homology.


Various methods and software programs can be used to determine the homology between two or more peptides, such as NCBI BLAST, Clustal W, MAFFT, Clustal Omega, AlignMe, Praline, or another suitable method or algorithm.


The circulating half-life of the peptidomimetic macrocycles in human blood can be about 1-24 h. For example the circulating half-life of the peptidomimetic macrocycles in human blood can me about 2-24 h, 4-24 h, 6-24 h, 8-24 h, 10-24 h, 12-24 h, 14-24 h, 16-24 h, 18-24 h, 20-24 h, 22-24 h, 1-20 h, 4-20 h, 6-20 h, 8-20 h, 10-20 h, 12-20 h, 14-20 h, 16-20 h, 18-20 h, 1-16 h, 4-16 h, 6-16 h, 8-16 h, 10-16 h, 12-16 h, 14-16 h, 1-12 h, 4-12 h, 6-12 h, 8-12 h, 10-12 h, 1-8 h, 4-8 h, 6-8 h, or 1-4 h. In some examples, the circulating half-life of the peptidomimetic macrocycles in human blood can be bout 1-12 h, for example about 1 h, 2 h, 3 h, 4 h, 5 h, 6 h, 7 h, 8 h, 9 h, 10 h, 11 h, or 12 h. In some examples, the circulating half-life of the peptidomimetic macrocycles in human blood is about 2 h. In some examples, the circulating half-life of the peptidomimetic macrocycles in human blood is about 4 h. In some examples, the circulating half-life of the peptidomimetic macrocycles in human blood is about 6 h. In some examples, the circulating half-life of the peptidomimetic macrocycles in human blood is about 8 h. In some examples, the circulating half-life of the peptidomimetic macrocycles in human blood is about 10 h.


The half-life of the peptidomimetic macrocycles in biological tissue can be about 1-24 h. For example the circulating half-life of the peptidomimetic macrocycles in human blood can me about 1-24 h, 5-24 h, 10-24 h, 15-24 h, 20-24 h, 1-22 h, 5-22 h, 10-22 h, 15-22 h, 20-22 h, 1-20 h, 5-20 h, 15-20 h, 1-18 h, 5-18 h, 10-18 h, 15-18 h, 1-16 h, 5-16 h, 10-16 h, 15-16 h, 1-14 h, 5-14 h, 10-14 h, 1-12 h, 5-12 h, 10-12 h, 1-10 h, 5-10h, 1-8 h, 5-8 h, 1-6 h, 5-6h, or 1-4 h. In some examples, the circulating half-life of the peptidomimetic macrocycles in human blood can be bout 5-20 h, for example about 5 h, 6 h, 7 h, 8 h, 9 h, 10 h, 11 h, 12 h, 13 h, 14 h, 15 h, 16 h, 17 h, 18 h, 19 h or 20 h. In some examples, the circulating half-life of the peptidomimetic macrocycles in human blood is about 2 h. In some examples, the circulating half-life of the peptidomimetic macrocycles in human blood is about 4 h. In some examples, the circulating half-life of the peptidomimetic macrocycles in human blood is about 6 h. In some examples, the circulating half-life of the peptidomimetic macrocycles in human blood is about 8 h. In some examples, the circulating half-life of the peptidomimetic macrocycles in human blood is about 10 h.


The circulating half-life of the peptidomimetic macrocycles in human blood can be greater than, equal to, or less than the half -life of the peptidomimetic macrocycles in biological tissue. In some examples, the circulating half-life of the peptidomimetic macrocycles in human blood can be greater than the half -life of the peptidomimetic macrocycles in biological tissue. In some examples, the circulating half-life of the peptidomimetic macrocycles in human blood can be equal to the half-life of the peptidomimetic macrocycles in biological tissue. In some examples, the half-life of the peptidomimetic macrocycles in biological tissue is greater than the circulating half-life of the peptidomimetic macrocycles in human blood. This can facilitate administration of the peptidomimetic macrocycles at a lower dose and/or at lower frequency. In some embodiments, the half-life of the peptidomimetic macrocycles in biological tissue is at least 1 h, 2 h, 3 h, 4 h, 5 h, 6 h, 7 h, 8 h, 9 h, 10 h, 11 h, or 12 h greater than the than the circulating half-life of the peptidomimetic macrocycles in human blood. In some examples, the circulating half-life of the peptidomimetic macrocycles in human blood is about 4 h and the half-life of the in biological tissue is about 10 h. In some examples, the circulating half-life of the peptidomimetic macrocycles in human blood is about 6 h and the half-life of the in biological tissue is about 10 h.


The cross-linked peptides of the disclosure can be modeled after the N-terminal transactivation domain of p53 (“p53 peptidomimetic macrocycles”). These cross-linked peptides contain at least two modified amino acids that together form an intramolecular cross-link that can help to stabilize the α-helical secondary structure of a portion of p53 that is thought to be important for binding of p53 to MDM2 and for binding of p53 to MDMX. Accordingly, a cross-linked polypeptide described herein can have improved biological activity relative to a corresponding polypeptide that is not cross-linked. The p53 peptidomimetic macrocycles are thought to interfere with binding of p53 to MDM2 and/or of p53 to MDMX, thereby liberating functional p53 and inhibiting its destruction. The p53 peptidomimetic macrocycles described herein can be used therapeutically, for example to treat cancers and other disorders characterized by an undesirably low level or a low activity of p53, and/or to treat cancers and other disorders characterized by an undesirably high level of activity of MDM2 or MDMX. The p53 peptidomimetic macrocycles can also be useful for treatment of any disorder associated with disrupted regulation of the p53 transcriptional pathway, leading to conditions of excess cell survival and proliferation such as cancer and autoimmunity, in addition to conditions of inappropriate cell cycle arrest and apoptosis such as neurodegeneration and immune deficiencies. In some embodiments, the p53 peptidomimetic macrocycles bind to MDM2 (e.g., GenBank® Accession No.: 228952; GI:228952) and/or MDMX (also referred to as MDM4; GenBank® Accession No.: 88702791; GI:88702791).


Table 1 shows a list of peptidomimetic macrocycles derived from the MDM2/MDMX-binding helix of p53 that were prepared. Tables 1a, 1b, 1c, 1d and 1e show a list of selected peptidomimetic macrocycles from Table 1. Table if shows a list of selected peptidomimetic macrocycles from Table 1e. A partial staple scan was performed on the linear peptide p-CF3—Phe?-D-PMI-β. SP-757, a potent and selective MDM2 antagonist, was prepared by including an i, i+7 crosslink to the sequence of p-CF3-Phe-7-D-PMI-b. SP-757 exhibited SJSA-1 sarcoma cell killing activity at a single digit micromolar concentration (EC50=1.5 mM). (FIG. 3). SP-763 was prepared by increasing the alanine content to 35% while maintaining the net charge and Von Heijne score by adding four alanine residues to the C-terminus of SP-757. SP-763 exhibited improved SJSA-1 sarcoma cell killing activity (EC50=0.15 mM) compared to SP-757 (FIG. 3). SP-763 exhibited similar cell killing activity as SP-449.









TABLE 1







List of peptidomimetic macrocycles derived from the MDM2/MDMX-binding helix of p53 that


were prepared.

















Exact
Found
Calc
Calc
Calc


SP
Sequence
Isomer
Mass
Mass
(M + 1)/1
(M + 2)/2
(M + 3)/3

















SP1
Ac-F$r8AYWEAc3cL$AAA-NH2

1456.78
729.44
1457.79
729.4
486.6





SP2
Ac-F$r8AYWEAc3cL$AAibA-NH2

1470.79
736.4
1471.8
736.4
491.27





SP3
Ac-LTF$r8AYWAQL$SANle-NH2

1715.97
859.02
1716.98
858.99
573





SP4
Ac-LTF$r8AYWAQL$SAL-NH2

1715.97
859.02
1716.98
858.99
573





SP5
Ac-LTF$r8AYWAQL$SAM-NH2

1733.92
868.48
1734.93
867.97
578.98





SP6
Ac-LTF$r8AYWAQL$SAhL-NH2

1729.98
865.98
1730.99
866
577.67





SP7
Ac-LTF$r8AYWAQL$SAF-NH2

1749.95
876.36
1750.96
875.98
584.32





SP8
Ac-LTF$r8AYWAQL$SAI-NH2

1715.97
859.02
1716.98
858.99
573





SP9
Ac-LTF$r8AYWAQL$SAChg-NH2

1741.98
871.98
1742.99
872
581.67





SP10
Ac-LTF$r8AYWAQL$SAAib-NH2

1687.93
845.36
1688.94
844.97
563.65





SP11
Ac-LTF$r8AYWAQL$SAA-NH2

1673.92
838.01
1674.93
837.97
558.98





SP12
Ac-LTF$r8AYWA$L$S$Nle-NH2

1767.04
884.77
1768.05
884.53
590.02





SP13
Ac-LTF$r8AYWA$L$S$A-NH2

1724.99
864.23
1726
863.5
576





SP14
Ac-F$r8AYWEAc3cL$AANle-NH2

1498.82
750.46
1499.83
750.42
500.61





SP15
Ac-F$r8AYWEAc3cL$AAL-NH2

1498.82
750.46
1499.83
750.42
500.61





SP16
Ac-F$r8AYWEAc3cL$AAM-NH2

1516.78
759.41
1517.79
759.4
506.6





SP17
Ac-F$r8AYWEAc3cL$AAhL-NH2

1512.84
757.49
1513.85
757.43
505.29





SP18
Ac-F$r8AYWEAc3cL$AAF-NH2

1532.81
767.48
1533.82
767.41
511.94





SP19
Ac-F$r8AYWEAc3cL$AAI-NH2

1498.82
750.39
1499.83
750.42
500.61





SP20
Ac-FSr8AYWEAc3cLSAAChg-NH2

1524.84
763.48
1525.85
763.43
509.29





SP21
Ac-F$r8AYWEAc3cL$AACha-NH2

1538.85
770.44
1539.86
770.43
513.96





SP22
Ac-F$r8AYWEAc3cL$AAAib-NH2

1470.79
736.84
1471.8
736.4
491.27





SP23
Ac-LTF$r8AYWAQL$AAAibV-NH2

1771.01
885.81
1772.02
886.51
591.34





SP24
Ac-LTF$r8AYWAQL$AAAibV-NH2
iso2
1771.01
886.26
1772.02
886.51
591.34





SP25
Ac-LTF$r8AYWAQL$SAibAA-NH2

1758.97
879.89
1759.98
880.49
587.33





SP26
Ac-LTF$r8AYWAQL$SAibAA-NH2
iso2
1758.97
880.34
1759.98
880.49
587.33





SP27
Ac-HLTF$r8HHWHQL$AANleNle-NH2

2056.15
1028.86
2057.16
1029.08
686.39





SP28
Ac-DLTF$r8HHWHQL$RRLV-NH2

2190.23
731.15
2191.24
1096.12
731.08





SP29
Ac-HHTF$r8HHWHQL$AAML-NH2

2098.08
700.43
2099.09
1050.05
700.37





SP30
Ac-F$r8HHWHQL$RRDCha-NH2

1917.06
959.96
1918.07
959.54
640.03





SP31
Ac-F$r8HHWHQL$HRFV-NH2

1876.02
938.65
1877.03
939.02
626.35





SP32
Ac-HLTF$r8HHWHQL$AAhLA-NH2

2028.12
677.2
2029.13
1015.07
677.05





SP33
Ac-DLTF$r8HHWHQL$RRChgl-NH2

2230.26
1115.89
2231.27
1116.14
744.43





SP34
Ac-DLTF$r8HHWHQL$RRChgl-NH2
iso2
2230.26
1115.96
2231.27
1116.14
744.43





SP35
Ac-HHTF$r8HHWHQL$AAChav-NH2

2106.14
1053.95
2107.15
1054.08
703.05





SP36
Ac-F$r8HHWHQL$RRDa-NH2

1834.99
918.3
1836
918.5
612.67





SP37
Ac-F$r8HHWHQL$HRAibG-NH2

1771.95
886.77
1772.96
886.98
591.66





SP38
Ac-F$r8AYWAQL$HHNleL-NH2

1730.97
866.57
1731.98
866.49
578





SP39
Ac-F$r8AYWSAL$HQANle-NH2

1638.89
820.54
1639.9
820.45
547.3





SP40
Ac-F$r8AYWVQLSQHChgl-NH2

1776.01
889.44
1777.02
889.01
593.01





SP41
Ac-F$r8AYWTAL$QQNlev-NH2

1671.94
836.97
1672.95
836.98
558.32





SP42
Ac-F$r8AYWYQL$HAibAa-NH2

1686.89
844.52
1687.9
844.45
563.3





SP43
Ac-LTF$r8AYWAQL$HHLa-NH2

1903.05
952.27
1904.06
952.53
635.36





SP44
Ac-LTF$r8AYWAQL$HHLa-NH2
iso2
1903.05
952.27
1904.06
952.53
635.36





SP45
Ac-LTF$r8AYWAQL$HQNlev-NH2

1922.08
962.48
1923.09
962.05
641.7





SP46
Ac-LTF$r8AYWAQL$HQNlev-NH2
iso2
1922.08
962.4
1923.09
962.05
641.7





SP47
Ac-LTF$r8AYWAQL$QQMl-NH2

1945.05
973.95
1946.06
973.53
649.36





SP48
Ac-LTF$r8AYWAQL$QQMl-NH2
iso2
1945.05
973.88
1946.06
973.53
649.36





SP49
Ac-LTF$r8AYWAQL$HAibhLV-NH2

1893.09
948.31
1894.1
947.55
632.04





SP50
Ac-LTF$r8AYWAQL$AHFA-NH2

1871.01
937.4
1872.02
936.51
624.68





SP51
Ac-HLTF$r8HHWHQL$AANlel-NH2

2056.15
1028.79
2057.16
1029.08
686.39





SP52
Ac-DLTF$r8HHWHQL$RRLa-NH2

2162.2
721.82
2163.21
1082.11
721.74





SP53
Ac-HHTF$r8HHWHQL$AAMv-NH2

2084.07
1042.92
2085.08
1043.04
695.7





SP54
Ac-F$r8HHWHQL$RRDA-NH2

1834.99
612.74
1836
918.5
612.67





SP55
Ac-F$r8HHWHQL$HRFCha-NH2

1930.06
966.47
1931.07
966.04
644.36





SP56
Ac-F$r8AYWEAL$AA-NHAm

1443.82
1445.71
1444.83
722.92
482.28





SP57
Ac-F$r8AYWEAL$AA-NHiAm

1443.82
723.13
1444.83
722.92
482.28





SP58
Ac-F$r8AYWEAL$AA-NHnPr3Ph

1491.82
747.3
1492.83
746.92
498.28





SP59
Ac-F$r8AYWEAL$AA-NHnBu33Me

1457.83
1458.94
1458.84
729.92
486.95





SP60
Ac-F$r8AYWEAL$AA-NHnPr

1415.79
709.28
1416.8
708.9
472.94





SP61
Ac-F$r8AYWEAL$AA-NHnEt2Ch

1483.85
1485.77
1484.86
742.93
495.62





SP62
Ac-F$r8AYWEAL$AA-NHnEt2Cp

1469.83
1470.78
1470.84
735.92
490.95





SP63
Ac-F$r8AYWEAL$AA-NHHex

1457.83
730.19
1458.84
729.92
486.95





SP64
Ac-LTF$r8AYWAQL$AAIA-NH2

1771.01
885.81
1772.02
886.51
591.34





SP65
Ac-LTF$r8AYWAQL$AAIA-NH2
iso2
1771.01
866.8
1772.02
886.51
591.34





SP66
Ac-LTF$r8AYWAAL$AAMA-NH2

1731.94
867.08
1732.95
866.98
578.32





SP67
Ac-LTF$r8AYWAAL$AAMA-NH2
iso2
1731.94
867.28
1732.95
866.98
578.32





SP68
Ac-LTF$r8AYWAQL$AANleA-NH2

1771.01
867.1
1772.02
886.51
591.34





SP69
Ac-LTF$r8AYWAQL$AANleA-NH2
iso2
1771.01
886.89
1772.02
886.51
591.34





SP70
Ac-LTF$r8AYWAQL$AAIa-NH2

1771.01
886.8
1772.02
886.51
591.34





SP71
Ac-LTF$r8AYWAQL$AAIa-NH2
iso2
1771.01
887.09
1772.02
886.51
591.34





SP72
Ac-LTF$r8AYWAAL$AAMa-NH2

1731.94
867.17
1732.95
866.98
578.32





SP73
Ac-LTF$r8AYWAAL$AAMa-NH2
iso2
1731.94
867.37
1732.95
866.98
578.32





SP74
Ac-LTF$r8AYWAQL$AANlea-NH2

1771.01
887.08
1772.02
886.51
591.34





SP75
Ac-LTF$r8AYWAQL$AANlea-NH2
iso2
1771.01
887.08
1772.02
886.51
591.34





SP76
Ac-LTF$r8AYWAAL$AAIv-NH2

1742.02
872.37
1743.03
872.02
581.68





SP77
Ac-LTF$r8AYWAAL$AAIv-NH2
iso2
1742.02
872.74
1743.03
872.02
581.68





SP78
Ac-LTF$r8AYWAQL$AAMv-NH2

1817
910.02
1818.01
909.51
606.67





SP79
Ac-LTF$r8AYWAAL$AANlev-NH2

1742.02
872.37
1743.03
872.02
581.68





SP80
Ac-LTF$r8AYWAAL$AANlev-NH2
iso2
1742.02
872.28
1743.03
872.02
581.68





SP81
Ac-LTF$r8AYWAQL$AAIl-NH2

1813.05
907.81
1814.06
907.53
605.36





SP82
Ac-LTF$r8AYWAQL$AAIl-NH2
iso2
1813.05
907.81
1814.06
907.53
605.36





SP83
Ac-LTF$r8AYWAAL$AAMl-NH2

1773.99
887.37
1775
888
592.34





SP84
Ac-LTF$r8AYWAQL$AANlel-NH2

1813.05
907.61
1814.06
907.53
605.36





SP85
Ac-LTF$r8AYWAQL$AANlel-NH2
iso2
1813.05
907.71
1814.06
907.53
605.36





SP86
Ac-F$r8AYWEAL$AAMA-NH2

1575.82
789.02
1576.83
788.92
526.28





SP87
Ac-F$r8AYWEAL$AANleA-NH2

1557.86
780.14
1558.87
779.94
520.29





SP88
Ac-F$r8AYWEAL$AAIa-NH2

1557.86
780.33
1558.87
779.94
520.29





SP89
Ac-F$r8AYWEAL$AAMa-NH2

1575.82
789.3
1576.83
788.92
526.28





SP90
Ac-F$r8AYWEAL$AANlea-NH2

1557.86
779.4
1558.87
779.94
520.29





SP91
Ac-F$r8AYWEAL$AAIv-NH2

1585.89
794.29
1586.9
793.95
529.64





SP92
Ac-F$r8AYWEAL$AAMv-NH2

1603.85
803.08
1604.86
802.93
535.62





SP93
Ac-F$r8AYWEAL$AANlev-NH2

1585.89
793.46
1586.9
793.95
529.64





SP94
Ac-F$r8AYWEAL$AAIl-NH2

1599.91
800.49
1600.92
800.96
534.31





SP95
Ac-F$r8AYWEAL$AAMl-NH2

1617.86
809.44
1618.87
809.94
540.29





SP96
Ac-F$r8AYWEAL$AANlel-NH2

1599.91
801.7
1600.92
800.96
534.31





SP97
Ac-F$r8AYWEAL$AANlel-NH2
iso2
1599.91
801.42
1600.92
800.96
534.31





SP98
Ac-LTF$r8AY6clWAQL$SAA-NH2

1707.88
855.72
1708.89
854.95
570.3





SP99
Ac-LTF$r8AY6clWAQL$SAA-NH2
iso2
1707.88
855.35
1708.89
854.95
570.3





SP100 
Ac-WTF$r8FYWSQL$AVAa-NH2

1922.01
962.21
1923.02
962.01
641.68





SP101 
Ac-WTF$r8FYWSQL$AVAa-NH2
iso2
1922.01
962.49
1923.02
962.01
641.68





SP102 
Ac-WTF$r8VYWSQL$AVA-NH2

1802.98
902.72
1803.99
902.5
602





SP103 
Ac-WTF$r8VYWSQL$AVA-NH2
iso2
1802.98
903
1803.99
902.5
602





SP104 
Ac-WTF$r8FYWSQL$SAAa-NH2

1909.98
956.47
1910.99
956
637.67





SP105 
Ac-WTF$r8FYWSQL$SAAa-NH2
iso2
1909.98
956.47
1910.99
956
637.67





SP106 
Ac-WTF$r8VYWSQL$AVAaa-NH2

1945.05
974.15
1946.06
973.53
649.36





SP107 
Ac-WTF$r8VYWSQL$AVAaa-NH2
iso2
1945.05
973.78
1946.06
973.53
649.36





SP108 
Ac-LTF$r8AYWAQL$AVG-NH2

1671.94
837.52
1672.95
836.98
558.32





SP109 
Ac-LTF$r8AYWAQL$AVG-NH2
iso2
1671.94
837.21
1672.95
836.98
558.32





SP110 
Ac-LTF$r8AYWAQL$AVQ-NH2

1742.98
872.74
1743.99
872.5
582





SP111 
Ac-LTF$r8AYWAQL$AVQ-NH2
iso2
1742.98
872.74
1743.99
872.5
582





SP112 
Ac-LTF$r8AYWAQL$SAa-NH2

1673.92
838.23
1674.93
837.97
558.98





SP113 
Ac-LTF$r8AYWAQL$SAa-NH2
iso2
1673.92
838.32
1674.93
837.97
558.98





SP114 
Ac-LTF$r8AYWAQhL$SAA-NH2

1687.93
844.37
1688.94
844.97
563.65





SP115 
Ac-LTF$r8AYWAQhL$SAA-NH2
iso2
1687.93
844.81
1688.94
844.97
563.65





SP116 
Ac-LTF$r8AYWEQLStSA$-NH2

1826
905.27
1827.01
914.01
609.67





SP117 
Ac-LTF$r8AYWAQL$SLA-NH2

1715.97
858.48
1716.98
858.99
573





SP118 
Ac-LTF$r8AYWAQL$SLA-NH2
iso2
1715.97
858.87
1716.98
858.99
573





SP119 
Ac-LTF$r8AYWAQL$SWA-NH2

1788.96
895.21
1789.97
895.49
597.33





SP120 
Ac-LTF$r8AYWAQL$SWA-NH2
iso2
1788.96
895.28
1789.97
895.49
597.33





SP121 
Ac-LTF$r8AYWAQL$SVS-NH2

1717.94
859.84
1718.95
859.98
573.65





SP122 
Ac-LTF$r8AYWAQL$SAS-NH2

1689.91
845.85
1690.92
845.96
564.31





SP123 
Ac-LTF$r8AYWAQL$SVG-NH2

1687.93
844.81
1688.94
844.97
563.65





SP124 
Ac-ETF$r8VYWAQL$SAa-NH2

1717.91
859.76
1718.92
859.96
573.64





SP125 
Ac-ETF$r8VYWAQL$SAA-NH2

1717.91
859.84
1718.92
859.96
573.64





SP126 
Ac-ETF$r8VYWAQL$SVA-NH2

1745.94
873.82
1746.95
873.98
582.99





SP127 
Ac-ETF$r8VYWAQL$SLA-NH2

1759.96
880.85
1760.97
880.99
587.66





SP128 
Ac-ETF$r8VYWAQL$SWA-NH2

1832.95
917.34
1833.96
917.48
611.99





SP129 
Ac-ETF$r8KYWAQL$SWA-NH2

1861.98
931.92
1862.99
932
621.67





SP130 
Ac-ETF$r8VYWAQL$SVS-NH2

1761.93
881.89
1762.94
881.97
588.32





SP131 
Ac-ETF$r8VYWAQL$SAS-NH2

1733.9
867.83
1734.91
867.96
578.97





SP132 
Ac-ETF$r8VYWAQL$SVG-NH2

1731.92
866.87
1732.93
866.97
578.31





SP133 
Ac-LTF$r8VYWAQL$SSa-NH2

1717.94
859.47
1718.95
859.98
573.65





SP134 
Ac-ETF$r8VYWAQL$SSa-NH2

1733.9
867.83
1734.91
867.96
578.97





SP135 
Ac-LTF$r8VYWAQL$SNa-NH2

1744.96
873.38
1745.97
873.49
582.66





SP136 
Ac-ETF$r8VYWAQL$SNa-NH2

1760.91
881.3
1761.92
881.46
587.98





SP137 
Ac-LTF$r8VYWAQL$SAa-NH2

1701.95
851.84
1702.96
851.98
568.32





SP138 
Ac-LTF$r8VYWAQL$SVA-NH2

1729.98
865.53
1730.99
866
577.67





SP139 
Ac-LTF$r8VYWAQL$SVA-NH2
iso2
1729.98
865.9
1730.99
866
577.67





SP140 
Ac-LTF$r8VYWAQL$SWA-NH2

1816.99
909.42
1818
909.5
606.67





SP141 
Ac-LTF$r8VYWAQL$SVS-NH2

1745.98
873.9
1746.99
874
583





SP142 
Ac-LTF$r8VYWAQL$SVS-NH2
iso2
1745.98
873.9
1746.99
874
583





SP143 
Ac-LTF$r8VYWAQL$SAS-NH2

1717.94
859.84
1718.95
859.98
573.65





SP144 
Ac-LTF$r8VYWAQL$SAS-NH2
iso2
1717.94
859.91
1718.95
859.98
573.65





SP145 
Ac-LTF$r8VYWAQL$SVG-NH2

1715.97
858.87
1716.98
858.99
573





SP146 
Ac-LTF$r8VYWAQL$SVG-NH2
iso2
1715.97
858.87
1716.98
858.99
573





SP147 
Ac-LTF$r8EYWAQCha$SAA-NH2

1771.96
886.85
1772.97
886.99
591.66





SP148 
Ac-LTF$r8EYWAQCha$SAA-NH2
iso2
1771.96
886.85
1772.97
886.99
591.66





SP149 
Ac-LTF$r8EYWAQCpg$SAA-NH2

1743.92
872.86
1744.93
872.97
582.31





SP150 
Ac-LTF$r8EYWAQCpg$SAA-NH2
iso2
1743.92
872.86
1744.93
872.97
582.31





SP151 
Ac-LTF$r8EYWAQF$SAA-NH2

1765.91
883.44
1766.92
883.96
589.64





SP152 
Ac-LTF$r8EYWAQF$SAA-NH2
iso2
1765.91
883.89
1766.92
883.96
589.64





SP153 
Ac-LTF$r8EYWAQCba$SAA-NH2

1743.92
872.42
1744.93
872.97
582.31





SP154 
Ac-LTF$r8EYWAQCba$SAA-NH2
iso2
1743.92
873.39
1744.93
872.97
582.31





SP155 
Ac-LTF3Cl$r8EYWAQL$SAA-NH2

1765.89
883.89
1766.9
883.95
589.64





SP156 
Ac-LTF3Cl$r8EYWAQL$SAA-NH2
iso2
1765.89
883.96
1766.9
883.95
589.64





SP157 
Ac-LTF34F2$r8EYWAQL$SAA-NH2

1767.91
884.48
1768.92
884.96
590.31





SP158 
Ac-LTF34F2$r8EYWAQL$SAA-NH2
iso2
1767.91
884.48
1768.92
884.96
590.31





SP159 
Ac-LTF34F2$r8EYWAQhL$SAA-NH2

1781.92
891.44
1782.93
891.97
594.98





SP160 
Ac-LTF34F2$r8EYWAQhL$SAA-NH2
iso2
1781.92
891.88
1782.93
891.97
594.98





SP161 
Ac-ETF$r8EYWAQL$SAA-NH2

1747.88
874.34
1748.89
874.95
583.63





SP162 
Ac-LTF$r8AYWVQL$SAA-NH2

1701.95
851.4
1702.96
851.98
568.32





SP163 
Ac-LTF$r8AHWAQL$SAA-NH2

1647.91
824.83
1648.92
824.96
550.31





SP164 
Ac-LTF$r8AEWAQL$SAA-NH2

1639.9
820.39
1640.91
820.96
547.64





SP165 
Ac-LTF$r8ASWAQL$SAA-NH2

1597.89
799.38
1598.9
799.95
533.64





SP166 
Ac-LTF$r8AEWAQL$SAA-NH2
iso2
1639.9
820.39
1640.91
820.96
547.64





SP167 
Ac-LTF$r8ASWAQL$SAA-NH2
iso2
1597.89
800.31
1598.9
799.95
533.64





SP168 
Ac-LTF$r8AF4coohWAQL$SAA-NH2

1701.91
851.4
1702.92
851.96
568.31





SP169 
Ac-LTF$r8AF4coohWAQL$SAA-NH2
iso2
1701.91
851.4
1702.92
851.96
568.31





SP170 
Ac-LTF$r8AHWAQL$AAIa-NH2

1745
874.13
1746.01
873.51
582.67





SP171 
Ac-ITF$r8FYWAQL$AAIa-NH2

1847.04
923.92
1848.05
924.53
616.69





SP172 
Ac-ITF$r8EHWAQL$AAIa-NH2

1803.01
903.17
1804.02
902.51
602.01





SP173 
Ac-ITF$r8EHWAQL$AAIa-NH2
iso2
1803.01
903.17
1804.02
902.51
602.01





SP174 
Ac-ETF$r8EHWAQL$AAIa-NH2

1818.97
910.76
1819.98
910.49
607.33





SP175 
Ac-ETF$r8EHWAQL$AAIa-NH2
iso2
1818.97
910.85
1819.98
910.49
607.33





SP176 
Ac-LTF$r8AHWVQL$AAIa-NH2

1773.03
888.09
1774.04
887.52
592.02





SP177 
Ac-ITF$r8FYWVQL$AAIa-NH2

1875.07
939.16
1876.08
938.54
626.03





SP178 
Ac-ITF$r8EYWVQL$AAIa-NH2

1857.04
929.83
1858.05
929.53
620.02





SP179 
Ac-ITF$r8EHWVQL$AAIa-NH2

1831.04
916.86
1832.05
916.53
611.35





SP180 
Ac-LTF$r8AEWAQL$AAIa-NH2

1736.99
869.87
1738
869.5
580





SP181 
Ac-LTF$r8AF4coohWAQL$AAIa-NH2

1799
900.17
1800.01
900.51
600.67





SP182 
Ac-LTF$r8AF4coohWAQL$AAIa-NH2
iso2
1799
900.24
1800.01
900.51
600.67





SP183 
Ac-LTF$r8AHWAQL$AHFA-NH2

1845.01
923.89
1846.02
923.51
616.01





SP184 
Ac-ITF$r8FYWAQL$AHFA-NH2

1947.05
975.05
1948.06
974.53
650.02





SP185 
Ac-ITF$r8FYWAQL$AHFA-NH2
iso2
1947.05
976.07
1948.06
974.53
650.02





SP186 
Ac-ITF$r8FHWAQL$AEFA-NH2

1913.02
958.12
1914.03
957.52
638.68





SP187 
Ac-ITF$r8FHWAQL$AEFA-NH2
iso2
1913.02
957.86
1914.03
957.52
638.68





SP188 
Ac-ITF$r8EHWAQL$AHFA-NH2

1903.01
952.94
1904.02
952.51
635.34





SP189 
Ac-ITF$r8EHWAQL$AHFA-NH2
iso2
1903.01
953.87
1904.02
952.51
635.34





SP190 
Ac-LTF$r8AHWVQL$AHFA-NH2

1873.04
937.86
1874.05
937.53
625.35





SP191 
Ac-ITF$r8FYWVQL$AHFA-NH2

1975.08
988.83
1976.09
988.55
659.37





SP192 
Ac-ITF$r8EYWVQL$AHFA-NH2

1957.05
979.35
1958.06
979.53
653.36





SP193 
Ac-ITF$r8EHWVQL$AHFA-NH2

1931.05
967
1932.06
966.53
644.69





SP194 
Ac-ITF$r8EHWVQL$AHFA-NH2
iso2
1931.05
967.93
1932.06
966.53
644.69





SP195 
Ac-ETF$r8EYWAAL$SAA-NH2

1690.86
845.85
1691.87
846.44
564.63





SP196 
Ac-LTF$r8AYWVAL$SAA-NH2

1644.93
824.08
1645.94
823.47
549.32





SP197 
Ac-LTF$r8AHWAAL$SAA-NH2

1590.89
796.88
1591.9
796.45
531.3





SP198 
Ac-LTF$r8AEWAAL$SAA-NH2

1582.88
791.9
1583.89
792.45
528.63





SP199 
Ac-LTF$r8AEWAAL$SAA-NH2
iso2
1582.88
791.9
1583.89
792.45
528.63





SP200 
Ac-LTF$r8ASWAAL$SAA-NH2

1540.87
770.74
1541.88
771.44
514.63





SP201 
Ac-LTF$r8ASWAAL$SAA-NH2
iso2
1540.87
770.88
1541.88
771.44
514.63





SP202 
Ac-LTF$r8AYWAAL$AAIa-NH2

1713.99
857.39
1715
858
572.34





SP203 
Ac-LTF$r8AYWAAL$AAIa-NH2
iso2
1713.99
857.84
1715
858
572.34





SP204 
Ac-LTF$r8AYWAAL$AHFA-NH2

1813.99
907.86
1815
908
605.67





SP205 
Ac-LTF$r8EHWAQL$AHIa-NH2

1869.03
936.1
1870.04
935.52
624.02





SP206 
Ac-LTF$r8EHWAQL$AHIa-NH2
iso2
1869.03
937.03
1870.04
935.52
624.02





SP207 
Ac-LTF$r8AHWAQL$AHIa-NH2

1811.03
906.87
1812.04
906.52
604.68





SP208 
Ac-LTF$r8EYWAQL$AHIa-NH2

1895.04
949.15
1896.05
948.53
632.69





SP209 
Ac-LTF$r8AYWAQL$AAFa-NH2

1804.99
903.2
1806
903.5
602.67





SP210 
Ac-LTF$r8AYWAQL$AAFa-NH2
iso2
1804.99
903.28
1806
903.5
602.67





SP211 
Ac-LTF$r8AYWAQL$AAWa-NH2

1844
922.81
1845.01
923.01
615.67





SP212 
Ac-LTF$r8AYWAQL$AAVa-NH2

1756.99
878.86
1758
879.5
586.67





SP213 
Ac-LTF$r8AYWAQL$AAVa-NH2
iso2
1756.99
879.3
1758
879.5
586.67





SP214 
Ac-LTF$r8AYWAQL$AALa-NH2

1771.01
886.26
1772.02
886.51
591.34





SP215 
Ac-LTF$r8AYWAQL$AALa-NH2
iso2
1771.01
886.33
1772.02
886.51
591.34





SP216 
Ac-LTF$r8EYWAQL$AAIa-NH2

1829.01
914.89
1830.02
915.51
610.68





SP217 
Ac-LTF$r8EYWAQL$AAIa-NH2
iso2
1829.01
915.34
1830.02
915.51
610.68





SP218 
Ac-LTF$r8EYWAQL$AAFa-NH2

1863
932.87
1864.01
932.51
622.01





SP219 
Ac-LTF$r8EYWAQL$AAFa-NH2
iso2
1863
932.87
1864.01
932.51
622.01





SP220 
Ac-LTF$r8EYWAQL$AAVa-NH2

1815
908.23
1816.01
908.51
606.01





SP221 
Ac-LTF$r8EYWAQL$AAVa-NH2
iso2
1815
908.31
1816.01
908.51
606.01





SP222 
Ac-LTF$r8EHWAQL$AAIa-NH2

1803.01
903.17
1804.02
902.51
602.01





SP223 
Ac-LTF$r8EHWAQL$AAIa-NH2
iso2
1803.01
902.8
1804.02
902.51
602.01





SP224 
Ac-LTF$r8EHWAQL$AAWa-NH2

1876
939.34
1877.01
939.01
626.34





SP225 
Ac-LTF$r8EHWAQL$AAWa-NH2
iso2
1876
939.62
1877.01
939.01
626.34





SP226 
Ac-LTF$r8EHWAQL$AALa-NH2

1803.01
902.8
1804.02
902.51
602.01





SP227 
Ac-LTF$r8EHWAQL$AALa-NH2
iso2
1803.01
902.9
1804.02
902.51
602.01





SP228 
Ac-ETF$r8EHWVQL$AALa-NH2

1847
924.82
1848.01
924.51
616.67





SP229 
Ac-LTF$r8AYWAQL$AAAa-NH2

1728.96
865.89
1729.97
865.49
577.33





SP230 
Ac-LTF$r8AYWAQL$AAAa-NH2
iso2
1728.96
865.89
1729.97
865.49
577.33





SP231 
Ac-LTF$r8AYWAQL$AAAibA-NH2

1742.98
872.83
1743.99
872.5
582





SP232 
Ac-LTF$r8AYWAQL$AAAibA-NH2
iso2
1742.98
872.92
1743.99
872.5
582





SP233 
Ac-LTF$r8AYWAQL$AAAAa-NH2

1800
901.42
1801.01
901.01
601.01





SP234 
Ac-LTF$r5AYWAQL$s8AAIa-NH2

1771.01
887.17
1772.02
886.51
591.34





SP235 
Ac-LTF$r5AYWAQL$s8SAA-NH2

1673.92
838.33
1674.93
837.97
558.98





SP236 
Ac-LTF$r8AYWAQCba$AANleA-NH2

1783.01
892.64
1784.02
892.51
595.34





SP237 
Ac-ETF$r8AYWAQCba$AANleA-NH2

1798.97
900.59
1799.98
900.49
600.66





SP238 
Ac-LTF$r8EYWAQCba$AANleA-NH2

1841.01
922.05
1842.02
921.51
614.68





SP239 
Ac-LTF$r8AYWAQCba$AWNleA-NH2

1898.05
950.46
1899.06
950.03
633.69





SP240 
Ac-ETF$r8AYWAQCba$AWNleA-NH2

1914.01
958.11
1915.02
958.01
639.01





SP241 
Ac-LTF$r8EYWAQCba$AWNleA-NH2

1956.06
950.62
1957.07
979.04
653.03





SP242 
Ac-LTF$r8EYWAQCba$SAFA-NH2

1890.99
946.55
1892
946.5
631.34





SP243 
Ac-LTF34F2$r8EYWAQCba$SANleA-NH2

1892.99
947.57
1894
947.5
632





SP244 
Ac-LTF$r8EF4coohWAQCba$SANleA-NH2

1885
943.59
1886.01
943.51
629.34





SP245 
Ac-LTF$r8EYWSQCba$SANleA-NH2

1873
937.58
1874.01
937.51
625.34





SP246 
Ac-LTF$r8EYWWQCba$SANleA-NH2

1972.05
987.61
1973.06
987.03
658.36





SP247 
Ac-LTF$r8EYWAQCba$AAIa-NH2

1841.01
922.05
1842.02
921.51
614.68





SP248 
Ac-LTF34F2$r8EYWAQCba$AAIa-NH2

1876.99
939.99
1878
939.5
626.67





SP249 
Ac-LTF$r8EF4coohWAQCba$AAIa-NH2

1869.01
935.64
1870.02
935.51
624.01





SP250 
Pam-ETF$r8EYWAQCba$SAA-NH2

1956.1
979.57
1957.11
979.06
653.04





SP251 
Ac-LThF$r8EFWAQCba$SAA-NH2

1741.94
872.11
1742.95
871.98
581.65





SP252 
Ac-LTA$r8EYWAQCba$SAA-NH2

1667.89
835.4
1668.9
834.95
556.97





SP253 
Ac-LTF$r8EYAAQCba$SAA-NH2

1628.88
815.61
1629.89
815.45
543.97





SP254 
Ac-LTF$r8EY2NalAQCba$SAA-NH2

1754.93
879.04
1755.94
878.47
585.98





SP255 
Ac-LTF$r8AYWAQCba$SAA-NH2

1685.92
844.71
1686.93
843.97
562.98





SP256 
Ac-LTF$r8EYWAQCba$SAF-NH2

1819.96
911.41
1820.97
910.99
607.66





SP257 
Ac-LTF$r8EYWAQCba$SAFa-NH2

1890.99
947.41
1892
946.5
631.34





SP258 
Ac-LTF$r8AYWAQCba$SAF-NH2

1761.95
882.73
1762.96
881.98
588.32





SP259 
Ac-LTF34F2$r8AYWAQCba$SAF-NH2

1797.93
900.87
1798.94
899.97
600.32





SP260 
Ac-LTF$r8AF4coohWAQCba$SAF-NH2

1789.94
896.43
1790.95
895.98
597.65





SP261 
Ac-LTF$r8EY6clWAQCba$SAF-NH2

1853.92
929.27
1854.93
927.97
618.98





SP262 
Ac-LTF$r8AYWSQCba$SAF-NH2

1777.94
890.87
1778.95
889.98
593.65





SP263 
Ac-LTF$r8AYWWQCba$SAF-NH2

1876.99
939.91
1878
939.5
626.67





SP264 
Ac-LTF$r8AYWAQCba$AAIa-NH2

1783.01
893.19
1784.02
892.51
595.34





SP265 
Ac-LTF34F2$r8AYWAQCba$AAIa-NH2

1818.99
911.23
1820
910.5
607.34





SP266 
Ac-LTF$r8AY6clWAQCba$AAIa-NH2

1816.97
909.84
1817.98
909.49
606.66





SP267 
Ac-LTF$r8AF4coohWAQCba$AAIa-NH2

1811
906.88
1812.01
906.51
604.67





SP268 
Ac-LTF$r8EYWAQCba$AAFa-NH2

1875
938.6
1876.01
938.51
626.01





SP269 
Ac-LTF$r8EYWAQCba$AAFa-NH2
iso2
1875
938.6
1876.01
938.51
626.01





SP270 
Ac-ETF$r8AYWAQCba$AWNlea-NH2

1914.01
958.42
1915.02
958.01
639.01





SP271 
Ac-LTF$r8EYWAQCba$AWNlea-NH2

1956.06
979.42
1957.07
979.04
653.03





SP272 
Ac-ETF$r8EYWAQCba$AWNlea-NH2

1972.01
987.06
1973.02
987.01
658.34





SP273 
Ac-ETF$r8EYWAQCba$AWNlea-NH2
iso2
1972.01
987.06
1973.02
987.01
658.34





SP274 
Ac-LTF$r8AYWAQCba$SAFa-NH2

1832.99
917.89
1834
917.5
612





SP275 
Ac-LTF$r8AYWAQCba$SAFa-NH2
iso2
1832.99
918.07
1834
917.5
612





SP276 
Ac-ETF$r8AYWAQL$AWNlea-NH2

1902.01
952.22
1903.02
952.01
635.01





SP277 
Ac-LTF$r8EYWAQL$AWNlea-NH2

1944.06
973.5
1945.07
973.04
649.03





SP278 
Ac-ETF$r8EYWAQL$AWNlea-NH2

1960.01
981.46
1961.02
981.01
654.34





SP279 
Dmaac-LTF$r8EYWAQhL$SAA-NH2

1788.98
896.06
1789.99
895.5
597.33





SP280 
Hexac-LTF$r8EYWAQhL$SAA-NH2

1802
902.9
1803.01
902.01
601.67





SP281 
Napac-LTF$r8EYWAQhL$SAA-NH2

1871.99
937.58
1873
937
625





SP282 
Decac-LTF$r8EYWAQhL$SAA-NH2

1858.06
930.55
1859.07
930.04
620.36





SP283 
Admac-LTF$r8EYWAQhL$SAA-NH2

1866.03
934.07
1867.04
934.02
623.02





SP284 
Tmac-LTF$r8EYWAQhL$SAA-NH2

1787.99
895.41
1789
895
597





SP285 
Pam-LTF$r8EYWAQhL$SAA-NH2

1942.16
972.08
1943.17
972.09
648.39





SP286 
Ac-LTF$r8AYWAQCba$AANleA-NH2
iso2
1783.01
892.64
1784.02
892.51
595.34





SP287 
Ac-LTF34F2$r8EYWAQCba$AAIa-NH2
iso2
1876.99
939.62
1878
939.5
626.67





SP288 
Ac-LTF34F2$r8EYWAQCba$SAA-NH2

1779.91
892.07
1780.92
890.96
594.31





SP289 
Ac-LTF34F2$r8EYWAQCba$SAA-NH2
iso2
1779.91
891.61
1780.92
890.96
594.31





SP290 
Ac-LTF$r8EF4coohWAQCba$SAA-NH2

1771.92
887.54
1772.93
886.97
591.65





SP291 
Ac-LTF$r8EF4coohWAQCba$SAA-NH2
iso2
1771.92
887.63
1772.93
886.97
591.65





SP292 
Ac-LTF$r8EYWSQCba$SAA-NH2

1759.92
881.9
1760.93
880.97
587.65





SP293 
Ac-LTF$r8EYWSQCba$SAA-NH2
iso2
1759.92
881.9
1760.93
880.97
587.65





SP294 
Ac-LTF$r8EYWAQhL$SAA-NH2

1745.94
875.05
1746.95
873.98
582.99





SP295 
Ac-LTF$r8AYWAQhL$SAF-NH2

1763.97
884.02
1764.98
882.99
589





SP296 
Ac-LTF$r8AYWAQhL$SAF-NH2
iso2
1763.97
883.56
1764.98
882.99
589





SP297 
Ac-LTF34F2$r8AYWAQhL$SAA-NH2

1723.92
863.67
1724.93
862.97
575.65





SP298 
Ac-LTF34F2$r8AYWAQhL$SAA-NH2
iso2
1723.92
864.04
1724.93
862.97
575.65





SP299 
Ac-LTF$r8AF4coohWAQhL$SAA-NH2

1715.93
859.44
1716.94
858.97
572.98





SP300 
Ac-LTF$r8AF4coohWAQhL$SAA-NH2
iso2
1715.93
859.6
1716.94
858.97
572.98





SP301 
Ac-LTF$r8AYWSQhL$SAA-NH2

1703.93
853.96
1704.94
852.97
568.98





SP302 
Ac-LTF$r8AYWSQhL$SAA-NH2
iso2
1703.93
853.59
1704.94
852.97
568.98





SP303 
Ac-LTF$r8EYWAQL$AANleA-NH2

1829.01
915.45
1830.02
915.51
610.68





SP304 
Ac-LTF34F2$r8AYWAQL$AANleA-NH2

1806.99
904.58
1808
904.5
603.34





SP305 
Ac-LTF$r8AF4coohWAQL$AANleA-NH2

1799
901.6
1800.01
900.51
600.67





SP306 
Ac-LTF$r8AYWSQL$AANleA-NH2

1787
894.75
1788.01
894.51
596.67





SP307 
Ac-LTF34F2$r8AYWAQhL$AANleA-NH2

1821
911.79
1822.01
911.51
608.01





SP308 
Ac-LTF34F2$r8AYWAQhL$AANleA-NH2
iso2
1821
912.61
1822.01
911.51
608.01





SP309 
Ac-LTF$r8AF4coohWAQhL$AANleA-NH2

1813.02
907.95
1814.03
907.52
605.35





SP310 
Ac-LTF$r8AF4coohWAQhL$AANleA-NH2
iso2
1813.02
908.54
1814.03
907.52
605.35





SP311 
Ac-LTF$r8AYWSQhL$AANleA-NH2

1801.02
901.84
1802.03
901.52
601.35





SP312 
Ac-LTF$r8AYWSQhL$AANleA-NH2
iso2
1801.02
902.62
1802.03
901.52
601.35





SP313 
Ac-LTF$r8AYWAQhL$AAAAa-NH2

1814.01
908.63
1815.02
908.01
605.68





SP314 
Ac-LTF$r8AYWAQhL$AAAAa-NH2
iso2
1814.01
908.34
1815.02
908.01
605.68





SP315 
Ac-LTF$r8AYWAQL$AAAAAa-NH2

1871.04
936.94
1872.05
936.53
624.69





SP316 
Ac-LTF$r8AYWAQL$AAAAAAa-NH2
iso2
1942.07
972.5
1943.08
972.04
648.37





SP317 
Ac-LTF$r8AYWAQL$AAAAAAa-NH2
iso1
1942.07
972.5
1943.08
972.04
648.37





SP318 
Ac-LTF$r8EYWAQhL$AANleA-NH2

1843.03
922.54
1844.04
922.52
615.35





SP319 
Ac-AATF$r8AYWAQL$AANleA-NH2

1800
901.39
1801.01
901.01
601.01





SP320 
Ac-LTF$r8AYWAQL$AANleAA-NH2

1842.04
922.45
1843.05
922.03
615.02





SP321 
Ac-ALTF$r8AYWAQL$AANleAA-NH2

1913.08
957.94
1914.09
957.55
638.7





SP322 
Ac-LTF$r8AYWAQCba$AANleAA-NH2

1854.04
928.43
1855.05
928.03
619.02





SP323 
Ac-LTF$r8AYWAQhL$AANleAA-NH2

1856.06
929.4
1857.07
929.04
619.69





SP324 
Ac-LTF$r8EYWAQCba$SAAA-NH2

1814.96
909.37
1815.97
908.49
605.99





SP325 
Ac-LTF$r8EYWAQCba$SAAA-NH2
iso2
1814.96
909.37
1815.97
908.49
605.99





SP326 
Ac-LTF$r8EYWAQCba$SAAAA-NH2

1886
944.61
1887.01
944.01
629.67





SP327 
Ac-LTF$r8EYWAQCba$SAAAA-NH2
iso2
1886
944.61
1887.01
944.01
629.67





SP328 
Ac-ALTF$r8EYWAQCba$SAA-NH2

1814.96
909.09
1815.97
908.49
605.99





SP329 
Ac-ALTF$r8EYWAQCba$SAAA-NH2

1886
944.61
1887.01
944.01
629.67





SP330 
Ac-ALTF$r8EYWAQCba$SAA-NH2
iso2
1814.96
909.09
1815.97
908.49
605.99





SP331 
Ac-LTF$r8EYWAQL$AAAAAa-NH2
iso2
1929.04
966.08
1930.05
965.53
644.02





SP332 
Ac-LTF$r8EY6clWAQCba$SAA-NH2

1777.89
890.78
1778.9
889.95
593.64





SP333
Ac-LTF$r8EF4cooh6clWAQCbaSSANleA-

1918.96
961.27
1919.97
960.49
640.66



NH2











SP334
Ac-LTF$r8EF4cooh6clWAQCbaSSANleA-
iso2
1918.96
961.27
1919.97
960.49
640.66



NH2











SP335 
Ac-LTF$r8EF4cooh6clWAQCba$AAIa-NH2

1902.97
953.03
1903.98
952.49
635.33





SP336 
Ac-LTF$r8EF4cooh6clWAQCba$AAIa-NH2
iso2
1902.97
953.13
1903.98
952.49
635.33





SP337 
Ac-LTF$r8AY6clWAQL$AAAAAa-NH2

1905
954.61
1906.01
953.51
636.01





SP338 
Ac-LTF$r8AY6clWAQL$AAAAAa-NH2
iso2
1905
954.9
1906.01
953.51
636.01





SP339 
Ac-F$r8AY6clWEAL$AAAAAAa-NH2

1762.89
883.01
1763.9
882.45
588.64





SP340 
Ac-ETF$r8EYWAQL$AAAAAa-NH2

1945
974.31
1946.01
973.51
649.34





SP341 
Ac-ETF$r8EYWAQL$AAAAAa-NH2
iso2
1945
974.49
1946.01
973.51
649.34





SP342 
Ac-LTF$r8EYWAQL$AAAAAAa-NH2

2000.08
1001.6
2001.09
1001.05
667.7





SP343 
Ac-LTF$r8EYWAQL$AAAAAAa-NH2
iso2
2000.08
1001.6
2001.09
1001.05
667.7





SP344 
Ac-LTF$r8AYWAQL$AANleAAa-NH2

1913.08
958.58
1914.09
957.55
638.7





SP345 
Ac-LTF$r8AYWAQL$AANleAAa-NH2
iso2
1913.08
958.58
1914.09
957.55
638.7





SP346 
Ac-LTF$r8EYWAQCba$AAAAAa-NH2

1941.04
972.55
1942.05
971.53
648.02





SP347 
Ac-LTF$r8EYWAQCba$AAAAAa-NH2
iso2
1941.04
972.55
1942.05
971.53
648.02





SP348 
Ac-LTF$r8EF4coohWAQCba$AAAAAa-NH2

1969.04
986.33
1970.05
985.53
657.35





SP349 
Ac-LTF$r8EF4coohWAQCba$AAAAAa-NH2
iso2
1969.04
986.06
1970.05
985.53
657.35





SP350 
Ac-LTF$r8EYWSQCba$AAAAAa-NH2

1957.04
980.04
1958.05
979.53
653.35





SP351 
Ac-LTF$r8EYWSQCba$AAAAAa-NH2
iso2
1957.04
980.04
1958.05
979.53
653.35





SP352 
Ac-LTF$r8EYWAQCba$SAAa-NH2

1814.96
909
1815.97
908.49
605.99





SP353 
Ac-LTF$r8EYWAQCba$SAAa-NH2
iso2
1814.96
909
1815.97
908.49
605.99





SP354 
Ac-ALTF$r8EYWAQCba$SAAa-NH2

1886
944.52
1887.01
944.01
629.67





SP355 
Ac-ALTF$r8EYWAQCba$SAAa-NH2
iso2
1886
944.98
1887.01
944.01
629.67





SP356 
Ac-ALTF$r8EYWAQCba$SAAAa-NH2

1957.04
980.04
1958.05
979.53
653.35





SP357 
Ac-ALTF$r8EYWAQCba$SAAAa-NH2
iso2
1957.04
980.04
1958.05
979.53
653.35





SP358 
Ac-AALTF$r8EYWAQCba$SAAAa-NH2

2028.07
1016.1
2029.08
1015.04
677.03





SP359 
Ac-AALTF$r8EYWAQCba$SAAAa-NH2
iso2
2028.07
1015.57
2029.08
1015.04
677.03





SP360 
Ac-RTF$r8EYWAQCba$SAA-NH2

1786.94
895.03
1787.95
894.48
596.65





SP361 
Ac-LRF$r8EYWAQCba$SAA-NH2

1798.98
901.51
1799.99
900.5
600.67





SP362 
Ac-LTF$r8EYWRQCba$SAA-NH2

1828.99
916.4
1830
915.5
610.67





SP363 
Ac-LTF$r8EYWARCba$SAA-NH2

1771.97
887.63
1772.98
886.99
591.66





SP364 
Ac-LTF$r8EYWAQCba$RAA-NH2

1812.99
908.08
1814
907.5
605.34





SP365 
Ac-LTF$r8EYWAQCba$SRA-NH2

1828.99
916.12
1830
915.5
610.67





SP366 
Ac-LTF$r8EYWAQCba$SAR-NH2

1828.99
916.12
1830
915.5
610.67





SP367 
5-FAM-BaLTF$r8EYWAQCba$SAA-NH2

2131
1067.09
2132.01
1066.51
711.34





SP368 
5-FAM-BaLTF$r8AYWAQL$AANleA-NH2

2158.08
1080.6
2159.09
1080.05
720.37





SP369 
Ac-LAF$r8EYWAQL$AANleA-NH2

1799
901.05
1800.01
900.51
600.67





SP370 
Ac-ATF$r8EYWAQL$AANleA-NH2

1786.97
895.03
1787.98
894.49
596.66





SP371 
Ac-AAF$r8EYWAQL$AANleA-NH2

1756.96
880.05
1757.97
879.49
586.66





SP372 
Ac-AAAF$r8EYWAQL$AANleA-NH2

1827.99
915.57
1829
915
610.34





SP373 
Ac-AAAAF$r8EYWAQL$AANleA-NH2

1899.03
951.09
1900.04
950.52
634.02





SP374 
Ac-AATF$r8EYWAQL$AANleA-NH2

1858
930.92
1859.01
930.01
620.34





SP375 
Ac-AALTF$r8EYWAQL$AANleA-NH2

1971.09
987.17
1972.1
986.55
658.04





SP376 
Ac-AAALTF$r8EYWAQL$AANleA-NH2

2042.12
1023.15
2043.13
1022.07
681.71





SP377 
Ac-LTF$r8EYWAQL$AANleAA-NH2

1900.05
952.02
1901.06
951.03
634.36





SP378 
Ac-ALTF$r8EYWAQL$AANleAA-NH2

1971.09
987.63
1972.1
986.55
658.04





SP379 
Ac-AALTF$r8EYWAQL$AANleAA-NH2

2042.12
1022.69
2043.13
1022.07
681.71





SP380 
Ac-LTF$r8EYWAQCba$AANleAA-NH2

1912.05
958.03
1913.06
957.03
638.36





SP381 
Ac-LTF$r8EYWAQhL$AANleAA-NH2

1914.07
958.68
1915.08
958.04
639.03





SP382 
Ac-ALTF$r8EYWAQhL$AANleAA-NH2

1985.1
994.1
1986.11
993.56
662.71





SP383 
Ac-LTF$r8ANmYWAQL$AANleA-NH2

1785.02
894.11
1786.03
893.52
596.01





SP384 
Ac-LTF$r8ANmYWAQL$AANleA-NH2
iso2
1785.02
894.11
1786.03
893.52
596.01





SP385 
Ac-LTF$r8AYNmWAQL$AANleA-NH2

1785.02
894.11
1786.03
893.52
596.01





SP386 
Ac-LTF$r8AYNmWAQL$AANleA-NH2
iso2
1785.02
894.11
1786.03
893.52
596.01





SP387 
Ac-LTF$r8AYAmwAQL$AANleA-NH2

1785.02
894.01
1786.03
893.52
596.01





SP388 
Ac-LTF$r8AYAmwAQL$AANleA-NH2
iso2
1785.02
894.01
1786.03
893.52
596.01





SP389 
Ac-LTF$r8AYWAibQL$AANleA-NH2

1785.02
894.01
1786.03
893.52
596.01





SP390 
Ac-LTF$r8AYWAibQL$AANleA-NH2
iso2
1785.02
894.01
1786.03
893.52
596.01





SP391 
Ac-LTF$r8AYWAQL$AAibNleA-NH2

1785.02
894.38
1786.03
893.52
596.01





SP392 
Ac-LTF$r8AYWAQL$AAibNleA-NH2
iso2
1785.02
894.38
1786.03
893.52
596.01





SP393 
Ac-LTF$r8AYWAQL$AaNleA-NH2

1771.01
887.54
1772.02
886.51
591.34





SP394 
Ac-LTF$r8AYWAQL$AaNleA-NH2
iso2
1771.01
887.54
1772.02
886.51
591.34





SP395 
Ac-LTF$r8AYWAQL$ASarNleA-NH2

1771.01
887.35
1772.02
886.51
591.34





SP396 
Ac-LTF$r8AYWAQL$ASarNleA-NH2
iso2
1771.01
887.35
1772.02
886.51
591.34





SP397 
Ac-LTF$r8AYWAQL$AANleAib-NH2

1785.02
894.75
1786.03
893.52
596.01





SP398 
Ac-LTF$r8AYWAQL$AANleAib-NH2
iso2
1785.02
894.75
1786.03
893.52
596.01





SP399 
Ac-LTF$r8AYWAQL$AANleNmA-NH2

1785.02
894.6
1786.03
893.52
596.01





SP400 
Ac-LTF$r8AYWAQL$AANleNmA-NH2
iso2
1785.02
894.6
1786.03
893.52
596.01





SP401 
Ac-LTF$r8AYWAQL$AANleSar-NH2

1771.01
886.98
1772.02
886.51
591.34





SP402 
Ac-LTF$r8AYWAQL$AANleSar-NH2
iso2
1771.01
886.98
1772.02
886.51
591.34





SP403 
Ac-LTF$r8AYWAQL$AANleAAib-NH2

1856.06

1857.07
929.04
619.69





SP404 
Ac-LTF$r8AYWAQL$AANleAAib-NH2
iso2
1856.06

1857.07
929.04
619.69





SP405 
Ac-LTF$r8AYWAQL$AANleANmA-NH2

1856.06
930.37
1857.07
929.04
619.69





SP406 
Ac-LTF$r8AYWAQL$AANleANmA-NH2
iso2
1856.06
930.37
1857.07
929.04
619.69





SP407 
Ac-LTF$r8AYWAQL$AANleAa-NH2

1842.04
922.69
1843.05
922.03
615.02





SP408 
Ac-LTF$r8AYWAQL$AANleAa-NH2
iso2
1842.04
922.69
1843.05
922.03
615.02





SP409 
Ac-LTF$r8AYWAQL$AANleASar-NH2

1842.04
922.6
1843.05
922.03
615.02





SP410 
Ac-LTF$r8AYWAQL$AANleASar-NH2
iso2
1842.04
922.6
1843.05
922.03
615.02





SP411 
Ac-LTF$/r8AYWAQL$/AANleA-NH2

1799.04
901.14
1800.05
900.53
600.69





SP412 
Ac-LTFAibAYWAQLAibAANleA-NH2

1648.9
826.02
1649.91
825.46
550.64





SP413 
Ac-LTF$r8Cou4YWAQL$AANleA-NH2

1975.05
989.11
1976.06
988.53
659.36





SP414 
Ac-LTF$r8Cou4YWAQL$AANleA-NH2
iso2
1975.05
989.11
1976.06
988.53
659.36





SP415
Ac-LTF$r8AYWCou4QL$AANleA-NH2

1975.05
989.11
1976.06
988.53
659.36





SP416
Ac-LTF$r8AYWAQL$Cou4ANleA-NH2

1975.05
989.57
1976.06
988.53
659.36





SP417
Ac-LTF$r8AYWAQL$Cou4ANleA-NH2
iso2
1975.05
989.57
1976.06
988.53
659.36





SP418
Ac-LTF$r8AYWAQL$ACou4NleA-NH2

1975.05
989.57
1976.06
988.53
659.36





SP419
Ac-LTF$r8AYWAQL$ACou4NleA-NH2
iso2
1975.05
989.57
1976.06
988.53
659.36





SP420
Ac-LTF$r8AYWAQL$AANleA-OH

1771.99
887.63
1773
887
591.67





SP421
Ac-LTF$r8AYWAQL$AANleA-OH
iso2
1771.99
887.63
1773
887
591.67





SP422
Ac-LTF$r8AYWAQL$AANleA-NHnPr

1813.05
908.08
1814.06
907.53
605.36





SP423
Ac-LTF$r8AYWAQL$AANleA-NHnPr
iso2
1813.05
908.08
1814.06
907.53
605.36





SP424
Ac-LTF$r8AYWAQL$AANleA-NHnBu33Me

1855.1
929.17
1856.11
928.56
619.37





SP425
Ac-LTF$r8AYWAQL$AANleA-NHnBu33Me
iso2
1855.1
929.17
1856.11
928.56
619.37





SP426
Ac-LTF$r8AYWAQL$AANleA-NHHex

1855.1
929.17
1856.11
928.56
619.37





SP427
Ac-LTF$r8AYWAQL$AANleA-NHHex
iso2
1855.1
929.17
1856.11
928.56
619.37





SP428
Ac-LTA$r8AYWAQL$AANleA-NH2

1694.98
849.33
1695.99
848.5
566





SP429
Ac-LThL$r8AYWAQL$AANleA-NH2

1751.04
877.09
1752.05
876.53
584.69





SP430
Ac-LTF$r8AYAAQL$AANleA-NH2

1655.97
829.54
1656.98
828.99
553





SP431
Ac-LTF$r8AY2NalAQL$AANleA-NH2

1782.01
892.63
1783.02
892.01
595.01





SP432
Ac-LTF$r8EYWCou4QCba$SAA-NH2

1947.97
975.8
1948.98
974.99
650.33





SP433
Ac-LTF$r8EYWCou7QCba$SAA-NH2

16.03
974.9
17.04
9.02
6.35





SP434
Ac-LTF%r8EYWAQCba%SAA-NH2

1745.94
874.8
1746.95
873.98
582.99





SP435
Dmaac-LTF$r8EYWAQCba$SAA-NH2

1786.97
894.8
1787.98
894.49
596.66





SP436
Dmaac-LTF$r8AYWAQL$AAAAAa-NH2

1914.08
958.2
1915.09
958.05
639.03





SP437
Dmaac-LTF$r8AYWAQL$AAAAAa-NH2
iso2
1914.08
958.2
1915.09
958.05
639.03





SP438
Dmaac-LTF$r8EYWAQL$AAAAAa-NH2

1972.08
987.3
1973.09
987.05
658.37





SP439
Dmaac-LTF$r8EYWAQL$AAAAAa-NH2
iso2
1972.08
987.3
1973.09
987.05
658.37





SP440
Dmaac-LTF$r8EF4coohWAQCba$AAIa-NH2

1912.05
957.4
1913.06
957.03
638.36





SP441
Dmaac-LTF$r8EF4coohWAQCba$AAIa-NH2
iso2
1912.05
957.4
1913.06
957.03
638.36





SP442
Dmaac-LTF$r8AYWAQL$AANleA-NH2

1814.05
908.3
1815.06
908.03
605.69





SP443
Dmaac-LTF$r8AYWAQL$AANleA-NH2
iso2
1814.05
908.3
1815.06
908.03
605.69





SP444
Ac-LTF%r8AYWAQL%AANleA-NH2

1773.02
888.37
1774.03
887.52
592.01





SP445
Ac-LTF%r8EYWAQL%AAAAAa-NH2

1931.06
966.4
1932.07
966.54
644.69





SP446
Cou6BaLTF$r8EYWAQhL$SAA-NH2

2018.05
1009.9
2019.06
1010.03
673.69





SP447
Cou8BaLTF$r8EYWAQhL$SAA-NH2

1962.96
982.34
1963.97
982.49
655.32





SP448 
Ac-LTF4I$r8EYWAQL$AAAAAa-NH2

2054.93
1028.68
2055.94
1028.47
685.98





SP449 
Ac-LTF$r8EYWAQL$AAAAAa-NH2

1929.04
966.17
1930.05
965.53
644.02





SP550 
Ac-LTF$r8EYWAQL$AAAAAa-OH

1930.02
966.54
1931.03
966.02
644.35





SP551 
Ac-LTF$r8EYWAQL$AAAAAa-OH
iso2
1930.02
965.89
1931.03
966.02
644.35





SP552 
Ac-LTF$r8EYWAEL$AAAAAa-NH2

1930.02
966.82
1931.03
966.02
644.35





SP553 
Ac-LTF$r8EYWAEL$AAAAAa-NH2
iso2
1930.02
966.91
1931.03
966.02
644.35





SP554 
Ac-LTF$r8EYWAEL$AAAAAa-OH

1931.01
967.28
1932.02
966.51
644.68





SP555 
Ac-LTF$r8EY6clWAQL$AAAAAa-NH2

1963
983.28
1964.01
982.51
655.34





SP556 
Ac-LTF$r8EF4bOH2WAQL$AAAAAa-NH2

1957.05
980.04
1958.06
979.53
653.36





SP557 
Ac-AAALTF$r8EYWAQL$AAAAAa-NH2

2142.15
1072.83
2143.16
1072.08
715.06





SP558 
Ac-LTF34F2$r8EYWAQL$AAAAAa-NH2

1965.02
984.3
1966.03
983.52
656.01





SP559 
Ac-RTF$r8EYWAQL$AAAAAa-NH2

1972.06
987.81
1973.07
987.04
658.36





SP560 
Ac-LTA$r8EYWAQL$AAAAAa-NH2

1853.01
928.33
1854.02
927.51
618.68





SP561 
Ac-LTF$r8EYWAibQL$AAAAAa-NH2

1943.06
973.48
1944.07
972.54
648.69





SP562 
Ac-LTF$r8EYWAQL$AAibAAAa-NH2

1943.06
973.11
1944.07
972.54
648.69





SP563 
Ac-LTF$r8EYWAQL$AAAibAAa-NH2

1943.06
973.48
1944.07
972.54
648.69





SP564 
Ac-LTF$r8EYWAQL$AAAAibAa-NH2

1943.06
973.48
1944.07
972.54
648.69





SP565 
Ac-LTF$r8EYWAQL$AAAAAiba-NH2

1943.06
973.38
1944.07
972.54
648.69





SP566 
Ac-LTF$r8EYWAQL$AAAAAiba-NH2
iso2
1943.06
973.38
1944.07
972.54
648.69





SP567 
Ac-LTF$r8EYWAQL$AAAAAAib-NH2

1943.06
973.01
1944.07
972.54
648.69





SP568 
Ac-LTF$r8EYWAQL$AaAAAa-NH2

1929.04
966.54
1930.05
965.53
644.02





SP569 
Ac-LTF$r8EYWAQL$AAaAAa-NH2

1929.04
966.35
1930.05
965.53
644.02





SP570 
Ac-LTF$r8EYWAQL$AAAaAa-NH2

1929.04
966.54
1930.05
965.53
644.02





SP571 
Ac-LTF$r8EYWAQL$AAAaAa-NH2
iso2
1929.04
966.35
1930.05
965.53
644.02





SP572 
Ac-LTF$r8EYWAQL$AAAAaa-NH2

1929.04
966.35
1930.05
965.53
644.02





SP573 
Ac-LTF$r8EYWAQL$AAAAAA-NH2

1929.04
966.35
1930.05
965.53
644.02





SP574 
Ac-LTF$r8EYWAQL$ASarAAAa-NH2

1929.04
966.54
1930.05
965.53
644.02





SP575 
Ac-LTF$r8EYWAQL$AASarAAa-NH2

1929.04
966.35
1930.05
965.53
644.02





SP576 
Ac-LTF$r8EYWAQL$AAASarAa-NH2

1929.04
966.35
1930.05
965.53
644.02





SP577 
Ac-LTF$r8EYWAQL$AAAASara-NH2

1929.04
966.35
1930.05
965.53
644.02





SP578 
Ac-LTF$r8EYWAQL$AAAAASar-NH2

1929.04
966.08
1930.05
965.53
644.02





SP579
Ac-7LTF$r8EYWAQL$AAAAAa-NH2

1918.07
951.99
1919.08
960.04
640.37





SP581
Ac-TF$r8EYWAQL$AAAAAa-NH2

1815.96
929.85
1816.97
908.99
606.33





SP582
Ac-F$r8EYWAQL$AAAAAa-NH2

1714.91
930.92
1715.92
858.46
572.64





SP583
Ac-LVF$r8EYWAQL$AAAAAa-NH2

1927.06
895.12
1928.07
964.54
643.36





SP584
Ac-AAF$r8EYWAQL$AAAAAa-NH2

1856.98
859.51
1857.99
929.5
620





SP585
Ac-LTF$r8EYWAQL$AAAAa-NH2

1858
824.08
1859.01
930.01
620.34





SP586
Ac-LTF$r8EYWAQL$AAAa-NH2

1786.97
788.56
1787.98
894.49
596.66





SP587
Ac-LTF$r8EYWAQL$AAa-NH2

1715.93
1138.57
1716.94
858.97
572.98





SP588
Ac-LTF$r8EYWAQL$Aa-NH2

1644.89
1144.98
1645.9
823.45
549.3





SP589
Ac-LTF$r8EYWAQL$a-NH2

1573.85
1113.71
1574.86
787.93
525.62





SP590
Ac-LTF$r8EYWAQL$AAA-OH

1716.91
859.55
1717.92
859.46
573.31





SP591
Ac-LTF$r8EYWAQL$A-OH

1574.84
975.14
1575.85
788.43
525.95





SP592
Ac-LTF$r8EYWAQL$AAA-NH2

1715.93
904.75
1716.94
858.97
572.98





SP593
Ac-LTF$r8EYWAQCba$SAA-OH

1744.91
802.49
1745.92
873.46
582.64





SP594
Ac-LTF$r8EYWAQCba$S-OH

1602.83
913.53
1603.84
802.42
535.28





SP595
Ac-LTF$r8EYWAQCba$S-NH2

1601.85
979.58
1602.86
801.93
534.96





SP596
4-FBzl-LTF$r8EYWAQL$AAAAAa-NH2

2009.05
970.52
2010.06
1005.53
670.69





SP597
4-FBzl-LTF$r8EYWAQCba$SAA-NH2

1823.93
965.8
1824.94
912.97
608.98





SP598
Ac-LTF$r8RYWAQL$AAAAAa-NH2

1956.1
988.28
1957.11
979.06
653.04





SP599
Ac-LTF$r8HYWAQL$AAAAAa-NH2

1937.06
1003.54
1938.07
969.54
646.69





SP600
Ac-LTF$r8QYWAQL$AAAAAa-NH2

1928.06
993.92
1929.07
965.04
643.69





SP601
Ac-LTF$r8CitYWAQL$AAAAAa-NH2

1957.08
987
1958.09
979.55
653.37





SP602
Ac-LTF$r8GlaYWAQL$AAAAAa-NH2

1973.03
983
1974.04
987.52
658.68





SP603
Ac-LTF$r8F4gYWAQL$AAAAAa-NH2

2004.1
937.86
2005.11
1003.06
669.04





SP604
Ac-LTF$r82mRYWAQL$AAAAAa-NH2

1984.13
958.58
1985.14
993.07
662.38





SP605
Ac-LTF$r8ipKYWAQL$AAAAAa-NH2

1970.14
944.52
1971.15
986.08
657.72





SP606
Ac-LTF$r8F4NH2YWAQL$AAAAAa-NH2

1962.08
946
1963.09
982.05
655.03





SP607
Ac-LTF$r8EYWAAL$AAAAAa-NH2

1872.02
959.32
1873.03
937.02
625.01





SP608
Ac-LTF$r8EYWALL$AAAAAa-NH2

1914.07
980.88
1915.08
958.04
639.03





SP609
Ac-LTF$r8EYWAAibL$AAAAAa-NH2

1886.03
970.61
1887.04
944.02
629.68





SP610
Ac-LTF$r8EYWASL$AAAAAa-NH2

1888.01
980.51
1889.02
945.01
630.34





SP611
Ac-LTF$r8EYWANL$AAAAAa-NH2

1915.02
1006.41
1916.03
958.52
639.35





SP612 
Ac-LTF$r8EYWACitL$AAAAAa-NH2

1958.07

1959.08
980.04
653.7





SP613 
Ac-LTF$r8EYWAHL$AAAAAa-NH2

1938.04
966.24
1939.05
970.03
647.02





SP614 
Ac-LTF$r8EYWARL$AAAAAa-NH2

1957.08

1958.09
979.55
653.37





SP615 
Ac-LTF$r8EpYWAQL$AAAAAa-NH2

2009.01

2010.02
1005.51
670.68





SP616 
Cbm-LTF$r8EYWAQCba$SAA-NH2

1590.85

1591.86
796.43
531.29





SP617 
Cbm-LTF$r8EYWAQL$AAAAAa-NH2

1930.04

1931.05
966.03
644.35





SP618 
Ac-LTF$r8EYWAQL$SAAAAa-NH2

1945.04
1005.11
1946.05
973.53
649.35





SP619 
Ac-LTF$r8EYWAQL$AAAASa-NH2

1945.04
986.52
1946.05
973.53
649.35





SP620 
Ac-LTF$r8EYWAQL$SAAASa-NH2

1961.03
993.27
1962.04
981.52
654.68





SP621 
Ac-LTF$r8EYWAQTba$AAAAAa-NH2

1943.06
983.1
1944.07
972.54
648.69





SP622 
Ac-LTF$r8EYWAQAdm$AAAAAa-NH2

2007.09
990.31
2008.1
1004.55
670.04





SP623 
Ac-LTF$r8EYWAQCha$AAAAAa-NH2

1969.07
987.17
1970.08
985.54
657.36





SP624 
Ac-LTF$r8EYWAQhCha$AAAAAa-NH2

1983.09
1026.11
1984.1
992.55
662.04





SP625 
Ac-LTF$r8EYWAQF$AAAAAa-NH2

1963.02
957.01
1964.03
982.52
655.35





SP626 
Ac-LTF$r8EYWAQhF$AAAAAa-NH2

1977.04
1087.81
1978.05
989.53
660.02





SP627 
Ac-LTF$r8EYWAQL$AANleAAa-NH2

1971.09
933.45
1972.1
986.55
658.04





SP628 
Ac-LTF$r8EYWAQAdm$AANleAAa-NH2

2049.13
1017.97
2050.14
1025.57
684.05





SP629 
4-FBz-BaLTF$r8EYWAQL$AAAAAa-NH2

2080.08

2081.09
1041.05
694.37





SP630 
4-FBz-BaLTF$r8EYWAQCba$SAA-NH2

1894.97

1895.98
948.49
632.66





SP631 
Ac-LTF$r5EYWAQL$s8AAAAAa-NH2

1929.04
1072.68
1930.05
965.53
644.02





SP632 
Ac-LTF$r5EYWAQCba$s8SAA-NH2

1743.92
1107.79
1744.93
872.97
582.31





SP633 
Ac-LTF$r8EYWAQL$AAhhLAAa-NH2

1999.12

2000.13
1000.57
667.38





SP634 
Ac-LTF$r8EYWAQL$AAAAAAAa-NH2

2071.11

2072.12
1036.56
691.38





SP635 
Ac-LTF$r8EYWAQL$AAAAAAAAa-NH2

2142.15
778.1
2143.16
1072.08
715.06





SP636 
Ac-LTF$r8EYWAQL$AAAAAAAAAa-NH2

2213.19
870.53
2214.2
1107.6
738.74





SP637 
Ac-LTA$r8EYAAQCba$SAA-NH2

1552.85

1553.86
777.43
518.62





SP638 
Ac-LTA$r8EYAAQL$AAAAAa-NH2

1737.97
779.45
1738.98
869.99
580.33





SP639 
Ac-LTF$r8EPmpWAQL$AAAAAa-NH2

2007.03
779.54
2008.04
1004.52
670.02





SP640 
Ac-LTF$r8EPmpWAQCba$SAA-NH2

1821.91
838.04
1822.92
911.96
608.31





SP641 
Ac-ATF$r8HYWAQL$S-NH2

1555.82
867.83
1556.83
778.92
519.61





SP642 
Ac-LTF$r8HAWAQL$S-NH2

1505.84
877.91
1506.85
753.93
502.95





SP643 
Ac-LTF$r8HYWAQA$S-NH2

1555.82
852.52
1556.83
778.92
519.61





SP644
Ac-LTF$r8EYWAQCba$SA-NH2

1672.89
887.18
1673.9
837.45
558.64





SP645
Ac-LTF$r8EYWAQL$SAA-NH2

1731.92
873.32
1732.93
866.97
578.31





SP646
Ac-LTF$r8HYWAQCba$SAA-NH2

1751.94
873.05
1752.95
876.98
584.99





SP647
Ac-LTF$r8SYWAQCba$SAA-NH2

1701.91
844.88
1702.92
851.96
568.31





SP648
Ac-LTF$r8RYWAQCba$SAA-NH2

1770.98
865.58
1771.99
886.5
591.33





SP649
Ac-LTF$r8KYWAQCba$SAA-NH2

1742.98
936.57
1743.99
872.5
582





SP650
Ac-LTF$r8QYWAQCba$SAA-NH2

1742.94
930.93
1743.95
872.48
581.99





SP651
Ac-LTF$r8EYWAACba$SAA-NH2

1686.9
1032.45
1687.91
844.46
563.31





SP652
Ac-LTF$r8EYWAQCba$AAA-NH2

1727.93
895.46
1728.94
864.97
576.98





SP653
Ac-LTF$r8EYWAQL$AAAAA-OH

1858.99
824.54
1860
930.5
620.67





SP654
Ac-LTF$r8EYWAQL$AAAA-OH

1787.95
894.48
1788.96
894.98
596.99





SP655
Ac-LTF$r8EYWAQL$AA-OH

1645.88
856
1646.89
823.95
549.63





SP656
Ac-LTF$r8AF4bOH2WAQL$AAAAAa-NH2











SP657
Ac-LTF$r8AF4bOH2WAAL$AAAAAa-NH2











SP658
Ac-LTF$r8EF4bOH2WAQCba$SAA-NH2











SP659
Ac-LTF$r8ApYWAQL$AAAAAa-NH2











SP660
Ac-LTF$r8ApYWAAL$AAAAAa-NH2











SP661
Ac-LTF$r8EpYWAQCba$SAA-NH2











SP662
Ac-LTF$rda6AYWAQL$da5AAAAAa-NH2

1974.06
934.44








SP663
Ac-LTF$rda6EYWAQCba$da5SAA-NH2

1846.95
870.52

869.94






SP664
Ac-LTF$rda6EYWAQL$da5AAAAAa-NH2











SP665
Ac-LTF$ra9EYWAQL$a6AAAAAa-NH2


936.57

935.51






SP666
Ac-LTF$ra9EYWAQL$a6AAAAAa-NH2











SP667
Ac-LTF$ra9EYWAQCba$a6SAA-NH2











SP668
Ac-LTA$ra9EYWAQCba$a6SAA-NH2











SP669
5-FAM-BaLTF$ra9EYWAQCba$a6SAA-NH2











SP670
5-FAM-BaLTF$r8EYWAQL$AAAAAa-NH2

2316.11









SP671
5-FAM-BaLTF$/r8EYWAQL$/AAAAAa-NH2

2344.15









SP672
5-FAM-BaLTA$r8EYWAQL$AAAAAa-NH2

2240.08









SP673
5-FAM-BaLTF$r8AYWAQL$AAAAAa-NH2

2258.11









SP674
5-FAM-BaATF$r8EYWAQL$AAAAAa-NH2

2274.07









SP675
5-FAM-BaLAF$r8EYWAQL$AAAAAa-NH2

2286.1









SP676
5-FAM-BaLTF$r8EAWAQL$AAAAAa-NH2

2224.09









SP677
5-FAM-BaLTF$r8EYAAQL$AAAAAa-NH2

2201.07









SP678
5-FAM-BaLTA$r8EYAAQL$AAAAAa-NH2

2125.04









SP679
5-FAM-BaLTF$r8EYWAAL$AAAAAa-NH2

2259.09









SP680
5-FAM-BaLTF$r8EYWAQA$AAAAAa-NH2

2274.07









SP681
5-FAM-BaLTF$/r8EYWAQCba$/SAA-NH2

2159.03









SP682
5-FAM-BaLTASr8EYWAQCba$SAA-NH2

2054.97









SP683
5-FAM-BaLTF$r8EYAAQCba$SAA-NH2

2015.96









SP684
5-FAM-BaLTA$r8EYAAQCba$SAA-NH2

1939.92









SP685
5-FAM-BaQSQQTF$r8NLWRLL$QN-NH2

2495.23









SP686
5-TAMRA-BaLTF$r8EYWAQCba$SAA-NH2

2186.1









SP687
5-TAMRA-BaLTA$r8EYWAQCba$SAA-NH2

2110.07









SP688
5-TAMRA-BaLTF$r8EYAAQCba$SAA-NH2

2071.06









SP689
5-TAMRA-BaLTA$r8EYAAQCba$SAA-NH2

1995.03









SP690
5-TAMRA-BaLTF$/r8EYWAQCba$/SAA-NH2

2214.13









SP691
5-TAMRA-BaLTF$r8EYWAQL$AAAAAa-NH2

2371.22









SP692
5-TAMRA-BaLTA$r8EYWAQL$AAAAAa-NH2

2295.19









SP693
5-TAMRA-BaLTF$/r8EYWAQL$/AAAAAa-NH2

2399.25









SP694
Ac-LTF$r8EYWCou7QCba$SAA-OH

1947.93









SP695
Ac-LTF$r8EYWCou7QCba$S-OH

1805.86









SP696
Ac-LTA$r8EYWCou7QCba$SAA-NH2

1870.91









SP697
Ac-LTF$r8EYACou7QCba$SAA-NH2

1831.9









SP698
Ac-LTA$r8EYACou7QCba$SAA-NH2

1755.87









SP699
Ac-LTF$/r8EYWCou7QCba$/SAA-NH2

1974.98









SP700
Ac-LTF$r8EYWCou7QL$AAAAAa-NH2

2132.06









SP701
Ac-LTF$/r8EYWCou7QL$/AAAAAa-NH2

2160.09









SP702
Ac-LTF$r8EYWCou7QL$AAAAA-OH

2062.01









SP703
Ac-LTF$r8EYWCou7QL$AAAA-OH

1990.97









SP704 
Ac-LTF$r8EYWCou7QL$AAA-OH

1919.94









SP705 
Ac-LTFSr8EYWCou7QL$AA-OH

1848.9









SP706 
Ac-LTFSr8EYWCou7QL$A-OH

1777.86









SP707 
Ac-LTF$r8EYWAQL$AAAASa-NH2
iso2

974.4

973.53






SP708 
Ac-LTF$r8AYWAAL$AAAAAa-NH2
iso2
1814.01
908.82
1815.02
908.01
605.68





SP709 
Biotin-BaLTF$r8EYWAQL$AAAAAa-NH2

2184.14
1093.64
2185.15
1093.08
729.05





SP710 
Ac-LTF$r8HAWAQL$S-NH2
iso2
1505.84
754.43
1506.85
753.93
502.95





SP711 
Ac-LTF$r8EYWAQCba$SA-NH2
iso2
1672.89
838.05
1673.9
837.45
558.64





SP712 
Ac-LTF$r8HYWAQCba$SAA-NH2
iso2
1751.94
877.55
1752.95
876.98
584.99





SP713 
Ac-LTF$r8SYWAQCba$SAA-NH2
iso2
1701.91
852.48
1702.92
851.96
568.31





SP714 
Ac-LTF$r8RYWAQCba$SAA-NH2
iso2
1770.98
887.45
1771.99
886.5
591.33





SP715 
Ac-LTF$r8KYWAQCba$SAA-NH2
iso2
1742.98
872.92
1743.99
872.5
582





SP716 
Ac-LTF$r8EYWAQCba$AAA-NH2
iso2
1727.93
865.71
1728.94
864.97
576.98





SP717 
Ac-LTF$r8EYWAQL$AAAAAaBaC-NH2

2103.09
1053.12
2104.1
1052.55
702.04





SP718 
Ac-LTF$r8EYWAQL$AAAAAadPeg4C-NH2

2279.19
1141.46
2280.2
1140.6
760.74





SP719 
Ac-LTA$r8AYWAAL$AAAAAa-NH2

1737.98
870.43
1738.99
870
580.33





SP720 
Ac-LTF$r8AYAAAL$AAAAAa-NH2

1698.97
851
1699.98
850.49
567.33





SP721 
5-FAM-BaLTF$r8AYWAAL$AAAAAa-NH2

2201.09
1101.87
2202.1
1101.55
734.7





SP722 
Ac-LTA$r8AYWAQL$AAAAAa-NH2

1795
898.92
1796.01
898.51
599.34





SP723 
Ac-LTF$r8AYAAQL$AAAAAa-NH2

1755.99
879.49
1757
879
586.34





SP724 
Ac-LTF$rda6AYWAAL$da5AAAAAa-NH2

1807.97

1808.98
904.99
603.66





SP725 
FITC-BaLTF$r8EYWAQL$AAAAAa-NH2

2347.1
1174.49
2348.11
1174.56
783.37





SP726 
FITC-BaLTF$r8EYWAQCba$SAA-NH2

2161.99
1082.35
2163
1082
721.67





SP733 
Ac-LTF$r8EYWAQL$EAAAAa-NH2

1987.05
995.03
1988.06
994.53
663.36





SP734 
Ac-LTF$r8AYWAQL$EAAAAa-NH2

1929.04
966.35
1930.05
965.53
644.02





SP735 
Ac-LTF$r8EYWAQL$AAAAAaBaKbio-NH2

2354.25
1178.47
2355.26
1178.13
785.76





SP736
Ac-LTF$r8AYWAAL$AAAAAa-NH2

1814.01
908.45
1815.02
908.01
605.68





SP737 
Ac-LTF$r8AYAAAL$AAAAAa-NH2
iso2
1698.97
850.91
1699.98
850.49
567.33





SP738 
Ac-LTF$r8AYAAQL$AAAAAa-NH2
iso2
1755.99
879.4
1757
879
586.34





SP739 
Ac-LTF$r8EYWAQL$EAAAAa-NH2
iso2
1987.05
995.21
1988.06
994.53
663.36





SP740 
Ac-LTF$r8AYWAQL$EAAAAa-NH2
iso2
1929.04
966.08
1930.05
965.53
644.02





SP741 
Ac-LTF$r8EYWAQCba$SAAAAa-NH2

1957.04
980.04
1958.05
979.53
653.35





SP742 
Ac-LTF$r8EYWAQLStAAA$r5AA-NH2

2023.12
1012.83
2024.13
1012.57
675.38





SP743 
Ac-LTF$r8EYWAQL$A$AAA$A-NH2

2108.17
1055.44
2109.18
1055.09
703.73





SP744 
Ac-LTF$r8EYWAQL$AA$AAA$A-NH2

2179.21
1090.77
2180.22
1090.61
727.41





SP745 
Ac-LTF$r8EYWAQL$AAA$AAA$A-NH2

2250.25
1126.69
2251.26
1126.13
751.09





SP746 
Ac-AAALTF$r8EYWAQL$AAA-OH

1930.02

1931.03
966.02
644.35





SP747 
Ac-AAALTF$r8EYWAQL$AAA-NH2

1929.04
965.85
1930.05
965.53
644.02





SP748 
Ac-AAAALTF$r8EYWAQL$AAA-NH2

2000.08
1001.4
2001.09
1001.05
667.7





SP749 
Ac-AAAAALTF$r8EYWAQL$AAA-NH2

2071.11
1037.13
2072.12
1036.56
691.38





SP750 
Ac-AAAAAALTF$r8EYWAQL$AAA-NH2

2142.15

2143.16
1072.08
715.06





SP751 
Ac-LTF$rda6EYWAQCba$da6SAA-NH2
iso2
1751.89
877.36
1752.9
876.95
584.97





SP752 
Ac-t$r5a$r5f4CF3ekllr-NH2


844.25








SP753 
Ac-tawy$r5nf4CF3eSr5llr-NH2


837.03








SP754 
Ac-tawya$r5f4CF3ek$r5lr-NH2


822.97








SP755 
Ac-tawyanf4CF3e$r5llr$r5a-NH2


908.35








SP756 
Ac-t$s8anf4CF3e$r5llr-NH2


858.03








SP757 
Ac-tawy$s8nf4CF3ekll$r5a-NH2


879.86








SP758 
Ac-tawya$s8f4CF3ekllr$r5a-NH2


936.38








SP759 
Ac-tawy$s8naekll$r5a-NH2


844.25








SP760 
5-FAM-Batawy$s8nf4CF3ekll$r5a-NH2











SP761 
5-FAM-Batawy$s8naekll$r5a-NH2











SP762 
Ac-tawy$s8nf4CF3eall$r5a-NH2











SP763 
Ac-tawy$s8nf4CF3ekll$r5aaaaa-NH2











SP764 
Ac-tawy$s8nf4CF3eall$r5aaaaa-NH2









Table 1a shows a selection of peptidomimetic macrocycles.
















TABLE 1a








Exact
Found
Calc
Calc
Calc


SP
Sequence
Isomer
Mass
Mass
(M + 1)/1
(M + 2)/2
(M + 3)/3






















SP244
Ac-LTF$r8EF4coohWAQCba$SANleA-NH2

1885
943.59
1886.01
943.51
629.34





SP331
Ac-LTF$r8EYWAQL$AAAAAa-NH2
iso2
1929.04
966.08
1930.05
965.53
644.02





SP555
Ac-LTF$r8EY6clWAQL$AAAAAa-NH2

1963
983.28
1964.01
982.51
655.34





SP557
Ac-AAALTF$r8EYWAQL$AAAAAa-NH2

2142.15
1072.83
2143.16
1072.08
715.06





SP558
Ac-LTF34F2$r8EYWAQL$AAAAAa-NH2

1965.02
984.3
1966.03
983.52
656.01





SP562
Ac-LTF$r8EYWAQL$AAibAAAa-NH2

1943.06
973.11
1944.07
972.54
648.69





SP564
Ac-LTF$r8EYWAQL$AAAAibAa-NH2

1943.06
973.48
1944.07
972.54
648.69





SP566
Ac-LTF$r8EYWAQL$AAAAAiba-NH2
iso2
1943.06
973.38
1944.07
972.54
648.69





SP567
Ac-LTF$r8EYWAQL$AAAAAAib-NH2

1943.06
973.01
1944.07
972.54
648.69





SP572
Ac-LTF$r8EYWAQL$AAAAaa-NH2

1929.04
966.35
1930.05
965.53
644.02





SP573
Ac-LTF$r8EYWAQL$AAAAAA-NH2

1929.04
966.35
1930.05
965.53
644.02





SP578
Ac-LTF$r8EYWAQL$AAAAASar-NH2

1929.04
966.08
1930.05
965.53
644.02





SP551
Ac-LTF$r8EYWAQL$AAAAAa-OH
iso2
1930.02
965.89
1931.03
966.02
644.35





SP662
Ac-LTF$rda6AYWAQL$da5AAAAAa-NH2

1974.06
934.44

933.49






SP367
5-FAM-BaLTF$r8EYWAQCba$SAA-NH2

2131
1067.09
2132.01
1066.51
711.34





SP349
Ac-LTF$r8EF4coohWAQCba$AAAAAa-NH2
iso2
1969.04
986.06
1970.05
985.53
657.35





SP347
Ac-LTF$r8EYWAQCba$AAAAAa-NH2
iso2
1941.04
972.55
1942.05
971.53
648.02









Table 1b shows a further selection of peptidomimetic macrocycles.
















TABLE 1b








Exact
Found
Calc
Calc
Calc


SP
Sequence
Isomer
Mass
Mass
(M + 1)/1
(M + 2)/2
(M + 3)/3






















SP581
Ac-TF$r8EYWAQL$AAAAAa-NH2

1815.96
929.85
1816.97
908.99
606.33





SP582
Ac-F$r8EYWAQL$AAAAAa-NH2

1714.91
930.92
1715.92
858.46
572.64





SP583
Ac-LVF$r8EYWAQL$AAAAAa-NH2

1927.06
895.12
1928.07
964.54
643.36





SP584
Ac-AAF$r8EYWAQL$AAAAAa-NH2

1856.98
859.51
1857.99
929.5
620





SP585
Ac-LTF$r8EYWAQL$AAAAa-NH2

1858
824.08
1859.01
930.01
620.34





SP586
Ac-LTF$r8EYWAQL$AAAa-NH2

1786.97
788.56
1787.98
894.49
596.66





SP587
Ac-LTF$r8EYWAQL$AAa-NH2

1715.93
1138.57
1716.94
858.97
572.98





SP588
Ac-LTF$r8EYWAQL$Aa-NH2

1644.89
1144.98
1645.9
823.45
549.3





SP589
Ac-LTF$r8EYWAQL$a-NH2

1573.85
1113.71
1574.86
787.93
525.62





SP590
Ac-LTF$r8AYWAQL$A-NH2


758.97

758.93









Table 1d shows a list of selected peptidomimetic macrocycles.









TABLE 1d







Selected peptidomimetic macrocycles derived


from the MDM2/MDMX-binding helix of p53.
















Ala
IC50
SJSA-1
Solubility


SP#
L
RT*
(%)
MDM2 (nM)
EC50 (μM)**
(mg/mL)
















590
12
74.2
25
140.7
6
≦1


68
15
91.5
33
29.02
1.12
3


315
17
≧100
47
30.77
0.18
4.5


317
18
≧100
50
10
0.1
5





*Normalized and calculated according to Example 11 (see table and equation).


**10% serum, 72 hr


L = length in amino acids;


RT = retention time;


Ala = alanine content













TABLE 1e 







Peptidomimetic macrocycles that inhibit the MDM2/MDMX


and p53 interaction.












Calc.
Found


SP#
Sequence
(M + 2)/2
Mass





778
Ac-tawyanfekllr-NH2
776.92
777.46





779
Ac-tawyanf4CF3ekllr- NH2
810.91
811.41





752
Ac-t$r5wya$r5f4CF3ekllr-NH2

844.25





753
Ac-tawy$r5nf4CF3e$r5llr-NH2

837.03





754
Ac-tawya$r5f4CF3ek$r5lr-NH2

822.97





755
Ac-tawyanf4CF3e$r5llr$r5a-NH2

908.35





756
Ac-t$s8anf4CF3e$r5llr-NH2

858.03





757
Ac-tawy$s8nf4CF3ekll$r5a-NH2
878.97
879.86





758
Ac-tawya$s8f4CF3ekllr$r5a-NH2

936.38





763
Ac-tawy$s8nf4CF3ekl$r5aaaaa-NH2
















TABLE 1f







Selected peptidomimetic macrocycles that


inhibit the MDM2/MDMX and p53 interaction.


















RT
Ala
Ki MDM2
SJSA-1 EC50


SP#
Ch
L
VH
(min)*
%
(nM)
(μM)**

















778
1
12
9.8
5.53
17
19251.34
>30


779
1
12
9.8
6.52
17
48.16
ND


757
0
13
6.3
7.99
15
2.92
1.5


763
0
17
6.7
8.74
35
10.9
0.34





*See Example 11 table


**10% serum, 72 hr


Ch = net charge;


L = length in amino acids;


VH = von Heijne;


RT = retention time;


Ala = alanine content






In some embodiments, the invention provides a peptidomimetic macrocycle that comprises an amino acid sequence that has at least 60%, 70%, 80%, 90%, 95%, 97%, or 100% identity to any one of the amino acid sequences in Table 1, 1a, 1b, 1c, 1e or 1f.


In the sequences shown above and elsewhere, the following abbreviations are used: “Nle” represents norleucine, “Aib” represents 2-aminoisobutyric acid, “Ac” represents acetyl, and “Pr” represents propionyl. Amino acids represented as “$” are alpha-Me S5-pentenyl-alanine olefin amino acids connected by an all-carbon crosslinker comprising one double bond Amino acids represented as “$r5” are alpha-Me R5-pentenyl-alanine olefin amino acids connected by an all-carbon comprising one double bond Amino acids represented as “$s8” are alpha-Me S8-octenyl-alanine olefin amino acids connected by an all-carbon crosslinker comprising one double bond. Amino acids represented as “$r8” are alpha-Me R8-octenyl-alanine olefin amino acids connected by an all-carbon crosslinker comprising one double bond. “Ahx” represents an aminocyclohexyl linker. The crosslinkers are linear all-carbon crosslinker comprising eight or eleven carbon atoms between the alpha carbons of each amino acid. Amino acids represented as “$/” are alpha-Me S5-pentenyl-alanine olefin amino acids that are not connected by any crosslinker. Amino acids represented as “$/r5” are alpha-Me R5-pentenyl-alanine olefin amino acids that are not connected by any crosslinker Amino acids represented as “$/s8” are alpha-Me S8-octenyl-alanine olefin amino acids that are not connected by any crosslinker Amino acids represented as “$/r8” are alpha-Me R8-octenyl-alanine olefin amino acids that are not connected by any crosslinker. Amino acids represented as “Amw” are alpha-Me tryptophan amino acids Amino acids represented as “Aml” are alpha-Me leucine amino acids. Amino acids represented as “Amf” are alpha-Me phenylalanine amino acids. Amino acids represented as “2ff” are 2-fluoro-phenylalanine amino acids. Amino acids represented as “3ff” are 3-fluoro-phenylalanine amino acids. Amino acids represented as “St” are amino acids comprising two pentenyl-alanine olefin side chains, each of which is crosslinked to another amino acid as indicated Amino acids represented as “St//” are amino acids comprising two pentenyl-alanine olefin side chains that are not crosslinked. Amino acids represented as “% St” are amino acids comprising two pentenyl-alanine olefin side chains, each of which is crosslinked to another amino acid as indicated via fully saturated hydrocarbon crosslinks. Amino acids represented as “Ba” are beta-alanine. The lower-case character “e” or “z” within the designation of a crosslinked amino acid (e.g. “$er8” or “$zr8”) represents the configuration of the double bond (E or Z, respectively). In other contexts, lower-case letters such as “a” or “f” represent D amino acids (e.g. D-alanine, or D-phenylalanine, respectively) Amino acids designated as “NmW” represent N-methyltryptophan. Amino acids designated as “NmY” represent N-methyltyrosine Amino acids designated as “NmA” represent N-methylalanine. “Kbio” represents a biotin group attached to the side chain amino group of a lysine residue. Amino acids designated as “Sar” represent sarcosine Amino acids designated as “Cha” represent cyclohexyl alanine. Amino acids designated as “Cpg” represent cyclopentyl glycine Amino acids designated as “Chg” represent cyclohexyl glycine. Amino acids designated as “Cba” represent cyclobutyl alanine. Amino acids designated as “F4I” represent 4-iodo phenylalanine. “7L” represents N15 isotopic leucine. Amino acids designated as “F3C1” represent 3-chloro phenylalanine Amino acids designated as “F4cooh” represent 4-carboxy phenylalanine. Amino acids designated as “F34F2” represent 3,4-difluoro phenylalanine Amino acids designated as “6c1W” represent 6-chloro tryptophan. Amino acids designated as “$rda6” represent alpha-Me R6-hexynyl-alanine alkynyl amino acids, crosslinked via a dialkyne bond to a second alkynyl amino acid. Amino acids designated as “$da5” represent alpha-Me S5-pentynyl-alanine alkynyl amino acids, wherein the alkyne forms one half of a dialkyne bond with a second alkynyl amino acid Amino acids designated as “$ra9” represent alpha-Me R9-nonynyl-alanine alkynyl amino acids, crosslinked via an alkyne metathesis reaction with a second alkynyl amino acid Amino acids designated as “$a6” represent alpha-Me S6-hexynyl-alanine alkynyl amino acids, crosslinked via an alkyne metathesis reaction with a second alkynyl amino acid. The designation “iso1” or “iso2” indicates that the peptidomimetic macrocycle is a single isomer.


Amino acids designated as “Cit” represent citrulline Amino acids designated as “Cou4”, “Cou6”, “Cou7” and “Cou8”, respectively, represent the following structures:




embedded image


embedded image


In some embodiments, a peptidomimetic macrocycle is obtained in more than one isomer, for example due to the configuration of a double bond within the structure of the crosslink (E vs Z). Such isomers can or cannot be separable by conventional chromatographic methods. In some embodiments, one isomer has improved biological properties relative to the other isomer. In one embodiment, an E crosslink olefin isomer of a peptidomimetic macrocycle has better solubility, better target affinity, better in vivo or in vitro efficacy, higher helicity, or improved cell permeability relative to its Z counterpart. In another embodiment, a Z crosslink olefin isomer of a peptidomimetic macrocycle has better solubility, better target affinity, better in vivo or in vitro efficacy, higher helicity, or improved cell permeability relative to its E counterpart.


Table 1c shows exemplary peptidomimetic macrocycle:









TABLE 1c





Structure









embedded image







Chemical Formula: C87H125N17O21


Exact Mass: 1743.92


Molecular Weight: 1745.02







embedded image







Chemical Formula: C85H125N17O19


Exact Mass: 1687.93


Molecular Weight: 1689.00







embedded image







Chemical Formula: C85H125N17O19


Exact Mass: 1687.93


Molecular Weight: 1689.00







embedded image







Chemical Formula: C84H122ClN17O19


Exact Mass: 1707.88


Molecular Weight: 1709.42







embedded image







Chemical Formula: C91H136N18O19


Exact Mass: 1785.02


Molecular Weight: 1786.16







embedded image







Chemical Formula: C95H140N20O23


Exact Mass: 1929.04


Molecular Weight: 1930.25







embedded image







Chemical Formula: C95H142N20O23


Exact Mass: 1931.06


Molecular Weight: 1932.26







embedded image







Chemical Formula: C96H140N20O24


Exact Mass: 1957.03


Molecular Weight: 1958.26







embedded image







Chemical Formula: C90H134N18O19


Exact Mass: 1771.01


Molecular Weight: 1772.14







embedded image







Chemical Formula: C90H134N18O19


Exact Mass: 1771.01


Molecular Weight: 1772.14







embedded image







Chemical Formula: C90H127N17O19


Exact Mass: 1749.95


Molecular Weight: 1751.07







embedded image







Chemical Formula: C87H125F2N17O21


Exact Mass: 1781.92


Molecular Weight: 1783.02







embedded image







Chemical Formula: C93H138N20O21


Exact Mass: 1871.03


Molecular Weight: 1872.21







embedded image







Chemical Formula: C94H136N18O22


Exact Mass: 1869.01


Molecular Weight: 1870.19







embedded image







Chemical Formula: C95H143N21O21


Exact Mass: 1914.08


Molecular Weight: 1915.28







embedded image







Chemical Formula: C97H140N20O24


Exact Mass: 1969.03


Molecular Weight: 1970.27







embedded image







Chemical Formula: C95H139ClN20O23


Exact Mass: 1963.00


Molecular Weight: 1964.69







embedded image







Chemical Formula: C104H155N23O26


Exact Mass: 2142.15


Molecular Weight: 2143.48







embedded image







Chemical Formula: C95H138F2N20O23


Exact Mass: 1965.02


Molecular Weight: 1966.23







embedded image









embedded image







Chemical Formula: C96H142N20O23


Exact Mass: 1943.06


Molecular Weight: 1944.27







embedded image







Chemical Formula: C96H142N20O23


Exact Mass: 1943.06


Molecular Weight: 1944.27







embedded image









embedded image







Chemical Formula: C96H142N20O23


Exact Mass: 1943.06


Molecular Weight: 1944.27







embedded image







Chemical Formula: C95H140N20O23


Exact Mass: 1929.04


Molecular Weight: 1930.25







embedded image







Chemical Formula: C95H140N20O23


Exact Mass: 1929.04


Molecular Weight: 1930.25







embedded image







Chemical Formula: C95H140N20O23


Exact Mass: 1929.04


Molecular Weight: 1930.25







embedded image







Chemical Formula: C95H134N20O23


Exact Mass: 1922.99


Molecular Weight: 1924.20







embedded image







Chemical Formula: C95H134N20O23


Exact Mass: 1922.99


Molecular Weight: 1924.20







embedded image







Chemical Formula: C96H136N20O23


Exact Mass: 1937.01


Molecular Weight: 1938.23









In some embodiments, peptidomimetic macrocycles exclude peptidomimetic macrocycles shown in Table 2a:












TABLE 2a







Number
Sequence









 1
L$r5QETFSD$s8WKLLPEN







 2
LSQ$r5TFSDLW$s8LLPEN







 3
LSQE$r5FSDLWK$s8LPEN







 4
LSQET$r5SDLWKL$s8PEN







 5
LSQETF$r5DLWKLL$s8EN







 6
LXQETFS$r5LWKLLP$s8N







 7
LSQETFSD$r5WKLLPE$s8







 8
LSQQTF$r5DLWKLL$s8EN







 9
LSQETF$r5DLWKLL$s8QN







10
LSQQTF$r5DLWKLL$s8QN







11
LSQETF$r5NLWKLL$s8QN







12
LSQQTF$r5NLWKLL$s8QN







13
LSQQTF$r5NLWRLL$s8QN







14
QSQQTF$r5NLWKLL$s8QN







15
QSQQTF$r5NLWRLL$s8QN







16
QSQQTA$r5NLWRLL$s8QN







17
L$r8QETFSD$WKLLPEN







18
LSQ$r8TFSDLW$LLPEN







19
LSQE$r8FSDLWK$LPEN







20
LSQET$r8SDLWKL$PEN







21
LSQETF$r8DLWKLL$EN







22
LXQETFS$r8LWKLLP$N







23
LSQETFSD$r8WKLLPE$







24
LSQQTF$r8DLWKLL$EN







25
LSQETF$r8DLWKLL$QN







26
LSQQTF$rSDLWKLL$QN







27
LSQETF$r8NLWKLL$QN







28
LSQQTF$r8NLWKLL$QN







29
LSQQTF$r8NLWRLL$QN







30
QSQQTF$r8NLVVKLL$QN







31
QSQQTF$r8NLWRLL$QN







32
QSQQTA$r8NLVVRLL$QN







33
QSQQTF$r8NLWRKK$QN







34
QQTF$r8DLWRLL$EN







35
QQTF$r8DLWRLL$







36
LSQQTF$DLW$LL







37
QQTF$DLW$LL







38
QQTA$r8DLWRLL$EN







39
QSQQTF$r5NLWRLL$s8QN 




(dihydroxylated olefin)







40
QSQQTA$r5NLWRLL$s8QN 




(dihydroxylated olefin)







41
QSQQTF$r8DLWRLL$QN







42
QTF$r8NLWRLL$







43
QSQQTF$NLW$LLPQN







44
QS$QTF$NLWRLLPQN







45
$TFS$LWKLL







46
ETF$DLW$LL







47
QTF$NLW$LL







48
$SQE$FSNLWKLL










In Table 2a, X represents S or any amino acid. Peptides shown can comprise an N-terminal capping group such as acetyl or an additional linker such as beta-alanine between the capping group and the start of the peptide sequence.


In some embodiments, peptidomimetic macrocycles do not comprise a peptidomimetic macrocycle structure as shown in Table 2a.


In other embodiments, peptidomimetic macrocycles exclude peptidomimetic macrocycles shown in Table 2b:













TABLE 2b









Observed




Exact

mass


Number
Sequence
Mass
M + 2
(m/e)



















  1
Ac-LSQETF$r8DLWKLL$EN-NH2
2068.13
1035.07
1035.36





  2
Ac-LSQETF$r8NLWKLL$QN-NH2
2066.16
1034.08
1034.31





  3
Ac-LSQQTF$r8NLWRLL$QN-NH2
2093.18
1047.59
1047.73





  4
Ac-QSQQTF$r8NLWKLL$QN-NH2
2080.15
1041.08
1041.31





  5
Ac-QSQQTF$r8NLWRLL$QN-NH2
2108.15
1055.08
1055.32





  6
Ac-QSQQTA$r8NLWRLL$QN-NH2
2032.12
1017.06
1017.24





  7
Ac-QAibQQTF$r8NLWRLL$QN-NH2
2106.17
1054.09
1054.34





  8
Ac-QSQQTFSNLWRLLPQN-NH2
2000.02
1001.01
1001.26





  9
Ac-QSQQTF$/r8NLWRLL$/QN-NH2
2136.18
1069.09
1069.37





 10
Ac-QSQAibTF$r8NLWRLL$QN-NH2
2065.15
1033.58
1033.71





 11
Ac-QSQQTF$r8NLWRLL$AN-NH2
2051.13
1026.57
1026.70





 12
Ac-ASQQTF$r8NLWRLL$QN-NH2
2051.13
1026.57
1026.90





 13
Ac-QSQQTF$r8ALWRLL$QN-NH2
2065.15
1033.58
1033.41





 14
Ac-QSQETF$r8NLWRLL$QN-NH2
2109.14
1055.57
1055.70





 15
Ac-RSQQTF$r8NLWRLL$QN-NH2
2136.20
1069.10
1069.17





 16
Ac-RSQQTF$r8NLWRLL$EN-NH2
2137.18
1069.59
1069.75





 17
Ac-LSQETFSDLWKLLPEN-NH2
1959.99
981.00
981.24





 18
Ac-QSQ$TFS$LWRLLPQN-NH2
2008.09
1005.05
1004.97





 19
Ac-QSQQ$FSN$WRLLPQN-NH2
2036.06
1019.03
1018.86





 20
Ac-QSQQT$SNL$RLLPQN-NH2
1917.04
959.52
959.32





 21
Ac-QSQQTF$NLW$LLPQN-NH2
2007.06
1004.53
1004.97





 22
Ac-RTQATF$r8NQWAibANle$TNAibTR-
2310.26
1156.13
1156.52



NH2








 23
Ac-QSQQTF$r8NLWRLL$RN-NH2
2136.20
1069.10
1068.94





 24
Ac-QSQRTF$r8NLWRLL$QN-NH2
2136.20
1069.10
1068.94





 25
Ac-QSQQTF$r8NNleWRLL$QN-NH2
2108.15
1055.08
1055.44





 26
Ac-QSQQTF$r8NLWRNleL$QN-NH2
2108.15
1055.08
1055.84





 27
Ac-QSQQTF$r8NLWRLNle$QN-NH2
2108.15
1055.08
1055.12





 28
Ac-QSQQTY$r8NLWRLL$QN-NH2
2124.15
1063.08
1062.92





 29
Ac-RAibQQTF$r8NLWRLL$QN-NH2
2134.22
1068.11
1068.65





 30
Ac-MPRFMDYWEGLN-NH2
1598.70
800.35
800.45





 31
Ac-RSQQRF$r8NLWRLL$QN-NH2
2191.25
1096.63
1096.83





 32
Ac-QSQQRF$r8NLWRLL$QN-NH2
2163.21
1082.61
1082.87





 33
Ac-RAibQQRF$r8NLWRLL$QN-NH2
2189.27
1095.64
1096.37





 34
Ac-RSQQRF$r8NFWRLL$QN-NH2
2225.23
1113.62
1114.37





 35
Ac-RSQQRF$r8NYWRLL$QN-NH2
2241.23
1121.62
1122.37





 36
Ac-RSQQTF$r8NLWQLL$QN-NH2
2108.15
1055.08
1055.29





 37
Ac-QSQQTF$r8NLWQAmlL$QN-NH2
2094.13
1048.07
1048.32





 38
Ac-QSQQTF$r8NAmlWRLL$QN-NH2
2122.17
1062.09
1062.35





 39
Ac-NlePRF$r8DYWEGL$QN-NH2
1869.98
935.99
936.20





 40
Ac-NlePRF$r8NYWRLL$QN-NH2
1952.12
977.06
977.35





 41
Ac-RF$r8NLWRLL$Q-NH2
1577.96
789.98
790.18





 42
Ac-QSQQTF$r8N2ffWRLL$QN-NH2
2160.13
1081.07
1081.40





 43
Ac-QSQQTF$r8N3ffWRLL$QN-NH2
2160.13
1081.07
1081.34





 44
Ac-QSQQTF#r8NLWRLL#QN-NH2
2080.12
1041.06
1041.34





 45
Ac-RSQQTA$r8NLWRLL$QN-NH2
2060.16
1031.08
1031.38





 46
Ac-QSQQTF%r8NLWRLL%QN-NH2
2110.17
1056.09
1056.55





 47
HepQSQ$TFSNLWRLLPQN-NH2
2051.10
1026.55
1026.82





 48
HepQSQ$TF$r8NLWRLL$QN-NH2
2159.23
1080.62
1080.89





 49
Ac-QSQQTF$r8NL6clWRLL$QN-NH2
2142.11
1072.06
1072.35





 50
Ac-QSQQTF$r8NLMe6clwRLL$QN-NH2
2156.13
1079.07
1079.27





 51
Ac-LTFEHYWAQLTS-NH2
1535.74
768.87
768.91





 52
Ac-LTF$HYW$QLTS-NH2
1585.83
793.92
794.17





 53
Ac-LTFE$YWA$LTS-NH2
1520.79
761.40
761.67





 54
Ac-LTF$zr8HYWAQL$zS-NH2
1597.87
799.94
800.06





 55
Ac-LTF$r8HYWRQL$S-NH2
1682.93
842.47
842.72





 56
Ac-QS$QTFStNLWRLL$s8QN-NH2
2145.21
1073.61
1073.90





 57
Ac-QSQQTASNLWRLLPQN-NH2
1923.99
963.00
963.26





 58
Ac-QSQQTA$/r8NLWRLL$/QN-NH2
2060.15
1031.08
1031.24





 59
Ac-ASQQTF$/r8NLWRLL$/QN-NH2
2079.16
1040.58
1040.89





 60
Ac-$SQQ$FSNLWRLLAibQN-NH2
2009.09
1005.55
1005.86





 61
Ac-QS$QTF$NLWRLLAibQN-NH2
2023.10
1012.55
1012.79





 62
Ac-QSQQ$FSN$WRLLAibQN-NH2
2024.06
1013.03
1013.31





 63
Ac-QSQQTF$NLW$LLAibQN-NH2
1995.06
998.53
998.87





 64
Ac-QSQQTFS$LWR$LAibQN-NH2
2011.06
1006.53
1006.83





 65
Ac-QSQQTFSNLW$LLA$N-NH2
1940.02
971.01
971.29





 66
Ac-$/SQQ$/FSNLWRLLAibQN-NH2
2037.12
1019.56
1019.78





 67
Ac-QS$/QTF$/NLWRLLAibQN-NH2
2051.13
1026.57
1026.90





 68
Ac-QSQQ$/FSN$/WRLLAibQN-NH2
2052.09
1027.05
1027.36





 69
Ac-QSQQTF$/NLW$/LLAibQN-NH2
2023.09
1012.55
1013.82





 70
Ac-QSQ$TFS$LWRLLAibQN-NH2
1996.09
999.05
999.39





 71
Ac-QSQ$/TFS$/LWRLLAibQN-NH2
2024.12
1013.06
1013.37





 72
Ac-QS$/QTFSt//NLWRLL$/s8QN-NH2
2201.27
1101.64
1102.00





 73
Ac-$r8SQQTFSSLWRLLAibQN-NH2
2038.14
1020.07
1020.23





 74
Ac-QSQ$r8TFSNLW$LLAibQN-NH2
1996.08
999.04
999.32





 75
Ac-QSQQTFS$r8LWRLLA$N-NH2
2024.12
1013.06
1013.37





 76
Ac-QS$r5QTFStNLW$LLAibQN-NH2
2032.12
1017.06
1017.39





 77
Ac-$/r8SQQTFS$/LWRLLAibQN-NH2
2066.17
1034.09
1034.80





 78
Ac-QSQ$/r8TFSNLW$/LLAibQN-NH2
2024.11
1013.06
1014.34





 79
Ac-QSQQTFS$/r8LWRLLA$/N-NH2
2052.15
1027.08
1027.16





 80
Ac-QS$/r5QTFSt//NLW$/LLAibQN-NH2
2088.18
1045.09
1047.10





 81
Ac-QSQQTFSNLWRLLAibQN-NH2
1988.02
995.01
995.31





 82
Hep/QSQ$/TF$/r8NLWRLL$/QN-NH2
2215.29
1108.65
1108.93





 83
Ac-ASQQTF$r8NLRWLL$QN-NH2
2051.13
1026.57
1026.90





 84
Ac-QSQQTF$/r8NLWRLL$/Q-NH2
2022.14
1012.07
1012.66





 85
Ac-QSQQTF$r8NLWRLL$Q-NH2
1994.11
998.06
998.42





 86
Ac-AAARAA$r8AAARAA$AA-NH2
1515.90
758.95
759.21





 87
Ac-LTFEHYWAQLTSA-NH2
1606.78
804.39
804.59





 88
Ac-LTF$r8HYWAQL$SA-NH2
1668.90
835.45
835.67





 89
Ac-ASQQTFSNLWRLLPQN-NH2
1943.00
972.50
973.27





 90
Ac-QS$QTFStNLW$r5LLAibQN-NH2
2032.12
1017.06
1017.30





 91
Ac-QSQQTFAibNLWRLLAibQN-NH2
1986.04
994.02
994.19





 92
Ac-QSQQTFNleNLWRLLNleQN-NH2
2042.11
1022.06
1022.23





 93
Ac-QSQQTF$/r8NLWRLLAibQN-NH2
2082.14
1042.07
1042.23





 94
Ac-QSQQTF$/r8NLWRLLNleQN-NH2
2110.17
1056.09
1056.29





 95
Ac-QSQQTFAibNLWRLL$/QN-NH2
2040.09
1021.05
1021.25





 96
Ac-QSQQTFNleNLWRLL$/QN-NH2
2068.12
1035.06
1035.31





 97
Ac-QSQQTF%r8NL6clWRNleL%QN-NH2
2144.13
1073.07
1073.32





 98
Ac-QSQQTF%r8NLMe6clWRLL%QN-NH2
2158.15
1080.08
1080.31





101
Ac-FNleSYWE$L-NH2
1160.63

1161.70





102
Ac-F$r8AYWELL$A-NH2
1344.75

1345.90





103
Ac-F$r8AYWQLL$A-NH2
1343.76

1344.83





104
Ac-NlePRF$r8NYWELL$QN-NH2
1925.06
963.53
963.69





105
Ac-NlePRF$r8DYWRLL$QN-NH2
1953.10
977.55
977.68





106
Ac-NlePRF$r8NYWRLL$Q-NH2
1838.07
920.04
920.18





107
Ac-NlePRF$r8NYWRLL$-NH2
1710.01
856.01
856.13





108
Ac-QSQQTF$r8DLWRLL$QN-NH2
2109.14
1055.57
1055.64





109
Ac-QSQQTF$r8NLWRLL$EN-NH2
2109.14
1055.57
1055.70





110
Ac-QSQQTF$r8NLWRLL$QD-NH2
2109.14
1055.57
1055.64





111
Ac-QSQQTF$r8NLWRLL$S-NH2
1953.08
977.54
977.60





112
Ac-ESQQTF$r8NLWRLL$QN-NH2
2109.14
1055.57
1055.70





113
Ac-LTF$r8NLWRNleL$Q-NH2
1635.99
819.00
819.10





114
Ac-LRF$r8NLWRNleL$Q-NH2
1691.04
846.52
846.68





115
Ac-QSQQTF$r8NWWRNleL$QN-NH2
2181.15
1091.58
1091.64





116
Ac-QSQQTF$r8NLWRNleL$Q-NH2
1994.11
998.06
998.07





117
Ac-QTF$r8NLWRNleL$QN-NH2
1765.00
883.50
883.59





118
Ac-NlePRF$r8NWWRLL$QN-NH2
1975.13
988.57
988.75





119
Ac-NlePRF$r8NWWRLL$A-NH2
1804.07
903.04
903.08





120
Ac-TSFAEYWNLLNH2
1467.70
734.85
734.90





121
Ac-QTF$r8HWWSQL$S-NH2
1651.85
826.93
827.12





122
Ac-FM$YWE$L-NH2
1178.58

1179.64





123
Ac-QTFEHWWSQLLS-NH2
1601.76
801.88
801.94





124
Ac-QSQQTF$r8NLAmwRLNle$QN-NH2
2122.17
1062.09
1062.24





125
Ac-FMAibY6clWEAc3cL-NH2
1130.47

1131.53





126
Ac-FNle$Y6clWE$L-NH2
1194.59

1195.64





127
Ac-F$zr8AY6clWEAc3cL$z-NH2
1277.63
639.82
1278.71





128
Ac-F$r8AY6clWEAc3cL$A-NH2
1348.66

1350.72





129
Ac-NlePRF$r8NY6clWRLL$QN-NH2
1986.08
994.04
994.64





130
Ac-AF$r8AAWALA$A-NH2
1223.71

1224.71





131
Ac-TF$r8AAWRLA$Q-NH2
1395.80
698.90
399.04





132
Pr-TF$r8AAWRLA$Q-NH2
1409.82
705.91
706.04





133
Ac-QSQQTF%r8NLWRNleL%QN-NH2
2110.17
1056.09
1056.22





134
Ac-LTF%r8HYWAQL%SA-NH2
1670.92
836.46
836.58





135
Ac-NlePRF%r8NYWRLL%QN-NH2
1954.13
978.07
978.19





136
Ac-NlePRF%r8NY6clWRLL%QN-NH2
1988.09
995.05
995.68





137
Ac-LTF%r8HY6clWAQL%S-NH2
1633.84
817.92
817.93





138
Ac-QS%QTF%StNLWRLL%s8QN-NH2
2149.24
1075.62
1075.65





139
Ac-LTF%r8HY6clWRQL%S-NH2
1718.91
860.46
860.54





140
Ac-QSQQTF%r8NL6clWRLL%QN-NH2
2144.13
1073.07
1073.64





141
Ac-%r8SQQTFS%LWRLLAibQN-NH2
2040.15
1021.08
1021.13





142
Ac-LTF%r8HYWAQL%S-NH2
1599.88
800.94
801.09





143
Ac-TSF%r8QYWNLL%P-NH2
1602.88
802.44
802.58





147
Ac-LTFEHYWAQLTS-NH2
1535.74
768.87
769.5





152
Ac-F$er8AY6clWEAc3cL$e-NH2
1277.63
639.82
1278.71





153
Ac-AF$r8AAWALA$A-NH2
1277.63
639.82
1277.84





154
Ac-TF$r8AAWRLA$Q-NH2
1395.80
698.90
699.04





155
Pr-TF$r8AAWRLA$Q-NH2
1409.82
705.91
706.04





156
Ac-LTF$er8HYWAQL$eS-NH2
1597.87
799.94
800.44





159
Ac-CCPGCCBaQSQQTF$r8NLWRLL$QN-
2745.30
1373.65
1372.99



NH2








160
Ac-CCPGCCBaQSQQTA$r8NLWRLL$QN-
2669.27
1335.64
1336.09



NH2








161
Ac-CCPGCCBaNlePRF$r8NYWRLL$QN-
2589.26
1295.63
1296.2



NH2








162
Ac-LTF$/r8HYWAQL$/S-NH2
1625.90
813.95
814.18





163
Ac-F%r8HY6clWRAc3cL%-NH2
1372.72
687.36
687.59





164
Ac-QTF%r8HWWSQL%S-NH2
1653.87
827.94
827.94





165
Ac-LTA$r8HYWRQL$S-NH2
1606.90
804.45
804.66





166
Ac-Q$r8QQTFSN$WRLLAibQN-NH2
2080.12
1041.06
1041.61





167
Ac-QSQQ$r8FSNLWR$LAibQN-NH2
2066.11
1034.06
1034.58





168
Ac-F$r8AYWEAc3cL$A-NH2
1314.70
658.35
1315.88





169
Ac-F$r8AYWEAc3cL$S-NH2
1330.70
666.35
1331.87





170
Ac-F$r8AYWEAc3cL$Q-NH2
1371.72
686.86
1372.72





171
Ac-F$r8AYWEAibL$S-NH2
1332.71
667.36
1334.83





172
Ac-F$r8AYWEAL$S-NH2
1318.70
660.35
1319.73





173
Ac-F$r8AYWEQL$S-NH2
1375.72
688.86
1377.53





174
Ac-F$r8HYWEQL$S-NH2
1441.74
721.87
1443.48





175
Ac-F$r8HYWAQL$S-NH2
1383.73
692.87
1385.38





176
Ac-F$r8HYWAAc3cL$S-NH2
1338.71
670.36
1340.82





177
Ac-F$r8HYWRAc3cL$S-NH2
1423.78
712.89
713.04





178
Ac-F$r8AYWEAc3cL#A-NH2
1300.69
651.35
1302.78





179
Ac-NlePTF%r8NYWRLL%QN-NH2
1899.08
950.54
950.56





180
Ac-TF$r8AAWRAL$Q-NH2
1395.80
698.90
699.13





181
Ac-TSF%r8HYWAQL%S-NH2
1573.83
787.92
787.98





184
Ac-F%r8AY6clWEAc3cL%A-NH2
1350.68
676.34
676.91





185
Ac-LTF$r8HYWAQI$S-NH2
1597.87
799.94
800.07





186
Ac-LTF$r8HYWAQNle$S-NH2
1597.87
799.94
800.07





187
Ac-LTF$r8HYWAQL$A-NH2
1581.87
791.94
792.45





188
Ac-LTF$r8HYWAQL$Abu-NH2
1595.89
798.95
799.03





189
Ac-LTF$r8HYWAbuQL$S-NH2
1611.88
806.94
807.47





190
Ac-LTF$er8AYWAQL$eS-NH2
1531.84
766.92
766.96





191
Ac-LAF$r8HYWAQL$S-NH2
1567.86
784.93
785.49





192
Ac-LAF$r8AYWAQL$S-NH2
1501.83
751.92
752.01





193
Ac-LTF$er8AYWAQL$eA-NH2
1515.85
758.93
758.97





194
Ac-LAF$r8AYWAQL$A-NH2
1485.84
743.92
744.05





195
Ac-LTF$r8NLWANleL$Q-NH2
1550.92
776.46
776.61





196
Ac-LTF$r8NLWANleL$A-NH2
1493.90
747.95
1495.6





197
Ac-LTF$r8ALWANleL$Q-NH2
1507.92
754.96
755





198
Ac-LAF$r8NLWANleL$Q-NH2
1520.91
761.46
761.96





199
Ac-LAF$r8ALWANleL$A-NH2
1420.89
711.45
1421.74





200
Ac-A$r8AYWEAc3cL$A-NH2
1238.67
620.34
1239.65





201
Ac-F$r8AYWEAc3cL$AA-NH2
1385.74
693.87
1386.64





202
Ac-F$r8AYWEAc3cL$Abu-NH2
1328.72
665.36
1330.17





203
Ac-F$r8AYWEAc3cL$Nle-NH2
1356.75
679.38
1358.22





204
Ac-F$r5AYWEAc3cL$s8A-NH2
1314.70
658.35
1315.51





205
Ac-F$AYWEAc3cL$r8A-NH2
1314.70
658.35
1315.66





206
Ac-F$r8AYWEAc3cI$A-NH2
1314.70
658.35
1316.18





207
Ac-FSr8AYWEAc3cNle$A-NH2
1314.70
658.35
1315.66





208
Ac-F$r8AYWEAmlL$A-NH2
1358.76
680.38
1360.21





209
Ac-F$r8AYWENleL$A-NH2
1344.75
673.38
1345.71





210
Ac-F$r8AYWQAc3cL$A-NH2
1313.72
657.86
1314.7





211
Ac-F$r8AYWAAc3cL$A-NH2
1256.70
629.35
1257.56





212
Ac-F$r8AYWAbuAc3cL$A-NH2
1270.71
636.36
1272.14





213
Ac-F$r8AYWNleAc3cL$A-NH2
1298.74
650.37
1299.67





214
Ac-F$r8AbuYWEAc3cL$A-NH2
1328.72
665.36
1329.65





215
Ac-F$r8NleYWEAc3cL$A-NH2
1356.75
679.38
1358.66





216
5-FAM-BaLTFEHYWAQLTS-NH2
1922.82
962.41
962.87





217
5-FAM-BaLTF%r8HYWAQL%S-NH2
1986.96
994.48
994.97





218
Ac-LTF$r8HYWAQhL$S-NH2
1611.88
806.94
807





219
Ac-LTF$r8HYWAQTle$S-NH2
1597.87
799.94
799.97





220
Ac-LTF$r8HYWAQAdm$S-NH2
1675.91
838.96
839.09





221
Ac-LTF$r8HYWAQhCha$S-NH2
1651.91
826.96
826.98





222
Ac-LTF$r8HYWAQCha$S-NH2
1637.90
819.95
820.02





223
Ac-LTF$r8HYWAc6cQL$S-NH2
1651.91
826.96
826.98





224
Ac-LTF$r8HYWAc5cQL$S-NH2
1637.90
819.95
820.02





225
Ac-LThF$r8HYWAQL$S-NH2
1611.88
806.94
807





226
Ac-LTIgl$r8HYWAQL$S-NH2
1625.90
813.95
812.99





227
Ac-LTF$r8HYWAQChg$S-NH2
1623.88
812.94
812.99





228
Ac-LTF$r8HYWAQF$S-NH2
1631.85
816.93
816.99





229
Ac-LTF$r8HYWAQIgl$S-NH2
1659.88
830.94
829.94





230
Ac-LTF$r8HYWAQCba$S-NH2
1609.87
805.94
805.96





231
Ac-LTF$r8HYWAQCpg$S-NH2
1609.87
805.94
805.96





232
Ac-LTF$r8HhYWAQL$S-NH2
1611.88
806.94
807





233
Ac-F$r8AYWEAc3chL$A-NH2
1328.72
665.36
665.43





234
Ac-F$r8AYWEAc3cTle$A-NH2
1314.70
658.35
1315.62





235
Ac-F$r8AYWEAc3cAdm$A-NH2
1392.75
697.38
697.47





236
Ac-F$r8AYWEAc3chCha$A-NH2
1368.75
685.38
685.34





237
Ac-F$r8AYWEAc3cCha$A-NH2
1354.73
678.37
678.38





238
Ac-F$r8AYWEAc6cL$A-NH2
1356.75
679.38
679.42





239
Ac-F$r8AYWEAc5cL$A-NH2
1342.73
672.37
672.46





240
Ac-hF$r8AYWEAc3cL$A-NH2
1328.72
665.36
665.43





241
Ac-Igl$r8AYWEAc3cL$A-NH2
1342.73
672.37
671.5





243
Ac-F$r8AYWEAc3cF$A-NH2
1348.69
675.35
675.35





244
Ac-F$r8AYWEAc3cIgl$A-NH2
1376.72
689.36
688.37





245
Ac-F$r8AYWEAc3cCba$A-NH2
1326.70
664.35
664.47





246
Ac-F$r8AYWEAc3cCpg$A-NH2
1326.70
664.35
664.39





247
Ac-F$r8AhYWEAc3cL$A-NH2
1328.72
665.36
665.43





248
Ac-F$r8AYWEAc3cL$Q-NH2
1371.72
686.86
1372.87





249
Ac-F$r8AYWEAibL$A-NH2
1316.72
659.36
1318.18





250
Ac-F$r8AYWEAL$A-NH2
1302.70
652.35
1303.75





251
Ac-LAF$r8AYWAAL$A-NH2
1428.82
715.41
715.49





252
Ac-LTF$r8HYWAAc3cL$S-NH2
1552.84
777.42
777.5





253
Ac-NleTF$r8HYWAQL$S-NH2
1597.87
799.94
800.04





254
Ac-VTF$r8HYWAQL$S-NH2
1583.85
792.93
793.04





255
Ac-FTF$r8HYWAQL$S-NH2
1631.85
816.93
817.02





256
Ac-WTF$r8HYWAQL$S-NH2
1670.86
836.43
836.85





257
Ac-RTF$r8HYWAQL$S-NH2
1640.88
821.44
821.9





258
Ac-KTF$r8HYWAQL$S-NH2
1612.88
807.44
807.91





259
Ac-LNleF$r8HYWAQL$S-NH2
1609.90
805.95
806.43





260
Ac-LVF$r8HYWAQL$S-NH2
1595.89
798.95
798.93





261
Ac-LFF$r8HYWAQL$S-NH2
1643.89
822.95
823.38





262
Ac-LWF$r8HYWAQL$S-NH2
1682.90
842.45
842.55





263
Ac-LRF$r8HYWAQL$S-NH2
1652.92
827.46
827.52





264
Ac-LKF$r8HYWAQL$S-NH2
1624.91
813.46
813.51





265
Ac-LTF$r8NleYWAQL$S-NH2
1573.89
787.95
788.05





266
Ac-LTF$r8VYWAQL$S-NH2
1559.88
780.94
780.98





267
Ac-LTF$r8FYWAQL$S-NH2
1607.88
804.94
805.32





268
Ac-LTF$r8WYWAQL$S-NH2
1646.89
824.45
824.86





269
Ac-LTF$r8RYWAQL$S-NH2
1616.91
809.46
809.51





270
Ac-LTF$r8KYWAQL$S-NH2
1588.90
795.45
795.48





271
Ac-LTF$r8HNleWAQL$S-NH2
1547.89
774.95
774.98





272
Ac-LTF$r8HVWAQL$S-NH2
1533.87
767.94
767.95





273
Ac-LTF$r8HFWAQL$S-NH2
1581.87
791.94
792.3





274
Ac-LTF$r8HWWAQL$S-NH2
1620.88
811.44
811.54





275
Ac-LTF$r8HRWAQL$S-NH2
1590.90
796.45
796.52





276
Ac-LTF$r8HKWAQL$S-NH2
1562.90
782.45
782.53





277
Ac-LTF$r8HYWNleQL$S-NH2
1639.91
820.96
820.98





278
Ac-LTF$r8HYWVQL$S-NH2
1625.90
813.95
814.03





279
Ac-LTF$r8HYWFQL$S-NH2
1673.90
837.95
838.03





280
Ac-LTF$r8HYWWQL$S-NH2
1712.91
857.46
857.5





281
Ac-LTF$r8HYWKQL$S-NH2
1654.92
828.46
828.49





282
Ac-LTF$r8HYWANleL$S-NH2
1582.89
792.45
792.52





283
Ac-LTF$r8HYWAVL$S-NH2
1568.88
785.44
785.49





284
Ac-LTF$r8HYWAFL$S-NH2
1616.88
809.44
809.47





285
Ac-LTF$r8HYWAWL$S-NH2
1655.89
828.95
829





286
Ac-LTF$r8HYWARL$S-NH2
1625.91
813.96
813.98





287
Ac-LTF$r8HYWAQL$Nle-NH2
1623.92
812.96
813.39





288
Ac-LTF$r8HYWAQL$V-NH2
1609.90
805.95
805.99





289
Ac-LTF$r8HYWAQL$F-NH2
1657.90
829.95
830.26





290
Ac-LTF$r8HYWAQL$W-NH2
1696.91
849.46
849.5





291
Ac-LTF$r8HYWAQL$R-NH2
1666.94
834.47
834.56





292
Ac-LTF$r8HYWAQL$K-NH2
1638.93
820.47
820.49





293
Ac-Q$r8QQTFSN$WRLLAibQN-NH2
2080.12
1041.06
1041.54





294
Ac-QSQQ$r8FSNLWR$LAibQN-NH2
2066.11
1034.06
1034.58





295
Ac-LT2Pal$r8HYWAQL$S-NH2
1598.86
800.43
800.49





296
Ac-LT3Pal$r8HYWAQL$S-NH2
1598.86
800.43
800.49





297
Ac-LT4Pal$r8HYWAQL$S-NH2
1598.86
800.43
800.49





298
Ac-LTF2CF3$r8HYWAQL$S-NH2
1665.85
833.93
834.01





299
Ac-LTF2CNSr8HYWAQL$S-NH2
1622.86
812.43
812.47





300
Ac-LTF2Me$r8HYWAQL$S-NH2
1611.88
806.94
807





301
Ac-LTF3Cl$r8HYWAQL$S-NH2
1631.83
816.92
816.99





302
Ac-LTF4CF3$r8HYWAQL$S-NH2
1665.85
833.93
833.94





303
Ac-LTF4tBu$r8HYWAQL$S-NH2
1653.93
827.97
828.02





304
Ac-LTF5F$r8HYWAQL$S-NH2
1687.82
844.91
844.96





305
Ac-LTF$r8HY3BthAAQL$S-NH2
1614.83
808.42
808.48





306
Ac-LTF2Br$r8HYWAQL$S-NH2
1675.78
838.89
838.97





307
Ac-LTF4Br$r8HYWAQL$S-NH2
1675.78
838.89
839.86





308
Ac-LTF2Cl$r8HYWAQL$S-NH2
1631.83
816.92
816.99





309
Ac-LTF4Cl$r8HYWAQL$S-NH2
1631.83
816.92
817.36





310
Ac-LTF3CNSr8HYWAQL$S-NH2
1622.86
812.43
812.47





311
Ac-LTF4CNSr8HYWAQL$S-NH2
1622.86
812.43
812.47





312
Ac-LTF34Cl2$r8HYWAQL$S-NH2
1665.79
833.90
833.94





313
Ac-LTF34F2$r8HYWAQL$S-NH2
1633.85
817.93
817.95





314
Ac-LTF35F2$r8HYWAQL$S-NH2
1633.85
817.93
817.95





315
Ac-LTDip$r8HYWAQL$S-NH2
1673.90
837.95
838.01





316
Ac-LTF2F$r8HYWAQL$S-NH2
1615.86
808.93
809





317
Ac-LTF3F$r8HYWAQL$S-NH2
1615.86
808.93
809





318
Ac-LTF4F$r8HYWAQL$S-NH2
1615.86
808.93
809





319
Ac-LTF4I$r8HYWAQL$S-NH2
1723.76
862.88
862.94





320
Ac-LTF3Me$r8HYWAQL$S-NH2
1611.88
806.94
807.07





321
Ac-LTF4Me$r8HYWAQL$S-NH2
1611.88
806.94
807





322
Ac-LT1Nal$r8HYWAQL$S-NH2
1647.88
824.94
824.98





323
Ac-LT2Nal$r8HYWAQL$S-NH2
1647.88
824.94
825.06





324
Ac-LTF3CF3$r8HYWAQL$S-NH2
1665.85
833.93
834.01





325
Ac-LTF4NO2Sr8HYWAQL$S-NH2
1642.85
822.43
822.46





326
Ac-LTF3NO2Sr8HYWAQL$S-NH2
1642.85
822.43
822.46





327
Ac-LTF$r82ThiYWAQL$S-NH2
1613.83
807.92
807.96





328
Ac-LTF$r8HBipWAQL$S-NH2
1657.90
829.95
830.01





329
Ac-LTF$r8HF4tBuWAQL$S-NH2
1637.93
819.97
820.02





330
Ac-LTF$r8HF4CF3WAQL$S-NH2
1649.86
825.93
826.02





331
Ac-LTF$r8HF4ClWAQL$S-NH2
1615.83
808.92
809.37





332
Ac-LTF$r8HF4MeWAQL$S-NH2
1595.89
798.95
799.01





333
Ac-LTF$r8HF4BrWAQL$S-NH2
1659.78
830.89
830.98





334
Ac-LTF$r8HF4CNWAQL$S-NH2
1606.87
804.44
804.56





335
Ac-LTF$r8HF4NO2WAQL$S-NH2
1626.86
814.43
814.55





336
Ac-LTF$r8H1NalWAQL$S-NH2
1631.89
816.95
817.06





337
Ac-LTF$r8H2NalWAQL$S-NH2
1631.89
816.95
816.99





338
Ac-LTF$r8HWAQL$S-NH2
1434.80
718.40
718.49





339
Ac-LTF$r8HY1NalAQL$S-NH2
1608.87
805.44
805.52





340
Ac-LTF$r8HY2NalAQL$S-NH2
1608.87
805.44
805.52





341
Ac-LTF$r8HYWAQI$S-NH2
1597.87
799.94
800.07





342
Ac-LTF$r8HYWAQNle$S-NH2
1597.87
799.94
800.44





343
Ac-LTF$er8HYWAQL$eA-NH2
1581.87
791.94
791.98





344
Ac-LTF$r8HYWAQL$Abu-NH2
1595.89
798.95
799.03





345
Ac-LTF$r8HYWAbuQ$S-NH2
1611.88
806.94
804.47





346
Ac-LAF$r8HYWAQL$S-NH2
1567.86
784.93
785.49





347
Ac-LTF$r8NLWANleL$Q-NH2
1550.92
776.46
777.5





348
Ac-LTF$r8ALWANleL$Q-NH2
1507.92
754.96
755.52





349
Ac-LAF$r8NLWANleL$Q-NH2
1520.91
761.46
762.48





350
Ac-F$r8AYWAAc3cL$A-NH2
1256.70
629.35
1257.56





351
Ac-LTF$r8AYWAAL$S-NH2
1474.82
738.41
738.55





352
Ac-LVF$r8AYWAQL$S-NH2
1529.87
765.94
766





353
Ac-LTF$r8AYWAbuQL$S-NH2
1545.86
773.93
773.92





354
Ac-LTF$r8AYWNleQL$S-NH2
1573.89
787.95
788.17





355
Ac-LTF$r8AbuYWAQL$S-NH2
1545.86
773.93
773.99





356
Ac-LTF$r8AYWHQL$S-NH2
1597.87
799.94
799.97





357
Ac-LTF$r8AYWKQL$S-NH2
1588.90
795.45
795.53





358
Ac-LTF$r8AYWOQL$S-NH2
1574.89
788.45
788.5





359
Ac-LTF$r8AYWRQL$S-NH2
1616.91
809.46
809.51





360
Ac-LTF$r8AYWSQL$S-NH2
1547.84
774.92
774.96





361
Ac-LTF$r8AYWRAL$S-NH2
1559.89
780.95
780.95





362
Ac-LTF$r8AYWRQL$A-NH2
1600.91
801.46
801.52





363
Ac-LTF$r8AYWRAL$A-NH2
1543.89
772.95
773.03





364
Ac-LTF$r5HYWAQL$s8S-NH2
1597.87
799.94
799.97





365
Ac-LTF$HYWAQL$r8S-NH2
1597.87
799.94
799.97





366
Ac-LTF$r8HYWAAL$S-NH2
1540.84
771.42
771.48





367
Ac-LTF$r8HYWAAbuL$S-NH2
1554.86
778.43
778.51





368
Ac-LTF$r8HYWALL$S-NH2
1582.89
792.45
792.49





369
Ac-F$r8AYWHAL$A-NH2
1310.72
656.36
656.4





370
Ac-F$r8AYWAAL$A-NH2
1244.70
623.35
1245.61





371
Ac-F$r8AYWSAL$A-NH2
1260.69
631.35
1261.6





372
Ac-F$r8AYWRAL$A-NH2
1329.76
665.88
1330.72





373
Ac-F$r8AYWKAL$A-NH2
1301.75
651.88
1302.67





374
Ac-F$r8AYWOAL$A-NH2
1287.74
644.87
1289.13





375
Ac-F$r8VYWEAc3cL$A-NH2
1342.73
672.37
1343.67





376
Ac-F$r8FYWEAc3cL$A-NH2
1390.73
696.37
1392.14





377
Ac-F$r8WYWEAc3cL$A-NH2
1429.74
715.87
1431.44





378
Ac-F$r8RYWEAc3cL$A-NH2
1399.77
700.89
700.95





379
Ac-F$r8KYWEAc3cL$A-NH2
1371.76
686.88
686.97





380
Ac-F$r8ANleWEAc3cL$A-NH2
1264.72
633.36
1265.59





381
Ac-F$r8AVWEAc3cL$A-NH2
1250.71
626.36
1252.2





382
Ac-F$r8AFWEAc3cL$A-NH2
1298.71
650.36
1299.64





383
Ac-F$r8AWWEAc3cL$A-NH2
1337.72
669.86
1338.64





384
Ac-F$r8ARWEAc3cL$A-NH2
1307.74
654.87
655





385
Ac-F$r8AKWEAc3cL$A-NH2
1279.73
640.87
641.01





386
Ac-F$r8AYWVAc3cL$A-NH2
1284.73
643.37
643.38





387
Ac-F$r8AYWFAc3cL$A-NH2
1332.73
667.37
667.43





388
Ac-F$r8AYWWAc3cL$A-NH2
1371.74
686.87
686.97





389
Ac-F$r8AYWRAc3cL$A-NH2
1341.76
671.88
671.94





390
Ac-F$r8AYWKAc3cL$A-NH2
1313.75
657.88
657.88





391
Ac-F$r8AYWEVL$A-NH2
1330.73
666.37
666.47





392
Ac-F$r8AYWEFL$A-NH2
1378.73
690.37
690.44





393
Ac-F$r8AYWEWL$A-NH2
1417.74
709.87
709.91





394
Ac-F$r8AYWERL$A-NH2
1387.77
694.89
1388.66





395
Ac-F$r8AYWEKL$A-NH2
1359.76
680.88
1361.21





396
Ac-F$r8AYWEAc3cL$V-NH2
1342.73
672.37
1343.59





397
Ac-F$r8AYWEAc3cL$F-NH2
1390.73
696.37
1392.58





398
Ac-F$r8AYWEAc3cL$W-NH2
1429.74
715.87
1431.29





399
Ac-F$r8AYWEAc3cL$R-NH2
1399.77
700.89
700.95





400
Ac-F$r8AYWEAc3cL$K-NH2
1371.76
686.88
686.97





401
Ac-F$r8AYWEAc3cL$AV-NH2
1413.77
707.89
707.91





402
Ac-F$r8AYWEAc3cL$AF-NH2
1461.77
731.89
731.96





403
Ac-F$r8AYWEAc3cL$AW-NH2
1500.78
751.39
751.5





404
Ac-F$r8AYWEAc3cL$AR-NH2
1470.80
736.40
736.47





405
Ac-F$r8AYWEAc3cL$AK-NH2
1442.80
722.40
722.41





406
Ac-F$r8AYWEAc3cL$AH-NH2
1451.76
726.88
726.93





407
Ac-LTF2NO2$r8HYWAQL$S-NH2
1642.85
822.43
822.54





408
Ac-LTA$r8HYAAQL$S-NH2
1406.79
704.40
704.5





409
Ac-LTF$r8HYAAQL$S-NH2
1482.82
742.41
742.47





410
Ac-QSQQTF$r8NLWALL$AN-NH2
1966.07
984.04
984.38





411
Ac-QAibQQTF$r8NLWALL$AN-NH2
1964.09
983.05
983.42





412
Ac-QAibQQTF$r8ALWALL$AN-NH2
1921.08
961.54
961.59





413
Ac-AAAATF$r8AAWAAL$AA-NH2
1608.90
805.45
805.52





414
Ac-F$r8AAWRAL$Q-NH2
1294.76
648.38
648.48





415
Ac-TF$r8AAWAAL$Q-NH2
1310.74
656.37
1311.62





416
Ac-TF$r8AAWRAL$A-NH2
1338.78
670.39
670.46





417
Ac-VF$r8AAWRAL$Q-NH2
1393.82
697.91
697.99





418
Ac-AF$r8AAWAAL$A-NH2
1223.71
612.86
1224.67





420
Ac-TF$r8AAWKAL$Q-NH2
1367.80
684.90
684.97





421
Ac-TF$r8AAWOAL$Q-NH2
1353.78
677.89
678.01





422
Ac-TF$r8AAWSAL$Q-NH2
1326.73
664.37
664.47





423
Ac-LTF$r8AAWRAL$Q-NH2
1508.89
755.45
755.49





424
Ac-F$r8AYWAQL$A-NH2
1301.72
651.86
651.96





425
Ac-F$r8AWWAAL$A-NH2
1267.71
634.86
634.87





426
Ac-F$r8AWWAQL$A-NH2
1324.73
663.37
663.43





427
Ac-F$r8AYWEAL$-NH2
1231.66
616.83
1232.93





428
Ac-F$r8AYWAAL$-NH2
1173.66
587.83
1175.09





429
Ac-F$r8AYWKAL$-NH2
1230.72
616.36
616.44





430
Ac-F$r8AYWOAL$-NH2
1216.70
609.35
609.48





431
Ac-F$r8AYWQAL$-NH2
1230.68
616.34
616.44





432
Ac-F$r8AYWAQL$-NH2
1230.68
616.34
616.37





433
Ac-F$r8HYWDQL$S-NH2
1427.72
714.86
714.86





434
Ac-F$r8HFWEQL$S-NH2
1425.74
713.87
713.98





435
Ac-F$r8AYWHQL$S-NH2
1383.73
692.87
692.96





436
Ac-F$r8AYWKQL$S-NH2
1374.77
688.39
688.45





437
Ac-F$r8AYWOQL$S-NH2
1360.75
681.38
681.49





438
Ac-F$r8HYWSQL$S-NH2
1399.73
700.87
700.95





439
Ac-F$r8HWWEQL$S-NH2
1464.76
733.38
733.44





440
Ac-F$r8HWWAQL$S-NH2
1406.75
704.38
704.43





441
Ac-F$r8AWWHQL$S-NH2
1406.75
704.38
704.43





442
Ac-F$r8AWWKQL$S-NH2
1397.79
699.90
699.92





443
Ac-F$r8AWWOQL$S-NH2
1383.77
692.89
692.96





444
Ac-F$r8HWWSQL$S-NH2
1422.75
712.38
712.42





445
Ac-LTF$r8NYWANleL$Q-NH2
1600.90
801.45
801.52





446
Ac-LTF$r8NLWAQL$Q-NH2
1565.90
783.95
784.06





447
Ac-LTF$r8NYWANleL$A-NH2
1543.88
772.94
773.03





448
Ac-LTF$r8NLWAQL$A-NH2
1508.88
755.44
755.49





449
Ac-LTF$r8AYWANleL$Q-NH2
1557.90
779.95
780.06





450
Ac-LTF$r8ALWAQL$Q-NH2
1522.89
762.45
762.45





451
Ac-LAF$r8NYWANleL$Q-NH2
1570.89
786.45
786.5





452
Ac-LAF$r8NLWAQL$Q-NH2
1535.89
768.95
769.03





453
Ac-LAF$r8AYWANleL$A-NH2
1470.86
736.43
736.47





454
Ac-LAF$r8ALWAQL$A-NH2
1435.86
718.93
719.01





455
Ac-LAF$r8AYWAAL$A-NH2
1428.82
715.41
715.41





456
Ac-F$r8AYWEAc3cL$AAib-NH2
1399.75
700.88
700.95





457
Ac-F$r8AYWAQL$AA-NH2
1372.75
687.38
687.78





458
Ac-F$r8AYWAAc3cL$AA-NH2
1327.73
664.87
664.84





459
Ac-F$r8AYWSAc3cL$AA-NH2
1343.73
672.87
672.9





460
Ac-F$r8AYWEAc3cL$AS-NH2
1401.73
701.87
701.84





461
Ac-F$r8AYWEAc3cL$AT-NH2
1415.75
708.88
708.87





462
Ac-F$r8AYWEAc3cL$AL-NH2
1427.79
714.90
714.94





463
Ac-F$r8AYWEAc3cL$AQ-NH2
1442.76
722.38
722.41





464
Ac-F$r8AFWEAc3cL$AA-NH2
1369.74
685.87
685.93





465
Ac-F$r8AWWEAc3cL$AA-NH2
1408.75
705.38
705.39





466
Ac-F$r8AYWEAc3cL$SA-NH2
1401.73
701.87
701.99





467
Ac-F$r8AYWEAL$AA-NH2
1373.74
687.87
687.93





468
Ac-F$r8AYWENleL$AA-NH2
1415.79
708.90
708.94





469
Ac-F$r8AYWEAc3cL$AbuA-NH2
1399.75
700.88
700.95





470
Ac-F$r8AYWEAc3cL$NleA-NH2
1427.79
714.90
714.86





471
Ac-F$r8AYWEAibL$NleA-NH2
1429.80
715.90
715.97





472
Ac-F$r8AYWEAL$NleA-NH2
1415.79
708.90
708.94





473
Ac-F$r8AYWENleL$NleA-NH2
1457.83
729.92
729.96





474
Ac-F$r8AYWEAibL$Abu-NH2
1330.73
666.37
666.39





475
Ac-F$r8AYWENleLSAbu-NH2
1358.76
680.38
680.39





476
Ac-F$r8AYWEAL$Abu-NH2
1316.72
659.36
659.36





477
Ac-LTF$r8AFWAQL$S-NH2
1515.85
758.93
759.12





478
Ac-LTF$r8AWWAQL$S-NH2
1554.86
778.43
778.51





479
Ac-LTF$r8AYWAQI$S-NH2
1531.84
766.92
766.96





480
Ac-LTF$r8AYWAQNle$S-NH2
1531.84
766.92
766.96





481
Ac-LTF$r8AYWAQL$SA-NH2
1602.88
802.44
802.48





482
Ac-LTF$r8AWWAQL$A-NH2
1538.87
770.44
770.89





483
Ac-LTF$r8AYWAQI$A-NH2
1515.85
758.93
759.42





484
Ac-LTF$r8AYWAQNle$A-NH2
1515.85
758.93
759.42





485
Ac-LTF$r8AYWAQL$AA-NH2
1586.89
794.45
794.94





486
Ac-LTF$r8HWWAQL$S-NH2
1620.88
811.44
811.47





487
Ac-LTF$r8HRWAQL$S-NH2
1590.90
796.45
796.52





488
Ac-LTF$r8HKWAQL$S-NH2
1562.90
782.45
782.53





489
Ac-LTF$r8HYWAQL$W-NH2
1696.91
849.46
849.5





491
Ac-F$r8AYWAbuAL$A-NH2
1258.71
630.36
630.5





492
Ac-F$r8AbuYWEAL$A-NH2
1316.72
659.36
659.51





493
Ac-NlePRF%r8NYWRLL%QN-NH2
1954.13
978.07
978.54





494
Ac-TSF%r8HYWAQL%S-NH2
1573.83
787.92
787.98





495
Ac-LTF%r8AYWAQL%S-NH2
1533.86
767.93
768





496
Ac-HTF$r8HYWAQL$S-NH2
1621.84
811.92
811.96





497
Ac-LHF$r8HYWAQL$S-NH2
1633.88
817.94
818.02





498
Ac-LTF$r8HHWAQL$S-NH2
1571.86
786.93
786.94





499
Ac-LTF$r8HYWHQL$S-NH2
1663.89
832.95
832.38





500
Ac-LTF$r8HYWAHL$S-NH2
1606.87
804.44
804.48





501
Ac-LTF$r8HYWAQL$H-NH2
1647.89
824.95
824.98





502
Ac-LTF$r8HYWAQL$S-NHPr
1639.91
820.96
820.98





503
Ac-LTF$r8HYWAQL$S-NHsBu
1653.93
827.97
828.02





504
Ac-LTF$r8HYWAQL$S-NHiBu
1653.93
827.97
828.02





505
Ac-LTF$r8HYWAQL$S-NHBn
1687.91
844.96
844.44





506
Ac-LTF$r8HYWAQL$S-NHPe
1700.92
851.46
851.99





507
Ac-LTF$r8HYWAQL$S-NHChx
1679.94
840.97
841.04





508
Ac-ETF$r8AYWAQL$S-NH2
1547.80
774.90
774.96





509
Ac-STF$r8AYWAQL$S-NH2
1505.79
753.90
753.94





510
Ac-LEF$r8AYWAQL$S-NH2
1559.84
780.92
781.25





511
Ac-LSF$r8AYWAQL$S-NH2
1517.83
759.92
759.93





512
Ac-LTF$r8EYWAQL$S-NH2
1589.85
795.93
795.97





513
Ac-LTF$r8SYWAQL$S-NH2
1547.84
774.92
774.96





514
Ac-LTF$r8AYWEQL$S-NH2
1589.85
795.93
795.9





515
Ac-LTF$r8AYWAEL$S-NH2
1532.83
767.42
766.96





516
Ac-LTF$r8AYWASL$S-NH2
1490.82
746.41
746.46





517
Ac-LTF$r8AYWAQL$E-NH2
1573.85
787.93
787.98





518
Ac-LTF2CN$r8HYWAQL$S-NH2
1622.86
812.43
812.47





519
Ac-LTF3Cl$r8HYWAQL$S-NH2
1631.83
816.92
816.99





520
Ac-LTDip$r8HYWAQL$S-NH2
1673.90
837.95
838.01





521
Ac-LTF$r8HYWAQTle$S-NH2
1597.87
799.94
800.04





522
Ac-F$r8AY6clWEAL$A-NH2
1336.66
669.33
1338.56





523
Ac-F$r8AYdl6brWEAL$A-NH2
1380.61
691.31
692.2





524
Ac-F$r8AYdl6fWEAL$A-NH2
1320.69
661.35
1321.61





525
Ac-F$r8AYdl4mWEAL$A-NH2
1316.72
659.36
659.36





526
Ac-F$r8AYdl5clWEAL$A-NH2
1336.66
669.33
669.35





527
Ac-F$r8AYdl7mWEAL$A-NH2
1316.72
659.36
659.36





528
Ac-LTF%r8HYWAQL%A-NH2
1583.89
792.95
793.01





529
Ac-LTF$r8HCouWAQL$S-NH2
1679.87
840.94
841.38





530
Ac-LTFEHCouWAQLTS-NH2
1617.75
809.88
809.96





531
Ac-LTA$r8HCouWAQL$S-NH2
1603.84
802.92
803.36





532
Ac-F$r8AYWEAL$AbuA-NH2
1387.75
694.88
694.88





533
Ac-F$r8AYWEAI$AA-NH2
1373.74
687.87
687.93





534
Ac-F$r8AYWEANle$AA-NH2
1373.74
687.87
687.93





535
Ac-F$r8AYWEAmlL$AA-NH2
1429.80
715.90
715.97





536
Ac-F$r8AYWQAL$AA-NH2
1372.75
687.38
687.48





537
Ac-F$r8AYWAAL$AA-NH2
1315.73
658.87
658.92





538
Ac-F$r8AYWAbuAL$AA-NH2
1329.75
665.88
665.95





539
Ac-FSr8AYWNleAL$AA-NH2
1357.78
679.89
679.94





540
Ac-F$r8AbuYWEAL$AA-NH2
1387.75
694.88
694.96





541
Ac-FSr8NleYWEAL$AA-NH2
1415.79
708.90
708.94





542
Ac-F$r8FYWEAL$AA-NH2
1449.77
725.89
725.97





543
Ac-LTF$r8HYWAQhL$S-NH2
1611.88
806.94
807





544
Ac-LTF$r8HYWAQAdm$S-NH2
1675.91
838.96
839.04





545
Ac-LTF$r8HYWAQIgl$S-NH2
1659.88
830.94
829.94





546
Ac-F$r8AYWAQL$AA-NH2
1372.75
687.38
687.48





547
Ac-LTF$r8ALWAQL$Q-NH2
1522.89
762.45
762.52





548
Ac-F$r8AYWEAL$AA-NH2
1373.74
687.87
687.93





549
Ac-F$r8AYWENleL$AA-NH2
1415.79
708.90
708.94





550
Ac-F$r8AYWEAibL$Abu-NH2
1330.73
666.37
666.39





551
Ac-F$r8AYWENleLSAbu-NH2
1358.76
680.38
680.38





552
Ac-F$r8AYWEAL$Abu-NH2
1316.72
659.36
659.36





553
Ac-F$r8AYWEAc3cL$AbuA-NH2
1399.75
700.88
700.95





554
Ac-F$r8AYWEAc3cL$NleA-NH2
1427.79
714.90
715.01





555
H-LTF$r8AYWAQL$S-NH2
1489.83
745.92
745.95





556
mdPEG3-LTF$r8AYWAQL$S-NH2
1679.92
840.96
840.97





557
mdPEG7-LTF$r8AYWAQL$S-NH2
1856.02
929.01
929.03





558
Ac-F$r8ApmpEt6clWEAL$A-NH2
1470.71
736.36
788.17





559
Ac-LTF3Cl$r8AYWAQL$S-NH2
1565.81
783.91
809.18





560
Ac-LTF3Cl$r8HYWAQL$A-NH2
1615.83
808.92
875.24





561
Ac-LTF3Cl$r8HYWWQL$S-NH2
1746.87
874.44
841.65





562
Ac-LTF3Cl$r8AYWWQL$S-NH2
1680.85
841.43
824.63





563
Ac-LTF$r8AYWWQL$S-NH2
1646.89
824.45
849.98





564
Ac-LTF$r8HYWWQL$A-NH2
1696.91
849.46
816.67





565
Ac-LTF$r8AYWWQL$A-NH2
1630.89
816.45
776.15





566
Ac-LTF4F$r8AYWAQL$S-NH2
1549.83
775.92
776.15





567
Ac-LTF2F$r8AYWAQL$S-NH2
1549.83
775.92
776.15





568
Ac-LTF3F$r8AYWAQL$S-NH2
1549.83
775.92
785.12





569
Ac-LTF34F2$r8AYWAQL$S-NH2
1567.83
784.92
785.12





570
Ac-LTF35F2$r8AYWAQL$S-NH2
1567.83
784.92
1338.74





571
Ac-F3Cl$r8AYWEAL$A-NH2
1336.66
669.33
705.28





572
Ac-F3Cl$r8AYWEAL$AA-NH2
1407.70
704.85
680.11





573
Ac-F$r8AY6clWEAL$AA-NH2
1407.70
704.85
736.83





574
Ac-F$r8AY6clWEAL$-NH2
1265.63
633.82
784.1





575
Ac-LTF$r8HYWAQLSt/S-NH2
16.03
9.02
826.98





576
Ac-LTF$r8HYWAQL$S-NHsBu
1653.93
827.97
828.02





577
Ac-STF$r8AYWAQL$S-NH2
1505.79
753.90
753.94





578
Ac-LTF$r8AYWAEL$S-NH2
1532.83
767.42
767.41





579
Ac-LTF$r8AYWAQL$E-NH2
1573.85
787.93
787.98





580
mdPEG3-LTF$r8AYWAQL$S-NH2
1679.92
840.96
840.97





581
Ac-LTF$r8AYWAQhL$S-NH2
1545.86
773.93
774.31





583
Ac-LTF$r8AYWAQCha$S-NH2
1571.88
786.94
787.3





584
Ac-LTF$r8AYWAQChg$S-NH2
1557.86
779.93
780.4





585
Ac-LTF$r8AYWAQCba$S-NH2
1543.84
772.92
780.13





586
Ac-LTF$r8AYWAQF$S-NH2
1565.83
783.92
784.2





587
Ac-LTF4F$r8HYWAQhL$S-NH2
1629.87
815.94
815.36





588
Ac-LTF4F$r8HYWAQCha$S-NH2
1655.89
828.95
828.39





589
Ac-LTF4F$r8HYWAQChg$S-NH2
1641.87
821.94
821.35





590
Ac-LTF4F$r8HYWAQCba$S-NH2
1627.86
814.93
814.32





591
Ac-LTF4F$r8AYWAQhL$S-NH2
1563.85
782.93
782.36





592
Ac-LTF4F$r8AYWAQCha$S-NH2
1589.87
795.94
795.38





593
Ac-LTF4F$r8AYWAQChg$S-NH2
1575.85
788.93
788.35





594
Ac-LTF4F$r8AYWAQCba$S-NH2
1561.83
781.92
781.39





595
Ac-LTF3Cl$r8AYWAQhL$S-NH2
1579.82
790.91
790.35





596
Ac-LTF3Cl$r8AYWAQCha$S-NH2
1605.84
803.92
803.67





597
Ac-LTF3Cl$r8AYWAQChg$S-NH2
1591.82
796.91
796.34





598
Ac-LTF3Cl$r8AYWAQCba$S-NH2
1577.81
789.91
789.39





599
Ac-LTF$r8AYWAQhF$S-NH2
1579.84
790.92
791.14





600
Ac-LTF$r8AYWAQF3CF3$S-NH2
1633.82
817.91
818.15





601
Ac-LTF$r8AYWAQF3Me$S-NH2
1581.86
791.93
791.32





602
Ac-LTF$r8AYWAQlNal$S-NH2
1615.84
808.92
809.18





603
Ac-LTF$r8AYWAQBip$S-NH2
1641.86
821.93
822.13





604
Ac-LTF$r8FYWAQL$A-NH2
1591.88
796.94
797.33





605
Ac-LTF$r8HYWAQL$S-NHAm
1667.94
834.97
835.92





606
Ac-LTF$r8HYWAQL$S-NHiAm
1667.94
834.97
835.55





607
Ac-LTF$r8HYWAQL$S-NHnPr3Ph
1715.94
858.97
859.79





608
Ac-LTF$r8HYWAQL$S-NHnBu3,3Me
1681.96
841.98
842.49





610
Ac-LTF$r8HYWAQL$S-NHnPr
1639.91
820.96
821.58





611
Ac-LTF$r8HYWAQL$S-NHnEt2Ch
1707.98
854.99
855.35





612
Ac-LTF$r8HYWAQL$S-NHHex
1681.96
841.98
842.4





613
Ac-LTF$r8AYWAQL$S-NHmdPeg2
1633.91
817.96
818.35





614
Ac-LTF$r8AYWAQL$A-NHmdPeg2
1617.92
809.96
810.3





615
Ac-LTF$r8AYWAQL$A-NHmdPeg4
1705.97
853.99
854.33





616
Ac-F$r8AYdl4mWEAL$A-NH2
1316.72
659.36
659.44





617
Ac-F$r8AYdl5clWEAL$A-NH2
1336.66
669.33
669.43





618
Ac-LThF$r8AYWAQL$S-NH2
1545.86
773.93
774.11





619
Ac-LT2Nal$r8AYWAQL$S-NH2
1581.86
791.93
792.43





620
Ac-LTA$r8AYWAQL$S-NH2
1455.81
728.91
729.15





621
Ac-LTF$r8AYWVQL$S-NH2
1559.88
780.94
781.24





622
Ac-LTF$r8HYWAAL$A-NH2
1524.85
763.43
763.86





623
Ac-LTF$r8VYWAQL$A-NH2
1543.88
772.94
773.37





624
Ac-LTF$r8IYWAQL$S-NH2
1573.89
787.95
788.17





625
Ac-FTFSr8VYWSQL$S-NH2
1609.85
805.93
806.22





626
Ac-ITF$r8FYWAQL$S-NH2
1607.88
804.94
805.2





627
Ac-2NalTF$r8VYWSQL$S-NH2
1659.87
830.94
831.2





628
Ac-ITF$r8LYWSQL$S-NH2
1589.89
795.95
796.13





629
Ac-FTF$r8FYWAQL$S-NH2
1641.86
821.93
822.13





630
Ac-WTF$r8VYWAQL$S-NH2
1632.87
817.44
817.69





631
Ac-WTF$r8WYWAQL$S-NH2
1719.88
860.94
861.36





632
Ac-VTF$r8AYWSQL$S-NH2
1533.82
767.91
768.19





633
Ac-WTF$r8FYWSQL$S-NH2
1696.87
849.44
849.7





634
Ac-FTF$r8IYWAQL$S-NH2
1607.88
804.94
805.2





635
Ac-WTF$r8VYWSQL$S-NH2
1648.87
825.44
824.8





636
Ac-FTF$r8LYWSQL$S-NH2
1623.87
812.94
812.8





637
Ac-YTF$r8FYWSQL$S-NH2
1673.85
837.93
837.8





638
Ac-LTF$r8AY6clWEAL$A-NH2
1550.79
776.40
776.14





639
Ac-LTF$r8AY6clWSQL$S-NH2
1581.80
791.90
791.68





640
Ac-F$r8AY6clWSAL$A-NH2
1294.65
648.33
647.67





641
Ac-F$r8AY6clWQAL$AA-NH2
1406.72
704.36
703.84





642
Ac-LHF$r8AYWAQL$S-NH2
1567.86
784.93
785.21





643
Ac-LTF$r8AYWAQL$S-NH2
1531.84
766.92
767.17





644
Ac-LTF$r8AHWAQL$S-NH2
1505.84
753.92
754.13





645
Ac-LTF$r8AYWAHL$S-NH2
1540.84
771.42
771.61





646
Ac-LTF$r8AYWAQL$H-NH2
1581.87
791.94
792.15





647
H-LTF$r8AYWAQL$A-NH2
1473.84
737.92
737.29





648
Ac-HHF$r8AYWAQL$S-NH2
1591.83
796.92
797.35





649
Ac-aAibWTF$r8VYWSQL$S-NH2
1804.96
903.48
903.64





650
Ac-AibWTF$r8HYWAQL$S-NH2
1755.91
878.96
879.4





651
Ac-AibAWTF$r8HYWAQL$S-NH2
1826.95
914.48
914.7





652
Ac-fWTF$r8HYWAQL$S-NH2
1817.93
909.97
910.1





653
Ac-AibWWTF$r8HYWAQL$S-NH2
1941.99
972.00
972.2





654
Ac-WTF$r8LYWSQL$S-NH2
1662.88
832.44
832.8





655
Ac-WTF$r8NleYWSQL$S-NH2
1662.88
832.44
832.6





656
Ac-LTF$r8AYWSQL$a-NH2
1531.84
766.92
767.2





657
Ac-LTF$r8EYWARL$A-NH2
1601.90
801.95
802.1





658
Ac-LTF$r8EYWAHL$A-NH2
1582.86
792.43
792.6





659
Ac-aTF$r8AYWAQL$S-NH2
1489.80
745.90
746.08





660
Ac-AibTF$r8AYWAQL$S-NH2
1503.81
752.91
753.11





661
Ac-AmfTF$r8AYWAQL$S-NH2
1579.84
790.92
791.14





662
Ac-AmwTF$r8AYWAQL$S-NH2
1618.86
810.43
810.66





663
Ac-NmLTF$r8AYWAQL$S-NH2
1545.86
773.93
774.11





664
Ac-LNmTF$r8AYWAQL$S-NH2
1545.86
773.93
774.11





665
Ac-LSarF$r8AYWAQL$S-NH2
1501.83
751.92
752.18





667
Ac-LGF$r8AYWAQL$S-NH2
1487.82
744.91
745.15





668
Ac-LTNmF$r8AYWAQL$S-NH2
1545.86
773.93
774.2





669
Ac-TF$r8AYWAQL$S-NH2
1418.76
710.38
710.64





670
Ac-ETF$r8AYWAQL$A-NH2
1531.81
766.91
767.2





671
Ac-LTF$r8EYWAQL$A-NH2
1573.85
787.93
788.1





672
Ac-LT2Nal$r8AYWSQL$S-NH2
1597.85
799.93
800.4





673
Ac-LTF$r8AYWAAL$S-NH2
1474.82
738.41
738.68





674
Ac-LTF$r8AYWAQhCha$S-NH2
1585.89
793.95
794.19





675
Ac-LTF$r8AYWAQChg$S-NH2
1557.86
779.93
780.97





676
Ac-LTF$r8AYWAQCba$S-NH2
1543.84
772.92
773.19





677
Ac-LTF$r8AYWAQF3CF3$S-NH2
1633.82
817.91
818.15





678
Ac-LTF$r8AYWAQlNal$S-NH2
1615.84
808.92
809.18





679
Ac-LTF$r8AYWAQBip$S-NH2
1641.86
821.93
822.32





680
Ac-LT2Nal$r8AYWAQL$S-NH2
1581.86
791.93
792.15





681
Ac-LTF$r8AYWVQL$S-NH2
1559.88
780.94
781.62





682
Ac-LTF$r8AWWAQL$S-NH2
1554.86
778.43
778.65





683
Ac-FTF$r8VYWSQL$S-NH2
1609.85
805.93
806.12





684
Ac-ITF$r8FYWAQL$S-NH2
1607.88
804.94
805.2





685
Ac-ITF$r8LYWSQL$S-NH2
1589.89
795.95
796.22





686
Ac-FTF$r8FYWAQL$S-NH2
1641.86
821.93
822.41





687
Ac-VTF$r8AYWSQL$S-NH2
1533.82
767.91
768.19





688
Ac-LTF$r8AHWAQL$S-NH2
1505.84
753.92
754.31





689
Ac-LTF$r8AYWAQL$H-NH2
1581.87
791.94
791.94





690
Ac-LTF$r8AYWAHL$S-NH2
1540.84
771.42
771.61





691
Ac-aAibWTF$r8VYWSQL$S-NH2
1804.96
903.48
903.9





692
Ac-AibWTF$r8HYWAQL$S-NH2
1755.91
878.96
879.5





693
Ac-AibAWTF$r8HYWAQL$S-NH2
1826.95
914.48
914.7





694
Ac-fWTF$r8HYWAQL$S-NH2
1817.93
909.97
910.2





695
Ac-AibWWTFSr8HYWAQL$S-NH2
1941.99
972.00
972.7





696
Ac-WTF$r8LYWSQL$S-NH2
1662.88
832.44
832.7





697
Ac-WTF$r8NleYWSQL$S-NH2
1662.88
832.44
832.7





698
Ac-LTF$r8AYWSQL$a-NH2
1531.84
766.92
767.2





699
Ac-LTF$r8EYWARL$A-NH2
1601.90
801.95
802.2





700
Ac-LTF$r8EYWAHL$A-NH2
1582.86
792.43
792.6





701
Ac-aTF$r8AYWAQL$S-NH2
1489.80
745.90
746.1





702
Ac-AibTF$r8AYWAQL$S-NH2
1503.81
752.91
753.2





703
Ac-AmfTF$r8AYWAQL$S-NH2
1579.84
790.92
791.2





704
Ac-AmwTF$r8AYWAQL$S-NH2
1618.86
810.43
810.7





705
Ac-NmLTF$r8AYWAQL$S-NH2
1545.86
773.93
774.1





706
Ac-LNmTF$r8AYWAQL$S-NH2
1545.86
773.93
774.4





707
Ac-LSarF$r8AYWAQL$S-NH2
1501.83
751.92
752.1





708
Ac-TF$r8AYWAQL$S-NH2
1418.76
710.38
710.8





709
Ac-ETF$r8AYWAQL$A-NH2
1531.81
766.91
767.4





710
Ac-LTF$r8EYWAQL$A-NH2
1573.85
787.93
788.2





711
Ac-WTF$r8VYWSQL$S-NH2
1648.87
825.44
825.2





713
Ac-YTF$r8FYWSQL$S-NH2
1673.85
837.93
837.3





714
Ac-F$r8AY6clWSAL$A-NH2
1294.65
648.33
647.74





715
Ac-ETF$r8EYWVQL$S-NH2
1633.84
817.92
817.36





716
Ac-ETF$r8EHWAQL$A-NH2
1563.81
782.91
782.36





717
Ac-ITF$r8EYWAQL$S-NH2
1589.85
795.93
795.38





718
Ac-ITF$r8EHWVQL$A-NH2
1575.88
788.94
788.42





719
Ac-ITF$r8EHWAQL$S-NH2
1563.85
782.93
782.43





720
Ac-LTF4F$r8AYWAQCba$S-NH2
1561.83
781.92
781.32





721
Ac-LTF3Cl$r8AYWAQhL$S-NH2
1579.82
790.91
790.64





722
Ac-LTF3Cl$r8AYWAQCha$S-NH2
1605.84
803.92
803.37





723
Ac-LTF3Cl$r8AYWAQChg$S-NH2
1591.82
796.91
796.27





724
Ac-LTF3Cl$r8AYWAQCba$S-NH2
1577.81
789.91
789.83





725
Ac-LTF$r8AY6clWSQL$S-NH2
1581.80
791.90
791.75





726
Ac-LTF4F$r8HYWAQhL$S-NH2
1629.87
815.94
815.36





727
Ac-LTF4F$r8HYWAQCba$S-NH2
1627.86
814.93
814.32





728
Ac-LTF4F$r8AYWAQhL$S-NH2
1563.85
782.93
782.36





729
Ac-LTF4F$r8AYWAQChg$S-NH2
1575.85
788.93
788.35





730
Ac-ETF$r8EYWVAL$S-NH2
1576.82
789.41
788.79





731
Ac-ETF$r8EHWAAL$A-NH2
1506.79
754.40
754.8





732
Ac-ITF$r8EYWAAL$S-NH2
1532.83
767.42
767.75





733
Ac-ITF$r8EHWVAL$A-NH2
1518.86
760.43
760.81





734
Ac-ITF$r8EHWAAL$S-NH2
1506.82
754.41
754.8





735
Pam-LTF$r8EYWAQL$S-NH2
1786.07
894.04
894.48





736
Pam-ETF$r8EYWAQL$S-NH2
1802.03
902.02
902.34





737
Ac-LTF$r8AYWLQL$S-NH2
1573.89
787.95
787.39





738
Ac-LTF$r8EYWLQL$S-NH2
1631.90
816.95
817.33





739
Ac-LTF$r8EHWLQL$S-NH2
1605.89
803.95
804.29





740
Ac-LTF$r8VYWAQL$S-NH2
1559.88
780.94
781.34





741
Ac-LTF$r8AYWSQL$S-NH2
1547.84
774.92
775.33





742
Ac-ETF$r8AYWAQL$S-NH2
1547.80
774.90
775.7





743
Ac-LTF$r8EYWAQL$S-NH2
1589.85
795.93
796.33





744
Ac-LTF$r8HYWAQL$S-NHAm
1667.94
834.97
835.37





745
Ac-LTF$r8HYWAQL$S-NHiAm
1667.94
834.97
835.27





746
Ac-LTF$r8HYWAQL$S-NHnPr3Ph
1715.94
858.97
859.42





747
Ac-LTF$r8HYWAQL$S-NHnBu3,3Me
1681.96
841.98
842.67





748
Ac-LTF$r8HYWAQL$S-NHnBu
1653.93
827.97
828.24





749
Ac-LTF$r8HYWAQL$S-NHnPr
1639.91
820.96
821.31





750
Ac-LTF$r8HYWAQL$S-NHnEt2Ch
1707.98
854.99
855.35





751
Ac-LTF$r8HYWAQL$S-NHHex
1681.96
841.98
842.4





752
Ac-LTF$r8AYWAQL$S-NHmdPeg2
1633.91
817.96
855.35





753
Ac-LTF$r8AYWAQL$A-NHmdPeg2
1617.92
809.96
810.58





754
Ac-LTF$r5AYWAAL$s8S-NH2
1474.82
738.41
738.79





755
Ac-LTF$r8AYWCouQL$S-NH2
1705.88
853.94
854.61





756
Ac-LTF$r8CouYWAQL$S-NH2
1705.88
853.94
854.7





757
Ac-CouTFSr8AYWAQL$S-NH2
1663.83
832.92
833.33





758
H-LTF$r8AYWAQL$A-NH2
1473.84
737.92
737.29





759
Ac-HHF$r8AYWAQL$S-NH2
1591.83
796.92
797.72





760
Ac-LT2Nal$r8AYWSQL$S-NH2
1597.85
799.93
800.68





761
Ac-LTF$r8HCouWAQL$S-NH2
1679.87
840.94
841.38





762
Ac-LTF$r8AYWCou2QL$S-NH2
1789.94
895.97
896.51





763
Ac-LTF$r8Cou2YWAQL$S-NH2
1789.94
895.97
896.5





764
Ac-Cou2TF$r8AYWAQL$S-NH2
1747.90
874.95
875.42





765
Ac-LTF$r8ACou2WAQL$S-NH2
1697.92
849.96
850.82





766
Dmaac-LTF$r8AYWAQL$S-NH2
1574.89
788.45
788.82





767
Hexac-LTF$r8AYWAQL$S-NH2
1587.91
794.96
795.11





768
Napac-LTF$r8AYWAQL$S-NH2
1657.89
829.95
830.36





769
Pam-LTF$r8AYWAQL$S-NH2
1728.06
865.03
865.45





770
Ac-LT2Nal$r8HYAAQL$S-NH2
1532.84
767.42
767.61





771
Ac-LT2Nal$/r8HYWAQL$/S-NH2
1675.91
838.96
839.1





772
Ac-LT2Nal$r8HYFAQL$S-NH2
1608.87
805.44
805.9





773
Ac-LT2Nal$r8HWAAQL$S-NH2
1555.86
778.93
779.08





774
Ac-LT2Nal$r8HYAWQL$S-NH2
1647.88
824.94
825.04





775
Ac-LT2Nal$r8HYAAQW$S-NH2
1605.83
803.92
804.05





776
Ac-LTW$r8HYWAQL$S-NH2
1636.88
819.44
819.95





777
Ac-LT1Nal$r8HYWAQL$S-NH2
1647.88
824.94
825.41









In some embodiments, the peptidomimetic macrocycles disclosed herein do not comprise a peptidomimetic macrocycle structure as shown in Table 2b.


Table 2c shows examples of non-crosslinked polypeptides comprising D-amino acids.
















TABLE 2c








Exact
Found
Calc
Calc
Calc


SP
Sequence
Isomer
Mass
Mass
(M + 1)/1
(M + 2)/2
(M + 3)/3







SP778
Ac-tawyanfekllr-NH2


777.46








SP779
Ac-tawyanf4CF3ekllr-NH2


811.41









Peptidomimetic macrocycles can also be prepared that target or interact with proteins that a virus needs for infection or replication within a host cell. Such viruses can be, for example, influenza viruses belonging to Orthomyxoviridae family of viruses. This family also includes Thogoto viruses and Dhoriviruses. There are several types and subtypes of influenza viruses known, which infect humans and other species. Influenza type A viruses infect people, birds, pigs, horses, seals and other animals, but wild birds are the natural hosts for these viruses. Influenza type A viruses are divided into subtypes and named on the basis of two proteins on the surface of the virus: hemagglutinin (HA) and neuraminidase (NA). For example, an “H7N2 virus” designates an influenza A subtype that has an HA7 protein and an NA2 protein. Similarly an “H5N1” virus has an HA 5 protein and an NA1 protein. There are 16 known HA subtypes and 9 known NA subtypes. Many different combinations of HA and NA proteins are possible. Only some influenza A subtypes (i.e., H1N1, H1N2, and H3N2) are currently in general circulation among people. Other subtypes are found most commonly in other animal species. For example, H7N7 and H3N8 viruses cause illness in horses, and H3N8 also has recently been shown to cause illness in dogs.


Antiviral agents according to the invention can be used to protect high-risk groups (hospital units, institutes caring for elderly, immuno-suppressed individuals), and on a case by case basis. A potential use for antiviral agents is to limit the spread and severity of the future pandemics whether caused by avian H5N1 or other strains of influenza virus. Avian influenza A viruses of the subtypes H5 and H7, including H5N1, H7N7, and H7N3 viruses, have been associated with high pathogenicity, and human infection with these viruses have ranged from mild (H7N3, H7N7) to severe and fatal disease (H7N7, H5N1). Human illness due to infection with low pathogenicity viruses has been documented, including very mild symptoms (e.g., conjunctivitis) to influenza-like illness. Examples of low pathogenicity viruses that have infected humans include H7N7, H9N2, and H7N2.


Influenza B viruses are usually found in humans but can also infect seals. Unlike influenza A viruses, these viruses are not classified according to subtype. Influenza B viruses can cause morbidity and mortality among humans, but in general are associated with less severe epidemics than influenza A viruses. Although influenza type B viruses can cause human epidemics, they have not caused pandemics.


Influenza type C viruses cause mild illness in humans and do not cause epidemics or pandemics. These viruses can also infect dogs and pigs. These viruses are not classified according to subtype.


Influenza viruses differ from each other in respect to cell surface receptor specificity and cell tropism, however they use common entry pathways. Charting these pathways and identification of host cell proteins involved in virus influenza transmission, entry, replication, biosynthesis, assembly, or exit allows the development of general agents against existing and emerging strains of influenza. The agents can also prove useful against unrelated viruses that use similar pathways. For example, the agents can protect airway epithelial cells against a number of different viruses in addition to influenza viruses.


In one embodiment the targeted virus is an adenovirus. Adenoviruses most commonly cause respiratory illness; symptoms of respiratory illness caused by adenovirus infection range from the common cold syndrome to pneumonia, croup, and bronchitis. Patients with compromised immune systems are especially susceptible to severe complications of adenovirus infection. Acute respiratory disease (ARD), first recognized among military recruits during World War II, can be caused by adenovirus infections during conditions of crowding and stress. Adenoviruses are medium-sized (90-100 nm), nonenveloped icosohedral viruses containing double-stranded DNA. There are 49 immunologically distinct types (6 subgenera: A through F) that can cause human infections. Adenoviruses are unusually stable to chemical or physical agents and adverse pH conditions, allowing for prolonged survival outside of the body. Some adenoviruses, such as AD2 and Ad5 (species C) use clathrin mediated endocytosis and macropinocytosis for infectious entry. Other adenoviruses, such as Ad3 (species B) use dynamin dependent endocytosis and macropinocytosis for infectious entry.


In one embodiment the targeted virus is a respiratory syncytial virus (RSV). RSV is the most common cause of bronchiolitis and pneumonia among infants and children under 1 year of age. Illness begins most frequently with fever, runny nose, cough, and sometimes wheezing. During their first RSV infection, between 25% and 40% of infants and young children have signs or symptoms of bronchiolitis or pneumonia, and 0.5% to 2% require hospitalization. Most children recover from illness in 8 to 15 days. The majority of children hospitalized for RSV infection are under 6 months of age. RSV also causes repeated infections throughout life, usually associated with moderate-to-severe cold-like symptoms; however, severe lower respiratory tract disease can occur at any age, especially among the elderly or among those with compromised cardiac, pulmonary, or immune systems. RSV is a negative-sense, enveloped RNA virus. The virion is variable in shape and size (average diameter of between 120 and 300 nm), is unstable in the environment (surviving only a few hours on environmental surfaces), and is readily inactivated with soap and water and disinfectants.


In one embodiment the targeted virus is a human parainfluenza virus (HPIV). HPIVs are second to respiratory syncytial virus (RSV) as a common cause of lower respiratory tract disease in young children. Similar to RSV, HPIVs can cause repeated infections throughout life, usually manifested by an upper respiratory tract illness (e.g., a cold and/or sore throat). HPIVs can also cause serious lower respiratory tract disease with repeat infection (e.g., pneumonia, bronchitis, and bronchiolitis), especially among the elderly, and among patients with compromised immune systems. Each of the four HPIVs has different clinical and epidemiologic features. The most distinctive clinical feature of HPIV-1 and HPIV-2 is croup (i.e., laryngotracheobronchitis); HPIV-1 is the leading cause of croup in children, whereas HPIV-2 is less frequently detected. Both HPIV-1 and -2 can cause other upper and lower respiratory tract illnesses. HPIV-3 is more often associated with bronchiolitis and pneumonia. HPIV-4 is infrequently detected, possibly because it is less likely to cause severe disease. The incubation period for HPIVs is generally from 1 to 7 days. HPIVs are negative-sense, single-stranded RNA viruses that possess fusion and hemagglutinin-neuraminidase glycoprotein “spikes” on their surface. There are four serotypes types of HPIV (1 through 4) and two subtypes (4a and 4b). The virion varies in size (average diameter between 150 and 300 nm) and shape, is unstable in the environment (surviving a few hours on environmental surfaces), and is readily inactivated with soap and water.


In one embodiment the targeted virus is a coronavirus. Coronavirus is a genus of animal virus belonging to the family Coronaviridae. Coronaviruses are enveloped viruses with a positive-sense single-stranded RNA genome and a helical symmetry. The genomic size of coronaviruses ranges from approximately 16 to 31 kilobases, extraordinarily large for an RNA virus. The name “coronavirus” is derived from the Latin corona, meaning crown, as the virus envelope appears under electron microscopy to be crowned by a characteristic ring of small bulbous structures. This morphology is actually formed by the viral spike peplomers, which are proteins that populate the surface of the virus and determine host tropism. Coronaviruses are grouped in the order Nidovirales, named for the Latin nidus, meaning nest, as all viruses in this order produce a 3′ co-terminal nested set of subgenomic mRNAs during infection. Proteins that contribute to the overall structure of all coronaviruses are the spike, envelope, membrane and nucleocapsid. In the specific case of SARS a defined receptor-binding domain on S mediates the attachment of the virus to its cellular receptor, angiotensin-converting enzyme 2.


In one embodiment the targeted virus is a rhinovirus Rhinovirus is a genus of the Picornaviridae family of viruses Rhinoviruses are the most common viral infective agents in humans, and a causative agent of the common cold. There are over 105 serologic virus types that cause cold symptoms, and rhinoviruses are responsible for approximately 50% of all cases Rhinoviruses have single-stranded positive sense RNA genomes of between 7.2 and 8.5kb in length. At the 5′ end of the genome is a virus-encoded protein, and like mammalian mRNA, there is a 3′ poly-A tail. Structural proteins are encoded in the 5′ region of the genome and nonstructural at the end. This is the same for all picornaviruses. The viral particles themselves are not enveloped and are icosahedral in structure.


Any secondary structure of a viral protein (or of a host cell protein involved in viral infectivity) can form the basis of the methods. For example, a viral protein comprising a secondary structure which is a helix can be used to design peptidomimetic macrocycles based on the helix.


In one embodiment, the peptidomimetic macrocycle is designed based on the PB1 or PB2 sequence of an influenza virus. The PB1 sequence is highly conserved across all known strains of influenza A virus, which can result in less drug resistance should than that observed with the current standard of care. An alignment of the first 25 N-terminal amino acids of PB1 from the NCBI data bank's 2,485 influenza A virus strains (Ghanem, 2007) demonstrates the remarkable sequence conservation in the PA interaction domain of PB1. Therefore, antiviral therapies based on the PB1 sequence can block most, if not all, influenza A virus strains. Additionally, sequence modification of a peptidomimetic macrocycle based on these few variations in PB1 can enable an antiviral cocktail of PB1 inhibitors to eliminate resistance due to escape mutants.


Table 3a shows a list of peptidomimetic macrocycles derived from the PA-binding helix of PB1 that were prepared.


Table 3b shows a list of selected peptidomimetic macrocycles from Table 3a. SP-791 and SP-794 were prepared by increasing the length and alanine content (%) of the SP-786 sequence. These modifications led to a five-fold increase in antiviral activity compared to that of SP-786. SP-798 was prepared by incorporating an i, i+7 crosslink instead of the i, i+4 crosslink of SP-786. SP-192 exhibited improved anti-viral activity (EC50=4.5 mM) compared to that of SP-786.


In some embodiments, the invention provides a peptidomimetic macrocycle that comprises an amino acid sequence that has at least 60%, 70%, 80%, 90%, 95%, 97%, or 100% identity to any one of the amino acid sequences in Table 3a or 3b.









TABLE 3a







Prepared peptidomimetic macrocycles derived from the PA-binding helix of pB1.



























SP#


1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17






780
Ac—

Nle
D
V
N
$
T
L
L
$
L
K
V
Aib
A
Q


—NH2


781
Ac—

Nle
D
V
N
$
T
L
L
$
L
K
A
Aib
A
Q


—NH2


782
Ac—

Nle
D
V
N
$
T
L
L
$
L
K
V
Aib
A
A


—NH2


783
Ac—

Nle
D
V
N
$
T
L
L
$
L
K
V
P
Aib
Q


—NH2


784
Ac—

F
D
V
N
$
T
L
L
$
L
K
V
Aib
A
Q


—NH2


785
5-FAM—
Ba
Nle
D
V
N
$
T
L
L
$
L
A
V
Aib
A
Q


—NH2


786
Ac—

Nle
D
V
N
$
T
L
L
$
L
A
V
Aib
A
Q


—NH2


787
Ac—

Nle
D
V
N
$
T
L
L
$
L
A
V
Aib
A
Q
A
A
—NH2


788
Ac—

Nle
D
V
N
$
T
L
L
$
L
A
V
A
A
Q
A
A
—NH2


789
Ac—

Nle
D
V
N
$
T
L
L
$
L
A
V
A
A
A
A
A
—NH2


790
Ac—

Nle
D
V
N
$
T
L
L
$
L
A
V
S
A
Q
A
A
—NH2


791
Ac—

Nle
D
V
N
$
T
L
L
$
L
A
V
Q
A
Q
A
A
—NH2


792
Ac—

Nle
D
V
N
$
T
L
L
$
L
A
V
E
A
Q
A
A
—NH2


793
Ac—

Nle
D
V
N
$
T
L
L
$
L
A
V
S
A
A
A
A
—NH2


794
Ac—

Nle
D
V
N
$
T
L
L
$
L
A
V
Q
A
A
A
A
—NH2


795
Ac—

Nle
D
V
N
$
T
L
L
$
L
A
V
E
A
A
A
A
—NH2


796
Ac—

Nle
D
V
N
$
T
L
L
$
L
A
V
Aib
A
Q
A
a
—NH2


797
Ac—

Nle
D
V
N
$
T
L
L
$
L
A
V
Aib
A
Q
A
a
—OH


798
Ac—

Nle
D
V
N
$r8
T
L
L
F
L
A
$
A
A
Q


—NH2


799
Ac—

Nle
D
V
N
$
T
L
L
$
L
A
V
Q
Aib
Q
A
A
—NH2


800
Ac—

Nle
D
V
N
$
T
L
L
$
L
A
V
Q
A
Q
Aib
A
—NH2


801
Ac—

Nle
D
V
N
$
T
L
L
$
L
A
V
Q
Aib
A
A
A
—NH2


802
Ac—

Nle
D
V
N
$
T
L
L
$
L
A
V
Q
A
A
Aib
A
—NH2


803
Ac—

Nle
D
V
N
$
T
L
L
$
L
A
V
Q
A
Aib
A
A
—NH2


804
Ac—

Nle
D
V
N
$r8
T
L
L
F
L
A
$
A
A
Q
A
A
—NH2


805
Ac—

Nle
D
V
N
$r8
T
L
L
F
L
A
$
A
A
A
A
A
—NH2


806
Ac—

Nle
D
V
N
$r8
T
L
L
F
L
A
$
Q
A
Q
A
A
—NH2


807
Ac—

Nle
D
V
N
$r8
T
L
L
F
L
A
$
Q
A
A
A
A
—NH2
















TABLE 3b







Selected peptidomimetic macrocycles derived


from the PA-binding helix of pB1.



















RT
Ala
CPE, EC50


SP#
Crosslink
Ch
L
VH
(min)*
(%)
(μM)**

















786
i, i + 4
−1
15
4.7
10.68
13
23


791
i, i + 4
−1
17
7.2
8.02
24
4.1


794
i, i + 4
−1
17
5.1
9.54
29
6.1


799
i, i + 4
−1
17
7

18
<6.1***


800
i, i + 4
−1
17
7
8.47
18
<6.1***


801
i, i + 4
−1
17
4.9
10.01
24
<6.1***


802
i, i + 4
−1
17
4.9
10.18
24
<6.1***


803
i, i + 4
−1
17
4.9
10.26
24
<6.1***


798
i, i + 7
−1
15
4.9
10.18
20
4.5


804
i, i + 7
−1
17
5.1
10.92
29
<4.5***


805
i, i + 7
−1
17
3
13.03
35
<4.5***


806
i, i + 7
−1
17
7.2
8.86
24
<4.5***


807
i, i + 7
−1
17
5.1
10.83
29
<4.5***





*See Example 11 table


**By Neutral Red assay (Influenza A Virus H1N1 California/07/2009)


***Predicted


Ch = net charge;


L = length in amino acids;


VH = von Heijne;


RT = retention time;


Ala = alanine content






In some embodiments of the invention, the peptide sequence is derived from the BCL-2 family of proteins. The BCL-2 family is defined by the presence of up to four conserved BCL-2 homology (BH) domains designated BH1, BH2, BH3, and BH4, all of which include α-helical segments (Chittenden et al. (1995), EMBO 14:5589; Wang et al. (1996), Genes Dev. 10:2859). Anti-apoptotic proteins, such as BCL-2 and BCL-XL, display sequence conservation in all BH domains. Pro-apoptotic proteins are divided into “multidomain” family members (e.g., BAK, BAX), which possess homology in the BH1, BH2, and BH3 domains, and “BH3-domain only” family members (e.g., BID, BAD, BIM, BIK, NOXA, PUMA), that contain sequence homology exclusively in the BH3 amphipathic α-helical segment. BCL-2 family members have the capacity to form homo- and heterodimers, suggesting that competitive binding and the ratio between pro- and anti-apoptotic protein levels dictates susceptibility to death stimuli. Anti-apoptotic proteins function to protect cells from pro-apoptotic excess, i.e., excessive programmed cell death. Additional “security” measures include regulating transcription of pro-apoptotic proteins and maintaining them as inactive conformers, requiring either proteolytic activation, dephosphorylation, or ligand-induced conformational change to activate pro-death functions. In certain cell types, death signals received at the plasma membrane trigger apoptosis via a mitochondrial pathway. The mitochondria can serve as a gatekeeper of cell death by sequestering cytochrome c, a critical component of a cytosolic complex which activates caspase 9, leading to fatal downstream proteolytic events. Multidomain proteins such as BCL-2/BCL-XL and BAK/BAX play dueling roles of guardian and executioner at the mitochondrial membrane, with their activities further regulated by upstream BH3-only members of the BCL-2 family. For example, BID is a member of the BH3-domain only family of pro-apoptotic proteins, and transmits death signals received at the plasma membrane to effector pro-apoptotic proteins at the mitochondrial membrane. BID has the capability of interacting with both pro- and anti-apoptotic proteins, and upon activation by caspase 8, triggers cytochrome c release and mitochondrial apoptosis. Deletion and mutagenesis studies determined that the amphipathic α-helical BH3 segment of pro-apoptotic family members can function as a death domain and thus can represent a critical structural motif for interacting with multidomain apoptotic proteins. Structural studies have shown that the BH3 helix can interact with anti-apoptotic proteins by inserting into a hydrophobic groove formed by the interface of BH1, 2 and 3 domains. Activated BID can be bound and sequestered by anti-apoptotic proteins (e.g., BCL-2 and BCL-XL) and can trigger activation of the pro-apoptotic proteins BAX and BAK, leading to cytochrome c release and a mitochondrial apoptosis program. BAD is also a BH3-domain only pro-apoptotic family member whose expression triggers the activation of BAX/BAK. In contrast to BID, however, BAD displays preferential binding to anti-apoptotic family members, BCL-2 and BCL-XL. Whereas the BAD BH3 domain exhibits high affinity binding to BCL-2, BAD BH3 peptide is unable to activate cytochrome c release from mitochondria in vitro, suggesting that BAD is not a direct activator of BAX/BAK. Mitochondria that over-express BCL-2 are resistant to BID-induced cytochrome c release, but co-treatment with BAD can restore BID sensitivity. Induction of mitochondrial apoptosis by BAD appears to result from either: (1) displacement of BAX/BAK activators, such as BID and BID-like proteins, from the BCL-2/BCL-XL binding pocket, or (2) selective occupation of the BCL-2/BCL-XL binding pocket by BAD to prevent sequestration of BID-like proteins by anti-apoptotic proteins. Thus, two classes of BH3-domain only proteins have emerged, BID-like proteins that directly activate mitochondrial apoptosis, and BAD-like proteins, that have the capacity to sensitize mitochondria to BID-like pro-apoptotics by occupying the binding pockets of multidomain anti-apoptotic proteins. Various α-helical domains of BCL-2 family member proteins amenable to the methodology disclosed herein have been disclosed (Walensky et al. (2004), Science 305:1466; and Walensky et al., U.S. Patent Publication No. 2005/0250680, the entire disclosures of which are incorporated herein by reference).


Myeloid cell leukemia 1 (MCL-1) is a protein that inhibits cell death through the binding and inhibition of pro-death factors such as BCL-2 interacting mediator (BIM). When MCL-1 is over-expressed, the rate of cell death in a cell or tissue is reduced. In some embodiments, the peptide sequences are derived from BIM. In some embodiments, a peptidomimetic macrocycle peptide derived from a human BIM peptide can be a peptide comprising 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, or 22 amino acids from a BIM peptide sequence.


In some embodiments, a peptidomimetic macrocycle peptide derived from a human BIM peptide sequence can be a peptide comprising 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, or 22 amino acids that are different from the selected sequences from which the peptide is derived. In some embodiments, a peptidomimetic macrocycle peptide derived from a human BIM peptide sequence can be a peptide comprising a mutation at amino acid position 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, or 22. In some embodiments, mutations are mutations of non-essential amino acids. In some embodiments, mutations are mutations of essential amino acids. In some embodiments, mutations are mutations of hydrophobic amino acids. In some embodiments, mutations are mutations of naturally occurring amino acids. In some embodiments, mutations are mutations to a conservative amino acid. In some embodiments, a peptidomimetic macrocycle peptide derived from a human BIM peptide sequence can be a peptide comprising 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, or 22 amino acid analogues. In some embodiments, a peptidomimetic macrocycle peptide derived from a human BIM peptide sequence can be a peptide comprising 1 or 2 capping groups.


In some embodiments, the peptidomimetic macrocycle comprises a C-terminal truncation of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 or 30 amino acids from an amino acid sequence of BIM In some embodiments, the peptidomimetic macrocycle comprises a N-terminal truncation of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, or 22 amino acids from the sequence of BIM.


A non-limiting list of suitable BIM macrocycles for use in the present disclosure are given in Tables 4a and 4b. In Tables 4a and 4b, at the C-terminus, some peptides possess a carboxamide terminus (shown as —NH2); some peptides possess a hydroxyl terminus (shown as —OH); some peptides possess a 5-carboxyfluorescein terminus (shown as -5-FAM); some peptides possess a isobutylamide terminus (shown as —NHiBu); some peptides possess a cyclohexylamide terminus (shown as —NHChx); some peptides possess a cyclohexylmethylamide terminus (shown as —NHMeChx); some peptides possess a phenethylamide terminus (shown as —NHPe); some peptides possess a n-butylamide terminus (shown as —NHBu); some peptides possess a sec-butylamide terminus (shown as —NHsBu); and some peptides possess an uncapped terminus (shown as no terminal modification).


In Tables 4a and 4b, at the N-terminus, some peptides possess an acetyl terminus (shown as Ac—); some peptides possess a fluorescein isothiocyanate terminus (shown as FITC-); some peptides possess a single-unit polyethylene glycol terminus (shown as dPEG1-); some peptides possess a five-unit polyethylene glycol terminus (shown as dPEG5-); some peptides possess an eleven-unit polyethylene glycol terminus (shown as dPEG11-); some peptides possess a propyl terminus (shown as Pr—); some peptides possess a biotin terminus (shown as Biotin-); some peptides possess a KLH terminus (shown as KLH-); some peptides possess an ovalbumin terminus (shown as OVA-); some peptides possess an uncapped terminus (shown as H—); some peptides possess a isobutyl terminus (shown as iBu-); some peptides possess a decanoyl terminus (shown as Decac-); some peptides possess a benzyl terminus (shown as Bz-); some peptides possess a cyclohexyl terminus (shown as Chx-); some peptides possess a benzyl terminus (shown as Bz-); some peptides possess a Vrl terminus (shown as Vrl-); some peptides possess a HBS terminus (shown as HBS-); some peptides possess a MeIm terminus (shown as MeImC-); some peptides possess a tert-butyl terminus (shown as t-Bu-U-); some peptides possess a nonanoyl terminus (shown as non-U—); some peptides possess a ethyl terminus (shown as EU-); some peptides possess a cyclohexyl terminus (shown as Chx-U—); some peptides possess a isopropyl terminus (shown as iPr-U—); some peptides possess a phenyl terminus (shown as Ph-U—); some peptides possess a uric terminus (shown as NH2CO—); some peptides possess a palmitoyl terminus (shown as Pam-); some peptides possess a heptenoic terminus (shown as Hep-); and some peptides possess a 5-carboxytetramethylrhodamine terminus (shown as 5-TAMRA-).


Table 4a shows a list of peptidomimetic macrocycles derived from the MCL-1/BCL-XL/BCL-2-binding helix of BIM that were prepared. Table 4b shows a list of selected peptidomimetic macrocycles from Table 4a. SP-809 was prepared by incorporating an i, i+7 crosslink into the sequence of the linear peptide LP-2. SP-815 was prepared by removal of the two terminal arginine residues and an alanine substitution at position 13 of SP-809. SP-962 was prepared by a homoleucine substitution at position 9 and a F4F at position 17 of SP-815.


In some embodiments, the invention provides a peptidomimetic macrocycle that comprises an amino acid sequence that has at least 60%, 70%, 80%, 90%, 95%, 97%, or 100% identity to any one of the amino acid sequences in Table 4a or 4b.









TABLE 4a





Prepared peptidomimetic macrocycles derived from the MCL-1/ BCL-X1/BCL-2-binding helix of BIM
































SP#


1
2
3
4
5
6
7
8
9
10
11
12
13
14
15





LP2
Ac—

I
W
I
A
Q
E
L
R
R
I
G
D
E
F
N


808
Ac—

I
W
I
A
Q
E
L
R
$r8
I
G
D
E
F
N


809
Ac—

I
W
I
A
Q
A
L
R
$r8
I
G
D
E
F
N


810
Ac—

I
W
I
A
Q
E
L
R
$r8
I
G
D
E
F
N


812
Ac—


W
I
A
Q
A
L
R
$r8
I
G
D
A
F
N


813
Ac—



I
A
Q
A
L
R
$r8
I
G
D
A
F
A


814
Ac—



I
A
Q
A
L
R
$r8
I
G
D
A
F
N


815
Ac—

I
W
I
A
Q
A
L
R
$r8
I
G
D
A
F
N


816
Ac—


W
I
A
Q
A
L
R
$r8
I
G
D
A
F
N


817
Ac—



I
A
Q
A
L
R
$r8
I
G
D
A
F
N


818
Ac—



I
A
A
A
L
R
$r8
I
G
D
A
F
N


819
Ac—



I
A
Q
A
L
A
$r8
I
G
D
A
F
N


820
Ac—



I
A
Q
A
L
R
$r8
I
A
D
A
F
N


821
Ac—



I
A
Q
A
L
R
$r8
I
G
D
A
A
N


822
Ac—



I
A
Q
A
L
R
$r8
I
G
D
A
F
N


823
Ac—

I
$
I
A
Q
$
L
R
$r8
I
G
D
E
F
N


824
Ac—

I
W
I
A
Q
A
L
R
%r8
I
G
D
A
F
N


825
Ac—

I
W
I
A
Q
A
L
R
$r8
I
G
D
E
F
A


826
Ac—

I
W
I
A
Q
A
L
R
$r8
I
G
D
Q
A
N


827
FITC—
Ba
I
W
I
A
Q
A
L
R
$r8
I
G
D
A
F
N


828
5-FAM—
Ba
I
W
I
A
Q
A
L
R
$r8
I
G
D
A
F
N


829
5-FAM—
Ba
I
W
I
A
Q
A
L
R
$r8
I
G
D
E
F
N


830
Ac—

I
A
I
A
Q
A
L
R
$r8
I
G
D
A
F
N


831
Ac—

I
W
I
A
Q
A
L
R
$r8
I
G
D
E
F
N


832
Ac—

I
W
I
A
Q
A
L
R
$r8
I
G
D
Q
F
N


833
Ac—

I
W
I
A
A
A
L
R
$r8
I
G
D
E
F
N


834
Ac—

I
W
I
A
A
A
L
R
$r8
I
G
D
Q
F
N


835
Ac—

I
W
I
A
A
A
L
R
$r8
I
G
D
A
F
N


836
Ac—

I
W
I
A
Q
A
L
R
$r8
I
G
D
A
F
A


837
Ac—

I
W
I
A
Q
A
L
Cit
$r8
I
G
D
A
F
N


838
Ac—

I
W
I
A
Q
A
L
Cit
$r8
I
G
D
Q
F
N


839
Ac—

I
W
I
A
Q
A
L
H
$r8
I
G
D
A
F
N


840
Ac—

I
W
I
A
Q
A
L
H
$r8
I
G
D
Q
F
N


841
Ac—

I
W
I
A
Q
A
L
Q
$r8
I
G
D
A
F
N


842
Ac—

I
W
I
A
Q
A
L
Q
$r8
I
G
D
Q
F
N


843
Ac—

I
W
I
A
Q
A
L
R
$r8
I
G
D
A
A
N


844
Ac—

I
W
I
A
Q
A
L
R
$r8
I
G
D
A
I
N


845
Ac—

I
W
I
A
Q
A
L
R
$r8
I
G
D
Q
I
N


846
Ac—

I
W
I
A
Q
A
A
R
$r8
I
G
D
A
A
N


847
Ac—

I
W
I
A
Q
A
L
R
$r8
I
A
D
A
F
N


848
Ac—

I
W
I
A
Q
A
L
R
$r8
I
A
D
Q
F
N


849
Ac—

I
W
I
A
Q
A
L
R
$r8
A
G
D
A
F
N


850
Ac—

I
W
I
A
Q
A
L
R
$r8
A
G
D
Q
F
N


851
Ac—

I
W
I
A
Q
A
L
R
$r8
I
G
D
A
F
N


852
Ac—

I
W
I
A
Q
A
L
R
$r8
I
G
D
Q
F
N


853
Ac—

I
W
F
A
Q
A
L
R
$r8
I
G
D
A
F
N


854
Ac—

I
W
F
A
Q
A
L
R
$r8
I
G
D
Q
F
N


855
Ac—

I
W
I
A
Q
A
L
A
$r8
I
G
D
A
F
N


856
Ac—

I
W
I
A
Q
A
L
R
$r8
I
G
N
A
F
N


857
Ac—

I
W
I
A
Q
A
A
R
$r8
I
G
D
A
F
N


858
Ac—

I
W
I
A
Q
A
L
R
$r8
I
G
D
Q
F
A


859
Ac—

I
W
Cha
A
Q
A
L
R
$r8
I
G
D
A
F
N


860
Ac—

I
W
hhL
A
Q
A
L
R
$r8
I
G
D
A
F
N


861
Ac—

I
W
Adm
A
Q
A
L
R
$r8
I
G
D
A
F
N


862
Ac—

I
W
hCha
A
Q
A
L
R
$r8
I
G
D
A
F
N


863
Ac—

I
W
hF
A
Q
A
L
R
$r8
I
G
D
A
F
N


864
Ac—

I
W
Igl
A
Q
A
L
R
$r8
I
G
D
A
F
N


865
Ac—

I
W
F4CF3
A
Q
A
L
R
$r8
I
G
D
A
F
N


866
Ac—

I
W
F4tBu
A
Q
A
L
R
$r8
I
G
D
A
F
N


867
Ac—

I
W
2Nal
A
Q
A
L
R
$r8
I
G
D
A
F
N


868
Ac—

I
W
Bip
A
Q
A
L
R
$r8
I
G
D
A
F
N


869
Ac—

I
W
I
A
Q
A
Cha
R
$r8
I
G
D
A
F
N


870
Ac—

I
W
I
A
Q
A
hhL
R
$r8
I
G
D
A
F
N


871
Ac—

I
W
I
A
Q
A
Adm
R
$r8
I
G
D
A
F
N


872
Ac—

I
W
I
A
Q
A
hCha
R
$r8
I
G
D
A
F
N


873
Ac—

I
W
I
A
Q
A
hAdm
R
$r8
I
G
D
A
F
N


874
Ac—

I
W
I
A
Q
A
hF
R
$r8
I
G
D
A
F
N


875
Ac—

I
W
I
A
Q
A
Igl
R
$r8
I
G
D
A
F
N


876
Ac—

I
W
I
A
Q
A
F4CF3
R
$r8
I
G
D
A
F
N


877
Ac—

I
W
I
A
Q
A
F4tBu
R
$r8
I
G
D
A
F
N


878
Ac—

I
W
I
A
Q
A
2Nal
R
$r8
I
G
D
A
F
N


879
Ac—

I
W
I
A
Q
A
Bip
R
$r8
I
G
D
A
F
N


880
Ac—

I
W
I
A
Q
A
L
R
$r8
Cba
G
D
A
F
N


881
Ac—

I
W
I
A
Q
A
L
R
$r8
hL
G
D
A
F
N


882
Ac—

I
W
I
A
Q
A
L
R
$r8
Cha
G
D
A
F
N


883
Ac—

I
W
I
A
Q
A
L
R
$r8
Tba
G
D
A
F
N


884
Ac—

I
W
I
A
Q
A
L
R
$r8
hhL
G
D
A
F
N


885
Ac—

I
AmW
I
A
Q
A
L
R
$r8
I
G
D
A
F
N


886
Ac—

I
Aib
I
A
Q
A
L
R
$r8
I
G
D
A
F
N


887
Ac—

AmL
W
I
A
Q
A
L
R
$r8
I
G
D
A
F
N


888
Ac—

I
W
AmL
A
Q
A
L
R
$r8
I
G
D
A
F
N


889
Ac—

I
W
I
Aib
Q
A
L
R
$r8
I
G
AmD
A
F
N


890
Ac—

I
W
I
A
Aib
A
L
R
$r8
I
G
D
A
F
N


891
Ac—

I
W
I
A
Q
A
L
R
$r8
I
G
AmD
A
F
N


892
Ac—

I
W
I
A
Q
A
L
R
$r8
I
G
D
A
F
N


896
Ac—

I
W
Tba
A
Q
A
L
R
$r8
I
G
D
A
F
N


897
Ac—

I
W
hL
A
Q
A
L
R
$r8
I
G
D
A
F
N


898
Ac—

I
W
Chg
A
Q
A
L
R
$r8
I
G
D
A
F
N


899
Ac—

I
W
Ac6c
A
Q
A
L
R
$r8
I
G
D
A
F
N


900
Ac—

I
W
Ac5c
A
Q
A
L
R
$r8
I
G
D
A
F
N


901
Ac—

E
W
I
A
A
A
L
R
$r8
I
G
D
A
F
N


902
Ac—

R
W
I
A
A
A
L
R
$r8
I
G
D
A
F
N


903
Ac—

K
W
I
A
A
A
L
R
$r8
I
G
D
A
F
N


904
Ac—

H
W
I
A
A
A
L
R
$r8
I
G
D
A
F
N


905
Ac—

S
W
I
A
A
A
L
R
$r8
I
G
D
A
F
N


906
Ac—

Q
W
I
A
A
A
L
R
$r8
I
G
D
A
F
N


907
Ac—

A
W
I
A
A
A
L
R
$r8
I
G
D
A
F
N


908
Ac—

Aib
W
I
A
A
A
L
R
$r8
I
G
D
A
F
N


909
Ac—

F
W
I
A
A
A
L
R
$r8
I
G
D
A
F
N


910
Ac—

I
D
I
A
A
A
L
R
$r8
I
G
D
A
F
N


911
Ac—

I
R
I
A
A
A
L
R
$r8
I
G
D
A
F
N


912
Ac—

I
H
I
A
A
A
L
R
$r8
I
G
D
A
F
N


913
Ac—

I
S
I
A
A
A
L
R
$r8
I
G
D
A
F
N


914
Ac—

I
N
I
A
A
A
L
R
$r8
I
G
D
A
F
N


915
Ac—

I
L
I
A
A
A
L
R
$r8
I
G
D
A
F
N


916
Ac—

I
F
I
A
A
A
L
R
$r8
I
G
D
A
F
N


917
Ac—

I
2Nal
I
A
A
A
L
R
$r8
I
G
D
A
F
N


918
Ac—

I
W
I
S
A
A
L
R
$r8
I
G
D
A
F
N


919
Ac—

I
W
I
L
A
A
L
R
$r8
I
G
D
A
F
N


920
Ac—

I
W
I
F
A
A
L
R
$r8
I
G
D
A
F
N


921
Ac—

I
W
I
A
L
A
L
R
$r8
I
G
D
A
F
N


922
Ac—

I
W
I
A
A
A
L
K
$r8
I
G
D
A
F
N


923
Ac—

I
W
I
A
A
A
L
R
$r8
I
Abu
D
A
F
N


924
Ac—

I
W
I
A
A
A
L
R
$r8
I
V
D
A
F
N


925
Ac—

I
W
I
A
A
A
L
R
$r8
I
G
E
A
F
N


926
Ac—

I
W
I
A
A
A
L
R
$r8
I
G
D
A
G
N


927
Ac—

I
W
I
A
Q
A
L
R
$r8
I
G
D
A
W
N


928
Ac—

I
W
I
A
Q
A
L
R
$r8
I
G
D
A
hF
N


929
Ac—

I
W
I
A
Q
A
L
R
$r8
I
G
D
A
F4CF3
N


930
Ac—

I
W
I
A
Q
A
L
R
$r8
I
G
D
A
F4tBu
N


931
Ac—

I
W
I
A
Q
A
L
R
$r8
I
G
D
A
2Nal
N


932
Ac—

I
W
I
A
Q
A
L
R
$r8
I
G
D
A
Bip
N


933
Ac—

I
W
I
A
A
A
L
R
$r8
I
G
D
A
F
D


934
Ac—

I
W
I
A
A
A
L
R
$r8
I
G
D
A
F
E


935
Ac—

I
W
I
A
A
A
L
R
$r8
I
G
D
A
F
Q


936
Ac—

I
W
I
A
A
A
L
R
$r8
I
G
D
A
F
S


937
Ac—

I
W
I
A
A
A
L
R
$r8
I
G
D
A
F
H


938
Ac—

I
W
I
A
A
A
L
R
$r8
I
G
D
A
F
N


939
Ac—

I
W
I
A
Q
A
L
R
$r8
I
G
D
A
F
N


940
Ac—

I
W
I
A
Q
A
L
R
$r8
I
G
D
A
F
N


941
Ac—

I
W
I
A
Q
A
L
R
$r8
I
G
D
A
F
N


942
Ac—

I
W
I
A
Q
A
L
R
$r8
I
G
D
A
F
N


943
Ac—

I
W
I
A
Q
A
L
R
$r8
I
G
D
A
F
N


944
Ac—

I
W
I
A
Q
A
L
R
$r8
I
G
D
A
F
N


945
Ac—

I
W
I
A
A
A
L
R
$r8
I
G
D
A
F
N


946
Ac—

I
W
I
A
A
A
L
R
$r8
I
G
D
A
F
N


947
Ac—

I
W
I
A
A
A
L
R
$r8
I
G
D
A
F
N


948
Ac—

I
W
I
A
A
A
L
R
$r8
I
G
D
A
F
N


949
Ac—

I
W
I
A
A
A
L
R
$r8
I
G
D
A
F
N


950
Ac—

I
W
I
A
A
A
L
R
$r8
I
G
D
A
F
N


951
Ac—

I
W
I
A
A
A
L
R
$r8
I
G
D
A
F
N


952
Ac—

I
W
I
A
Q
A
AmL
R
$r8
I
G
D
A
F
N


953
Ac—

I
W
I
A
Q
A
L
R
$r8
I
G
AmD
A
F
N


954
Ac—

I
W
I
A
Q
A
L
R
$r8
I
G
D
A
F
N


955
Ac—

I
W
I
A
Q
A
L
R
$r8
I
G
D
A
F
N


956
Ac—

I
W
I
A
Q
A
A
Cit
$r8
I
G
D
A
F
N


957
Ac—

I
W
I
A
Q
A
L
Cit
$r8
I
G
N
A
F
N


958
Ac—

I
W
I
A
Q
A
L
Cit
$r8
I
G
D
A
A
N


959
Ac—

I
W
I
A
Q
A
L
Cit
$r8
I
G
D
A
V
N


960
Ac—

I
W
I
A
Q
A
L
R
$r8
I
G
D
A
F
N


961
Ac—

I
W
I
A
Q
A
L
R
$r8
hL
G
D
A
F
N


962
Ac—

I
W
I
A
Q
A
L
R
$r8
hL
G
D
A
F
N


963
Ac—

I
W
I
A
Q
A
L
R
$r8
hL
G
D
A
F
N


964
Ac—

A
W
I
A
A
A
L
R
$r8
hL
G
D
A
F
N


965
Ac—

A
W
I
A
A
A
L
R
$r8
hL
G
D
A
F
N


966
Ac—

I
W
I
A
Q
A
A
R
$r8
hL
G
D
A
F
N


893
Ac—

I
$r8
I
A
Q
A
L
R
St
I
G
D
E
F
N


894
Ac—

I
W
I
A
$
A
L
R
St
I
G
D
E
F
N


895
Ac—

I
W
I
A
Q
A
L
R
$r8
I
G
D
E
F
N





















SP#


16
17
18
19
20
21

Calc (M + 2)/2
Found Mass





LP2
Ac—

A
Y
Y
A
R
R
—NH2




808
Ac—

$
Y
Y
A
R
R
—NH2




809
Ac—

$
Y
Y
A
R
R
—NH2
1344.74
1345.7


810
Ac—

$
Y
Y
A
R
R
—NH2
1373.75
1373.56


812
Ac—

$
Y
Y
A


—NH2
1103.1
1103.12


813
Ac—

$
Y
Y
A


—NH2
988.55
988.45


814
Ac—

$
Y
A
A


—NH2
964.04
963.94


815
Ac—

$
Y
Y
A


—NH2
1159.64
1159.87


816
Ac—

$
Y
Y
A


—NH2
1103.1
1102.94


817
Ac—

$
Y
Y
A


—NH2
1010.06
1009.9


818
Ac—

$
Y
Y
A


—NH2
981.55
981.86


819
Ac—

$
Y
Y
A


—NH2
967.53
967.45


820
Ac—

$
Y
Y
A


—NH2
1017.07
1016.93


821
Ac—

$
Y
Y
A


—NH2
972.04
971.89


822
Ac—

$
A
Y
A


—NH2
964.04
963.94


823
Ac—

$
Y
Y
A


—NH2
1185.17
1185.61


824
Ac—

%
Y
Y
A


—NH2
1160.14
1161.28


825
Ac—

$
Y
Y
A


—NH2
1167.14
1168.2


826
Ac—

$
Y
Y
A


—NH2
1150.13
1151.09


827
FITC—
Ba
$
Y
Y
A


—NH2
1368.67
1369.79


828
5-FAM—
Ba
$
Y
Y
A


—NH2
1353.18
1354.13


829
5-FAM—
Ba
$
Y
Y
A


—NH2
1382.18
1382.99


830
Ac—

$
Y
Y
A


—NH2
1102.12
1103.17


831
Ac—

$
Y
Y
A


—NH2
1188.64
1189.57


832
Ac—

$
Y
Y
A


—NH2
1188.15
1189.1


833
Ac—

$
Y
Y
A


—NH2
1160.13
1161.17


834
Ac—

$
Y
Y
A


—NH2
1159.64
1160.34


835
Ac—

$
Y
Y
A


—NH2
1131.13
1132.12


836
Ac—

$
Y
Y
A


—NH2
1138.14
1139.15


837
Ac—

$
Y
Y
A


—NH2
1160.13
1160.98


838
Ac—

$
Y
Y
A


—NH2
1188.64
1189.66


839
Ac—

$
Y
Y
A


—NH2
1150.12
1151.09


840
Ac—

$
Y
Y
A


—NH2
1178.63
1179.67


841
Ac—

$
Y
Y
A


—NH2
1145.62
1146.55


842
Ac—

$
Y
Y
A


—NH2
1174.13
1175.14


843
Ac—

$
Y
Y
A


—NH2
1121.62
1122.5


844
Ac—

$
Y
Y
A


—NH2
1142.65
1143.59


845
Ac—

$
Y
Y
A


—NH2
1171.16
1171.9


846
Ac—

$
Y
Y
A


—NH2
1100.6
1101.5


847
Ac—

$
Y
Y
A


—NH2
1166.65
1167.83


848
Ac—

$
Y
Y
A


—NH2
1195.16
1196.23


849
Ac—

$
Y
Y
A


—NH2
1138.62
1139.61


850
Ac—

$
Y
Y
A


—NH2
1167.13
1168.11


851
Ac—

$
Y
Y
A


—NH2
1176.63
1177.63


852
Ac—

$
Y
Y
A


—NH2
1205.14
1205.94


853
Ac—

$
Y
Y
A


—NH2
1176.63
1177.63


854
Ac—

$
Y
Y
A


—NH2
1205.14
1206.13


855
Ac—

$
Y
Y
A


—NH2
1117.11
1118.15


856
Ac—

$
Y
Y
A


—NH2
1159.15
1159.63


857
Ac—

$
Y
Y
A


—NH2
1138.62
1139.2


858
Ac—

$
Y
Y
A


—NH2
1166.65
1167.3


859
Ac—

$
Y
Y
A


—NH2
1179.65
1180.15


860
Ac—

$
Y
Y
A


—NH2
1173.65
1174.39


861
Ac—

$
Y
Y
A


—NH2
1198.66
1199.28


862
Ac—

$
Y
Y
A


—NH2
1186.66
1186.98


863
Ac—

$
Y
Y
A


—NH2
1183.64
1184.48


864
Ac—

$
Y
Y
A


—NH2
1190.65
1190.41


865
Ac—

$
Y
Y
A


—NH2
1210.62
1211.31


866
Ac—

$
Y
Y
A


—NH2
1204.66
1205.39


867
Ac—

$
Y
Y
A


—NH2
1201.64
1202.2


868
Ac—

$
Y
Y
A


—NH2
1214.65
1215.43


869
Ac—

$
Y
Y
A


—NH2
1179.65
1180.22


870
Ac—

$
Y
Y
A


—NH2
1173.65
1174.4


871
Ac—

$
Y
Y
A


—NH2
1198.66
1199.05


872
Ac—

$
Y
Y
A


—NH2
1186.66
1187.25


873
Ac—

$
Y
Y
A


—NH2
1205.67
1206.4


874
Ac—

$
Y
Y
A


—NH2
1183.64
1184.29


875
Ac—

$
Y
Y
A


—NH2
1190.65
1190.4


876
Ac—

$
Y
Y
A


—NH2
1210.62
1210.94


877
Ac—

$
Y
Y
A


—NH2
1204.66
1205.29


878
Ac—

$
Y
Y
A


—NH2
1201.64
1202.15


879
Ac—

$
Y
Y
A


—NH2
1214.65
1214.91


880
Ac—

$
Y
Y
A


—NH2
1165.64
1166.07


881
Ac—

$
Y
Y
A


—NH2
1166.65
1167.37


882
Ac—

$
Y
Y
A


—NH2
1179.65
1180.22


883
Ac—

$
Y
Y
A


—NH2
1166.65
1167.18


884
Ac—

$
Y
Y
A


—NH2
1173.65
1173.93


885
Ac—

$
Y
Y
A


—NH2
1166.65
1167.18


886
Ac—

$
Y
Y
A


—NH2
1109.13
1109.46


887
Ac—

$
Y
Y
A


—NH2
1166.65
1167.27


888
Ac—

$
Y
Y
A


—NH2
1166.65
1137.37


889
Ac—

$
Y
Y
A


—NH2
1173.65
1173.93


890
Ac—

$
Y
Y
A


—NH2
1138.14
1138.32


891
Ac—

$
Y
Y
A


—NH2
1166.65
1167.37


892
Ac—

$
Y
F4F
A


—NH2
1160.64
1161.45


896
Ac—

$
Y
Y
A


—NH2
1166.65
1167.37


897
Ac—

$
Y
Y
A


—NH2
1166.65
1167.37


898
Ac—

$
Y
Y
A


—NH2
1172.65
1173.47


899
Ac—

$
Y
Y
A


—NH2
1165.64
1166.44


900
Ac—

$
Y
Y
A


—NH2
1158.63
1159.32


901
Ac—

$
Y
Y
A


—NH2
1139.11
1139.52


902
Ac—

$
Y
Y
A


—NH2
1152.64
1153.49


903
Ac—

$
Y
Y
A


—NH2
1138.63
1138.97


904
Ac—

$
Y
Y
A


—NH2
1143.12
1143.87


905
Ac—

$
Y
Y
A


—NH2
1118.1
1118.8


906
Ac—

$
Y
Y
A


—NH2
1138.62
1139.24


907
Ac—

$
Y
Y
A


—NH2
1110.1
1110.75


908
Ac—

$
Y
Y
A


—NH2
1117.11
1117.78


909
Ac—

$
Y
Y
A


—NH2
1148.12
1148.96


910
Ac—

$
Y
Y
A


—NH2
1095.6
1096.32


911
Ac—

$
Y
Y
A


—NH2
1116.14
1116.95


912
Ac—

$
Y
Y
A


—NH2
1106.62
1107.24


913
Ac—

$
Y
Y
A


—NH2
1081.6
1181.98


914
Ac—

$
Y
Y
A


—NH2
1095.11
1095.58


915
Ac—

$
Y
Y
A


—NH2
1094.63
1095.3


916
Ac—

$
Y
Y
A


—NH2
1111.62
1112.33


917
Ac—

$
Y
Y
A


—NH2
1136.63
1137.3


918
Ac—

$
Y
Y
A


—NH2
1139.13
1139.89


919
Ac—

$
Y
Y
A


—NH2
1152.15
1152.94


920
Ac—

$
Y
Y
A


—NH2
1169.14
1169.86


921
Ac—

$
Y
Y
A


—NH2
1152.15
1152.84


922
Ac—

$
Y
Y
A


—NH2
1117.13
1117.97


923
Ac—

$
Y
Y
A


—NH2
1145.14
1145.9


924
Ac—

$
Y
Y
A


—NH2
1152.15
1152.94


925
Ac—

$
Y
Y
A


—NH2
1138.14
1138.87


926
Ac—

$
Y
Y
A


—NH2
1086.1
1086.89


927
Ac—

$
Y
Y
A


—NH2
1179.14
1180.04


928
Ac—

$
Y
Y
A


—NH2
1166.65
1167.46


929
Ac—

$
Y
Y
A


—NH2
1193.63
1194.38


930
Ac—

$
Y
Y
A


—NH2
1187.67
1188.36


931
Ac—

$
Y
Y
A


—NH2
1184.65
1185.5


932
Ac—

$
Y
Y
A


—NH2
1197.65
1198.54


933
Ac—

$
Y
Y
A


—NH2
1131.62
1132.4


934
Ac—

$
Y
Y
A


—NH2
1138.63
1139.02


935
Ac—

$
Y
Y
A


—NH2
1138.14
1138.84


936
Ac—

$
Y
Y
A


—NH2
1117.62
1118.5


937
Ac—

$
Y
Y
A


—NH2
1142.64
1143.25


938
Ac—

$
L
Y
A


—NH2
1106.14
1107.05


939
Ac—

$
Y
A
A


—NH2
1113.63
1114.27


940
Ac—

$
Y
L
A


—NH2
1134.65
1135.33


941
Ac—

$
Y
Cha
A


—NH2
1154.66
1155.31


942
Ac—

$
Y
hF
A


—NH2
1158.65
1159.5


943
Ac—

$
Y
W
A


—NH2
1171.15
1171.78


944
Ac—

$
Y
2Nal
A


—NH2
1176.65
1177


945
Ac—

$
Y
Y
D


—NH2
1153.12
1153.77


946
Ac—

$
Y
Y
E


—NH2
1160.13
1160.8


947
Ac—

$
Y
Y
Q


—NH2
1159.64
1160.26


948
Ac—

$
Y
Y
S


—NH2
1139.13
1139.47


949
Ac—

$
Y
Y
H


—NH2
1164.14
1165.05


950
Ac—

$
Y
Y
R


—NH2
1173.66
1174.4


951
Ac—

$
Y
Y
K


—NH2
1159.66
1160.26


952
Ac—

$
Y
Y
A


—NH2
1166.65
1167.18


953
Ac—

$
Y
Y
A


—NH2
1166.65
1167.46


954
Ac—

$
F4F
Y
A


—NH2
1160.64
1161.26


955
Ac—

$
Y
Y
Aib


—NH2
1166.65
1167.46


956
Ac—

$
Y
Y
A


—NH2
1139.11
1139.71


957
Ac—

$
Y
Y
A


—NH2
1159.64
1160.4


958
Ac—

$
Y
Y
A


—NH2
1122.12
1122.87


959
Ac—

$
Y
Y
A


—NH2
1136.13
1136.47


960
Ac—

$
A
Y
A


—NH2
1113.63
1113.9


961
Ac—

$
F4F
Y
A


—NH2
1167.64
1168.57


962
Ac—

$
Y
F4F
A


—NH2
1167.64
1168.2


963
Ac—

$
F4F
F4F
A


—NH2
1168.64
1169.59


964
Ac—

$
Y
F4F
A


—NH2
1118.11
1118.89


965
Ac—

$
A
F4F
A


—NH2
1072.1
1072.92


966
Ac—

$
F4F
F4F
A


—NH2
1147.62
1148.59


893
Ac—

$s8
Y
Y
A


—NH2
1199.18
1199.74


894
Ac—

$s8
Y
Y
A


—NH2
1207.17
1207.7


895
Ac—

St
Y
Y
A
$r5
A
—NH2
1306.72
1307.42
















TABLE 4b







Selected peptidomimetic macrocycles derived from the


MCL-1/ BCL-XL/BCL-2-binding helix of BIM.





















Raji Cell






RT
Ala
IC50 (nM)
Viability EC50















SP#
Ch
L
VH
(min)*
(%)
MCL-1
BCL-XL
(μM)**


















810
0
21
18.9
9.07
9.5
ND
9.2
>30


809
1
21
16.5
10.56
14.3
10.6
3.9
>30


815
0
19
9.1
15.07
21
8.4
22.4
6.6


962
0
19
8.3
17.69
21
27.0
13.0
0.7





*See Example 11 table


**5% serum, 48 hr


Ch = net charge;


L = length in amino acids;


VH = von Heijne;


RT = retention time;


Ala = alanine content






Preparation of Peptidomimetic Macrocycles

Peptidomimetic macrocycles can be prepared by any of a variety of methods known in the art. For example, any of the residues indicated by “$” or “$r8” in Table 1, Table 1a, Table 1b, or Table 1c can be substituted with a residue capable of forming a crosslinker with a second residue in the same molecule or a precursor of such a residue.


Various methods to effect formation of peptidomimetic macrocycles are known in the art. For example, the preparation of peptidomimetic macrocycles of Formula I is described in Schafmeister et al., J. Am. Chem. Soc. 122:5891-5892 (2000); Schafmeister & Verdine, J. Am. Chem. Soc. 122:5891 (2005); Walensky et al., Science 305:1466-1470 (2004); U.S. Pat. No. 7,192,713 and PCT application WO 2008/121767. The α,α-disubstituted amino acids and amino acid precursors disclosed in the cited references can be employed in synthesis of the peptidomimetic macrocycle precursor polypeptides. For example, the “55-olefin amino acid” is (S)-α-(2′-pentenyl) alanine and the “R8 olefin amino acid” is (R)-α-(2′-octenyl) alanine. Following incorporation of such amino acids into precursor polypeptides, the terminal olefins are reacted with a metathesis catalyst, leading to the formation of the peptidomimetic macrocycle. In various embodiments, the following amino acids can be employed in the synthesis of the peptidomimetic macrocycle:




embedded image


In other embodiments, the peptidomimetic macrocycles are of Formula IV or IVa. Methods for the preparation of such macrocycles are described, for example, in U.S. Pat. No. 7,202,332.


Additional methods of forming peptidomimetic macrocycles which are envisioned as suitable include those disclosed by Mustapa, M. Firouz Mohd et al., J. Org. Chem (2003), 68, pp. 8193-8198; Yang, Bin et al. Bioorg Med. Chem. Left. (2004), 14, pp. 1403-1406; U.S. Pat. No. 5,364,851; U.S. Pat. No. 5,446,128; U.S. Pat. No. 5,824,483; U.S. Pat. No. 6,713,280; and U.S. Pat. No. 7,202,332. In such embodiments, amino acid precursors are used containing an additional substituent R— at the alpha position. Such amino acids are incorporated into the macrocycle precursor at the desired positions, which can be at the positions where the crosslinker is substituted or, alternatively, elsewhere in the sequence of the macrocycle precursor. Cyclization of the precursor is then effected according to the indicated method.


Assays

The properties of peptidomimetic macrocycles are assayed, for example, by using the methods described below. In some embodiments, a peptidomimetic macrocycle has improved biological properties relative to a corresponding polypeptide lacking the substituents described herein.


A peptidomimetic macrocycle with enhanced cell penetrability can be prepared based on one or more properties of the polypeptide. In some embodiments, a peptidomimetic macrocycle with enhanced cell penetrability can be prepared based on a length of the amino acid sequence of the polypeptide. In some embodiments, a peptidomimetic macrocycle with enhanced cell penetrability can be prepared based on a von Heijne value of the polypeptide. In some embodiments, a peptidomimetic macrocycle with enhanced cell penetrability can be prepared based on a net charge carried by the polypeptide.


In some embodiments, a peptidomimetic macrocycle with enhanced cell penetrability can be prepared based on an alanine content in the amino acid sequence of the polypeptide. In some embodiments, a peptidomimetic macrocycle with enhanced cell penetrability can be prepared based on an amphipathicity of the polypeptide. In some embodiments, a peptidomimetic macrocycle with enhanced cell penetrability can be prepared based on a solubility of the polypeptide. In some embodiments, a peptidomimetic macrocycle with enhanced cell penetrability can be prepared based on a reverse-phase HPLC retention time of the polypeptide. In some embodiments, a peptidomimetic macrocycle with enhanced cell penetrability can be prepared based on a length of the amino acid sequence of the polypeptide, a von Heijne value of the polypeptide, a net charge carried by the polypeptide, an alanine content in the amino acid sequence of the polypeptide, an amphipathicity of the polypeptide, a solubility of the polypeptide, a reverse-phase HPLC retention time of the polypeptide, or any combination thereof.


A peptidomimetic macrocycle with enhanced cell penetrability can be prepared based on the length of the polypeptide. In some embodiments, the length of the prepared peptidomimetic macrocycle ranges from 10-24 amino acids. For example, the length of the prepared peptidomimetic macrocycle is 10 amino acids, 11 amino acids, 12 amino acids, 13 amino acids, 14 amino acids, 15 amino acids, 16 amino acids, 17 amino acids, 18 amino acids, 19 amino acids, 20 amino acids, 21 amino acids, 22 amino acids, 23 amino acids, or 24 amino acids. For example, the length of the prepared peptidomimetic macrocycle ranges from 10-23, 10-22, 10-21, 10-20, 10-19, 10-18, 10-17, 10-16, 10-15, 10-14, 10-13, or 10-12 amino acids. For example, the length of the prepared peptidomimetic macrocycle ranges from 11-24, 12-24, 13-24, 14-24, 15-24, 16-24, 17-24, 18-24, 19-24, 20-24, 21-24, or 22-24 amino acids. In some embodiments, the length of the prepared peptidomimetic macrocycle ranges from 11 amino acids to 23 amino acids. For example, the length of the prepared peptidomimetic macrocycle ranges from 11-22, 11-21, 11-20, 11-19, 11-18, 11-17, 11-16, 11-15, 11-14, or 11-13 amino acids. For example, the length of the prepared peptidomimetic macrocycle ranges from 12-23, 13-23, 14-23, 15-23, 16-23, 17-23, 18-23, 19-23, 20-23, or 21-23 amino acids. In some embodiments, the length of the prepared peptidomimetic macrocycle ranges from 12 amino acids to 22 amino acids. For example, the length of the prepared peptidomimetic macrocycle ranges from 12-21, 12-20, 12-19, 12-18, 12-17, 12-16, 12-15, or 12-14 amino acids. For example, the length of the prepared peptidomimetic macrocycle ranges from 13-22, 14-22, 15-22, 16-22, 17-22, 18-22, 19-22, or 20-22 amino acids. In some embodiments, the length of the prepared peptidomimetic macrocycle ranges from 13 amino acids to 21 amino acids. For example, the length of the prepared peptidomimetic macrocycle ranges from 13-20, 13-19, 13-18, 13-17, 13-16, or 13-15 amino acids. For example, the length of the prepared peptidomimetic macrocycle ranges from 14-21, 15-21, 16-21, 17-21, 18-21, or 19-21 amino acids. In some embodiments, the length of the prepared peptidomimetic macrocycle ranges from 14 amino acids to 20 amino acids. For example, the length of the prepared peptidomimetic macrocycle ranges from -19, 14-18, 14-17, or 14-16 amino acids. For example, the length of the prepared peptidomimetic macrocycle ranges from 15-20, 16-20, 17-20, or 18-20 amino acids. In some embodiments, the length of the prepared peptidomimetic macrocycle ranges from 15 amino acids to 19 amino acids. For example, the length of the prepared peptidomimetic macrocycle ranges from 15-18 or 15-17 amino acids. For example, the length of the prepared peptidomimetic macrocycle ranges from 16-19 or 17-19 amino acids. In some embodiments, the length of the prepared peptidomimetic macrocycle ranges from 16 amino acids to 18 amino acids. For example, the length of the prepared peptidomimetic macrocycle is 17. In some embodiments, the length of the prepared peptidomimetic macrocycle is 14. In some embodiments, the length of the prepared peptidomimetic macrocycle is 15. In some embodiments, the length of the prepared peptidomimetic macrocycle is 16. In some embodiments, the length of the prepared peptidomimetic macrocycle is 17. In some embodiments, the length of the prepared peptidomimetic macrocycle is 18. In some embodiments, the length of the prepared peptidomimetic macrocycle is 19. In some embodiments, the length of the prepared peptidomimetic macrocycle is 20. In some embodiments, the length of the prepared peptidomimetic macrocycle is 21.


A peptidomimetic macrocycle with enhanced cell penetrability can be prepared based on the von Heijne value of the polypeptide. In some embodiments, the von Heijne value of the prepared peptidomimetic macrocycle ranges from 2 to 9. For example, the von Heijne value of the prepared peptidomimetic macrocycle is 2, 3, 4, 5, 6, 7, 8, or 9, along with all values in between. For example, the von Heijne value of the prepared peptidomimetic macrocycle ranges from 2-8, 2-7, 2-6, 2-5, 2-4, or 2-3. For example, the von Heijne value of the prepared peptidomimetic macrocycle ranges from 3-9, 4-9, 5-9, 6-9, 7-9, or 8-9. In some embodiments, the von Heijne value of the prepared peptidomimetic macrocycle ranges from 3 to 8. For example, the von Heijne value of the prepared peptidomimetic macrocycle ranges from 3-7, 3-6, 3-5, or 3-4. For example, the von Heijne value of the prepared peptidomimetic macrocycle ranges from 4-8, 5-8, 6-8, or 7-9.


In some embodiments, the von Heijne value of the prepared peptidomimetic macrocycle ranges from 4 to 7. For example, the von Heijne value of the prepared peptidomimetic macrocycle ranges from 4-6 or 4-5. For example, the von Heijne value of the prepared peptidomimetic macrocycle ranges from 5-7 or 5-6. In some embodiments, the von Heijne value of the prepared peptidomimetic macrocycle ranges from 4-6. In some embodiments, the von Heijne value of the prepared peptidomimetic macrocycle ranges from 4-5. In some embodiments, the von Heijne value of the prepared peptidomimetic macrocycle ranges from 4.5-5.5, including 4.5, 4.6, 4.7, 4.8, 4.9, 5.0, 5.1, 5.2, 5.3, 5.4, and 5.5 along with all values in between. In some embodiments, the von Heijne value of the prepared peptidomimetic macrocycle ranges from 4.5-9.5. For example, the von Heijne value of the prepared peptidomimetic macrocycle ranges from 4.5-8.5, 4.5-7.5, 4.5-6.5, 5.5-9.5, 5.5-8.5, 5.5-7.5, 5.5-6.5, 6.5-9.5, 6.5-8.5, 6.5-7.5, 7.5-9.5, or 7.5-8.5.


A peptidomimetic macrocycle with enhanced cell penetrability can be prepared based on the net charge carried by a peptide. For example, peptidomimetic macrocycles carrying a high number of negative charges can have poor cell permeability. A peptidomimetic macrocycle carrying a high number of positive charges can have good cell permeability, but can cause undesired cell damage (e.g., cell lysis). A prepared peptidomimetic macrocycle can carry a net charge such that the polypeptide is cell permeable, but not damaging to cells (e.g., does not cause cell lysis). In some embodiments, the net charge of the prepared peptidomimetic macrocycle ranges from −4 to +2, including −4, −3, −2, −1, 0, +1, and +2. In some embodiments, the net charge of the prepared peptidomimetic macrocycle ranges from −3 to +1, including −3, −2, −1, 0 and +1.


In some embodiments, the net charge of the prepared peptidomimetic macrocycle ranges from −2 to 0, including −2, −1, and 0. In some embodiments, the net charge of the prepared peptidomimetic macrocycle is zero or negative. In some embodiments, the net charge of the prepared peptidomimetic macrocycle is not positive. In some embodiments, the net charge of the prepared peptidomimetic macrocycle is zero or is not positive. In some embodiments, the net charge of the prepared peptidomimetic macrocycle is −2. In some embodiments, the net charge of the prepared peptidomimetic macrocycle is −1. In some embodiments, the net charge of the prepared peptidomimetic macrocycle is 0.


A peptidomimetic macrocycle with enhanced cell penetrability can be prepared based on the alanine content of the polypeptide. In some embodiments, the alanine content of the prepared peptidomimetic macrocycle ranges from 15% to 50%. For example, the alanine content of the prepared peptidomimetic macrocycle can be 15%, 16%, 17%, 18%, 19%, 20%, 21%, 22%, 23%, 24%, 25%, 26%, 27%, 28%, 29%, 30%, 31%, 32%, 33%, 34%, 35%, 36%, 37%, 38%, 39%, 40%, 41%, 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49%, and 50%, along with all values in between. In some embodiments, the alanine content of the prepared peptidomimetic macrocycle ranges from 15% to 45%. In some embodiments, the alanine content of the prepared peptidomimetic macrocycle ranges from 15% to 40%. In some embodiments, the alanine content of the prepared peptidomimetic macrocycle ranges from 15% to 35%. In some embodiments, the alanine content of the prepared peptidomimetic macrocycle ranges from 20% to 50%. In some embodiments, the alanine content of the prepared peptidomimetic macrocycle ranges from 20% to 45%. In some embodiments, the alanine content of the prepared peptidomimetic macrocycle ranges from 20% to 40%. In some embodiments, the alanine content of the prepared peptidomimetic macrocycle ranges from 20% to 35%. In some embodiments, the alanine content of the prepared peptidomimetic macrocycle ranges from 20% to 30%. In some embodiments, the alanine content of the prepared peptidomimetic macrocycle ranges from 20% to 25%. In some embodiments, the alanine content of the prepared peptidomimetic macrocycle ranges from 25% to 50%. In some embodiments, the alanine content of the prepared peptidomimetic macrocycle ranges from 25% to 45%. In some embodiments, the alanine content of the prepared peptidomimetic macrocycle ranges from 25% to 40%. For example, the alanine content of the prepared peptidomimetic macrocycle can be 25%, 26%, 27%, 28%, 29%, 30%, 31%, 32%, 33%, 34%, 35%, 36%, 37%, 38%, 39%, and 40% along with all values in between. In some embodiments, the alanine content of the prepared peptidomimetic macrocycle ranges from 25% to 35%. In some embodiments, the alanine content of the prepared peptidomimetic macrocycle ranges from 25% to 30%. In some embodiments, the alanine content of the prepared peptidomimetic macrocycle ranges from 30% to 50%. In some embodiments, the alanine content of the prepared peptidomimetic macrocycle ranges from 30% to 45%. In some embodiments, the alanine content of the prepared peptidomimetic macrocycle ranges from 30% to 40%. In some embodiments, the alanine content of the prepared peptidomimetic macrocycle ranges from 30% to 35%. In some embodiments, the alanine content of the prepared peptidomimetic macrocycle ranges from 35% to 50%. In some embodiments, the alanine content of the prepared peptidomimetic macrocycle ranges from 35% to 45%. In some embodiments, the alanine content of the prepared peptidomimetic macrocycle ranges from 35% to 40%.


A peptidomimetic macrocycle with enhanced cell penetrability can be prepared based on the length and the von Heijne value of the polypeptide. For example, the length of the prepared peptidomimetic macrocycle ranges from 10 amino acids to 24 amino acids, from 11 amino acids to 23 amino acids, from 12 amino acids to 22 amino acids, from 13 amino acids to 21 amino acids, from 14 amino acids to 20 amino acids, from 15 amino acids to 19 amino acids, or from 16 amino acids to 18 amino acids, and the von Heijne value of the prepared peptidomimetic macrocycle ranges from 2 to 9, from 3 to 8, from 4 to 7, from 4 to 6, or from 4 to 5. For example, the length of the prepared peptidomimetic macrocycle is 10 amino acids, 11 amino acids, 12 amino acids, 13 amino acids, 14 amino acids, 15 amino acids, 16 amino acids, 17 amino acids, 18 amino acids, 19 amino acids, 20 amino acids, or 21 amino acids, and the von Heijne value of the prepared peptidomimetic macrocycle ranges from 4.5 to 5.5. For example, the prepared peptidomimetic macrocycle has a length ranging from 14 amino acids to 20 amino acids, and a von Heijne value ranging from 4 and 7.


A peptidomimetic macrocycle with enhanced cell penetrability can be prepared based on the length and the alanine content of the polypeptide. For example, the length of the prepared peptidomimetic macrocycle ranges from 10 amino acids to 24 amino acids, from 11 amino acids to 23 amino acids, from 12 amino acids to 22 amino acids, from 13 amino acids to 21 amino acids, from 14 amino acids to 20 amino acids, from 15 amino acids to 19 amino acids, or from 16 amino acids to 18 amino acids, and the alanine content of the prepared peptidomimetic macrocycle ranges from 15% to 50%, including 15%, 16%, 17%, 18%, 19%, 20%, 21%, 22%, 23%, 24%, 25%, 26%, 27%, 28%, 29%, 30%, 31%, 32%, 33%, 34%, 35%, 36%, 37%, 38%, 39%, 40%, 41%, 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49%, and 50% along with all values in between. For example, the length of the prepared peptidomimetic macrocycle is 10 amino acids, 11 amino acids, 12 amino acids, 13 amino acids, 14 amino acids, 15 amino acids, 16 amino acids, 17 amino acids, 18 amino acids, 19 amino acids, 20 amino acids, or 21 amino acids, and the alanine content of the prepared peptidomimetic macrocycle ranges from 25% to 40%, including 25%, 26%, 27%, 28%, 29%, 30%, 31%, 32%, 33%, 34%, 35%, 36%, 37%, 38%, 39%, and 40% along with all values in between. For example, the prepared peptidomimetic macrocycle has a length ranging from 14 amino acids to 20 amino acids, and an alanine content ranging from 25% to 40%.


A peptidomimetic macrocycle with enhanced cell penetrability can be prepared based on the length and the net charge of the polypeptide. For example, the length of the prepared peptidomimetic macrocycle ranges from 10 amino acids to 24 amino acids, from 11 amino acids to 23 amino acids, from 12 amino acids to 22 amino acids, from 13 amino acids to 21 amino acids, from 14 amino acids to 20 amino acids, from 15 amino acids to 19 amino acids, or from 16 amino acids to 18 amino acids, and the net charge of the prepared peptidomimetic macrocycle ranges from −3 to 1, including −3, −2, −1, 0 and 1. For example, the length of the prepared peptidomimetic macrocycle is 10 amino acids, 11 amino acids, 12 amino acids, 13 amino acids, 14 amino acids, 15 amino acids, 16 amino acids, 17 amino acids, 18 amino acids, 19 amino acids, 20 amino acids, or 21 amino acids, and the net charge of the prepared peptidomimetic macrocycle ranges from −3 to 1, including −3, −2, −1, 0 and 1. For example, the prepared peptidomimetic macrocycle has a length ranging from 14 amino acids to 20 amino acids, and a net charge ranging from −2 to 0.


A peptidomimetic macrocycle with enhanced cell penetrability can be prepared based on the von Heijne value and the net charge of the polypeptide. For example, the von Heijne value of the prepared peptidomimetic macrocycle ranges from 2 to 9, from 3 to 8, from 4 to 7, from 4 to 6, or from 4 to 5, and the net charge of the prepared peptidomimetic macrocycle ranges from −3 to 1, including −3, −2, −1, 0 and 1. For example, the von Heijne value of the prepared peptidomimetic macrocycle ranges from 4.5 to 5.5, including 4.5, 4.6, 4.7, 4.8, 4.9, 5.0, 5.1, 5.2, 5.3, 5.4, and 5.5 along with all values in between, and the net charge of the prepared peptidomimetic macrocycle ranges from −3 to 1, including −3, −2, −1, 0 and 1. For example, the prepared peptidomimetic macrocycle has a von Heijne value ranging from 4 and 7, and a net charge ranging from −2 to 0.


A peptidomimetic macrocycle with enhanced cell penetrability can be prepared based on the von Heijne value and the alanine content of the polypeptide. For example, the von Heijne value of the prepared peptidomimetic macrocycle ranges from 2 to 9, from 3 to 8, from 4 to 7, from 4 to 6, or from 4 to 5, and the alanine content of the prepared peptidomimetic macrocycle ranges from 15% to 50%, including 15%, 16%, 17%, 18%, 19%, 20%, 21%, 22%, 23%, 24%, 25%, 26%, 27%, 28%, 29%, 30%, 31%, 32%, 33%, 34%, 35%, 36%, 37%, 38%, 39%, 40%, 41%, 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49%, and 50% along with all values in between. For example, the von Heijne value of the prepared peptidomimetic macrocycle ranges from 4.5 to 5.5, including 4.5, 4.6, 4.7, 4.8, 4.9, 5.0, 5.1, 5.2, 5.3, 5.4, and 5.5 along with all values in between, and the alanine content of the prepared peptidomimetic macrocycle ranges from 25% to 40%, including 25%, 26%, 27%, 28%, 29%, 30%, 31%, 32%, 33%, 34%, 35%, 36%, 37%, 38%, 39%, and 40% along with all values in between. For example, the prepared peptidomimetic macrocycle has a von Heijne value ranging from 4 and 7, and an alanine content ranging from 25% to 40%.


A peptidomimetic macrocycle with enhanced cell penetrability can be prepared based on length, von Heijne value and alanine content of the polypeptide. For example, the prepared peptidomimetic macrocycle has a length ranging from 14 amino acids to 20 amino acids, a von Heijne value ranging from 4 and 7, and an alanine content ranging from 25% to 40%.


A peptidomimetic macrocycle with enhanced cell penetrability can be prepared based on the von Heijne value and the net charge of the polypeptide. For example, the prepared peptidomimetic macrocycle has a length ranging from 14 amino acids to 20 amino acids, a von Heijne value ranging from 4 and 7, and a net charge ranging from −2 to 0.


A peptidomimetic macrocycle with enhanced cell penetrability can be prepared based on the von Heijne value, the net charge, and the alanine content of the polypeptide. For example, the prepared peptidomimetic macrocycle has a von Heijne value ranging from 4 and 7, a net charge ranging from −2 to 0, and an alanine content ranging from 25% to 40%.


A peptidomimetic macrocycle with enhanced cell penetrability can be prepared based on the length, the net charge, and the alanine content of the polypeptide. For example, the prepared peptidomimetic macrocycle has a length ranging from 14 amino acids to 20 amino acids, a net charge ranging from −2 to 0, and an alanine content ranging from 25% to 40%.


A peptidomimetic macrocycle with enhanced cell penetrability can be prepared based on the length of its amino acid sequence, its von Heijne value, its net charge, and the alanine content of its amino acid sequence. For example, the prepared peptidomimetic macrocycle has a length ranging from 14 amino acids to 20 amino acids, a von Heijne value ranging from 4 and 7, a net charge ranging from −2 to 0, and an alanine content ranging from 25% to 40%.


In some embodiments, a peptidomimetic macrocycle with enhanced cell penetrability can be prepared based on the reverse-phase HPLC retention time of the polypeptide.


In some embodiments, a peptidomimetic macrocycle with enhanced cell penetrability can be prepared based on amphipathicity of the polypeptide.


In some embodiments, a peptidomimetic macrocycle with enhanced cell penetrability can be prepared based on solubility of the polypeptide, for example if the prepared peptidomimetic macrocycle is determined to be soluble based on visual examination of the turbidity of a solution of the polypeptide.


Assay to Determine α-helicity


In solution, the secondary structure of polypeptides with α-helical domains will reach a dynamic equilibrium between random coil structures and α-helical structures, often expressed as a “percent helicity”. Thus, for example, alpha-helical domains are predominantly random coils in solution, with α-helical content usually under 25%. Peptidomimetic macrocycles with optimized linkers, on the other hand, possess, for example, an alpha-helicity that is at least two-fold greater than that of a corresponding uncrosslinked polypeptide. In some embodiments, macrocycles will possess an alpha-helicity of greater than 50%. To assay the helicity of peptidomimetic macrocycles, the compounds are dissolved in an aqueous solution (e.g. 50 mM potassium phosphate solution at pH 7, or distilled H2O, to concentrations of 25-50 μM). Circular dichroism (CD) spectra are obtained on a spectropolarimeter (e.g., Jasco J-710) using standard measurement parameters (e.g. temperature, 20° C.; wavelength, 190-260 nm; step resolution, 0.5 nm; speed, 20 nm/sec; accumulations, 10; response, 1 sec; bandwidth, 1 nm; path length, 0.1 cm). The α-helical content of each peptide is calculated by dividing the mean residue ellipticity (e.g. [Φ]222obs) by the reported value for a model helical decapeptide (Yang et al. (1986), Methods Enzymol. 130:208)).


Assay to Determine Melting Temperature (Tm)


A peptidomimetic macrocycle comprising a secondary structure such as an α-helix exhibits, for example, a higher melting temperature than a corresponding uncrosslinked polypeptide. Typically peptidomimetic macrocycles exhibit Tm of >60° C. representing a highly stable structure in aqueous solutions. To assay the effect of macrocycle formation on melting temperature, peptidomimetic macrocycles or unmodified peptides are dissolved in distilled H2O (e.g. at a final concentration of 50 μM) and the Tm is determined by measuring the change in ellipticity over a temperature range (e.g. 4 to 95° C.) on a spectropolarimeter (e.g., Jasco J-710) using standard parameters (e.g. wavelength 222 nm; step resolution, 0.5 nm; speed, 20 nm/sec; accumulations, 10; response, 1 sec; bandwidth, 1 nm; temperature increase rate: 1° C./min; path length, 0.1 cm).


Protease Resistance Assay


The amide bond of the peptide backbone is susceptible to hydrolysis by proteases, thereby rendering peptidic compounds vulnerable to rapid degradation in vivo. Peptide helix formation, however, typically buries the amide backbone and therefore can shield it from proteolytic cleavage. The peptidomimetic macrocycles can be subjected to in vitro trypsin proteolysis to assess for any change in degradation rate compared to a corresponding uncrosslinked polypeptide. For example, the peptidomimetic macrocycle and a corresponding uncrosslinked polypeptide are incubated with trypsin agarose and the reactions quenched at various time points by centrifugation and subsequent HPLC injection to quantitate the residual substrate by ultraviolet absorption at 280 nm. Briefly, the peptidomimetic macrocycle and peptidomimetic precursor (5 mcg) are incubated with trypsin agarose (Pierce) (S/E ˜125) for 0, 10, 20, 90, and 180 minutes. Reactions are quenched by tabletop centrifugation at high speed; remaining substrate in the isolated supernatant is quantified by HPLC-based peak detection at 280 nm. The proteolytic reaction displays first order kinetics and the rate constant, k, is determined from a plot of ln[S] versus time (k=−1Xslope).


Ex Vivo Stability Assay


Peptidomimetic macrocycles with optimized linkers possess, for example, an ex vivo half-life that is at least two-fold greater than that of a corresponding uncrosslinked polypeptide, and possess an ex vivo half-life of 12 hours or more. For ex vivo serum stability studies, a variety of assays can be used. For example, a peptidomimetic macrocycle and a corresponding uncrosslinked polypeptide (2 mcg) are incubated with fresh mouse, rat and/or human serum (2 mL) at 37° C. for 0, 1, 2, 4, 8, and 24 hours. To determine the level of intact compound, the following procedure can be used: The samples are extracted by transferring 100 μl of sera to 2 ml centrifuge tubes followed by the addition of 10 μL of 50% formic acid and 500 μL acetonitrile and centrifugation at 14,000 RPM for 10 min at 4±2° C. The supernatants are then transferred to fresh 2 ml tubes and evaporated on Turbovap under N2<10 psi, 37° C. The samples are reconstituted in 100 μL of 50:50 acetonitrile:water and submitted to LC-MS/MS analysis.


In Vitro Binding Assays


To assess the binding and affinity of peptidomimetic macrocycles and peptidomimetic precursors to acceptor proteins, a fluorescence polarization assay (FPA) is used, for example. The FPA technique measures the molecular orientation and mobility using polarized light and fluorescent tracer. When excited with polarized light, fluorescent tracers (e.g., FITC) attached to molecules with high apparent molecular weights (e.g. FITC-labeled peptides bound to a large protein) emit higher levels of polarized fluorescence due to their slower rates of rotation as compared to fluorescent tracers attached to smaller molecules (e.g. FITC-labeled peptides that are free in solution).


For example, fluoresceinated peptidomimetic macrocycles (25 nM) are incubated with the acceptor protein (25-1000 nM) in binding buffer (140 mM NaCl, 50 mM Tris-HCL, pH 7.4) for 30 minutes at room temperature. Binding activity is measured, for example, by fluorescence polarization on a luminescence spectrophotometer (e.g. Perkin-Elmer LS50B). Kd values can be determined by nonlinear regression analysis using, for example, Graphpad Prism software (GraphPad Software, Inc., San Diego, Calif.). A peptidomimetic macrocycle shows, In some embodiments, similar or lower Kd than a corresponding uncrosslinked polypeptide.


In Vitro Displacement Assays to Characterize Antagonists of Peptide-Protein Interactions


To assess the binding and affinity of compounds that antagonize the interaction between a peptide and an acceptor protein, a fluorescence polarization assay (FPA) utilizing a fluoresceinated peptidomimetic macrocycle derived from a peptidomimetic precursor sequence is used, for example. The FPA technique measures the molecular orientation and mobility using polarized light and fluorescent tracer. When excited with polarized light, fluorescent tracers (e.g., FITC) attached to molecules with high apparent molecular weights (e.g. FITC-labeled peptides bound to a large protein) emit higher levels of polarized fluorescence due to their slower rates of rotation as compared to fluorescent tracers attached to smaller molecules (e.g. FITC-labeled peptides that are free in solution). A compound that antagonizes the interaction between the fluoresceinated peptidomimetic macrocycle and an acceptor protein will be detected in a competitive binding FPA experiment.


For example, putative antagonist compounds (1 nM to 1 mM) and a fluoresceinated peptidomimetic macrocycle (25 nM) are incubated with the acceptor protein (50 nM) in binding buffer (140 mM NaCl, 50 mM Tris-HCL, pH 7.4) for 30 minutes at room temperature. Antagonist binding activity is measured, for example, by fluorescence polarization on a luminescence spectrophotometer (e.g. Perkin-Elmer LS50B). Kd values can be determined by nonlinear regression analysis using, for example, Graphpad Prism software (GraphPad Software, Inc., San Diego, Calif.).


Any class of molecule, such as small organic molecules, peptides, oligonucleotides or proteins can be examined as putative antagonists in this assay.


Assay for Protein-Ligand Binding by Affinity Selection-Mass Spectrometry

To assess the binding and affinity of test compounds for proteins, an affinity-selection mass spectrometry assay is used, for example. Protein-ligand binding experiments are conducted according to the following representative procedure outlined for a system-wide control experiment using 1 μM peptidomimetic macrocycle plus 5 μM hMDM2. A 1 μL DMSO aliquot of a 40 μM stock solution of peptidomimetic macrocycle is dissolved in 19 μL of PBS (Phosphate-buffered saline: 50 mM, pH 7.5 Phosphate buffer containing 150 mM NaCl). The resulting solution is mixed by repeated pipetting and clarified by centrifugation at 10 000 g for 10 min. To a 4 μL aliquot of the resulting supernatant is added 4 μL of 10 μM hMDM2 in PBS. Each 8.0 μL experimental sample thus contains 40 pmol (1.5 μg) of protein at 5.0 μM concentration in PBS plus 1 μM peptidomimetic macrocycle and 2.5% DMSO. Duplicate samples thus prepared for each concentration point are incubated for 60 min at room temperature, and then chilled to 4° C. prior to size-exclusion chromatography-LC-MS analysis of 5.0 μL injections. Samples containing a target protein, protein-ligand complexes, and unbound compounds are injected onto an SEC column, where the complexes are separated from non-binding component by a rapid SEC step. The SEC column eluate is monitored using UV detectors to confirm that the early-eluting protein fraction, which elutes in the void volume of the SEC column, is well resolved from unbound components that are retained on the column. After the peak containing the protein and protein-ligand complexes elutes from the primary UV detector, it enters a sample loop where it is excised from the flow stream of the SEC stage and transferred directly to the LC-MS via a valving mechanism. The (M+3H)3+ ion of the peptidomimetic macrocycle is observed by ESI-MS at the expected m/z, confirming the detection of the protein-ligand complex.


Assay for Protein-Ligand Kd Titration Experiments


To assess the binding and affinity of test compounds for proteins, a protein-ligand Kd titration experiment is performed, for example. Protein-ligand Kd titrations experiments are conducted as follows: 2 μL DMSO aliquots of a serially diluted stock solution of titrant peptidomimetic macrocycle (5, 2.5, . . . , 0.098 mM) are prepared then dissolved in 38 μL of PBS. The resulting solutions are mixed by repeated pipetting and clarified by centrifugation at 10 000 g for 10 min. To 4.0 μL aliquots of the resulting supernatants is added 4.0 μL of 10 μM hMDM2 in PBS. Each 8.0 μL experimental sample thus contains 40 pmol (1.5 μg) of protein at 5.0 μM concentration in PBS, varying concentrations (125, 62.5, . . . , 0.24 μM) of the titrant peptide, and 2.5% DMSO. Duplicate samples thus prepared for each concentration point are incubated at room temperature for 30 min, then chilled to 4° C. prior to SEC-LC-MS analysis of 2.0 μL injections. The (M+H)1+, (M+2H)2+, (M+3H)3+ and/or (M+Na)1+ ion is observed by ESI-MS; extracted ion chromatograms are quantified, then fit to equations to derive the binding affinity Kd as described in “A General Technique to Rank Protein-Ligand Binding Affinities and Determine Allosteric vs. Direct Binding Site Competition in Compound Mixtures.” Annis, D. A.; Nazef, N.; Chuang, C. C.; Scott, M. P.; Nash, H. M. J. Am. Chem. Soc. 2004, 126, 15495-15503; also in “ALIS: An Affinity Selection-Mass Spectrometry System for the Discovery and Characterization of Protein-Ligand Interactions” D. A. Annis, C.-C. Chuang, and N. Nazef. In Mass Spectrometry in Medicinal Chemistry. Edited by Wanner K, Höfner G: Wiley-VCH; 2007:121-184. Mannhold R, Kubinyi H, Folkers G (Series Editors): Methods and Principles in Medicinal Chemistry.


Assay for Competitive Binding Experiments by Affinity Selection-Mass Spectrometry


To determine the ability of test compounds to bind competitively to proteins, an affinity selection mass spectrometry assay is performed, for example. A mixture of ligands at 40 μM per component is prepared by combining 2 μL aliquots of 400 μM stocks of each of the three compounds with 14 μL of DMSO. Then, 1 μL aliquots of this 40 μM per component mixture are combined with 1 μL DMSO aliquots of a serially diluted stock solution of titrant peptidomimetic macrocycle (10, 5, 2.5, . . . , 0.078 mM). These 2 μL samples are dissolved in 38 μL of PBS. The resulting solutions were mixed by repeated pipetting and clarified by centrifugation at 10 000 g for 10 min. To 4.0 μL aliquots of the resulting supernatants is added 4.0 μL of 10 μM hMDM2 protein in PBS. Each 8.0 μL experimental sample thus contains 40 pmol (1.5 μg) of protein at 5.0 μM concentration in PBS plus 0.5 μM ligand, 2.5% DMSO, and varying concentrations (125, 62.5, . . . , 0.98 μM) of the titrant peptidomimetic macrocycle. Duplicate samples thus prepared for each concentration point are incubated at room temperature for 60 min, then chilled to 4° C. prior to SEC-LC-MS analysis of 2.0 μL injections. Additional details on these and other methods are provided in “A General Technique to Rank Protein-Ligand Binding Affinities and Determine Allosteric vs. Direct Binding Site Competition in Compound Mixtures.” Annis, D. A.; Nazef, N.; Chuang, C. C.; Scott, M. P.; Nash, H. M. J. Am. Chem. Soc. 2004, 126, 15495-15503; also in “ALIS: An Affinity Selection-Mass Spectrometry System for the Discovery and Characterization of Protein-Ligand Interactions” D. A. Annis, C.-C. Chuang, and N. Nazef. In Mass Spectrometry in Medicinal Chemistry. Edited by Wanner K, Hofner G: Wiley-VCH; 2007:121-184. Mannhold R, Kubinyi H, Folkers G (Series Editors): Methods and Principles in Medicinal Chemistry.


Binding Assays in Intact Cells


It is possible to measure binding of peptides or peptidomimetic macrocycles to their natural acceptors in intact cells by immunoprecipitation experiments. For example, intact cells are incubated with fluoresceinated (FITC-labeled) compounds for 4 hrs in the absence of serum, followed by serum replacement and further incubation that ranges from 4-18 hrs. Cells are then pelleted and incubated in lysis buffer (50 mM Tris [pH 7.6], 150 mM NaCl, 1% CHAPS and protease inhibitor cocktail) for 10 minutes at 4° C. Extracts are centrifuged at 14,000 rpm for 15 minutes and supernatants collected and incubated with 10 μl goat anti-FITC antibody for 2 hrs, rotating at 4° C. followed by further 2 hrs incubation at 4° C. with protein A/G Sepharose (50 μl of 50% bead slurry). After quick centrifugation, the pellets are washed in lysis buffer containing increasing salt concentration (e.g., 150, 300, 500 mM). The beads are then re-equilibrated at 150 mM NaCl before addition of SDS-containing sample buffer and boiling. After centrifugation, the supernatants are optionally electrophoresed using 4%-12% gradient Bis-Tris gels followed by transfer into Immobilon-P membranes. After blocking, blots are optionally incubated with an antibody that detects FITC and also with one or more antibodies that detect proteins that bind to the peptidomimetic macrocycle.


Cellular Penetrability Assays


A peptidomimetic macrocycle is, for example, more cell penetrable compared to a corresponding uncrosslinked macrocycle. Peptidomimetic macrocycles with optimized linkers possess, for example, cell penetrability that is at least two-fold greater than a corresponding uncrosslinked macrocycle, and often 20% or more of the applied peptidomimetic macrocycle will be observed to have penetrated the cell after 4 hours. To measure the cell penetrability of peptidomimetic macrocycles and corresponding uncrosslinked macrocycle, intact cells are incubated with fluorescently-labeled (e.g. fluoresceinated) peptidomimetic macrocycles or corresponding uncrosslinked macrocycle (10 μM) for 4 hrs in serum free media at 37° C., washed twice with media and incubated with trypsin (0.25%) for 10 min at 37° C. The cells are washed again and resuspended in PBS. Cellular fluorescence is analyzed, for example, by using either a FACSCalibur flow cytometer or Cellomics' KineticScan® HCS Reader.


Cellular Efficacy Assays


The efficacy of certain peptidomimetic macrocycles is determined, for example, in cell-based killing assays using a variety of tumorigenic and non-tumorigenic cell lines and primary cells derived from human or mouse cell populations. Cell viability is monitored, for example, over 24-96 hrs of incubation with peptidomimetic macrocycles (0.5 to 50 μM) to identify those that kill at EC50<10 μM. Several standard assays that measure cell viability are commercially available and are optionally used to assess the efficacy of the peptidomimetic macrocycles. In addition, assays that measure Annexin V and caspase activation are optionally used to assess whether the peptidomimetic macrocycles kill cells by activating the apoptotic machinery. For example, the Cell Titer-glo assay is used which determines cell viability as a function of intracellular ATP concentration.


In Vivo Stability Assay


To investigate the in vivo stability of the peptidomimetic macrocycles, the compounds are, for example, administered to mice and/or rats by IV, IP, PO or inhalation routes at concentrations ranging from 0.1 to 50 mg/kg and blood specimens withdrawn at 0′, 5′, 15′, 30′, 1 hr, 4 hrs, 8 hrs and 24 hours post-injection. Levels of intact compound in 25 μL of fresh serum are then measured by LC-MS/MS as above.


In Vivo Efficacy in Animal Models


To determine the anti-oncogenic activity of peptidomimetic macrocycles in vivo, the compounds are, for example, given alone (IP, IV, PO, by inhalation or nasal routes) or in combination with sub-optimal doses of relevant chemotherapy (e.g., cyclophosphamide, doxorubicin, etoposide). In one example, 5×106 RS4;11 cells (established from the bone marrow of a patient with acute lymphoblastic leukemia) that stably express luciferase are injected by tail vein in NOD-SCID mice 3 hrs after they have been subjected to total body irradiation. If left untreated, this form of leukemia is fatal in 3 weeks in this model. The leukemia is readily monitored, for example, by injecting the mice with D-luciferin (60 mg/kg) and imaging the anesthetized animals (e.g., Xenogen In Vivo Imaging System, Caliper Life Sciences, Hopkinton, Mass.). Total body bioluminescence is quantified by integration of photonic flux (photons/sec) by Living Image Software (Caliper Life Sciences, Hopkinton, Mass.). Peptidomimetic macrocycles alone or in combination with sub-optimal doses of relevant chemotherapeutics agents are, for example, administered to leukemic mice (10 days after injection/day 1 of experiment, in bioluminescence range of 14-16) by tail vein or IP routes at doses ranging from 0.1 mg/kg to 50 mg/kg for 7 to 21 days. Optionally, the mice are imaged throughout the experiment every other day and survival monitored daily for the duration of the experiment. Expired mice are optionally subjected to necropsy at the end of the experiment. Another animal model is implantation into NOD-SCID mice of DoHH2, a cell line derived from human follicular lymphoma, that stably expresses luciferase. These in vivo tests optionally generate preliminary pharmacokinetic, pharmacodynamic and toxicology data.


Clinical Trials


To determine the suitability of the peptidomimetic macrocycles for treatment of humans, clinical trials are performed. For example, patients diagnosed with solid tumor and in need of treatment can be selected and separated in treatment and one or more control groups, wherein the treatment group is administered a peptidomimetic macrocycle, while the control groups receive a placebo or a known anti-cancer drug. The treatment safety and efficacy of the peptidomimetic macrocycles can thus be evaluated by performing comparisons of the patient groups with respect to factors such as survival and quality-of-life. In this example, the patient group treated with a peptidomimetic macrocycle can show improved long-term survival compared to a patient control group treated with a placebo.


Chemical Stability


To assay the chemical stability of the aqueous pharmaceutical formulations disclosed herein, 1 mL of the aqueous pharmaceutical formulation is filled in 2-mL vials with 13-mm Ø stoppers. The smaller vial size can help provide a greater surface-to-volume ratio which would amplify any container/closure effects on product stability. To assure that all surfaces of the vials were challenged, the vials can be stored in an inverted position. The vials are stored at the desired assay temperature, for example −20° C., 5° C., 20° C., and 40° C. for the desired assay time. For example for 1, 2, 3 or 6 months. The samples are analyzed by reverse phase HPLC. Tables 8-12 and 14-17 depict the results of this study. The samples can also be analyzed for particulate matter.


In Vitro Testing for Inhibition of Influenza Replication


This influenza antiviral evaluation assay examines the effects of compounds at designated dose-response concentrations. See also Noah, J. W., W. Severson, D. L. Noah, L. Rasmussen, E. L. White, and C. B. Jonsson, Antiviral Res, 2007. 73(1): p. 50-9. Madin Darby canine kidney (MDCK) cells are used in the assay to test the efficacy of the compounds in preventing the cytopathic effect (CPE) induced by influenza infection. Either Ribavirin or Tamiflu is included in each run as a positive control compound. Subconfluent cultures of MDCK cells are plated into 96-well plates for the analysis of cell viability (cytotoxicity) and antiviral activity (CPE). Drugs are added to the cells 24 hr later. At a designated time, the CPE wells also receive 100 tissue culture infectious doses (100 TCID50s) of titered influenza virus. 72 hr later the cell viability is determined. The effective compound concentrations which reduce viral-induced CPE by 25% (IC25), 50% (IC50), and 90% (IC90) are calculated by regression analysis with semi-log curve fitting. Cell viability is assessed using CellTiter-Glo (Promega). The toxic concentration of drug that reduces cell numbers by 50% and 90% (TC50 and TC90, respectively) are calculated as well. Selectivity (therapeutic) indices (SI=TC/IC) are also calculated.


In Vivo Testing for Inhibition of Influenza Replication


In vivo testing of compounds can be performed, including testing on mammals such as rats or ferrets. Because ferrets (Mustela putorius furo) are naturally susceptible to infection with human influenza A and B viruses and their disease resembles that of human influenza, these animals have been widely used as a model for influenza virus pathogenesis and immunity studies. See Sidwell, R. W. and D. F. Smee, Antiviral Res, 2000. 48(1): p. 1-16; and Colacino, J. M., D. C. DeLong, J. R. Nelson, W. A. Spitzer, J. Tang, F. Victor, and C. Y. Wu, Antimicrob Agents Chemother, 1990. 34(11): p. 2156-63. Ferrets are also the model of choice for the study of avian influenza virus H5N1 pathogenesis in mammals. See also Zitzow, L. A., T. Rowe, T. Morken, W.-J. Shieh, S. Zaki, and J. M. Katz, Pathogenesis of Avian Influenza A (H5N1) Viruses in Ferrets. 2002. p. 4420-4429. The activities of the PB1 Stapled Peptides can be compared to Ribavirin or Oseltamivir as a positive control.


Briefly, young adult male or female ferrets (five ferrets for each treatment group) that are serologically negative by hemagglutination inhibition assay for currently circulating human influenza A or B viruses are quarantined at least 4 days prior to infection in a BSL-3+ animal holding area, where they are housed in cages contained in bioclean portable laminar flow clean room enclosures (Lab Products, Seaford, Del.). Prior to infection, baseline temperatures are measured twice daily for at least 3 days. Ferrets are anesthetized with ketamine (25 mg/kg), xylazine (2 mg/kg), and atropine (0.05 mg/kg) by the intramuscular route and infected intranasally (i.n.) with virus/mL in phosphate-buffered saline (PBS) delivered to the nostrils. Control animals are mock-infected with an equivalent dilution (1:30) of noninfectious allantoic fluid. Stapled Peptides are administered i.v. or i.p. one hour after virus infection. Temperatures are measured twice daily using either a rectal thermometer or a subcutaneous implantable temperature transponder (BioMedic Data Systems, Inc., Seaford, Del.) with pre-infection values averaged to obtain a baseline temperature for each ferret. The change in temperature (in degrees Celsius) is calculated at each time point for each animal. Clinical signs of sneezing (before anesthesia), inappetence, dyspnea, and level of activity are assessed. A scoring system is also used to assess the activity level, and based on the daily scores for each animal in a group a relative inactivity index will be calculated. Rectal temperature and activity scores are used to assess the severity of influenza infection and the ability of Stapled Peptides to prevent flu symptoms


Assaying Inhibition of Viral Polymerase Complex Assembly and Activity


The technique of Bimolecular Fluorescence Complementation (“BiFC”) can be used to assay the compounds. In this technique, N- and C-terminal fragments of fluorescent proteins (e.g. GFP or its derivatives) are fused to interacting proteins. The two non-functional halves of the fluorophore, following the expression in cells, are brought into close proximity as a result of the specific protein interactions, which initiates folding of the fragments into an active protein and results in a detectable fluorescent signal at the site of the protein-protein complex. Thus, through BiFC, the specific interaction between PB1 and PA subunits can be visualized, quantified and localized within live cells. By disrupting PB1-PA interaction with a compound, the BiFC signal will be reduced, indicative of the presence of potential inhibitors targeting the assembly of PB1-PA complex. See Hemerka et. al., J. Virol. 2009, 3944-3955.


Manufacturing of the Aqueous Pharmaceutical Formulation

In another aspect of the disclosure relates to a method of making the aqueous pharmaceutical formulations disclosed herein. The method comprising the steps of dissolving at least one peptidomimetic macrocycle, or a pharmaceutically acceptable salt thereof in an aqueous solution. The method can further comprise of stirring the peptide mixture for some additional time. For example, the peptide mixture can be allowed to be stirred for an additional period of 1 min, 2 min, 3 min, 4 min, 5 min, 6 min, 7 min, 8 min, 9 min, 10 min, 15 min, 30 min, 45 min, 1 h, 1.5 h, 2 h or more.


In some embodiments, the peptidomimetic macrocycle is added to the aqueous solution at once. In some embodiments, the peptidomimetic macrocycle is added slowly to the aqueous solution, for example over a period of at least about 1 min, 2 min, 3 min, 4 min, 5 min, 6 min, 7 min, 8 min, 9 min, 10 min, 15 min, 30 min, 45 min, 1 h, 1.5 h, 2 h or more. In some embodiments, the peptidomimetic macrocycle is added slowly over a period of at most about 2 h, 1.5 h, 1 h, 45 min, 30 min, 15 min, 10 min, 9 min, 8 min, 7 min, 6 min, 5 min, 4 min, 3 min, 2 min, 1 min or less.


The aqueous solution comprises an aqueous diluent. The amount of the aqueous diluent can be in the range of about 10-99% w/v of formulation. In some embodiments, the amount of aqueous diluent in the formulation is about 50-99% w/v. For example, the amount of aqueous diluent is in the range of about 50-95% w/v, about 50-90% w/v, about 50-85% w/v, about 50-80% w/v, about 50-75% w/v, about 50-70% w/v, about 50-65% w/v, about 50-60% w/v, about 50-55% w/v, about 55-95% w/v, about 55-90% w/v, about 55-85% w/v, about 55-80% w/v, about 55-75% w/v, about 55-70% w/v, about 55-65% w/v, about 55-60% w/v, about 60-95% w/v, about 60-90% w/v, about 60-85% w/v, about 60-80% w/v, about 60-75% w/v, about 60-70% w/v, about 60-65% w/v, about 65-95% w/v, about 65-90% w/v, about 65-85% w/v, about 65-80% w/v, about 65-75% w/v, about 65-70% w/v, about 70-95% w/v, about 70-90% w/v, about 70-85% w/v, 70-80% w/v, about 70-75% w/v, about 75-95% w/v, about 75-90% w/v, about 75-85% w/v, about 75-80% w/v, about 70-95% w/v, about 70-90% w/v, about 70-85% w/v, about 70-80% w/v, about 70-75% w/v, about 75-95% w/v, about 75-90% w/v, about 75-85% w/v, about 75-80% w/v, about 80-95% w/v, about 80-90% w/v, about 80-85% w/v, about 85-95% w/v, about 85-90% w/v, or about 90-95% w/v. In some embodiments, the amount of aqueous diluent in a formulation is about 85-99% w/v. In some embodiments, the amount of the aqueous diluent in a formulation is about 85% w/v, about 86% w/v, about 87% w/v, about 88% w/v, about 89% w/v, about 90% w/v, about 91% w/v, about 92% w/v, about 93% w/v, about 94% w/v, about 95% w/v, about 96% w/v, about 97% w/v, about 98% w/v, or about 99% w/v. In some embodiments, the amount of the aqueous diluent in the formulation is about 90% w/v. In some embodiments, the amount of the diluent in the formulation is about 10% w/v, about 20% w/v, about 30% w/v, about 40% w/v, about 50% w/v, about 60% w/v, about 70% w/v, about 80% w/v, or about 90% w/v. In some embodiments the diluent is water (for example, water for injection) and it comprises about 90% w/v of the formulation.


The amount of a peptidomimetic macrocycle in the aqueous pharmaceutical formulations disclosed herein can range from about 0.0001-50.0% w/v. For example, the amount of the a peptidomimetic macrocycle can be about 0.0001-10.0 w/v %, about 0.005-10.0% w/v, about 0.01-10.0% w/v, about 0.05-10.0% w/v, about 0.1-10.0% w/v, about 0.5-10.0 w/v, about 1.0-10.0% w/v, about 2.0-10.0% w/v, about 3.0-10.0% w/v, about 4.0-10.0% w/v, about 5.0-10.0 w/v, 6.0-10.0% w/v, about 7.0-10.0% w/v, about 8.0-10.0% w/v, about 9.0-10.0% w/v, about 0.0001-5.0 w/v %, about 0.005-5.0% w/v, about 0.01-5.0% w/v, about 0.05-5.0% w/v, about 0.1-5.0% w/v, about 0.5-5.0% w/v, about 1.0-5.0% w/v, about 2.0-5.0% w/v, about 3.0-5.0% w/v, about 4.0-5.0% w/v, about 0.0001-2.0 w/v %, about 0.005-2.0% w/v, about 0.01-2.0% w/v, about 0.05-2.0% w/v, about 0.1-2.0% w/v, about 0.5-2.0% w/v, or about 1.0-2.0% w/v. In some embodiments, the peptidomimetic macrocycle is a p53-based peptidomimetic macrocycle and the amount is about 0.1-5.0% w/v, for example about 1.0% w/v, about 1.5% w/v, or about 2.0% w/v.


In some embodiments, the amount of the peptidomimetic macrocycle is in the range of about 1-20.0% w/v, 5-20.0% w/v, about 7-20.0% w/v, about 10-20.0% w/v, about 12-20.0% w/v, 15-20.0% w/v, 17-20.0% w/v, about 5-25.0% w/v, 7-25.0% w/v, 10-25.0% w/v, 12-25.0% w/v, 15-25.0% w/v, 17-25.0% w/v, 20-25.0% w/v, or 22-25.0% w/v; 5-35.0% w/v, 7-35.0% w/v, 10-35.0% w/v, 12-35.0% w/v, 15-35.0% w/v, 17-35.0% w/v, 20-35.0% w/v, 22-35.0% w/v, 25-35.0% w/v, 27-35.0% w/v, 30-35.0% w/v, or 32-35.0% w/v; 5-40.0% w/v, 7-40.0% w/v, about 10-40.0% w/v, about 12-40.0% w/v, about 15-40.0% w/v, about 17-40.0% w/v, about 20-40.0% w/v, 22-40.0% w/v, 25-40.0% w/v, 27-40.0% w/v, 30-40.0% w/v, 33-40.0% w/v, 35-40.0% w/v, or 37-40.0% w/v; 5-50.0% w/v, 10-50.0% w/v, 12-50.0% w/v, 15-50.0% w/v, 20-50.0% w/v, 22-50.0% w/v, 25-50.0% w/v, 27-50.0% w/v, 30-50.0% w/v, 32-50.0% w/v, 35-50.0% w/v, 37-50.0% w/v, 40-50.0% w/v, 42-50.0% w/v, 45-50.0% w/v, or 47-50.0% w/v.


In some embodiments, the amount of peptidomimetic macrocycle is about 0.5%, about 1.0%, about 1.5%, about 2.0%, about 2.5%, about 3.0%, about 3.5%, about 4.0%, about 4.5%, about 5.0%, about 5.5%, about 6.0%, about 6.5%, about 7.0%, about 7.5%, about 8.0%, about 8.5%, about 9.0%, about 9.5, about 10%, about 15%, about 20%, about 25%, about 30%, about 35%, about 40%, about 45%, or about 50% w/v.


The concentration of a peptidomimetic macrocycle in the aqueous pharmaceutical formulations disclosed herein can be in the range of about 1-100 mg/mL. In some embodiments, the amount of a peptidomimetic macrocycle in the formulation is about 1-5 mg/mL, about 1-10 mg/mL, about 1-15 mg/mL, about 1-20 mg/mL, about 1-25 mg/mL, about 1-30 mg/mL, about 1-35 mg/mL, about 1-40 mg/mL, about 1-45 mg/mL, about 1-50 mg/mL, about 1-60 mg/mL, about 1-70 mg/mL, about 1-80 mg/mL, about 1-90 mg/mL, about 5-10 mg/mL, about 5-15 mg/mL, about 5-20 mg/mL, about 5-25 mg/mL, about 5-30 mg/mL, about 5-35 mg/mL, about 5-40 mg/mL, about 5-45 mg/mL, about 5-50 mg/mL, about 5-60 mg/mL, about 5-70 mg/mL, about 5-80 mg/mL, about 5-90 mg/mL, about 5-100 mg/mL, about 10-15 mg/mL, about 10-20 mg/mL, about 10-25 mg/mL, about 10-30 mg/mL, about 10-35 mg/mL, about 10-40 mg/mL, about 10-45 mg/mL, about 10-50 mg/mL, about 10-60 mg/mL, about 10-70 mg/mL, about 10-80 mg/mL, about 10-90 mg/mL, about 10-100 mg/mL, about 15-20 mg/mL, about 15-25 mg/mL, about 15-30 mg/mL, about 15-35 mg/mL, about 15-40 mg/mL, about 15-45 mg/mL, about 15-50 mg/mL, about 15-60 mg/mL, about 15-70 mg/mL, about 15-80 mg/mL, about 15-90 mg/mL, about 15-100 mg/mL, about 20-25 mg/mL, about 20-30 mg/mL, about 20-35 mg/mL, about 20-40 mg/mL, about 20-45 mg/mL, about 20-50 mg/mL, about 20-60 mg/mL, about 20-70 mg/mL, about 20-80 mg/mL, about 20-90 mg/mL, about 20-100 mg/mL, about 25-30 mg/mL, about 25-35 mg/mL, about 25-40 mg/mL, about 25-45 mg/mL, about 25-50 mg/mL, about 25-60 mg/mL, about 25-70 mg/mL, about 25-80 mg/mL, about 25-90 mg/mL, about 25-100 mg/mL, about 30-35 mg/mL, about 30-40 mg/mL, about 30-45 mg/mL, about 30-50 mg/mL, about 30-60 mg/mL, about 30-70 mg/mL, about 30-80 mg/mL, about 30-90 mg/mL, about 30-100 mg/mL, about 35-40 mg/mL, about 35-45 mg/mL, about 35-50 mg/mL, about 35-60 mg/mL, about 35-70 mg/mL, about 35-80 mg/mL, about 35-90 mg/mL, about 35-100 mg/mL, about 40-45 mg/mL, about 40-50 mg/mL, about 40-60 mg/mL, about 40-70 mg/mL, about 40-80 mg/mL, about 40-90 mg/mL, about 45-50 mg/mL, about 45-60 mg/mL, about 45-70 mg/mL, about 45-80 mg/mL, about 45-90 mg/mL, about 40-100 mg/mL, about 50-60 mg/mL, about 50-70 mg/mL, about 50-80 mg/mL, about 50-90 mg/mL, about 50-100 mg/mL, about 60-70 mg/mL, about 60-80 mg/mL, about 60-90 mg/mL, about 60-100 mg/mL, about 70-80 mg/mL, about 70-90 mg/mL, about 70-100 mg/mL, about 80-90 mg/mL, about 80-100 mg/mL or about 90-100 mg/mL. In some embodiments, the amount of the peptidomimetic macrocycles in the formulations of the disclosure can be about 1 mg/mL, about 2 mg/mL, about 3 mg/mL, about 4 mg/mL, about 5 mg/mL, about 6 mg/mL, about 7 mg/mL, about 8 mg/mL, about 9 mg/mL, about 10 mg/mL, about 11 mg/mL, about 12 mg/mL, about 13 mg/mL, about 14 mg/mL, about 15 mg/mL, about 16 mg/mL, about 17 mg/mL, about 18 mg/mL, about 19 mg/mL, or about 20 mg/mL. In some embodiments, the amount of the peptidomimetic macrocycles is about 5 mg/mL, about 10 mg/mL, about 15 mg/mL or about 20 mg/mL. In some embodiments, the peptidomimetic macrocycle is a p53-based peptidomimetic macrocycle and the amount is about 1-20 mg/mL, for example about 1.0 mg/mL, about 5 mg/mL, about 10 mg/mL, about 15 mg/mL or about 20 mg/mL.


In some embodiments, the aqueous solution further comprises a buffering agent. In such embodiments, the method of making the aqueous pharmaceutical formulations disclosed herein comprises dissolving at least one buffering agent in the aqueous diluent, and adding at least one peptidomimetic macrocycle or a pharmaceutically acceptable salt thereof. In some embodiments, the peptidomimetic macrocycle is added at once. In some embodiments, the peptidomimetic macrocycle is added slowly over a period of time as described above. As described above, the method can further comprise of stirring the peptide mixture for some additional time.


The concentration of the buffering solution can be about 0.01-100 mM. In some embodiments the concentration of the buffering solution is at least 0.1 mM, 1 mM, 10 mM, 20 mM, 30 mM, 40 mM, 50 mM, 60 mM, 70 mM, 80 mM, 90 mM, 100 mM. In some embodiments the concentration of the buffering solution is at most 0.1 mM, 1 mM, 10 mM, 20 mM, 30 mM, 40 mM, 50 mM, 60 mM, 70 mM, 80 mM, 90 mM, 100 mM. In some embodiments, the concentration of the buffering agent is about 1 mM, 2 mM, 3 mM, 4 mM, 5 mM, 6 mM, 7 mM, 8 mM, 9 mM, 10 mM, 11 mM, 12 mM, 13 mM, 14 mM, 15 mM, 16 mM, 17 mM, 18 mM, 19 mM, 20 mM, 21 mM, 22 mM, 23 mM, 24 mM, 25 mM, 26 mM, 27 mM, 28 mM, 29 mM, 30 mM, 31 mM, 32 mM, 33 mM, 34 mM, 35 mM, 36 mM, 37 mM, 38 mM, 39 mM, 40 mM, 41 mM, 42 mM, 43 mM, 44 mM, 45 mM, 46 mM, 47 mM, 48 mM, 49 mM, 50 mM, 60 mM, 70 mM, 80 mM, 90 mM, or 100 mM.


The method can further involve maintaining the pH of the formulation. For example, maintaining the pH of the reaction medium while the peptidomimetic macrocycle is being added and/or dissolved therein. The pH can be maintained by the addition of a pH adjusting agent. Any suitable pH adjusting agents as described above and throughout the disclosure can be used.


Non-limiting examples of suitable pH adjusting agents which can be included in the methods disclosed herein are hydrochloric acid, sodium hydroxide, citric acid, phosphoric acid, lactic acid, tartaric acid, succinic acid, or mixtures thereof. In one embodiment, the pH adjusting agent is hydrochloric acid. In one embodiment, the pH adjusting agent is sodium hydroxide. In one embodiment, the pH adjusting agent is phosphoric acid. In one embodiment, the pH adjusting agent is lactic acid. In one embodiment, the pH adjusting agent is tartaric acid. In one embodiment, the pH adjusting agent is tartaric acid. In one embodiment, the pH adjusting agent is succinic acid. In one embodiment, the buffering agent is a phosphate buffer and the pH adjusting agent in sodium hydroxide. For example, the buffering agent can be NaH2PO4 and the pH adjusting agent can be sodium hydroxide, or the buffering agent can be Na2HPO4 and the pH adjusting agent can be sodium hydroxide, other buffering agent can be a mixture of NaH2PO4 and Na2HPO4 and the pH adjusting agent can be sodium hydroxide, or buffering agent can be KH2PO4 and the pH adjusting agent can be sodium hydroxide, or the buffering agent can be K2HPO4 and the pH adjusting agent can be sodium hydroxide, or the buffering agent can be a mixture of KH2PO4 and K2HPO4 and the pH adjusting agent can be sodium hydroxide.


In some embodiments the amount of the pH adjusting agent added to the aqueous pharmaceutical formulation is in the range of about 0.001-1% w/v. For example, in some embodiments, the amount of the pH adjusting agent present is in the range of 0.01-0.1% w/v, 0.1-1% w/v, 0.005-1% w/v, 0.05-1% w/v, 0.5-1% w/v, 0.001-0.5% w/v, 0.01-0.5% w/v, 0.1-0.5% w/v, 0.001-0.1% w/v, or 0.01-0.1 vv. In some embodiments, the amount of the pH adjusting agent present in the formulation is in the range of about 0.01-0.1% w/v. In some embodiments, the amount of the pH adjusting agent present in the formulation is at least 0.01% w/v, 0.02% w/v, 0.03% w/v, 0.04% w/v, 0.05% w/v, 0.06% w/v, 0.07% w/v, 0.08% w/v, 0.09% w/v, or 0.1% w/v. In some embodiments, the amount of the pH adjusting agent present in the formulation is at most 0.1% w/v, 0.09% w/v, 0.08% w/v, 0.07% w/v, 0.06% w/v, 0.05% w/v, 0.04% w/v, 0.03% w/v, 0.02% w/v, 0.01% w/v.


In some embodiments the amount of the pH adjusting agent added to the aqueous pharmaceutical formulation is in the range of about 0.01-100 mg/mL. For example, in some embodiments, the amount of the pH adjusting agent present is in the range of 0.01-50 mg/mL, 0.01-10 mg/mL, 0.1-100 mg/mL, 0.1-50 mg/mL, 0.1-10 mg/mL, 1-100 mg/mL, 1-50 mg/mL, or 1-10 mg/mL. In some embodiments, the amount of the pH adjusting agent present in the formulation is in the range of about 1-10 mg/mL. In some embodiments, the amount of the pH adjusting agent present in the formulation is at least 1 mg/mL, 2 mg/mL, 3 mg/mL, 4 mg/mL, 5 mg/mL, 6 mg/mL, 7 mg/mL, 8 mg/mL, 9 mg/mL, or 10 mg/mL. In some embodiments, the amount of the pH adjusting agent present in the formulation is at most 10 mg/mL, 9 mg/mL, 8 mg/mL, 7 mg/mL, 6 mg/mL, 5 mg/mL, 4 mg/mL, 3 mg/mL, 2 mg/mL, 1 mg/mL. In some embodiments, the amount of the pH adjusting agent present in the formulation is about 1 mg/mL, about 1.5 mg/mL, about 2 mg/mL, about 2.5 mg/mL, about 3 mg/mL, about 3.5 mg/mL, about 4 mg/mL, about 4.5 mg/mL, about 5 mg/mL, about 6 mg/mL, about 7 mg/mL, about 8 mg/mL, about 9 mg/mL, about 10 mg/mL, about 12 mg/mL, about 14 mg/mL, about 16 mg/mL, about 18 mg/mL, or about 20 mg/mL. In some embodiments, the amount of the pH adjusting agent present in the formulation is of the pH adjusting agent is present in about 5 mg/mL of the formulation.


In some embodiments, the aqueous solution comprises a stabilizing agent. In such embodiments, the method of making the aqueous pharmaceutical formulations disclosed herein comprises dissolving at least one stabilizing agent in at least an aqueous diluent, and adding at least one peptidomimetic macrocycle or a pharmaceutically acceptable salt thereof. In some embodiments, the peptidomimetic macrocycle is added at once. In some embodiments, the peptidomimetic macrocycle is added slowly over a period of time as described above. As described above, the method can further comprise of stirring the peptide mixture for some additional time.


In amount of the stabilizing agent in the formulations can be in the range of about 0.001-1% w/v. For example, in the range of about 0.001-0.01%, about 0.001-0.1% w/v, about 0.001-0.5% w/v, about 0.01-0.1% w/v, about 0.01-0.5% w/v, about 0.01-0.1% w/v, about 0.1-0.5% w/v or about 0.5-1% w/v. In some embodiments, the amount of the stabilizing agent in the formulation is about 0.01-0.1% w/v. In some embodiments, the amount of the stabilizing agent is at least about 0.01% w/v, about 0.02% w/v, about 0.03% w/v, about 0.04% w/v, about 0.05% w/v, about 0.06% w/v, about 0.07% w/v, about 0.08% w/v, about 0.09% w/v, or about 0.1% w/v. In some embodiments, the amount of the stabilizing agent is at most about 0.1% w/v, about 0.09% w/v, about 0.08% w/v, about 0.07% w/v, about 0.06% w/v, about 0.05% w/v, about 0.04% w/v, about 0.03% w/v, about 0.02% w/v, about 0.01% w/v. In some embodiments, the amount of the stabilizing agent in the formulation is about 0.01% w/v, about 0.02% w/v, about 0.03% w/v, about 0.04% w/v, about 0.05% w/v, about 0.06% w/v, about 0.07% w/v, about 0.08% w/v, about 0.09% w/v, or about 0.1% w/v. In some embodiments, the amount of the stabilizing agent in the formulation is about 0.01% w/v. In some embodiments, the amount of the stabilizing agent in the formulation is about 0.02% w/v. In some embodiments, the amount of the stabilizing agent in the formulation is about 0.03% w/v. In some embodiments, the amount of the stabilizing agent in the formulation is about 0.04% w/v. In some embodiments, the amount of the stabilizing agent in the formulation is about 0.05% w/v.


In some embodiments the amount of the stabilizing agent is about 0.01-10 mg/mL. For example, in some embodiments, the amount of the stabilizing agent is about 0.01-5 mg/mL, about 0.01-1 mg/mL, about 0.01-0.5 mg/mL, about 0.01-0.1 mg/mL, about 0.1-10 mg/mL, about 0.1-5 mg/mL, about 0.1-1 mg/mL, about 0.1-0.5 mg/mL, about 1-10 mg/mL, or about 1-5 mg/mL. In some embodiments, the amount of the stabilizing agent in the formulation is in the range of about 0.01-1.0 mg/mL.


In some embodiments, the amount of the stabilizing agent is at least about 0.1 mg/mL, about 0.2 mg/mL, about 0.3 mg/mL, about 0.4 mg/mL, about 0.5 mg/mL, about 0.6 mg/mL, about 0.7 mg/mL, about 0.8% mg/mL, about 0.9 mg/mL, or about 1 mg/mL. In some embodiments, the amount of the stabilizing agent is at most about 1 mg/mL, about 0.9 mg/mL, about 0.8 mg/mL, about 0.7 mg/mL, about 0.6 mg/mL, about 0.5 mg/mL, about 0.4 mg/mL, about 0.3 mg/mL, about 0.2 mg/mL, or about 0.1 mg/mL.


In some embodiments, the amount of the stabilizing agent is about 0.1 mg/mL, about 0.2 mg/mL, about 0.3 mg/mL, about 0.4 mg/mL, about 0.5 mg/mL, about 0.6 mg/mL, about 0.7 mg/mL, about 0.8 mg/mL, about 0.9 mg/mL, or about 1 mg/mL. In some embodiments, the amount of the stabilizing agent in the formulation is about 0.1 mg/mL. In some embodiments, the amount of the stabilizing agent in the formulation is about 0.2 mg/mL. In some embodiments, the amount of the stabilizing agent in the formulation is about 0.3 mg/mL. In some embodiments, the amount of the stabilizing agent in the formulation is about 0.4 mg/mL. In some embodiments, the amount of the stabilizing agent in the formulation is about 0.5 mg/mL.


In some embodiments, the aqueous solution comprises both a buffering agent and stabilizing agent. In such embodiments, the method of making the aqueous pharmaceutical formulations disclosed herein comprises dissolving at least one stabilizing agent and at least one buffering agent in an aqueous diluent, and adding at least one peptidomimetic macrocycle or a pharmaceutically acceptable salt thereof. In some embodiments, the peptidomimetic macrocycle is added at once. In some embodiments, the peptidomimetic macrocycle is added slowly over a period of time as described above. As described above, the method can further comprise of stirring the peptide mixture for some additional time.


In some examples, the method of making the aqueous pharmaceutical formulations disclosed herein comprises dissolving at least one buffering agent, at least one tonicity adjusting agent and at least one stabilizing agent in at least one aqueous diluent, and adding at least one peptidomimetic macrocycle or a pharmaceutically acceptable salt thereof. In some embodiments, the buffering agent, the tonicity adjusting agent and the stabilizing agents are dissolved in the aqueous diluent in this order. In some embodiments, the peptidomimetic macrocycle is added at once. In some embodiments, the peptidomimetic macrocycle is added slowly over a period of time as described above.


The amount of the tonicity adjusting agent in the aqueous pharmaceutical formulations disclosed herein can be in the range of about 0.001-50% w/v, for example about 0.001-0.1% w/v, about 0.001-1.0% w/v, about 0.001-10% w/v, about 1-10% w/v, about 1-20% w/v, about 1-30% w/v, about 1-40% w/v, about 1-50% w/v, about 5-10% w/v, about 5-20% w/v, about 5-30% w/v, about 5-40% w/v, about 5-50% w/v, about 10-20% w/v, about 10-30% w/v, about 10-40% w/v, about 10-50% w/v, about 15-20% w/v, about 15-30% w/v, about 15-40% w/v, about 15-50% w/v, about 20-30% w/v, about 20-40% w/v, about 20-50% w/v, about 25-30% w/v, about 25-40% w/v, about 25-50% w/v, about 30-40% w/v, about 30-50,% w/v, about 35-40% w/v, about 35-50% w/v, about 40-50% w/v, or about 45-50% w/v. In some embodiments, the amount of the tonicity adjusting agent is about 1% w/v, about 2% w/v, about 3% w/v, about 4% w/v, about 5% w/v, about 6% w/v, about 7% w/v, about 8% w/v, about 9% w/v, or about 10% w/v. In some embodiments, the amount of the tonicity adjusting agent is about 7% w/v. In some embodiments, the amount of the tonicity adjusting agent is about 8% w/v. In some embodiments, the amount of the tonicity adjusting agent is about 9% w/v. In some embodiments, the amount of the tonicity adjusting agent is about 10% w/v.


The concentration of the tonicity adjusting agent can vary in the range of about 1-500 mg/mL. For example, the concentration of the tonicity adjusting agent in the aqueous pharmaceutical formulations disclosed herein can be in the range of about 1-400 mg/mL, 1-300 mg/mL, 1-200 mg/mL, 1-100 mg/mL, 10-500 mg/mL, 10-400 mg/mL, 10-300 mg/mL, 10-200 mg/mL, 10-100 mg/mL, 20-500 mg/mL, 20-400 mg/mL, 20-300 mg/mL, 20-200 mg/mL, 20-100 mg/mL, 30-500 mg/mL, 30-400 mg/mL, 30-300 mg/mL, 30-200 mg/mL, 30-100 mg/mL, 40-500 mg/mL, 40-400 mg/mL, 40-300 mg/mL, 40-200 mg/mL, 40-100, mg, 50-500 mg/mL, 50-400 mg/mL, 50-300 mg/mL, 50-200 mg/mL, 50-100 mg/mL, 60-500 mg/mL, 60-400 mg/mL, 60-30 mg/mL, 60-200 mg/mL, 60-100 mg/mL, 70-500 mg/mL, 70-400 mg/mL, 70-300 mg/mL, 70-200 mg/mL, 70-100 mg/mL, 80-500 mg/mL, 80-400 mg/mL, 80-300 mg/mL, 80-200 mg/mL, 80-200 mg/mL, 90-500 mg/mL, 90-400 mg/mL, 90-300 mg/mL, 90-200 mg/mL, 90-100 mg/mL, 100-500 mg/mL, 100-400 mg/mL, 100-300 mg/mL, 100-200 mg/mL, 200-500 mg/mL, 200-400 mg/mL, 200-300 mg/mL, 300-500 mg/mL, 300-400 mg/mL or 400-500 mg/mL. In some embodiments, the concentration of the tonicity adjusting agent is about 10 mg/mL, about 20 mg/mL, about 30 mg/mL, about 40 mg/mL, about 50 mg/mL, about 60 mg/mL, about 70 mg/mL, about 80 mg/mL, about 90 mg/mL, or about 100 mg/mL. In some embodiments, the concentration of the tonicity adjusting agent is about 50 mg/mL. In some embodiments, the concentration of the tonicity adjusting agent is about 80 mg/mL. In some embodiments, the concentration of the tonicity adjusting agent is about 100 mg/mL. In some embodiments, the tonicity adjusting agent is trehalose (for example, D-trehalose) and the concentration is about 80 mg/mL.


In some embodiments, the concentration of the tonicity adjusting agent is between about 100-500 mM. For example the concentration of the tonicity adjusting agent in the aqueous pharmaceutical formulations disclosed herein can be 100-400 mM, 100-300 mM, 100-200 mM, 200-500 mM, 200-400 mM, 200-300 mM, 300-500 mM, 300-400 mM or 400-500 mM. In some embodiments, the concentration of the tonicity adjusting agent is between about 200-300 mM, for example 210-300 mM, 220-300 mM, 230-300 mM, 240-300 mM, 250-300 mM, 260-300 mM, 270-300 mM, 280-300 mM, 290-300 mM, 200-290 mM, 210-290 mM, 220-290 mM, 230-290 mM, 240-290 mM, 250-290 mM, 260-290 mM, 270-290 mM, 280-290 mM, 200-280 mM, 210-280 mM, 220-280 mM, 230-280 mM, 240-280 mM, 250-280 mM, 260-280 mM, 270-280 mM, 200-270 mM, 210-270 mM, 220-270 mM, 230-270 mM, 240-270 mM, 250-270 mM, 260-270 mM, 200-260 mM, 210-260 mM, 220-260 mM, 230-260 mM, 240-260 mM, 250-260 mM, 200-250 mM, 210-250 mM, 220-250 mM, 230-250 mM, 240-250 mM, 200-240 mM, 210-240 mM, 220-240 mM, 230-240 mM, 200-230 mM, 210-230 mM, 220-230 mM, 200-220 mM, 210-220 mM, or 210-220 mM. In some embodiments, the concentration of the tonicity adjusting agent is between about 220-260 mM. For example, about 220 mM, 230 mM, 240 mM, 250 mM, or 260 mM.


The methods described herein can additionally comprise addition of one or more optional excipients and/or ingredients. For example addition of one or more antioxidants, antimicrobial agent, surfactants, lubricants, thickening agents, preservatives, chelating agents.


In some embodiments the amount of antioxidants used is in the range of about 0.001-5% w/v, for example about 0.001-4.5%, 0.001-4%, 0.001-3%, 0.001-2%, 0.002-1%, 0.001-0.5%, or 0.001-0.05% w/v. In some embodiments the amount of antioxidants used is in the range of about 0.001-about 0.5%, about 0.1-about 0.5%, about 0.2-about 0.5%, about 0.3-about 0.5%, about 0.4-about 0.5%, about 0.01-about 0.4%, about 0.1-about 0.4%, about 0.2-about 0.4%, about 0.3-about 0.4%, about 0.01-about 0.3%, about 0.1-about 0.3%, about 0.2-about 0.3%, about 0.01-about 0.2%, about 0.1-about 0.2%, or about 0.01-about 0.1% w/v.


Such antimicrobial agents can be employed at a level of from about 0.005-0.5% w/v, for example about 0.001-0.01% w/v, about 0.01-0.1% w/v, about 0.1-0.5% w/v or about 0.01-0.05% w/v.


The methods described herein can additionally comprise prefiltering and/or clarifying the peptidomimetic formulation by a suitable process, for example by centrifugation or by filtration. Filtration can be by any suitable means, for example by depth filter media or by membrane filters. In some embodiments, filtration can be by means of a 0.22 micrometer filters.


The method can optionally involve sterilization of the aqueous pharmaceutical formulations. Sterilization can be performed by any suitable technique. For example, a suitable sterilization method can include one or more of sterile filtration, chemical, irradiation heat filtration, and addition of a chemical disinfectant to the aqueous pharmaceutical formulation. In some examples, the formulations are sterilized by moist heat sterilization. In some examples, the formulations are sterilized by dry heat sterilization. In some examples, the formulations are sterilized by chemical cold sterilization. In some examples, the formulations are sterilized by radiation sterilization. In some examples, the formulations are sterilized by filtration. In some examples, the formulations are sterilized by filtration using an appropriate micron sterilizing grade filters. The filtration can be carried out by any suitable means, e.g. cellulose-based filters, cellulosic esters (MCE), polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), or polyethersulfone (PES) filters. In some embodiments PVDF filters are used. Filters of any appropriate micron size can be used. In some embodiments, the filter size can be 0.001-0.5 micrometer, for example 0.001-0.01 micrometer, 0.01-0.1 micrometer, 0.1-0.2 micrometer, 0.2-0.3 micrometer, 0.3-0.4 3 micrometer or 0.4-0.5 micrometer. In some embodiments 0.22 micrometer filters are used. In some embodiments 0.22 micrometer PVDF filters are used.


The aqueous pharmaceutical formulations can be in a form that is suitable for direct administration or can be in a concentrated form that requires dilution relative to what is administered to the patient. For example, aqueous pharmaceutical formulations, described in this disclosure, can be in a form that is suitable for direct administration without any further dilution or reconstitution. The formulations can be diluted or reconstituted prior to administration with a suitable aqueous diluent(s) to obtain a finished concentration. The diluent can be an injection or infusion fluid. Examples of injection or infusion fluid include, but are not limited to, WFI (Bacteriostatic Water For Injection), SWFI (Sterile Water For Injection), D5W (Dextrose 5% in Water), D1OW (Dextrose 10% in Water), D5LR (Dextrose in Lactate Ringer's Solution), D5¼S (Dextrose 5% in ¼ Strength Saline (5% Dextrose and 0.22% Sodium Chloride Injection)), D5½S(Dextrose 5% in ½ Strength Saline (5% Dextrose and 0.45% Sodium Chloride Injection)), D5NS (Dextrose 5% in Normal Saline (5% Dextrose and 0.9% Sodium Chloride Injection)), D5R (Dextrose 5% in Ringer's Injection), DIONS (Dextrose 10% in Normal Saline (10% Dextrose and 0.9% Sodium Chloride Injection)), IS1OW (Invert Sugar 10% in Saline (10% Invert Sugar in 0.9% Sodium Chloride Injection)), LR (Lactated Ringer's Injection), Pr (Protein Hydrolysate Injection), R (Ringer's Injection), NS Sodium Chloride 0.9% (Normal Saline), SOD CL 5 (Sodium Chloride 5% (5% Sodium Chloride Injection), and Sod Lac (Sodium Lactate, ⅙ Molar (M/6 Sodium Lactate Injection)). In some examples, the formulations can be diluted with 0.9% sodium chloride, 5% dextrose in water (D5W), 5% dextrose in normal saline (D5NS), 5 dextrose in half amount of normal saline (D5½NS), lactated ringer's injection or a mixture thereof. Dilution/reconstitution can be performed immediately prior to the administration. In some cases, dilution/reconstitution can be performed shortly before the administration. In some cases, the dilution is performed at most 1 min, 5 min, 15 min, 30 min, 45 min, 60 min, 90 min, 2 h, 3 h, 4 h, 5 h, 6 h, 7 h, 8 h, 9 h, 10 h, 11 h, 12 h, 13 h, 14 h, 15 h, 16 h, 17 h, 18 h, 19 h, 20 h, 21 h, 22 h, 23 h, or 24 h before the administration to the subject. In some examples the reconstituted and diluted solutions is used within 1-10 hours, 2-8 hours, 3-7 hours, 4-6 hours reconstitution and/or dilution. In some examples, the formulations are diluted/reconstituted more than 1 day, 2 days, 3 days, 4 days, 5 days, 6 days, 1 week before administration.



FIG. 1 depicts the manufacturing process of an exemplary aqueous formulation according to the disclosure.


Purity, Stability and Degradation

The formulations of the disclosure can be characterized by low endotoxin concentration. In some embodiments, the formulations can have a concentration of endotoxin of less than about 100 EU/mL, for example, less than about 90 EU/mL, 80 EU/mL, 70 EU/mL, 60 EU/mL, 50 EU/mL, 40 EU/mL, 30 EU/mL, 20 EU/mL, 10 EU/mL, 5 EU/mL, 1 EU/mL, 0.5 EU/mL, 0.2 EU/mL, 0.1 EU/mL, 0.05 EU/mL, 0.01 EU/mL, 0.005 EU/mL, or 0.001 EU/mL. In some embodiments the concentration of the endotoxin is 0.1-10 EU/mL, for example about 0.1-1 EU/mL, 0.1-2 EU/mL, 0.1-3 EU/mL, 0.1-4 EU/mL, 0.1-5 EU/mL, 0.1-6 EU/mL, 0.1-7 EU/mL, 0.1-8 EU/mL, 0.1-9 EU/mL, 1-2 EU/mL, 1-3 EU/mL, 1-4 EU/mL, 1-5 EU/mL, 1-6, 1-7, 1-8, 1-9, 1-10, 2-3 EU/mL, 2-4 EU/mL, 2-5 EU/mL, 2-6, 2-7, 2-8, 2-9, 2-10, 3-4 EU/mL, 3-5 EU/mL, 3-6 EU/mL, 3-7 EU/mL, 3-8 EU/mL, 3-9 EU/mL, 3-10 EU/mL, 4-5 EU/mL, 4-6 EU/mL, 4-7 EU/mL, 4-8 EU/mL, 4-9 EU/mL, 4-10 EU/mL, 5-6 EU/mL, 5-7 EU/mL, 5-8 EU/mL, 5-9 EU/mL, 5-10 EU/mL, 6-7 EU/mL, 6-8 EU/mL, 6-9 EU/mL, 6-10 EU/mL, 7-8 EU/mL, 7-9 EU/mL, 7-10 EU/mL, 8-9 EU/mL, 8-10 EU/mL, or 9-10 EU/mL.


In some embodiments the formulations of the disclosure are essentially particulate-free solutions. In some embodiments, the formulation is essentially free of particles of size greater than about 1 μm, 2 μm, 3 μm, 4 μm, 5 μm, 6 μm, 7 μm, 8 μm, 9 μm, 10 μm, 11 μm, 12 μm, 13 μm, 14 μm, 15 μm, 16 μm, 17 μm, 18 μm, 19 μm, 20 μm, 21 μm, 22 μm, 23 μm, 24 μm, 25 μm, 26 μm, 27 μm, 28 μm, 29 μm, 30 μm, 35 μm, 40 μm, 45 μm, 50 μm, or more.


In some embodiments, the formulation comprise at most about 1, about 2, about 3, about 4, about 5, about 6, about 7, about 8, about 9, about 10, about 11, about 12, about 13, about 14, about 15, about 16, about 17, about 18, about 19, about 20, about 21, about 22, about 23, about 24, about 25, about 26, about 27, about 28, about 29, about 30, about 50, about 100, about 200, about 300, about 400, about 500, about 600, about 700, about 800, about 900, about 1,000, about 1,100, about 1,200, about 1,300, about 1,400, about 1,500, about 1,600, about 1,700, about 1,800, about 1,900, about 2,000, about 2,200, about 2,400, about 2,600, about 2,800, about 3,000, about 3,500, about 4,000, about 4,500, about 5,000, about 5,500, about 6,000, about 6,500, about 7,000, about 8,000, about 8,500, about 9,000, about 9,500, or about 10,000 particles of size greater than or equal to 10 μm per 1mL or 5 mL of formulation. In some embodiments the formulations of the disclosure are essentially free of particles of size greater than or equal to 10 μm. In some embodiments the formulations of the disclosure less than 500 particles of size greater than or equal to 10 μm in per 1 mL or 5 mL of formulation. In some embodiments the formulations of the disclosure less than 1000 particles of size greater than or equal to 10 μm in per 1 mL or 5 mL of formulation. In some embodiments the formulations of the disclosure less than 1200 particles of size greater than or equal to 10 μm in per 1 mL or 5 mL of formulation. In some embodiments the formulations of the disclosure less than 1,000-1,200 particles of size greater than or equal to 10 μm in per 1 mL or 5 mL of formulation.


In some embodiments, the formulation comprise at most about 1, about 2, about 3, about 4, about 5, about 6, about 7, about 8, about 9, about 10, about 11, about 12, about 13, about 14, about 15, about 16, about 17, about 18, about 19, about 20, about 21, about 22, about 23, about 24, about 25, about 26, about 27, about 28, about 29, about 30, about 50, about 60, about 70, about 80, about 90, about 100, about 110, about 120, about 130, about 140, about 150, about 200, about 300, about 400, about 500, about 600, about 700, about 800, about 900, about 1,000, about 1,100, about 1,200, about 1,300, about 1,400, about 1,500, about 1,600, about 1,700, about 1,800, about 1,900, about 2,000, about 2,500, about 3,000, about 3,500, about 4,000, about 4,500, about 5,000, about 5,500, or about 6,000 particles of size greater than or equal to 25 μm per 1 mL or 5 mL of formulation. In some embodiments the formulations of the disclosure are essentially free of particles of size greater than or equal to 25 μm. In some embodiments the formulations comprise at most 50 particles of size greater than or equal to 25 μm per 1 mL or 5 mL of formulation. In some embodiments the formulations comprise at most 100 particles of size greater than or equal to 25 μm per 1 mL or 5 mL of formulation. In some embodiments the formulations comprise at most 120 particles of size greater than or equal to 25 μm in per 1 mL or 5 mL of formulation. In some embodiments the formulations comprise about 100-120 particles of size greater than or equal to 25 μm per 1 mL or 5 mL of formulation.


In some embodiments the formulations of the disclosure are essentially free of particles of size greater than or equal to 50 μm. In some embodiments the formulations comprise at most 1 particles of size greater than or equal to 50 μm per 1 mL or 5 mL of formulation. In some embodiments the formulations comprise at most 2 particles of size greater than or equal to 50 μm per 1 mL or 5 mL of formulation. In some embodiments the formulations comprise at most 3 particles of size greater than or equal to 50 μm in per 1 mL or 5 mL of formulation. In some embodiments the formulations comprise about 1-5 particles of size greater than or equal to 50 μm per 1 mL or 5 mL of formulation. In some embodiments the formulations of the disclosure are essentially free of particles of size greater than or equal to 50 μm. In some embodiments the formulations comprise at most 1 particles of size greater than or equal to 50 μm per container. In some embodiments the formulations comprise at most 2 particles of size greater than or equal to 50 μm per container. In some embodiments the formulations comprise at most 3 particles of size greater than or equal to 50 μm in per container. In some embodiments the formulations comprise about 1-5 particles of size greater than or equal to 25 μm container.


In some embodiments, the formulations comprise 0-10000, 100-10,000, 500-10,000, 1,000-10,000, 1,500-10,000, 2,000-10,000, 2,500-10,000, 3,000-10,000, 3,500-10,000, 4,000-10,000, 4,500-10,000, 5,000-10,000, 5,500-10,000, 6,000-10,000, 6,500-10,000, 7,000-10,000, 7,500-10,000, 8,000-10,000, 8,500-10,000, 9,000-10,000, or 9,500-10,000 particles of size greater than or equal to 10 μm per mL of formulation.


In some embodiments, the formulations comprise 0-10000, 100-10,000, 500-10,000, 1,000-10,000, 1,500-10,000, 2,000-10,000, 2,500-10,000, 3,000-10,000, 3,500-10,000, 4,000-10,000, 4,500-10,000, 5,000-10,000, 5,500-10,000, 6,000-10,000, 6,500-10,000, 7,000-10,000, 7,500-10,000, 8,000-10,000, 8,500-10,000, 9,000-10,000, or 9,500-10,000 particles of size greater than or equal to 10 μm per 5 mL of formulation.


In some embodiments, the formulations comprise 0-10000, 100-10,000, 500-10,000, 1,000-10,000, 1,500-10,000, 2,000-10,000, 2,500-10,000, 3,000-10,000, 3,500-10,000, 4,000-10,000, 4,500-10,000, 5,000-10,000, 5,500-10,000, 6,000-10,000, 6,500-10,000, 7,000-10,000, 7,500-10,000, 8,000-10,000, 8,500-10,000, 9,000-10,000, or 9,500-10,000 particles of size greater than or equal to 25 μm per mL of formulation.


In some embodiments, the formulations comprise 0-10000, 100-10,000, 500-10,000, 1,000-10,000, 1,500-10,000, 2,000-10,000, 2,500-10,000, 3,000-10,000, 3,500-10,000, 4,000-10,000, 4,500-10,000, 5,000-10,000, 5,500-10,000, 6,000-10,000, 6,500-10,000, 7,000-10,000, 7,500-10,000, 8,000-10,000, 8,500-10,000, 9,000-10,000, or 9,500-10,000 particles of size greater than or equal to 25 μm per 5 mL of formulation.


In some embodiments, the formulations comprise 0-10000, 100-10,000, 500-10,000, 1,000-10,000, 1,500-10,000, 2,000-10,000, 2,500-10,000, 3,000-10,000, 3,500-10,000, 4,000-10,000, 4,500-10,000, 5,000-10,000, 5,500-10,000, 6,000-10,000, 6,500-10,000, 7,000-10,000, 7,500-10,000, 8,000-10,000, 8,500-10,000, 9,000-10,000, or 9,500-10,000 particles of size greater than or equal to 50 μm per 1 mL of formulation


In some embodiments, the formulations comprise 0-10000, 100-10,000, 500-10,000, 1,000-10,000, 1,500-10,000, 2,000-10,000, 2,500-10,000, 3,000-10,000, 3,500-10,000, 4,000-10,000, 4,500-10,000, 5,000-10,000, 5,500-10,000, 6,000-10,000, 6,500-10,000, 7,000-10,000, 7,500-10,000, 8,000-10,000, 8,500-10,000, 9,000-10,000, or 9,500-10,000 particles of size greater than or equal to 50 μm per 5 mL of formulation.


In some embodiments, the formulations of the present disclosure can remain stable after exposure to a single or multiple freeze-thaw events. Formulations of the present disclosure can also remain stable after exposure to physical agitation, such as one would expect to encounter upon shipping product from one location to another. Stability can be measured by any one of a number of different ways, including visual inspection for precipitate formation, analysis of percent peptidomimetic macrocycle remaining in solution after exposure to stress conditions (e.g., by size-exclusion HPLC), or analysis of the formation of chemical variants and/or decomposition products of the peptidomimetic macrocycle (e.g., by anion exchange or reverse phase HPLC analysis). In some embodiments of the present disclosure, no precipitate visible to the naked eye is formed in the formulation after at least one freeze thaw event. In some embodiments the formulation remains stable after at least three freeze thaw events. In some embodiments the formulation remains stable after at least six freeze thaw events. In some embodiments, at least 80, 85, 90%, 95%, 96%, 975, 98%, or 99% of the peptidomimetic macrocycle remains in the formulation after at least one freeze thaw event.


In some embodiments, the total peptidomimetic degradation products formed in the formulations of the present disclosure is less than 1.0% when stored at a temperature of 40° C. for a period of one month. In some further embodiments, the total degradation products of the compound of Formula 1 formed is less than about 0.9%, about 0.8%, about 0.7%, about 0.6%, about 0.5%, about 0.4%, about 0.3%, about 0.2%, or about 0.1% when stored at a temperature of 40° C. for a period of one month.


In some embodiments, the total peptidomimetic degradation products formed in the formulations of the present disclosure is less than 1.0% when stored at a temperature of 40° C. for a period of about two months, about three months, about four months, about five months about six months.


In some further embodiments, the amount of any single impurity in the formulation at any storage temperature is less than 0.001%, 0.01%, 0.1%, 0.5%, 1.0%, 1.5%, 2.0%, 2.5%, 3.0%, 3.5%, 4.0%, 4.5%, 5.0%, 5.5%, 6.0%, 6.5%, 7.0%, 7.5%, 8.0%, 8.5%, 9.0%, 9,5%, or 10%. In some further embodiments, the amount of any single impurity in the formulation at any storage temperature is less than 1.0%. In some further embodiments, the amount of any single impurity in the formulation at any storage temperature is less than 2.0%. In some further embodiments, the amount of any single impurity in the formulation at any storage temperature is less than 3.0%. In some further embodiments, the amount of any single impurity in the formulation at any storage temperature is less than 4.0%. In some further embodiments, the amount of any single impurity in the formulation at any storage temperature is less than 5.0%.


In some further embodiments, the amount of any single impurity in the formulation at any storage temperature is less than 0.5% when stored at a temperature of −20° C. for a period of 0 months, 0.5 months, 1.0 months, 1.5 months, 2.0 months, 2.5 months, 3.0 months, 3.5 months, 4.0 months, 4.5 months, 5.0 months, 5.5 months, 6.0 months, 8 months, 10 months, 12 months, or more months. In some further embodiments, the amount of any single impurity in the formulation at any storage temperature is less than 1% when stored at a temperature of −20° C. for a period of 0 months, 0.5 months, 1.0 months, 1.5 months, 2.0 months, 2.5 months, 3.0 months, 3.5 months, 4.0 months, 4.5 months, 5.0 months, 5.5 months, 6.0 months, 8 months, 10 months, 12 months, or more months. In some further embodiments, the amount of any single impurity in the formulation at any storage temperature is less than 1.5% when stored at a temperature of −20° C. for a period of 0 months, 0.5 months, 1.0 months, 1.5 months, 2.0 months, 2.5 months, 3.0 months, 3.5 months, 4.0 months, 4.5 months, 5.0 months, 5.5 months, 6.0 months, 8 months, 10 months, 12 months, or more months. In some further embodiments, the amount of any single impurity in the formulation at any storage temperature is less than 2.0% when stored at a temperature of −20° C. for a period of 0 months, 0.5 months, 1.0 months, 1.5 months, 2.0 months, 2.5 months, 3.0 months, 3.5 months, 4.0 months, 4.5 months, 5.0 months, 5.5 months, 6.0 months, 8 months, 10 months, 12 months, or more months. In some further embodiments, the amount of any single impurity in the formulation at any storage temperature is less than 2.5% when stored at a temperature of −20° C. for a period of 0 months, 0.5 months, 1.0 months, 1.5 months, 2.0 months, 2.5 months, 3.0 months, 3.5 months, 4.0 months, 4.5 months, 5.0 months, 5.5 months, 6.0 months, 8 months, 10 months, 12 months, or more months. In some further embodiments, the amount of any single impurity in the formulation at any storage temperature is less than 3.0% when stored at a temperature of −20° C. for a period of 0 months, 0.5 months, 1.0 months, 1.5 months, 2.0 months, 2.5 months, 3.0 months, 3.5 months, 4.0 months, 4.5 months, 5.0 months, 5.5 months, 6.0 months, 8 months, 10 months, 12 months, or more months. In some further embodiments, the amount of any single impurity in the formulation at any storage temperature is less than 5.0% when stored at a temperature of −20° C. for a period of 0 months, 0.5 months, 1.0 months, 1.5 months, 2.0 months, 2.5 months, 3.0 months, 3.5 months, 4.0 months, 4.5 months, 5.0 months, 5.5 months, 6.0 months, 8 months, 10 months, 12 months, or more months.


In some further embodiments, the amount of any single impurity in the formulation at any storage temperature is less than 0.5% when stored at a temperature of 5° C. for a period of 0 months, 0.5 months, 1.0 months, 1.5 months, 2.0 months, 2.5 months, 3.0 months, 3.5 months, 4.0 months, 4.5 months, 5.0 months, 5.5 months, 6.0 months, 8 months, 10 months, 12 months, or more months. In some further embodiments, the amount of any single impurity in the formulation at any storage temperature is less than 1% when stored at a temperature of 5° C. for a period of 0 months, 0.5 months, 1.0 months, 1.5 months, 2.0 months, 2.5 months, 3.0 months, 3.5 months, 4.0 months, 4.5 months, 5.0 months, 5.5 months, 6.0 months, 8 months, 10 months, 12 months, or more months. In some further embodiments, the amount of any single impurity in the formulation at any storage temperature is less than 1.5% when stored at a temperature of 5° C. for a period of 0 months, 0.5 months, 1.0 months, 1.5 months, 2.0 months, 2.5 months, 3.0 months, 3.5 months, 4.0 months, 4.5 months, 5.0 months, 5.5 months, 6.0 months, 8 months, 10 months, 12 months, or more months. In some further embodiments, the amount of any single impurity in the formulation at any storage temperature is less than 2.0% when stored at a temperature of 5° C. for a period of 0 months, 0.5 months, 1.0 months, 1.5 months, 2.0 months, 2.5 months, 3.0 months, 3.5 months, 4.0 months, 4.5 months, 5.0 months, 5.5 months, 6.0 months, 8 months, 10 months, 12 months, or more months. In some further embodiments, the amount of any single impurity in the formulation at any storage temperature is less than 2.5% when stored at a temperature of 5° C. for a period of 0 months, 0.5 months, 1.0 months, 1.5 months, 2.0 months, 2.5 months, 3.0 months, 3.5 months, 4.0 months, 4.5 months, 5.0 months, 5.5 months, 6.0 months, 8 months, 10 months, 12 months, or more months. In some further embodiments, the amount of any single impurity in the formulation at any storage temperature is less than 3.0% when stored at a temperature of 5° C. for a period of 0 months, 0.5 months, 1.0 months, 1.5 months, 2.0 months, 2.5 months, 3.0 months, 3.5 months, 4.0 months, 4.5 months, 5.0 months, 5.5 months, 6.0 months, 8 months, 10 months, 12 months, or more months. In some further embodiments, the amount of any single impurity in the formulation at any storage temperature is less than 5.0% when stored at a temperature of 5° C. for a period of 0 months, 0.5 months, 1.0 months, 1.5 months, 2.0 months, 2.5 months, 3.0 months, 3.5 months, 4.0 months, 4.5 months, 5.0 months, 5.5 months, 6.0 months, 8 months, 10 months, 12 months, or more months.


In some further embodiments, the amount of any single impurity in the formulation at any storage temperature is less than 0.5% when stored at a temperature of 25° C. for a period of 0 months, 0.5 months, 1.0 months, 1.5 months, 2.0 months, 2.5 months, 3.0 months, 3.5 months, 4.0 months, 4.5 months, 5.0 months, 5.5 months, 6.0 months, 8 months, 10 months, 12 months, or more months. In some further embodiments, the amount of any single impurity in the formulation at any storage temperature is less than 1% when stored at a temperature of 25° C. for a period of 0 months, 0.5 months, 1.0 months, 1.5 months, 2.0 months, 2.5 months, 3.0 months, 3.5 months, 4.0 months, 4.5 months, 5.0 months, 5.5 months, 6.0 months, 8 months, 10 months, 12 months, or more months. In some further embodiments, the amount of any single impurity in the formulation at any storage temperature is less than 1.5% when stored at a temperature of 25° C. for a period of 0 months, 0.5 months, 1.0 months, 1.5 months, 2.0 months, 2.5 months, 3.0 months, 3.5 months, 4.0 months, 4.5 months, 5.0 months, 5.5 months, 6.0 months, 8 months, 10 months, 12 months, or more months. In some further embodiments, the amount of any single impurity in the formulation at any storage temperature is less than 2.0% when stored at a temperature of 25° C. for a period of 0 months, 0.5 months, 1.0 months, 1.5 months, 2.0 months, 2.5 months, 3.0 months, 3.5 months, 4.0 months, 4.5 months, 5.0 months, 5.5 months, 6.0 months, 8 months, 10 months, 12 months, or more months. In some further embodiments, the amount of any single impurity in the formulation at any storage temperature is less than 2.5% when stored at a temperature of 25° C. for a period of 0 months, 0.5 months, 1.0 months, 1.5 months, 2.0 months, 2.5 months, 3.0 months, 3.5 months, 4.0 months, 4.5 months, 5.0 months, 5.5 months, 6.0 months, 8 months, 10 months, 12 months, or more months. In some further embodiments, the amount of any single impurity in the formulation at any storage temperature is less than 3.0% when stored at a temperature of 25° C. for a period of 0 months, 0.5 months, 1.0 months, 1.5 months, 2.0 months, 2.5 months, 3.0 months, 3.5 months, 4.0 months, 4.5 months, 5.0 months, 5.5 months, 6.0 months, 8 months, 10 months, 12 months, or more months. In some further embodiments, the amount of any single impurity in the formulation at any storage temperature is less than 5.0% when stored at a temperature of 25° C. for a period of 0 months, 0.5 months, 1.0 months, 1.5 months, 2.0 months, 2.5 months, 3.0 months, 3.5 months, 4.0 months, 4.5 months, 5.0 months, 5.5 months, 6.0 months, 8 months, 10 months, 12 months, or more months.


In some further embodiments, the amount of any single impurity in the formulation at any storage temperature is less than 0.5% when stored at a temperature of 40° C. for a period of 0 months, 0.5 months, 1.0 months, 1.5 months, 2.0 months, 2.5 months, 3.0 months, 3.5 months, 4.0 months, 4.5 months, 5.0 months, 5.5 months, 6.0 months, 8 months, 10 months, 12 months, or more months. In some further embodiments, the amount of any single impurity in the formulation at any storage temperature is less than 1% when stored at a temperature of 40° C. for a period of 0 months, 0.5 months, 1.0 months, 1.5 months, 2.0 months, 2.5 months, 3.0 months, 3.5 months, 4.0 months, 4.5 months, 5.0 months, 5.5 months, 6.0 months, 8 months, 10 months, 12 months, or more months. In some further embodiments, the amount of any single impurity in the formulation at any storage temperature is less than 1.5% when stored at a temperature of 40° C. for a period of 0 months, 0.5 months, 1.0 months, 1.5 months, 2.0 months, 2.5 months, 3.0 months, 3.5 months, 4.0 months, 4.5 months, 5.0 months, 5.5 months, 6.0 months, 8 months, 10 months, 12 months, or more months. In some further embodiments, the amount of any single impurity in the formulation at any storage temperature is less than 2.0% when stored at a temperature of 40° C. for a period of 0 months, 0.5 months, 1.0 months, 1.5 months, 2.0 months, 2.5 months, 3.0 months, 3.5 months, 4.0 months, 4.5 months, 5.0 months, 5.5 months, 6.0 months, 8 months, 10 months, 12 months, or more months. In some further embodiments, the amount of any single impurity in the formulation at any storage temperature is less than 2.5% when stored at a temperature of 40° C. for a period of 0 months, 0.5 months, 1.0 months, 1.5 months, 2.0 months, 2.5 months, 3.0 months, 3.5 months, 4.0 months, 4.5 months, 5.0 months, 5.5 months, 6.0 months, 8 months, 10 months, 12 months, or more months. In some further embodiments, the amount of any single impurity in the formulation at any storage temperature is less than 3.0% when stored at a temperature of 40° C. for a period of 0 months, 0.5 months, 1.0 months, 1.5 months, 2.0 months, 2.5 months, 3.0 months, 3.5 months, 4.0 months, 4.5 months, 5.0 months, 5.5 months, 6.0 months, 8 months, 10 months, 12 months, or more months. In some further embodiments, the amount of any single impurity in the formulation at any storage temperature is less than 5.0% when stored at a temperature of 40° C. for a period of 0 months, 0.5 months, 1.0 months, 1.5 months, 2.0 months, 2.5 months, 3.0 months, 3.5 months, 4.0 months, 4.5 months, 5.0 months, 5.5 months, 6.0 months, 8 months, 10 months, 12 months, or more months.


In some cases the pharmaceutically acceptable formulation expires in about 1-5 years. In some cases the formulation expires in about 1, 2, 3 or 4 years. In some cases the formulation expires in more than 5 years. In some cases the formulation expires in less than a year. In some cases the formulation expires in 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or 11 months.


In some cases the total amount of peptidomimetic degradation products at the time of product expiration are in the range of above 0.1-10%. In some cases the total degradation product at the time of expiration is in the range of about 0.01-1, about 0.01-2, about 0.01-3, about 0.01-4, about 0.01-5, about 0.01-6, about 0.01-7, about 0.01-8, or about 0.01-9, about 1-2, about 1-3, about 1-4, about 1-5, about 1-6, about 1-7, about 1-8, about 1-9, about 2-3, about 3-4, about 2-5, about 2-6, about 2-7, about 2-8, about 2-9, about 3-4, about 3-5, about 3- 6, about 3-7, about 3-8, about 3-9, about 3-10, about 4-5, about 4-6, about 4-7, about 4-8, about 4-9, about 4-10, about 5-6, about 5-7, about 5-8, about 5-9, about 5-10, about 6-7, about 6-8, about 6-9, about 6-10, about 7-8, about 7-9, about 7-10, about 8-9, about 8-10 or about 9-10%. In some embodiments the amount of total degradation product at the time of expiration is about 1%, about 2%, about 3%, about 4%, about 5%, about 6%, about 7%, about 8%, about 9%, about 10%. In some embodiments the amount of total degradation product at the time of expiration is about 0.01%, about 0.05%, about 0.1%, about 0.15%, about 0.2%, about 0.25%, about 0.3%, about 0.35%, about 0.40%, about 0.45%, about 0.50%, about 0.55%, about 0.60%, about 0.65%, about 0.70%, about 0.75%, about 0.80%, about 0.85%, about 0.90%, about 0.95%, or about 1.0%.


In some cases aqueous pharmaceutical formulations of the instant disclosure are stored at −40 to 65° C., for example from −5 to 40° C. In some cases the formulations can be stored at about −40° C., about −30° C., −20° C., −10° C., −5° C., 0° C., about 5° C., about 10° C., about 15° C., about 20° C., about 25° C., about 30° C., about 35° C., about 40° C., about 45° C., about 50° C., about 55° C., about 60° C., or about 65° C. In some embodiments, the formulations are stored at or below ambient temperature. In some embodiments, the formulations are stored above ambient temperature.


Sparging

In some embodiments the stability of the peptidomimetic macrocycles in the formulations of the disclosure can be improved by sparging the formulation with an inert gas. A variety of inert gases can be used as a sparging material including but not limited to nitrogen, argon, helium, or a combination thereof. In some embodiments the inert gas is nitrogen. The sparging is generally carried out till the oxygen is reduced or completely removed from the formulations peptidomimetic macrocycles. The time period for sparging depends in several factors including the amount of formulation, the effectiveness of agitation and the flow rate of the inert gas. In some embodiments, sparging is done by bubbling the inert gas through the formulations for a period of about 1 min-12 h. In some embodiments the formulations are sparged for a period of about 1 min-about 11 h, about 1 min-about 10 h, about 1 min-9 h, about 1 min-8 h, about 1 min-7 h, about 1 min-6 h, about 1 min-5 h, about 1 min-4 h, about 1 min-3 h, about 1 min-2 h, about 1 min-1 h, about 1 min-45 min, about 1 min-about 30 min, about 1 min-15 min, about 1 min-10 min, about 1 min-about 9 min, about 1 min-8 min, about 1 min-about 7 min, about 1 min-6 min, about 1 min-about 5 min, about 1 min-about 4 min, about 1 min-about 3 min, about 1 min-about 2 min. In some embodiments, sparging is performed for less than about 1 minute.


Methods of Use
Methods

In one aspect, provided herein are aqueous pharmaceutical formulations that are useful in competitive binding assays to identify agents which bind to the natural ligand(s) of the proteins or peptides upon which the peptidomimetic macrocycles are modeled. For example, in the p53/MDMX system, labeled peptidomimetic macrocycles based on p53 can be used in a MDMX binding assay along with small molecules that competitively bind to MDMX. Competitive binding studies allow for rapid in vitro evaluation and determination of drug candidates specific for the p53/MDMX system. Such binding studies can be performed with any of the peptidomimetic macrocycles disclosed herein and their binding partners.


Further provided are methods for the generation of antibodies against the peptidomimetic macrocycles. In some embodiments, these antibodies specifically bind both the peptidomimetic macrocycle and the precursor peptides, such as p53, to which the peptidomimetic macrocycles are related. Such antibodies, for example, disrupt the native protein-protein interaction, for example, binding between p53 and MDMX.


In other aspects, provided herein are both prophylactic and therapeutic methods of treating a subject at risk of (or susceptible to) a disorder or having a disorder associated with aberrant (e.g., insufficient or excessive) expression or activity of the molecules including p53, MDM2 or MDMX.


In another embodiment, a disorder is caused, at least in part, by an abnormal level of p53 or MDM2 or MDMX, (e.g., over or under expression), or by the presence of p53 or MDM2 or MDMX exhibiting abnormal activity. As such, the reduction in the level and/or activity of p53 or MDM2 or MDMX, or the enhancement of the level and/or activity of p53 or MDM2 or MDMX, by peptidomimetic macrocycles derived from p53, is used, for example, to ameliorate or reduce the adverse symptoms of the disorder.


In another aspect, provided herein are methods for treating or preventing a disease including hyperproliferative disease and inflammatory disorder by interfering with the interaction or binding between binding partners, for example, between p53 and MDM2 or p53 and MDMX. These methods comprise administering an effective amount of a compound to a warm blooded animal, including a human. In some embodiments, the administration of one or more compounds disclosed herein induces cell growth arrest or apoptosis.


As used herein, the term “treatment” is defined as the application or administration of a therapeutic agent to a patient, or application or administration of a therapeutic agent to an isolated tissue or cell line from a patient, who has a disease, a symptom of disease or a predisposition toward a disease, with the purpose to cure, heal, alleviate, relieve, alter, remedy, ameliorate, improve or affect the disease, the symptoms of disease or the predisposition toward disease.


Disease and Disorders

In some embodiments, the pharmaceutical formulations can be used to treat, prevent, and/or diagnose cancers and neoplastic conditions. As used herein, the terms “cancer”, “hyperproliferative” and “neoplastic” refer to cells having the capacity for autonomous growth, i.e., an abnormal state or condition characterized by rapidly proliferating cell growth. Hyperproliferative and neoplastic disease states can be categorized as pathologic, i.e., characterizing or constituting a disease state, or can be categorized as non-pathologic, i.e., a deviation from normal but not associated with a disease state. The term is meant to include all types of cancerous growths or oncogenic processes, metastatic tissues or malignantly transformed cells, tissues, or organs, irrespective of histopathology type or stage of invasiveness. A metastatic tumor can arise from a multitude of primary tumor types, including but not limited to those of breast, lung, liver, colon and ovarian origin. “Pathologic hyperproliferative” cells occur in disease states characterized by malignant tumor growth. Examples of non-pathologic hyperproliferative cells include proliferation of cells associated with wound repair. Examples of cellular proliferative and/or differentiative disorders include cancer, e.g., carcinoma, sarcoma, or metastatic disorders. In some embodiments, the pharmaceutical formulations can be used for controlling/treating breast cancer, ovarian cancer, colon cancer, lung cancer, metastasis of such cancers and the like.


Examples of cancers or neoplastic conditions include, but are not limited to, a fibrosarcoma, myosarcoma, liposarcoma, chondrosarcoma, osteogenic sarcoma, chordoma, angiosarcoma, endotheliosarcoma, lymphangiosarcoma, lymphangioendotheliosarcoma, synovioma, mesothelioma, Ewing's tumor, leiomyosarcoma, rhabdomyosarcoma, gastric cancer, esophageal cancer, rectal cancer, pancreatic cancer, ovarian cancer, prostate cancer, uterine cancer, cancer of the head and neck, skin cancer, brain cancer, squamous cell carcinoma, sebaceous gland carcinoma, papillary carcinoma, papillary adenocarcinoma, cystadenocarcinoma, medullary carcinoma, bronchogenic carcinoma, renal cell carcinoma, hepatoma, bile duct carcinoma, choriocarcinoma, seminoma, embryonal carcinoma, Wilm's tumor, cervical cancer, testicular cancer, small cell lung carcinoma, non-small cell lung carcinoma, bladder carcinoma, epithelial carcinoma, glioma, astrocytoma, medulloblastoma, craniopharyngioma, ependymoma, pinealoma, hemangioblastoma, acoustic neuroma, oligodendroglioma, meningioma, melanoma, neuroblastoma, retinoblastoma, leukemia, lymphoma, Kaposi sarcoma, or glioblastoma multiforme.


In some embodiments, the cancer is head and neck cancer, melanoma, lung cancer, breast cancer, or glioma.


In some examples, the cancer is pancreatic cancer, bladder cancer, colon cancer, liver cancer, colorectal cancer (colon cancer or rectal cancer), breast cancer, prostate cancer, renal cancer, hepatocellular cancer, lung cancer, ovarian cancer, cervical cancer, gastric cancer, esophageal cancer, head and neck cancer, melanoma, neuroendocrine cancers, CNS cancers, brain tumors, bone cancer, skin cancer, ocular tumor, choriocarcinoma (tumor of the placenta), sarcoma or soft tissue cancer.


In some examples, cancer is bladder cancer, bone cancer, breast cancer, cervical cancer, CNS cancer, colon cancer, ocular tumor, renal cancer, liver cancer, lung cancer, pancreatic cancer, choriocarcinoma (tumor of the placenta), prostate cancer, sarcoma, skin cancer, soft tissue cancer or gastric cancer.


In some examples, the cancer is breast cancer. Non limiting examples of breast cancer that can be treated by the instant pharmaceutical formulations include ductal carcinoma in situ (DCIS or intraductal carcinoma), lobular carcinoma in situ (LCIS), invasive (or infiltrating) ductal carcinoma, invasive (or infiltrating) lobular carcinoma, inflammatory breast cancer, triple-negative breast cancer, paget disease of the nipple, phyllodes tumor (phylloides tumor or cystosarcoma phyllodes), angiosarcoma, adenoid cystic (or adenocystic) carcinoma, low-grade adenosquamous carcinoma, medullary carcinoma, papillary carcinoma, tubular carcinoma, metaplastic carcinoma, micropapillary carcinoma, and mixed carcinoma.


In some examples, the cancer is bone cancer. Non limiting examples of bone cancer that can be treated by the instant pharmaceutical formulations include osteosarcoma, chondrosarcoma, the Ewing Sarcoma Family of Tumors (ESFTs).


In some examples, the cancer is skin cancer. Non limiting examples of skin cancer that can be treated by the instant pharmaceutical formulations include melanoma, basal cell skin cancer, and squamous cell skin cancer.


In some examples, the cancer is ocular tumor. Non limiting examples of ocular tumor that can be treated by the pharmaceutical formulations of the instant disclosure include ocular tumor is choroidal nevus, choroidal melanoma, choroidal metastasis, choroidal hemangioma, choroidal osteoma, iris melanoma, uveal melanoma, melanocytoma, metastasis retinal capillary hemangiomas, congenital hypertrophy of the RPE, RPE adenoma or retinoblastoma.


Examples of proliferative disorders include hematopoietic neoplastic disorders. As used herein, the term “hematopoietic neoplastic disorders” includes diseases involving hyperplastic/neoplastic cells of hematopoietic origin, e.g., arising from myeloid, lymphoid or erythroid lineages, or precursor cells thereof. The diseases can arise from poorly differentiated acute leukemias, e.g., erythroblastic leukemia and acute megakaryoblastic leukemia. Additional exemplary myeloid disorders include, but are not limited to, acute promyeloid leukemia (APML), acute myelogenous leukemia (AML) and chronic myelogenous leukemia (CML) (reviewed in Vaickus (1991), Crit Rev. Oncol./Hemotol. 11:267-97); lymphoid malignancies include, but are not limited to acute lymphoblastic leukemia (ALL) which includes B-lineage ALL and T-lineage ALL, chronic lymphocytic leukemia (CLL), prolymphocytic leukemia (PLL), hairy cell leukemia (HLL) and Waldenstrom's macroglobulinemia (WM). Additional forms of malignant lymphomas include, but are not limited to non-Hodgkin lymphoma and variants thereof, peripheral T cell lymphomas, adult T cell leukemia/lymphoma (ATL), cutaneous T-cell lymphoma (CTCL), large granular lymphocytic leukemia (LGF), Hodgkin's disease and Reed-Stemberg disease.


Examples of cellular proliferative and/or differentiative disorders of the breast include, but are not limited to, proliferative breast disease including, e.g., epithelial hyperplasia, sclerosing adenosis, and small duct papillomas; tumors, e.g., stromal tumors such as fibroadenoma, phyllodes tumor, and sarcomas, and epithelial tumors such as large duct papilloma; carcinoma of the breast including in situ (noninvasive) carcinoma that includes ductal carcinoma in situ (including Paget's disease) and lobular carcinoma in situ, and invasive (infiltrating) carcinoma including, but not limited to, invasive ductal carcinoma, invasive lobular carcinoma, medullary carcinoma, colloid (mucinous) carcinoma, tubular carcinoma, and invasive papillary carcinoma, and miscellaneous malignant neoplasms. Disorders in the male breast include, but are not limited to, gynecomastia and carcinoma.


Examples of cellular proliferative and/or differentiative disorders of the skin include, but are not limited to proliferative skin disease such as melanomas, including mucosal melanoma, superficial spreading melanoma, nodular melanoma, lentigo (e.g. lentigo maligna, lentigo maligna melanoma, or acral lentiginous melanoma), amelanotic melanoma, desmoplastic melanoma, melanoma with features of a Spitz nevus, melanoma with small nevus-like cells, polypoid melanoma, and soft-tissue melanoma; basal cell carcinomas including micronodular basal cell carcinoma, superficial basal cell carcinoma, nodular basal cell carcinoma (rodent ulcer), cystic basal cell carcinoma, cicatricial basal cell carcinoma, pigmented basal cell carcinoma, aberrant basal cell carcinoma, infiltrative basal cell carcinoma, nevoid basal cell carcinoma syndrome, polypoid basal cell carcinoma, pore-like basal cell carcinoma, and fibroepithelioma of Pinkus; squamus cell carcinomas including acanthoma (large cell acanthoma), adenoid squamous cell carcinoma, basaloid squamous cell carcinoma, clear cell squamous cell carcinoma, signet-ring cell squamous cell carcinoma, spindle cell squamous cell carcinoma, Marjolin's ulcer, erythroplasia of Queyrat, and Bowen's disease; or other skin or subcutaneous tumors.


Examples of cellular proliferative and/or differentiative disorders of the lung include, but are not limited to, bronchogenic carcinoma, including paraneoplastic syndromes, bronchioloalveolar carcinoma, neuroendocrine tumors, such as bronchial carcinoid, miscellaneous tumors, and metastatic tumors; pathologies of the pleura, including inflammatory pleural effusions, noninflammatory pleural effusions, pneumothorax, and pleural tumors, including solitary fibrous tumors (pleural fibroma) and malignant mesothelioma.


Examples of cellular proliferative and/or differentiative disorders of the colon include, but are not limited to, non-neoplastic polyps, adenomas, familial syndromes, colorectal carcinogenesis, colorectal carcinoma, and carcinoid tumors.


Examples of cellular proliferative and/or differentiative disorders of the liver include, but are not limited to, nodular hyperplasias, adenomas, and malignant tumors, including primary carcinoma of the liver and metastatic tumors. Examples of cellular proliferative and/or differentiative disorders of the ovary include, but are not limited to, ovarian tumors such as, tumors of coelomic epithelium, serous tumors, mucinous tumors, endometrioid tumors, clear cell adenocarcinoma, cystadenofibroma, Brenner tumor, surface epithelial tumors; germ cell tumors such as mature (benign) teratomas, monodermal teratomas, immature malignant teratomas, dysgerminoma, endodermal sinus tumor, choriocarcinoma; sex cord-stomal tumors such as, granulosa-theca cell tumors, thecomafibromas, androblastomas, hill cell tumors, and gonadoblastoma; and metastatic tumors such as Krukenberg tumors.


In one aspect, the present invention provides novel peptidomimetic macrocycles that are useful in competitive binding assays to identify agents which bind to the natural ligand(s) of the proteins or peptides upon which the peptidomimetic macrocycles are modeled. For example, in the BH3/BCL-XL anti-apoptotic system labeled peptidomimetic macrocycles based on BH3 can be used in a BCL-XL binding assay along with small molecules that competitively bind to BCL-XL. Competitive binding studies allow for rapid in vitro evaluation and determination of drug candidates specific for the BH3/BCL-XL system. The invention further provides for the generation of antibodies against the peptidomimetic macrocycles. In some embodiments, these antibodies specifically bind both the peptidomimetic macrocycle and the BH3 peptidomimetic precursors upon which the peptidomimetic macrocycles are derived. Such antibodies, for example, disrupt the BH3/BCL-XL systems, respectively.


In other aspects, the present invention provides for both prophylactic and therapeutic methods of treating a subject at risk of (or susceptible to) a disorder or having a disorder associated with aberrant (e.g., insufficient or excessive) BCL-2 family member expression or activity (e.g., extrinsic or intrinsic apoptotic pathway abnormalities). It is believed that some BCL-2 type disorders are caused, at least in part, by an abnormal level of one or more BCL-2 family members (e.g., over or under expression), or by the presence of one or more BCL-2 family members exhibiting abnormal activity. As such, the reduction in the level and/or activity of the BCL-2 family member or the enhancement of the level and/or activity of the BCL-2 family member, is used, for example, to ameliorate or reduce the adverse symptoms of the disorder.


In one embodiment, the compounds of the invention are used to treat disorders associated with expression or overexpression of Mc1-1. Mc1-1 has been shown to be expressed in many tissues and neoplastic cell lines and is thought to participate in the development of malignancies (Thallinger et al. (2004) Clin. Cancer Res. 10:4185-4191). The peptidomimetic macrocycles of the invention can be used for the treatment of such malignancies.


In one embodiment, the disorder being treated (e.g. cancer) is differentially responsive to the peptidomimetic macrocycles of the invention. In some embodiments, the cancer is treated with a BIM peptidomimetic macrocycle and is at least 2-fold less sensitive to treatment using a BID polypeptide (such as a BID peptidomimetic macrocycle or uncrosslinked polypeptide) as measured in an in vitro cell viability assay. In other embodiments, the cancer is at least 5-fold less sensitive to treatment using a BID polypeptide as measured in an in vitro cell viability assay. In yet other embodiments, the cancer is at least 8-fold less sensitive to treatment using a BID polypeptide as measured in an in vitro cell viability assay. In other embodiments, the cancer is treated with a BID peptidomimetic macrocycle and is at least 2-fold less sensitive to treatment using a BIM polypeptide (such as a BIM peptidomimetic macrocycle or uncrosslinked polypeptide) as measured in an in vitro cell viability assay. In other embodiments, the cancer is at least 5-fold less sensitive to treatment using a BIM polypeptide as measured in an in vitro cell viability assay. In yet other embodiments, the cancer is at least 8-fold less sensitive to treatment using a BIM polypeptide as measured in an in vitro cell viability assay.


In another embodiment, a method of treating a human patient is provided comprising performing an assay to evaluate the levels of a BCL-family protein and administering to the patient a peptidomimetic macrocycle if an aberrant or irregular level of expression of the BCL-family protein is detected. BCL-family proteins include, for example, BCL-2, BCL-XL, MCL-1, Bfl1/A1, BOO/DIVA, NRH/NR13, BAX, BAD, BAK, BOK, BIK, PUMA, BIM, BMF, BLK, BNIP3, HRK, NIX, SPIKE, and Noxa. In one embodiment, a method of treating a human patient is provided comprising performing an assay to evaluate the levels of BCL-2 in the patient and administering to the patient a peptidomimetic macrocycle if an aberrant or irregular level of expression of BCL-2 is detected. In another embodiment, a method of treating a human patient is provided comprising performing an assay to evaluate the levels of BCL-XL in the patient and administering to the patient a peptidomimetic macrocycle if an aberrant or irregular level of expression of BCL-XL is detected. In another embodiment, a method of treating a human patient is provided comprising performing an assay to evaluate the levels of MCL-1 in the patient and administering to the patient a peptidomimetic macrocycle if an aberrant or irregular level of expression of MCL-1 is detected. In another embodiment, a method of treating a human patient is provided comprising performing an assay to evaluate the levels of BAX in the patient and administering to the patient a peptidomimetic macrocycle if an aberrant or irregular level of expression of BAX is detected. In another embodiment, a method of treating a human patient is provided comprising performing an assay to evaluate the levels of BAD in the patient and administering to the patient a peptidomimetic macrocycle if an aberrant or irregular level of expression of BAD is detected. In another embodiment, a method of treating a human patient is provided comprising performing an assay to evaluate the levels of BAK in the patient and administering to the patient a peptidomimetic macrocycle if an aberrant or irregular level of expression of BAK is detected. In another embodiment, a method of treating a human patient is provided comprising performing an assay to evaluate the levels of PUMA in the patient and administering to the patient a peptidomimetic macrocycle if an aberrant or irregular level of expression of PUMA is detected. In another embodiment, a method of treating a human patient is provided comprising performing an assay to evaluate the levels of Noxa in the patient and administering to the patient a peptidomimetic macrocycle if an aberrant or irregular level of expression of Noxa is detected. In another embodiment, a method of treating a human patient is provided comprising performing an assay to evaluate the levels of Noxa in the patient and administering to the patient a peptidomimetic macrocycle if an aberrant or irregular level of expression of Noxa is detected. In another embodiment, a method of treating a human patient is provided comprising performing an assay to evaluate the levels of Bfl1/A1 in the patient and administering to the patient a peptidomimetic macrocycle if an aberrant or irregular level of expression of Bfl1/A1 is detected. In another embodiment, a method of treating a human patient is provided comprising performing an assay to evaluate the levels of BOO/DIVA in the patient and administering to the patient a peptidomimetic macrocycle if an aberrant or irregular level of expression of BOO/DIVA is detected. In another embodiment, a method of treating a human patient is provided comprising performing an assay to evaluate the levels of NRH/NR13 in the patient and administering to the patient a peptidomimetic macrocycle if an aberrant or irregular level of expression of NRH/NR13 is detected. In another embodiment, a method of treating a human patient is provided comprising performing an assay to evaluate the levels of BOK in the patient and administering to the patient a peptidomimetic macrocycle if an aberrant or irregular level of expression of BOK is detected. In another embodiment, a method of treating a human patient is provided comprising performing an assay to evaluate the levels of BIK in the patient and administering to the patient a peptidomimetic macrocycle if an aberrant or irregular level of expression of BIK is detected. In another embodiment, a method of treating a human patient is provided comprising performing an assay to evaluate the levels of BMF in the patient and administering to the patient a peptidomimetic macrocycle if an aberrant or irregular level of expression of BMF is detected. In another embodiment, a method of treating a human patient is provided comprising performing an assay to evaluate the levels of BLK in the patient and administering to the patient a peptidomimetic macrocycle if an aberrant or irregular level of expression of BLK is detected. In another embodiment, a method of treating a human patient is provided comprising performing an assay to evaluate the levels of BNIP3 in the patient and administering to the patient a peptidomimetic macrocycle if an aberrant or irregular level of expression of BNIP3 is detected. In another embodiment, a method of treating a human patient is provided comprising performing an assay to evaluate the levels of HRK in the patient and administering to the patient a peptidomimetic macrocycle if an aberrant or irregular level of expression of HRK is detected. In another embodiment, a method of treating a human patient is provided comprising performing an assay to evaluate the levels of Nix in the patient and administering to the patient a peptidomimetic macrocycle if an aberrant or irregular level of expression of Nix is detected. In another embodiment, a method of treating a human patient is provided comprising performing an assay to evaluate the levels of SPIKE in the patient and administering to the patient a peptidomimetic macrocycle if an aberrant or irregular level of expression of SPIKE is detected.


In one aspect, the invention provides methods of treating breast cancer by administering the peptidomimetic macrocycles of the invention. Breast cancer includes invasive breast carcinomas, such as invasive ductal carcinoma, invasive lobular carcinoma, tubular carcinoma, invasive cribriform carcinoma, medullary carcinoma, mucinous carcinoma and other tumours with abundant mucin, cystadenocarcinoma, columnar cell mucinous carcinoma, signet ring cell carcinoma, neuroendocrine tumours (including solid neuroendocrine carcinoma, atypical carcinoid tumour, small cell/oat cell carcinoma, or large cell neuroendocrine carcioma), invasive papillary carcinoma, invasive micropapillary carcinoma, apocrine carcinoma, metaplastic carcinomas, pure epithelial metaplastic carciomas, mixed epithelial/mesenchymal metaplastic carcinomas, lipid-rich carcinoma, secretory carcinoma, oncocytic carcinoma, adenoid cystic carcinoma, acinic cell carcinoma, glycogen-rich clear cell carcinoma, sebaceous carcinoma, inflammatory carcinoma or bilateral breast carcinoma; mesenchymal tumors such as haemangioma, angiomatosis, haemangiopericytoma, pseudoangiomatous stromal hyperplasia, myofibroblastoma, fibromatosis (aggressive), inflammatory myofibroblastic tumour, lipoma, angiolipoma, granular cell tumour, neurofibroma, schwannoma, angiosarcoma, liposarcoma, rhabdomyosarcoma, osteosarcoma, leiomyoma, or leiomysarcoma; myoepithelial lesions such as myoepitheliosis, adenomyoepithelial adenosis, adenomyoepithelioma, or malignant myoepithelioma; fibroepithelial tumours such as fibroadenoma, phyllodes tumour, low grade periductal stromal sarcoma, or mammary hamartoma; and tumours of the nipple such as nipple adenoma, syringomatous adenoma, or Paget's disease of the nipple.


Treatment of breast cancer can be effected in conjunction with any additional therapy, such as a therapy that is part of the standard of care. A surgical technique such as lumpectomy or mastectomy can be performed prior to, during, or following treatment with the peptidomimetic macrocycles of the invention. Alternatively, radiation therapy can be used for the treatment of breast cancer in conjunction with the peptidomimetic macrocycles of the invention. In other cases, the peptidomimetic macrocycles of the invention are administered in combination with a second therapeutic agent. Such an agent can be a chemotherapeutic agent such as an individual drug or combination of drugs and therapies. For example, the chemotherapeutic agent can be an adjuvant chemotherapeutic treatment such as CMF (cyclophosphamide, methotrexate, and 5-fluorouracil); FAC or CAF (5-fluorouracil, doxorubicin, cyclophosphamide); AC or CA (doxorubicin and cyclophosphamide); AC-Taxol (AC followed by paclitaxel); TAC (docetaxel, doxorubicin, and cyclophosphamide); FEC (5-fluorouracil, epirubicin and cyclophosphamide); FECD (FEC followed by docetaxel); TC (docetaxel and cyclophosphamide). In addition to chemotherapy, trastuzumab can also be added to the regimen depending on the tumor characteristics (i.e. HER2/neu status) and risk of relapse. Hormonal therapy can also be appropriate before, during or following chemotherapeutic treatment. For example, tamoxifen can be administered or a compound in the category of aromatase inhibitors including, but not limited to aminogluthetimide, anastrozole, exemestane, formestane, letrozole, or vorozole. In other embodiments, an antiangiogenic agent can be used in combination therapy for the treatment of breast cancer. The antiangiogenic agent can be an anti-VEGF agent including, but not limited to bevacizumab.


In another aspect, the peptidomimetic macrocycles of the invention can be used to treat ovarian cancer. Ovarian cancers include ovarian tumors such as, tumors of coelomic epithelium, serous tumors, mucinous tumors, endometrioid tumors, clear cell adenocarcinoma, cystadenofibroma, Brenner tumor, surface epithelial tumors; germ cell tumors such as mature (benign) teratomas, monodermal teratomas, immature malignant teratomas, dysgerminoma, endodermal sinus tumor, choriocarcinoma; sex cord-stomal tumors such as, granulosa-theca cell tumors, thecomafibromas, androblastomas, hill cell tumors, and gonadoblastoma; and metastatic tumors such as Krukenberg tumors.


The peptidomimetic macrocycles of the invention can be administered in conjunction with a second therapy such as a therapy that is part of the standard of care. Surgery, immunotherapy, chemotherapy, hormone therapy, radiation therapy, or a combination thereof, are some possible treatments available for ovarian cancer. Some possible surgical procedures include debulking, and a unilateral or bilateral oophorectomy and/or a unilateral or bilateral salpigectomy.


Anti-cancer drugs that can be used include cyclophosphamide, etoposide, altretamine, and ifosfamide. Hormone therapy with the drug tamoxifen can be used to shrink ovarian tumors. Radiation therapy can be external beam radiation therapy and/or brachytherapy.


In another aspect, the peptidomimetic macrocycles of the invention can be used to treat prostate cancer. Prostate cancers include adenocarcinomas and metastasized adenocarcinomas. The peptidomimetic macrocycles of the invention can be administered in conjunction with a second therapy such as a therapy that is part of the standard of care. Treatment for prostate cancer can involve surgery, radiation therapy, High Intensity Focused Ultrasound (HIFU), chemotherapy, cryosurgery, hormonal therapy, or any combination thereof. Surgery can involve prostatectomy, radical perineal prostatectomy, laparoscopic radical prostatectomy, transurethral resection of the prostate or orchiectomy. Radiation therapy can include external beam radiation therapy and/or brachytherapy. Hormonal therapy can include orchiectomy; administration of antiandrogens such as flutamide, bicalutamide, nilutamide, or cyproterone acetate; medications which inhibit the production of adrenal androgens such as DHEA, such as ketoconazole and aminoglutethimide; and GnRH antagonists or agonists such as Abarelix (Plenaxis®), Cetrorelix (Cetrotide®), Ganirelix (Antagon®), leuprolide, goserelin, triptorelin, or buserelin. Treatment with an anti-androgen agent, which blocks androgen activity in the body, is another available therapy. Such agents include flutamide, bicalutamide, and nilutamide. This therapy is typically combined with LHRH analog administration or an orchiectomy, which is termed a combined androgen blockade (CAB). Chemotherapy includes, but is not limited to, administration of docetaxel, for example with a corticosteroid such as prednisone. Anti-cancer drugs such as doxorubicin, estramustine, etoposide, mitoxantrone, vinblastine, paclitaxel, carboplatin can also be administered to slow the growth of prostate cancer, reduce symptoms and improve the quality of life. Additional compounds such as bisphosphonate drugs can also be administered.


In another aspect, the peptidomimetic macrocycles of the invention can be used to treat renal cancer. Renal cancers include, but are not limited to, renal cell carcinomas, metastases from extra-renal primary neoplasms, renal lymphomas, squamous cell carcinomas, juxtaglomerular tumors (reninomas), transitional cell carcinomas, angiomyolipomas, oncocytomas and Wilm's tumors. The peptidomimetic macrocycles of the invention can be administered in conjunction with a second therapy such as a therapy that is part of the standard of care. Treatment for renal cancer can involve surgery, percutaneous therapies, radiation therapies, chemotherapy, vaccines, or other medication. Surgical techniques useful for treatment of renal cancer in combination with the peptidomimetic macrocycles of the invention include nephrectomy, which can include removal of the adrenal gland, retroperitoneal lymph nodes, and any other surrounding tissues affected by the invasion of the tumor. Percutaneous therapies include, for example, image-guided therapies which can involve imaging of a tumor followed by its targeted destruction by radiofrequency ablation or cryotherapy. In some cases, other chemotherapeutic or other medications useful in treating renal cancer can be α-interferon, interleukin-2, bevacizumab, sorafenib, sunitib, temsirolimus or other kinase inhibitors.


In other aspects, the invention provides methods of treating pancreatic cancer by administering peptidomimetic macrocycles of the invention, such as a pancreatic cancer selected from the following: an epitheliod carcinoma in the pancreatic duct tissue and an adenocarcinoma in a pancreatic duct. The most common type of pancreatic cancer is an adenocarcinoma, which occurs in the lining of the pancreatic duct. Possible treatments available for pancreatic cancer include surgery, immunotherapy, radiation therapy, and chemotherapy. Possible surgical treatment options include a distal or total pancreatectomy and a pancreaticoduodenectomy (Whipple procedure). Radiation therapy can be an option for pancreatic cancer patients, specifically external beam radiation where radiation is focused on the tumor by a machine outside the body. Another option is intraoperative electron beam radiation administered during an operation. Chemotherapy can also be used to treat pancreatic cancer patients. Suitable anti-cancer drugs include, but are not limited to, 5-fluorouracil (5-FU), mitomycin, ifosfamide, doxorubicin, streptozocin, chlorozotocin, and combinations thereof. The methods provided by the invention can provide a beneficial effect for pancreatic cancer patients, by administration of a polypeptide of the invention or a combination of administration of a peptidomimetic macrocycle and surgery, radiation therapy, or chemotherapy.


In one aspect, peptidomimetic macrocycles of the invention can be used for the treatment of colon cancer, including but not limited to non-neoplastic polyps, adenomas, familial syndromes, colorectal carcinogenesis, colorectal carcinoma, and carcinoid tumors. Possible treatments available for colon cancer that can be used in conjunction with the peptidomimetic macrocycles of the invention include surgery, chemotherapy, radiation therapy or targeted drug therapy.


Radiation therapy can include external beam radiation therapy and/or brachytherapy. Chemotherapy can be used to reduce the likelihood of metastasis developing, shrink tumor size, or slow tumor growth. Chemotherapy is often applied after surgery (adjuvant), before surgery (neo-adjuvant), or as the primary therapy if surgery is not indicated (palliative). For example, exemplary regimens for adjuvant chemotherapy involve the combination of infusional 5-fluorouracil, leucovorin, and oxaliplatin (FOLFOX). First line chemotherapy regimens can involve the combination of infusional 5-fluorouracil, leucovorin, and oxaliplatin (FOLFOX) with a targeted drug such as bevacizumab, cetuximab or panitumumab or infusional 5-fluorouracil, leucovorin, and irinotecan (FOLFIRI) with targeted drug such as bevacizumab, cetuximab or panitumumab. Other chemotherapeutic agents that can be useful in the treatment or prevention of colon cancer in combination with the peptidomimetic macrocycles of the invention are Bortezomib (Velcade®), Oblimersen (Genasense®, G3139), Gefitinib and Erlotinib (Tarceva®) and Topotecan (Hycamtin®).


Some embodiments provide methods for the treatment of lung cancer using the peptidomimetic macrocycles of the invention. Examples of cellular proliferative and/or differentiative disorders of the lung include, but are not limited to, bronchogenic carcinoma, including paraneoplastic syndromes, bronchioloalveolar carcinoma, neuroendocrine tumors, such as bronchial carcinoid, miscellaneous tumors, and metastatic tumors; pathologies of the pleura, including inflammatory pleural effusions, noninflammatory pleural effusions, pneumothorax, and pleural tumors, including solitary fibrous tumors (pleural fibroma) and malignant mesothelioma.


The most common type of lung cancer is non-small cell lung cancer (NSCLC), which accounts for approximately 80-85% of lung cancers and is divided into squamous cell carcinomas, adenocarcinomas, and large cell undifferentiated carcinomas. Small cell lung cancer, e.g. small cell lung carcinomas, accounts for 15-20% of lung cancers. Treatment options for lung cancer include surgery, immunotherapy, radiation therapy, chemotherapy, photodynamic therapy, or a combination thereof. Some possible surgical options for treatment of lung cancer are a segmental or wedge resection, a lobectomy, or a pneumonectomy. Radiation therapy can be external beam radiation therapy or brachytherapy. Some anti-cancer drugs that can be used in chemotherapy to treat lung cancer in combination with the peptidomimetic macrocycles of the invention include cisplatin, carboplatin, paclitaxel, docetaxel, gemcitabine, vinorelbine, irinotecan, etoposide, vinblastine, gefitinib, ifosfamide, methotrexate, or a combination thereof. Photodynamic therapy (PDT) can be used to treat lung cancer patients. The methods described herein can provide a beneficial effect for lung cancer patients, by administration of a peptidomimetic macrocycle or a combination of administration of a peptidomimetic macrocycle and surgery, radiation therapy, chemotherapy, photodynamic therapy, or a combination thereof.


Examples of cellular proliferative and/or differentiative disorders of the liver include, but are not limited to, nodular hyperplasias, adenomas, and malignant tumors, including primary carcinoma of the liver and metastatic tumors.


Immunoproliferative disorders (also known as “immunoproliferative diseases” or “immunoproliferative neoplasms”) are disorders of the immune system that are characterized by the abnormal proliferation of the primary cells of the immune system, which includes B cells, T cells and Natural Killer (NK) cells, or by the excessive production of immunoglobulins (also known as antibodies). Such disorders include the general categories of lymphoproliferative disorders, hypergammaglobulinemias, and paraproteinemias. Examples of such disorders include, but are not limited to, X-linked lymphoproliferative disorder, autosomal lymphoproliferative disorder, Hyper-IgM syndrome, heavy chain disease, and cryoglobulinemia. Other immunoproliferative disorders can be graft versus host disease (GVHD); psoriasis; immune disorders associated with graft transplantation rejection; T cell lymphoma; T cell acute lymphoblastic leukemia; testicular angiocentric T cell lymphoma; benign lymphocytic angiitis; and autoimmune diseases such as lupus erythematosus, Hashimoto's thyroiditis, primary myxedema, Graves' disease, pernicious anemia, autoimmune atrophic gastritis, Addison's disease, insulin dependent diabetes mellitis, good pasture's syndrome, myasthenia gravis, pemphigus, Crohn's disease, sympathetic ophthalmia, autoimmune uveitis, multiple sclerosis, autoimmune hemolytic anemia, idiopathic thrombocytopenia, primary biliary cirrhosis, chronic action hepatitis, ulceratis colitis, Sjogren's syndrome, rheumatoid arthritis, polymyositis, scleroderma, and mixed connective tissue disease.


Combination Treatments


In one embodiment, peptidomimetic macrocycles of the invention can be used for the treatment of cancer in conjunction with alkylating and alkylating-like agents. Such agents include, for example, nitrogen mustards such as chlorambucil, chlormethine, cyclophosphamide, ifosfamide, and melphalan; nitrosoureas such as carmustine, fotemustine, lomustine, and streptozocin; platinum therapeutic agents such as carboplatin, cisplatin, oxaliplatin, BBR3464, and satraplatin; or other agents, including but not limited to busulfan, dacarbazine, procarbazine, temozolomide, thiotepa, treosulfan, or uramustine.


In another embodiment, peptidomimetic macrocycles of the invention can be used in conjunction with an antineoplastic agent which is an antimetabolite. For example, such an antineoplastic agent can be a folic acid such as aminopterin, methotrexate, pemetrexed, or raltitrexed. Alternatively, the antineoplastic agent can be a purine, including but not limited to cladribine, clofarabine, fludarabine, mercaptopurine, pentostatin, thioguanine. In further embodiments, the antineoplastic agent can be a pyrimidine such as capecitabine, cytarabine, fluorouracil, floxuridine, and gemcitabine.


In still other embodiments, peptidomimetic macrocycles of the invention can be used in conjunction with an antineoplastic agent which is an spindle poison/mitotic inhibitor. Agents in this category include taxanes, for example docetaxel and paclitaxel; and vinca alkaloids such as vinblastine, vincristine, vindesine, and vinorelbine. In yet other embodiments, peptidomimetic macrocycles of the invention can be used in combination with an antineoplastic agent which is a cytotoxic/antitumor antibiotic from the anthracycline family such as daunorubicin, doxorubicin, epirubicin, idarubicin, mitoxantrone, pixantrone, or valrubicin; an antibiotic from the streptomyces family such as actinomycin, bleomycin, mitomycin, or plicamycin; or hydroxyurea. Alternatively, agents used for combination therapy can be topoisomerase inhibitors including, but not limited to camptothecin, topotecan, irinotecan, etoposide, or teniposide.


Alternatively, the antineoplastic agent can be an antibody or antibody-derived agent. For example, a receptor tyrosine kinase-targeted antibody such as cetuximab, panitumumab, or trastuzumab can be used. Alternatively, the antibody can be an anti-CD20 antibody such as rituximab or tositumomab, or any other suitable antibody including but not limited to alemtuzumab, bevacizumab, and gemtuzumab. In other embodiments, the antineoplastic agent is a photosensitizer such as aminolevulinic acid, methyl aminolevulinate, porfimer sodium, or verteporfin. In still other embodiments, the antineoplastic agent is a tyrosine kinase inhibitor such as dediranib, dasatinib, erlotinib, gefitinib, imatinib, lapatinib, nilotinib, sorafenib, sunitinib, or vandetanib. Other neoplastic agents suitable in the use of the invention include, for example, alitretinoin, tretinoin, altretamine, amsacrine, anagrelide, arsenic trioxide, asparaginase (pegaspargase), bexarotene, bortezomib, denileukin diftitox, estramustine, ixabepilone, masoprocol, or mitotane.


In other or further embodiments, the peptidomimetics macrocycles described herein are used to treat, prevent or diagnose conditions characterized by overactive cell death or cellular death due to physiologic insult, etc. Some examples of conditions characterized by premature or unwanted cell death are or alternatively unwanted or excessive cellular proliferation include, but are not limited to hypocellular/hypoplastic, acellular/aplastic, or hypercellular/hyperplastic conditions. Some examples include hematologic disorders including but not limited to fanconi anemia, aplastic anemia, thalaessemia, congenital neutropenia, myelodysplasia


In other or further embodiments, the peptidomimetics macrocycles of the invention that act to decrease apoptosis are used to treat disorders associated with an undesirable level of cell death. Thus, in some embodiments, the anti-apoptotic peptidomimetics macrocycles of the invention are used to treat disorders such as those that lead to cell death associated with viral infection, e.g., infection associated with infection with human immunodeficiency virus (HIV). A wide variety of neurological diseases are characterized by the gradual loss of specific sets of neurons, and the anti-apoptotic peptidomimetics macrocycles of the invention are used, in some embodiments, in the treatment of these disorders. Such disorders include Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis (ALS) retinitis pigmentosa, spinal muscular atrophy, and various forms of cerebellar degeneration. The cell loss in these diseases does not induce an inflammatory response, and apoptosis appears to be the mechanism of cell death. In addition, a number of hematologic diseases are associated with a decreased production of blood cells. These disorders include anemia associated with chronic disease, aplastic anemia, chronic neutropenia, and the myelodysplastic syndromes. Disorders of blood cell production, such as myelodysplastic syndrome and some forms of aplastic anemia, are associated with increased apoptotic cell death within the bone marrow. These disorders could result from the activation of genes that promote apoptosis, acquired deficiencies in stromal cells or hematopoietic survival factors, or the direct effects of toxins and mediators of immune responses. Two common disorders associated with cell death are myocardial infarctions and stroke. In both disorders, cells within the central area of ischemia, which is produced in the event of acute loss of blood flow, appear to die rapidly as a result of necrosis. However, outside the central ischemic zone, cells die over a more protracted time period and morphologically appear to die by apoptosis.


In other or further embodiments, the anti-apoptotic peptidomimetics macrocycles of the invention are used to treat all such disorders associated with undesirable cell death.


Some examples of immunologic disorders that are treated with the peptidomimetics macrocycles described herein include but are not limited to organ transplant rejection, arthritis, lupus, IBD, Crohn's disease, asthma, multiple sclerosis, diabetes, etc.


Some examples of neurologic disorders that are treated with the peptidomimetics macrocycles described herein include but are not limited to Alzheimer's Disease, Down's Syndrome, Dutch Type Hereditary Cerebral Hemorrhage Amyloidosis, Reactive Amyloidosis, Familial Amyloid Nephropathy with Urticaria and Deafness, Muckle-Wells Syndrome, Idiopathic Myeloma; Macroglobulinemia-Associated Myeloma, Familial Amyloid Polyneuropathy, Familial Amyloid Cardiomyopathy, Isolated Cardiac Amyloid, Systemic Senile Amyloidosis, Adult Onset Diabetes, Insulinoma, Isolated Atrial Amyloid, Medullary Carcinoma of the Thyroid, Familial Amyloidosis, Hereditary Cerebral Hemorrhage With Amyloidosis, Familial Amyloidotic Polyneuropathy, Scrapie, Creutzfeldt-Jacob Disease, Gerstmann Straussler-Scheinker Syndrome, Bovine Spongiform Encephalitis, a prion-mediated disease, and Huntington's Disease.


Some examples of endocrinologic disorders that are treated with the peptidomimetics macrocycles described herein include but are not limited to diabetes, hypothyroidism, hypopituitarism, hypoparathyroidism, hypogonadism, etc.


Examples of cardiovascular disorders (e.g., inflammatory disorders) that are treated or prevented with the peptidomimetics macrocycles of the invention include, but are not limited to, atherosclerosis, myocardial infarction, stroke, thrombosis, aneurism, heart failure, ischemic heart disease, angina pectoris, sudden cardiac death, hypertensive heart disease; non-coronary vessel disease, such as arteriolosclerosis, small vessel disease, nephropathy, hypertriglyceridemia, hypercholesterolemia, hyperlipidemia, xanthomatosis, asthma, hypertension, emphysema and chronic pulmonary disease; or a cardiovascular condition associated with interventional procedures (“procedural vascular trauma”), such as restenosis following angioplasty, placement of a shunt, stent, synthetic or natural excision grafts, indwelling catheter, valve or other implantable devices. Preferred cardiovascular disorders include atherosclerosis, myocardial infarction, aneurism, and stroke.


In some embodiments, the peptidomimetic macrocycles are useful in the treatment of viral disorders. For example, in the PB1/PA system, labeled peptidomimetic macrocycles based on PB1 can be used in a PA binding assay along with small molecules that competitively bind to PA. Competitive binding studies allow for rapid in vitro evaluation and determination of drug candidates specific for the PB1/PA system. Such binding studies can be performed with any of the peptidomimetic macrocycles disclosed herein and their binding partners. Antibodies can also be developed which disrupt the binding between PA and PD 1.


For example, peptidomimetic macrocycles derived from the PB1 helix sequence, or peptidomimetic macrocycles that bind selectively to the PB1 peptide binding site of the PA protein, can selectively inhibit influenza RNA-dependent RNA polymerases. Peptidomimetic macrocycles derived from the PB2 helix sequence, or peptidomimetic macrocycles that bind selectively to the PB2 peptide binding site of the PB1 protein, can selectively inhibit influenza RNA-dependent RNA polymerases. When administered within a therapeutic window after infection, such peptidomimetic macrocycles can reduce the severity or duration of an influenza infection. When administered prophylactically, such peptidomimetic macrocycles can prevent infection by influenza viruses and thereby decrease the spread of influenza and reduce large-scale epidemics.


In one aspect, the present invention provides novel peptidomimetic macrocycles that are useful in competitive binding assays to identify agents which bind to the natural ligand(s) of the proteins or peptides upon which the peptidomimetic macrocycles are modeled. For example, in the PB1/PA system, labeled peptidomimetic macrocycles based on PB1 can be used in a PA binding assay along with small molecules that competitively bind to PA. Competitive binding studies allow for rapid in vitro evaluation and determination of drug candidates specific for the PB1/PA system. Such binding studies can be performed with any of the peptidomimetic macrocycles disclosed herein and their binding partners.


In other aspects, the present invention provides for both prophylactic and therapeutic methods of treating a subject infected with, at risk of, or susceptible to an influenza virus. These methods comprise administering an effective amount of a compound to a warm blooded animal, including a human. In some embodiments, the administration of the compounds of the present invention prevents the proliferation or transmission of an influenza virus.


In some embodiments, peptidomimetic macrocycles are used to treat diseases induced by influenza viruses. Like other viruses, the replication of influenza virus involves six phases; transmission, entry, replication, biosynthesis, assembly, and exit. Entry occurs by endocytosis, replication and vRNP assembly takes place in the nucleus, and the virus buds from the plasma membrane. In the infected patient, the virus targets airway epithelial cells.


The methods described herein are also useful for development and/or identification of agents for the treatment of infections caused by viruses such as Abelson leukemia virus, Abelson murine leukemia virus, Abelson's virus, Acute laryngotracheobronchitis virus, Adelaide River virus, Adeno associated virus group, Adenovirus, African horse sickness virus, African swine fever virus, AIDS virus, Aleutian mink disease parvovirus, Alpharetrovirus, Alphavirus, ALV related virus, Amapari virus, Aphthovirus, Aquareovirus, Arbovirus, Arbovirus C, arbovirus group A, arbovirus group B, Arenavirus group, Argentine hemorrhagic fever virus, Argentine hemorrhagic fever virus, Arterivirus, Astrovirus, Ateline herpesvirus group, Aujezky's disease virus, Aura virus, Ausduk disease virus, Australian bat lyssavirus, Aviadenovirus, avian erythroblastosis virus, avian infectious bronchitis virus, avian leukemia virus, avian leukosis virus, avian lymphomatosis virus, avian myeloblastosis virus, avian paramyxovirus, avian pneumoencephalitis virus, avian reticuloendotheliosis virus, avian sarcoma virus, avian type C retrovirus group, Avihepadnavirus, Avipoxvirus, B virus, B19 virus, Babanki virus, baboon herpesvirus, baculovirus, Barmah Forest virus, Bebaru virus, Berrimah virus, Betaretrovirus, Birnavirus, Bittner virus, BK virus, Black Creek Canal virus, bluetongue virus, Bolivian hemorrhagic fever virus, Boma disease virus, border disease of sheep virus, borna virus, bovine alphaherpesvirus 1, bovine alphaherpesvirus 2, bovine coronavirus, bovine ephemeral fever virus, bovine immunodeficiency virus, bovine leukemia virus, bovine leukosis virus, bovine mammillitis virus, bovine papillomavirus, bovine papular stomatitis virus, bovine parvovirus, bovine syncytial virus, bovine type C oncovirus, bovine viral diarrhea virus, Buggy Creek virus, bullet shaped virus group, Bunyamwera virus supergroup, Bunyavirus, Burkitt's lymphoma virus, Bwamba Fever, CA virus, Calicivirus, California encephalitis virus, camelpox virus, canarypox virus, canid herpesvirus, canine coronavirus, canine distemper virus, canine herpesvirus, canine minute virus, canine parvovirus, Cano Delgadito virus, caprine arthritis virus, caprine encephalitis virus, Caprine Herpes Virus, Capripox virus, Cardiovirus, caviid herpesvirus 1, Cercopithecid herpesvirus 1, cercopithecine herpesvirus 1, Cercopithecine herpesvirus 2, Chandipura virus, Changuinola virus, channel catfish virus, Charleville virus, chickenpox virus, Chikungunya virus, chimpanzee herpesvirus, chub reovirus, chum salmon virus, Cocal virus, Coho salmon reovirus, coital exanthema virus, Colorado tick fever virus, Coltivirus, Columbia SK virus, common cold virus, contagious ecthyma virus, contagious pustular dermatitis virus, Coronavirus, Corriparta virus, coryza virus, cowpox virus, coxsackie virus, CPV (cytoplasmic polyhedrosis virus), cricket paralysis virus, Crimean-Congo hemorrhagic fever virus, croup associated virus, Cryptovirus, Cypovirus, Cytomegalovirus, cytomegalovirus group, cytoplasmic polyhedrosis virus, deer papillomavirus, deltaretrovirus, dengue virus, Densovirus, Dependovirus, Dhori virus, diploma virus, Drosophila C virus, duck hepatitis B virus, duck hepatitis virus 1, duck hepatitis virus 2, duovirus, Duvenhage virus, Deformed wing virus DWV, eastern equine encephalitis virus, eastern equine encephalomyelitis virus, EB virus, Ebola virus, Ebola-like virus, echo virus, echovirus, echovirus 10, echovirus 28, echovirus 9, ectromelia virus, EEE virus, EIA virus, EIA virus, encephalitis virus, encephalomyocarditis group virus, encephalomyocarditis virus, Enterovirus, enzyme elevating virus, enzyme elevating virus (LDH), epidemic hemorrhagic fever virus, epizootic hemorrhagic disease virus, Epstein-Barr virus, equid alphaherpesvirus 1, equid alphaherpesvirus 4, equid herpesvirus 2, equine abortion virus, equine arteritis virus, equine encephalosis virus, equine infectious anemia virus, equine morbillivirus, equine rhinopneumonitis virus, equine rhinovirus, Eubenangu virus, European elk papillomavirus, European swine fever virus, Everglades virus, Eyach virus, felid herpesvirus 1, feline calicivirus, feline fibrosarcoma virus, feline herpesvirus, feline immunodeficiency virus, feline infectious peritonitis virus, feline leukemia/sarcoma virus, feline leukemia virus, feline panleukopenia virus, feline parvovirus, feline sarcoma virus, feline syncytial virus, Filovirus, Flanders virus, Flavivirus, foot and mouth disease virus, Fort Morgan virus, Four Corners hantavirus, fowl adenovirus 1, fowlpox virus, Friend virus, Gammaretrovirus, GB hepatitis virus, GB virus, German measles virus, Getah virus, gibbon ape leukemia virus, glandular fever virus, goatpox virus, golden shinner virus, Gonometa virus, goose parvovirus, granulosis virus, Gross' virus, ground squirrel hepatitis B virus, group A arbovirus, Guanarito virus, guinea pig cytomegalovirus, guinea pig type C virus, Hantaan virus, Hantavirus, hard clam reovirus, hare fibroma virus, HCMV (human cytomegalovirus), hemadsorption virus 2, hemagglutinating virus of Japan, hemorrhagic fever virus, hendra virus, Henipaviruses, Hepadnavirus, hepatitis A virus, hepatitis B virus group, hepatitis C virus, hepatitis D virus, hepatitis delta virus, hepatitis E virus, hepatitis F virus, hepatitis G virus, hepatitis nonA nonB virus, hepatitis virus, hepatitis virus (nonhuman), hepatoencephalomyelitis reovirus 3, Hepatovirus, heron hepatitis B virus, herpes B virus, herpes simplex virus, herpes simplex virus 1, herpes simplex virus 2, herpesvirus, herpesvirus 7, Herpesvirus ateles, Herpesvirus hominis, Herpesvirus infection, Herpesvirus saimiri, Herpesvirus suis, Herpesvirus varicellae, Highlands J virus, Hirame rhabdovirus, hog cholera virus, human adenovirus 2, human alphaherpesvirus 1, human alphaherpesvirus 2, human alphaherpesvirus 3, human B lymphotropic virus, human betaherpesvirus 5, human coronavirus, human cytomegalovirus group, human foamy virus, human gammaherpesvirus 4, human gammaherpesvirus 6, human hepatitis A virus, human herpesvirus 1 group, human herpesvirus 2 group, human herpesvirus 3 group, human herpesvirus 4 group, human herpesvirus 6, human herpesvirus 8, human immunodeficiency virus, human immunodeficiency virus 1, human immunodeficiency virus 2, human papillomavirus, human T cell leukemia virus, human T cell leukemia virus I, human T cell leukemia virus II, human T cell leukemia virus III, human T cell lymphoma virus I, human T cell lymphoma virus II, human T cell lymphotropic virus type 1, human T cell lymphotropic virus type 2, human T lymphotropic virus I, human T lymphotropic virus II, human T lymphotropic virus III, Ichnovirus, infantile gastroenteritis virus, infectious bovine rhinotracheitis virus, infectious haematopoietic necrosis virus, infectious pancreatic necrosis virus, influenza virus A, influenza virus B, influenza virus C, influenza virus D, influenza virus pr8, insect iridescent virus, insect virus, iridovirus, Japanese B virus, Japanese encephalitis virus, JC virus, Junin virus, Kaposi's sarcoma-associated herpesvirus, Kemerovo virus, Kilham's rat virus, Klamath virus, Kolongo virus, Korean hemorrhagic fever virus, kumba virus, Kysanur forest disease virus, Kyzylagach virus, La Crosse virus, lactic dehydrogenase elevating virus, lactic dehydrogenase virus, Lagos bat virus, Langur virus, lapine parvovirus, Lassa fever virus, Lassa virus, latent rat virus, LCM virus, Leaky virus, Lentivirus, Leporipoxvirus, leukemia virus, leukovirus, lumpy skin disease virus, lymphadenopathy associated virus, Lymphocryptovirus, lymphocytic choriomeningitis virus, lymphoproliferative virus group, Machupo virus, mad itch virus, mammalian type B oncovirus group, mammalian type B retroviruses, mammalian type C retrovirus group, mammalian type D retroviruses, mammary tumor virus, Mapuera virus, Marburg virus, Marburg-like virus, Mason Pfizer monkey virus, Mastadenovirus, Canaro virus, ME virus, measles virus, Menangle virus, Mengo virus, Mengovirus, Middelburg virus, milkers nodule virus, mink enteritis virus, minute virus of mice, MLV related virus, MM virus, Mokola virus, Molluscipoxvirus, Molluscum contagiosum virus, monkey B virus, monkeypox virus, Mononegavirales, Morbillivirus, Mount Elgon bat virus, mouse cytomegalovirus, mouse encephalomyelitis virus, mouse hepatitis virus, mouse K virus, mouse leukemia virus, mouse mammary tumor virus, mouse minute virus, mouse pneumonia virus, mouse poliomyelitis virus, mouse polyomavirus, mouse sarcoma virus, mousepox virus, Mozambique virus, Mucambo virus, mucosal disease virus, mumps virus, murid betaherpesvirus 1, murid cytomegalovirus 2, murine cytomegalovirus group, murine encephalomyelitis virus, murine hepatitis virus, murine leukemia virus, murine nodule inducing virus, murine polyomavirus, murine sarcoma virus, Muromegalovirus, Murray Valley encephalitis virus, myxoma virus, Myxovirus, Myxovirus multiforme, Myxovirus parotitidis, Nairobi sheep disease virus, Nairovirus, Nanirnavirus, Nariva virus, Ndumo virus, Neethling virus, Nelson Bay virus, neurotropic virus, New World Arenavirus, newborn pneumonitis virus, Newcastle disease virus, Nipah virus, noncytopathogenic virus, Norwalk virus, nuclear polyhedrosis virus (NPV), nipple neck virus, O′nyong′nyong virus, Ockelbo virus, oncogenic virus, oncogenic viruslike particle, oncornavirus, Orbivirus, Orf virus, Oropouche virus, Orthohepadnavirus, Orthomyxovirus, Orthopoxvirus, Orthoreovirus, Orungo, ovine papillomavirus, ovine catarrhal fever virus, owl monkey herpesvirus, Palyam virus, Papillomavirus, Papillomavirus sylvilagi, Papovavirus, parainfluenza virus, parainfluenza virus type 1, parainfluenza virus type 2, parainfluenza virus type 3, parainfluenza virus type 4, Paramyxovirus, Parapoxvirus, paravaccinia virus, Parvovirus, Parvovirus B 19, parvovirus group, Pestivirus, Phlebovirus, phocine distemper virus, Picodnavirus, Picornavirus, pig cytomegalovirus, pigeonpox virus, Piry virus, Pixuna virus, pneumonia virus of mice, Pneumovirus, poliomyelitis virus, poliovirus, Polydnavirus, polyhedral virus, polyoma virus, Polyomavirus, Polyomavirus bovis, Polyomavirus cercopitheci, Polyomavirus hominis 2, Polyomavirus maccacae 1, Polyomavirus muris 1, Polyomavirus muris 2, Polyomavirus papionis 1, Polyomavirus papionis 2, Polyomavirus sylvilagi, Pongine herpesvirus 1, porcine epidemic diarrhea virus, porcine hemagglutinating encephalomyelitis virus, porcine parvovirus, porcine transmissible gastroenteritis virus, porcine type C virus, pox virus, poxvirus, poxvirus variolae, Prospect Hill virus, Provirus, pseudocowpox virus, pseudorabies virus, psittacinepox virus, quailpox virus, rabbit fibroma virus, rabbit kidney vaculolating virus, rabbit papillomavirus, rabies virus, raccoon parvovirus, raccoonpox virus, Ranikhet virus, rat cytomegalovirus, rat parvovirus, rat virus, Rauscher's virus, recombinant vaccinia virus, recombinant virus, reovirus, reovirus 1, reovirus 2, reovirus 3, reptilian type C virus, respiratory infection virus, respiratory syncytial virus, respiratory virus, reticuloendotheliosis virus, Rhabdovirus, Rhabdovirus carpia, Rhadinovirus, Rhinovirus, Rhizidiovirus, Rift Valley fever virus, Riley's virus, rinderpest virus, RNA tumor virus, Ross River virus, Rotavirus, rougeole virus, Rous sarcoma virus, rubella virus, rubeola virus, Rubivirus, Russian autumn encephalitis virus, SA 11 simian virus, SA2 virus, Sabia virus, Sagiyama virus, Saimirine herpesvirus 1, salivary gland virus, sandfly fever virus group, Sandjimba virus, SARS virus, SDAV (sialodacryoadenitis virus), sealpox virus, Semliki Forest Virus, Seoul virus, sheeppox virus, Shope fibroma virus, Shope papilloma virus, simian foamy virus, simian hepatitis A virus, simian human immunodeficiency virus, simian immunodeficiency virus, simian parainfluenza virus, simian T cell lymphotrophic virus, simian virus, simian virus 40, Simplexvirus, Sin Nombre virus, Sindbis virus, smallpox virus, South American hemorrhagic fever viruses, sparrowpox virus, Spumavirus, squirrel fibroma virus, squirrel monkey retrovirus, SSV 1 virus group, STLV (simian T lymphotropic virus) type I, STLV (simian T lymphotropic virus) type II, STLV (simian T lymphotropic virus) type III, stomatitis papulosa virus, submaxillary virus, suid alphaherpesvirus 1, suid herpesvirus 2, Suipoxvirus, swamp fever virus, swinepox virus, Swiss mouse leukemia virus, TAC virus, Tacaribe complex virus, Tacaribe virus, Tanapox virus, Taterapox virus, Tench reovirus, Theiler's encephalomyelitis virus, Theiler's virus, Thogoto virus, Thottapalayam virus, Tick borne encephalitis virus, Tioman virus, Togavirus, Torovirus, tumor virus, Tupaia virus, turkey rhinotracheitis virus, turkeypox virus, type C retroviruses, type D oncovirus, type D retrovirus group, ulcerative disease rhabdovirus, Una virus, Uukuniemi virus group, vaccinia virus, vacuolating virus, varicella zoster virus, Varicellovirus, Varicola virus, variola major virus, variola virus, Vasin Gishu disease virus, VEE virus, Venezuelan equine encephalitis virus, Venezuelan equine encephalomyelitis virus, Venezuelan hemorrhagic fever virus, vesicular stomatitis virus, Vesiculovirus, Vilyuisk virus, viper retrovirus, viral haemorrhagic septicemia virus, Visna Maedi virus, Visna virus, volepox virus, VSV (vesicular stomatitis virus), Wallal virus, Warrego virus, wart virus, WEE virus, West Nile virus, western equine encephalitis virus, western equine encephalomyelitis virus, Whataroa virus, Winter Vomiting Virus, woodchuck hepatitis B virus, woolly monkey sarcoma virus, wound tumor virus, WRSV virus, Yaba monkey tumor virus, Yaba virus, Yatapoxvirus, yellow fever virus, and the Yug Bogdanovac virus. In one embodiment an infectome will be produced for each virus that includes an inventory of the host cellular genes involved in virus infection during a specific phase of viral infection, such cellular entry or the replication cycle.


For some viruses a great deal of progress has been made in the elucidation of the steps involved during infection of host cells, and any of these steps can be targeted using peptidomimetic macrocycles. For example, experiments initiated in the early 1980s showed that influenza virus follows a stepwise, endocytic entry program with elements shared with other viruses such as alpha- and rhabdoviruses (Marsh and Helenius 1989; Whittaker 2006). The steps include: 1) Initial attachment to sialic acid containing glycoconjugates receptors on the cell surface; 2) signaling induced by the virus particle; 3) endocytosis by clathrin-dependent and clathrin-independent cellular mechanism; 4) acid-induced, hemaglutinin (HA)-mediated penetration from late endosomes; 5) acid-activated, M2 and matrix protein (M1) dependent uncoating of the capsid; and, 6) intra-cytosolic transport and nuclear import of vRNPs. These steps depend on assistance from the host cell in the form of sorting receptors, vesicle formation machinery, kinase-mediated regulation, organelle acidification, and, most likely, activities of the cytoskeleton.


Influenza attachment to the cells surface occurs via binding of the HA1 subunit to cell surface glycoproteins and glycolipids that carry oligosaccharide moieties with terminal sialic acid residues (Skehel and Wiley 2000). The linkage by which the sialic acid is connected to the next saccharide contributes to species specificity. Avian strains including H5N1 prefer an a-(2,3)-link and human strains a-(2,6)-link (Matrosovich 2006). In epithelial cells, binding occurs preferentially to microvilli on the apical surface, and endocytosis occurs at base of these extensions (Matlin 1982). Whether receptor binding induces signals that prepare the cell for the invasion is not yet known, but it is likely because activation of protein kinase C and synthesis of phopshatidylinositol-3-phosphate (PI3P) are required for efficient entry (Sieczkarski et al. 2003; Whittaker 2006).


Endocytic internalization occurs within a few minutes after binding (Matlin 1982; Yoshimura and Ohnishi 1984). In tissue culture cells influenza virus makes use of three different types of cellular processes; 1) preexisting clathrin coated pits, 2) virus-induced clathrin coated pits, and 3) endocytosis in vesicles without visible coat (Matlin 1982; Sieczkarski and Whittaker 2002; Rust et al. 2004). Video microscopy using fluorescent viruses showed the virus particles undergoing actin-mediated rapid motion in the cell periphery followed by minus end-directed, microtubule-mediated transport to the perinuclear area of the cell. Live cell imaging indicated that the virus particles first entered a subpopulation of mobile, peripheral early endosomes that carry them deeper into the cytoplasm before penetration takes place (Lakadamyali et al. 2003; Rust et al. 2004). The endocytotic process is regulated by protein and lipid kinases, the proteasome, as well as by Rabs and ubiquitin-dependent sorting factors (Khor et al. 2003; Whittaker 2006).


The membrane penetration step is mediated by low pH-mediated activation of the trimeric, metastable HA, and the conversion of this Type I viral fusion protein to a membrane fusion competent conformation (Maeda et al. 1981; White et al. 1982). This occurs about 16 min after internalization, and the pH threshold varies between strains in the 5.0-5.6 range. The target membrane is the limiting membrane of intermediate or late endosomes. The mechanism of fusion has been extensively studied (Kielian and Rey 2006). Further it was observed that fusion itself does not seem to require any host cell components except a lipid bilayer membrane and a functional acidification system (Maeda et al. 1981; White et al. 1982). The penetration step is inhibited by agents such as lysosomotropic weak bases, carboxylic ionophores, and proton pump inhibitors (Matlin 1982; Whittaker 2006).


To allow nuclear import of the incoming vRNPs, the capsid has to be disassembled. This step involves acidification of the viral interior through the amantadine-sensitive M2-channels causes dissociation of M1 from the vRNPs (Bukrinskaya et al. 1982; Martin and Helenius 1991; Pinto et al. 1992). Transport of the individual vRNPs to the nuclear pore complexes and transfer into the nucleus depends on cellular nuclear transport receptors (O'Neill et al. 1995; Cros et al. 2005). Replication of the viral RNAs (synthesis of positive and negative strands), and transcription occurs in complexes tightly associated with the chromatin in the nucleus. It is evident that, although many of the steps are catalyzed by the viral polymerase, cellular factors are involved including RNA polymerase activating factors, a chaperone HSP90, hCLE, and a human splicing factor UAP56. Viral gene expression is subject to complex cellular control at the transcriptional level, a control system dependent on cellular kinases (Whittaker 2006).


The final assembly of an influenza particle occurs during a budding process at the plasma membrane. In epithelial cells, budding occurs at the apical membrane domain only (Rodriguez-Boulan 1983). First, the progeny vRNPs are transported within the nucleoplasm to the nuclear envelope, then from the nucleus to the cytoplasm, and finally they accumulate in the cell periphery. Exit from the nucleus is dependent on viral protein NEP and Ml, and a variety of cellular proteins including CRM1 (a nuclear export receptor), caspases, and possibly some nuclear protein chaperones. Phosphorylation plays a role in nuclear export by regulating M1 and NEP synthesis, and also through the MAPK/ERK system (Bui et al. 1996; Ludwig 2006). G protein and protein kinase signaling is involved in influenza virus budding from infected host cells (Hui E. and Nayak D, 2002).


The three membrane proteins of the virus are synthesized, folded and assembled into oligomers in the ER (Doms et al. 1993). They pass through the Golgi complex; undergo maturation through modification of their carbohydrate moieties and proteolytic cleavage. After reaching the plasma membrane they associate with M1 and the vRNPs in a budding process that result in the inclusion of all eight vRNPs and exclusion of most host cell components except lipids.


Influenza infection is associated with activation of several signaling cascades including the MAPK pathway (ERK, JNK, p38 and BMK-1/ERK5), the KB/NF-κB signaling module, the Raf/MEK/ERK cascade, and programmed cell death (Ludwig 2006). These result in a variety of effects that limit the progress of infection such as transcriptional activation of IFN-β, apoptotic cell death, and a block in virus escape of from late endosomes (Ludwig 2006).


Administration

The aqueous pharmaceutical formulations of the present disclosure can draw upon many suitable parenteral modes of administration route. The formulations can be, for example, administered intravenously, intraarterially, intrathecally, or subcutaneously. If combinations of agents are administered as separate formulations, they can be administered by the same route or by different routes.


In some embodiments, the aqueous pharmaceutical formulation is administered in a single dose. A single dose of the aqueous pharmaceutical formulation can also be used when it is co-administered with another substance (e.g., an analgesic) for treatment of an acute condition.


In some embodiments, the aqueous pharmaceutical formulation (by itself or in combination with other drugs) is administered in multiple doses. Dosing can be about once, twice, three times, four times, five times, six times, seven times, eight times, nine times, ten times or more than ten times per day. Dosing can be about once a year, twice a year, every six months, every 4 months, every 3 months, every 60 days, once a month, once every two weeks, once a week, or once every other day. In another embodiment the aqueous pharmaceutical formulation alone or in combination with another therapeutic substance is administered together about once per day to about 10 times per day. In another embodiment the administration of the aqueous pharmaceutical formulation alone or in combination with another therapeutic substance continues for less than about 7 days. In yet another embodiment the administration continues for more than about 6, 10, 14, 28 days, two months, six months, or one year.


Administration of the formulations of the disclosure can continue as long as necessary. In some embodiments, a aqueous pharmaceutical formulation of the disclosure is administered for more than 1, 2, 3, 4, 5, 6, 7, 14, 28, 35, 42, 49, 56, 63, 70, 77, 84, 91, 98, 105, 112, 119, 126, 133, or 140 days. In some embodiments, a aqueous pharmaceutical formulation of the disclosure is administered for less than 140, 133, 126, 119, 112, 105, 98, 91, 84, 77, 70, 63, 56, 49, 42, 35, 28, 14, 7, 6, 5, 4, 3, 2, or 1 day. In some embodiments, an aqueous pharmaceutical formulation of the disclosure is administered for more than 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12 days. In some embodiments, a aqueous pharmaceutical formulation of the disclosure is administered for less than 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, or 1 months. In some embodiments, an aqueous pharmaceutical formulation of the disclosure is administered for more than 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12 years. In some embodiments, a aqueous pharmaceutical formulation of the disclosure is administered for less than 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, or 1 years. In some embodiments, a aqueous pharmaceutical formulation of the disclosure is administered chronically on an ongoing basis.


Dosing for the aqueous pharmaceutical formulation formulations of the disclosure can be found by routine experimentation. The daily dose can range from about 1×10−8 g to 5000 mg. Daily dose range can depend on the form of the aqueous pharmaceutical formulation e.g., the peptidomimetic macrocycle used, and/or route of administration, as described herein. For example, daily dose can be in the range of about 0.1-5000 mg, about 0.1-3000 mg, about 0.1-2000 mg, about 0.1-1000 mg, about 01.-500 mg, about 0.1-100 mg, 1-5000 mg, about 1-3000 mg, about 1-2000 mg, about 1-1000 mg, about 1-500 mg, or about 1-100 mg, about 10-5000 mg, about 10-3000 mg, about 10-2000 mg, about 10-1000 mg, about 10-500 mg, about 10-200 mg, about 10-100 mg, about 20-2000 mg, about 20-1500 mg, about 20-1000 mg, about 20-500 mg, about 20-100 mg, about 50-5000 mg, about 50-4000 mg, about 50-3000 mg, about 50-2000 mg, about 50-1000 mg, about 50-500 mg, about 50-100 mg, about 100-5000 mg, about 100-4000 mg, about 100-3000 mg, about 100-2000 mg, about 100-1000 mg, about 100-500 mg. In some embodiments, the daily dose of the aqueous pharmaceutical formulation is about 0.01, 0.1, 1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 600, 700, 800, 900, or 1000 mg. In some embodiments, the daily dose of the aqueous pharmaceutical formulation is 0.01 mg. In some embodiments, the daily dose of the aqueous pharmaceutical formulation is 0.1 mg. In some embodiments, the daily dose of the aqueous pharmaceutical formulation is 1 mg. In some embodiments, the daily dose of the aqueous pharmaceutical formulation is up to 10 mg. In some embodiments, the daily dose of the aqueous pharmaceutical formulation is up to 20 mg. In some embodiments, the daily dose of the aqueous pharmaceutical formulation is 50 mg. In some embodiments, the daily dose of the aqueous pharmaceutical formulation is 100 mg.


III. Kits

For use in the therapeutic methods of use described herein, the formulations of the disclosure can be available as a kit. Such kits can include a carrier, package, or container that is optionally compartmentalized to receive one or more doses of the aqueous pharmaceutical formulations for use in a method described herein. The kits provided herein can contain packaging materials. Packaging materials for use in packaging pharmaceutical products include, but are not limited to those described in e.g., U.S. Pat. No. 5,323,907. Examples of pharmaceutical packaging materials include, but are not limited to, blister packs, bottles, tubes, bags, containers, bottles, and any packaging material suitable for a selected formulation and intended mode of administration and treatment.


The aqueous pharmaceutical formulations of the disclosure can be packaged in multidose form or in single dose form. In some cases, the formulations are packaged in multidose forms. In some embodiments the formulations are packaged as single dose units. In some embodiments of the disclosure single dose packaging of the formulations can offer several advantages over multi dose packaging including dosage control, increased patient compliance, improved product labeling, and reduced counterfeiting. In various embodiments single dosage packaging of the formulations of the disclosure can be in form of vials, ampoules, tubes, bottles, pouches, packettes, syringes or blister packs. In some embodiments the single dose containers can be grouped together and placed into additional containers. In some embodiments the secondary container is a pouch.


In some examples, the formulations of the disclosure can be packed in a bottle or a vial. In some examples, the formulations can be packed in glass serum vial. In some examples, the formulations can be packed in serum vials composed of borosilicate glass. In some examples, the formulations are packed in a 1 mL, a 2 mL, a 3 mL, a 4 mL, a 5 mL, a 10 mL, a 20 mL, a 30 mL, or a 50 mL glass vial. In some examples, the formulations are packed in a 5 mL glass vial. In some examples, the formulations are packed in a 10 mL glass vial. In some examples, the formulations are packed in a 15 mL glass vial. In some examples, the formulations are packed in a 20 mL glass vial. In some embodiments, the vials comprise a 5 mm, a 10 mm, a 15 mm, 20 mm, 30 mm, or 50 mm orifice. In some embodiments, the formulations are packed in a 5 mL borosilicate glass vial with a 20 mm orifice. In some embodiments, the formulations are packed in a 10 mL borosilicate glass vial with a 20 mm orifice. The containers, bottles and/or vials can be equipped with suitable caps or stoppers. In some embodiments, the vials are equipped with a vinyl stopper. In some embodiments the formulations are packed in a 10 mL glass vial, with a 20 mm orifice, equipped with vinyl stoppers. The stoppers can be coated with FluroTek®. The containers, bottles and/or can also be equipped with a seal, for example, crimped-on flip-off caps. The seal can be aluminum and/or plastic. The container can be a glass ampoule.


In some embodiments, the containers, including the vials and the bottles, can be inspected for visible particulates, glass defects, and/or stopper/cap integrity before packaging the formulations therein. In some embodiments, the containers, including the vials and the bottles, can be inspected for visible particulates, glass defects, and/or stopper/cap integrity after packaging the formulations therein. In some embodiments, the containers, including the vials and the bottles, can be inspected for visible particulates, glass defects, and/or stopper/cap integrity before and/or after packaging the formulations therein. The containers, including the vials and the bottles, can also be additionally inspected for fill height after packaging the formulations therein. The inspection can be visual inspections and can be carried out under any convenient condition, for example in front of a black and white background.


A kit can also include labels listing contents and/or instructions for use, and package inserts with instructions for use. A set of instructions will also typically be included. In one embodiment, a label is on or associated with the container. In one embodiment, a label is on a container when letters, numbers or other characters forming the label are attached, molded or etched into the container itself; a label is associated with a container when it is present within a receptacle or carrier that also holds the container, e.g., as a package insert. In one embodiment, a label is used to indicate that the contents are to be used for a specific therapeutic application. The label also indicates directions for use of the contents, such as in the methods described herein. The labels can optionally indicate one or more items selected from a group comprising the date of manufacturing of the formulation, the recommended storage conditions, intended mode of administration for the formulation, the amount of formulation enclosed and/or the concentration of the peptidomimetic macrocycle. The labels can further include any applicable warnings and/or possible side effects.


In certain embodiments, the pharmaceutical formulations are presented in a pack or dispenser device which contains one or more unit dosage forms containing a formulation provided herein. The pack, for example, contains metal or plastic foil, such as a blister pack. In one embodiment, the pack or dispenser device is accompanied by instructions for administration. In one embodiment, the pack or dispenser is also accompanied with a notice associated with the container in form prescribed by a governmental agency regulating the manufacture, use, or sale of pharmaceuticals, which notice is reflective of approval by the agency of the form of the drug for human or veterinary administration. Such notice, for example, is the labeling approved by the U.S. Food and Drug Administration for prescription drugs, or the approved product insert. In one embodiment, formulations containing a compound provided herein formulated in a compatible pharmaceutical carrier are also prepared, placed in an appropriate container, and labeled for treatment of an indicated condition.


EXAMPLES
Example 1
Peptidomimetic Macrocycles

Peptidomimetic macrocycles were synthesized, purified and analyzed as previously described and as described below (Schafmeister et al., J. Am. Chem. Soc. 122:5891-5892 (2000); Schafmeister & Verdin, J. Am. Chem. Soc. 122:5891 (2005); Walensky et al., Science 305:1466-1470 (2004); and U.S. Pat. No. 7,192,713). Peptidomimetic macrocycles were designed by replacing two or more naturally occurring amino acids with the corresponding synthetic amino acids. Substitutions were made at i and i+4, and i and i+7 positions. Peptide synthesis was performed either manually or on an automated peptide synthesizer (Applied Biosystems, model 433A), using solid phase conditions, rink amide AM resin (Novabiochem), and Fmoc main-chain protecting group chemistry. For the coupling of natural Fmoc-protected amino acids (Novabiochem), 10 equivalents of amino acid and a 1:1:2 molar ratio of coupling reagents HBTU/HOBt (Novabiochem)/DIEA were employed. Non-natural amino acids (4 equiv) were coupled with a 1:1:2 molar ratio of HATU (Applied Biosystems)/HOBt/DIEA. The N-termini of the synthetic peptides were acetylated, while the C-termini were amidated.


Purification of cross-linked compounds was achieved by high performance liquid chromatography (HPLC) (Varian ProStar) on a reverse phase C18 column (Varian) to yield the pure compounds. Chemical composition of the pure products was confirmed by LC/MS mass spectrometry (Micromass LCT interfaced with Agilent 1100 HPLC system) and amino acid analysis (Applied Biosystems, model 420A).


The following protocol was used in the synthesis of dialkyne-crosslinked peptidomimetic macrocycles, including SP662, SP663 and SP664. Fully protected resin-bound peptides were synthesized on a PEG-PS resin (loading 0.45 mmol/g) on a 0.2 mmol scale. Deprotection of the temporary Fmoc group was achieved by 3×10 min treatments of the resin bound peptide with 20% (v/v) piperidine in DMF. After washing with NMP (3×), dichloromethane (3×) and NMP (3×), coupling of each successive amino acid was achieved with 1×60 min incubation with the appropriate preactivated Fmoc-amino acid derivative. All protected amino acids (0.4 mmol) were dissolved in NMP and activated with HCTU (0.4 mmol) and DIEA (0.8 mmol) prior to transfer of the coupling solution to the deprotected resin-bound peptide. After coupling was completed, the resin was washed in preparation for the next deprotection/coupling cycle. Acetylation of the amino terminus was carried out in the presence of acetic anhydride/DIEA in NMP. The LC-MS analysis of a cleaved and deprotected sample obtained from an aliquot of the fully assembled resin-bound peptide was accomplished in order to verifying the completion of each coupling. In a typical example, tetrahydrofuran (4 ml) and triethylamine (2 ml) were added to the peptide resin (0.2 mmol) in a 40 ml glass vial and shaken for 10 minutes. Pd(PPh3)2Cl2 (0.014 g, 0.02 mmol) and copper iodide (0.008 g, 0.04 mmol) were then added and the resulting reaction mixture was mechanically shaken 16 hours while open to atmosphere. The diyne-cyclized resin-bound peptides were deprotected and cleaved from the solid support by treatment with TFA/H2O/TIS (95/5/5 v/v) for 2.5 h at room temperature. After filtration of the resin the TFA solution was precipitated in cold diethyl ether and centrifuged to yield the desired product as a solid. The crude product was purified by preparative HPLC.


The following protocol was used in the synthesis of single alkyne-crosslinked peptidomimetic macrocycles, including SP665. Fully protected resin-bound peptides were synthesized on a Rink amide MBHA resin (loading 0.62 mmol/g) on a 0.1 mmol scale. Deprotection of the temporary Fmoc group was achieved by 2×20 min treatments of the resin bound peptide with 25% (v/v) piperidine in NMP. After extensive flow washing with NMP and dichloromethane, coupling of each successive amino acid was achieved with 1×60 min incubation with the appropriate preactivated Fmoc-amino acid derivative. All protected amino acids (1 mmol) were dissolved in NMP and activated with HCTU (1 mmol) and DIEA (1 mmol) prior to transfer of the coupling solution to the deprotected resin-bound peptide. After coupling was completed, the resin was extensively flow washed in preparation for the next deprotection/coupling cycle. Acetylation of the amino terminus was carried out in the presence of acetic anhydride/DIEA in NMP/NMM. The LC-MS analysis of a cleaved and deprotected sample obtained from an aliquot of the fully assembled resin-bound peptide was accomplished in order to verifying the completion of each coupling. In a typical example, the peptide resin (0.1 mmol) was washed with DCM. Resin was loaded into a microwave vial. The vessel was evacuated and purged with nitrogen. Molybdenumhexacarbonyl (0.01 eq, Sigma Aldrich 199959) was added. Anhydrous chlorobenzene was added to the reaction vessel. Then 2-fluorophenol eq, Sigma Aldrich F12804) was added. The reaction was then loaded into the microwave and held at 130° C. for 10 minutes. Reaction can need to be pushed a subsequent time for completion. The alkyne metathesized resin-bound peptides were deprotected and cleaved from the solid support by treatment with TFA/H2O/TIS (94/3/3 v/v) for 3 h at room temperature. After filtration of the resin the TFA solution was precipitated in cold diethyl ether and centrifuged to yield the desired product as a solid. The crude product was purified by preparative HPLC.


Table 1 shows a list of peptidomimetic macrocycles that were prepared. Table 1a, Table 1b, Table 1c and Table 1d shows a selection of peptidomimetic macrocycles. In some embodiments, peptidomimetic macrocycles exclude peptidomimetic macrocycles shown in Table 2a. In some embodiments, peptidomimetic macrocycles do not comprise a peptidomimetic macrocycle structure as shown in Table 2a. In other embodiments, peptidomimetic macrocycles exclude peptidomimetic macrocycles shown in Table 2b. In some embodiments, the peptidomimetic macrocycles disclosed herein do not comprise a peptidomimetic macrocycle structure as shown in Table 2b.


Example 2
Preparation of a Pharmaceutical Formulation 1-Liter Peptidomimetic Formulation Batch

Aileron peptide 1 is formulated as a pharmaceutical formulation. Aileron peptide 1 is an alpha helical hydrocarbon cross-linked polypeptide macrocycle, with an amino acid sequence less than 20 amino acids long that is derived from the transactivation domain of wild type human P53 protein and that contains a phenylalanine, a tryptophan and a leucine amino acid in the same positions relative to each other as in the transactivation domain of wild type human P53 protein. Aileron peptide 1 has a single cross link spanning amino acids in the i to the i+7 position of the amino acid sequence and has more than three amino acids between the i+7 position and the carboxyl terminus. Aileron peptide 1 binds to human MDM2 and MDM4 and has an observed mass of 950-975 m/e as measured by electrospray ionization-mass spectrometry.


For each liter of formulated Aileron peptide lthe peptides is sequentially dissolve in 900 mL of water for injection 182 mg monosodium phosphate, monohydrate, 2,968 mg disodium phosphate, anhydrous, and 82.2 g of D-trehalose. Add 3.0 mL of a 10% (w/w) aqueous solution of Polysorbate 20. Slowly add 15,000 mg Aileron peptide 1 divided by peptide content divided by peptide purity to the solution under stirring. E.g., if the peptide content is 94.3% and the peptide purity is 98.2%, 15,000/94.3*100/98./100 or 16,215 mg of bulk-Aileron peptide 1 would have to be added. While the peptide is dissolving the pH of the solution is kept between 7.5 and 7.7 by the addition of 0.1 N sodium hydroxide.


After all peptide is dissolved, adjust pH of the solution to 7.5±0.1 with sodium hydroxide and subsequently q.s. with WFI to 1,000 mL. Stir solution for 5 minutes and then clarify solution by passing it through a 0.22-μm PVDF-membrane filter.


Example 3
Sterile Filtration and Fill

The formulated product is filtered through two serial sterilization 0.22 μm PVDF membrane filters into a sterile container that is equipped with the fill needle. The filling process starts after both filters have passed the post filtration filter integrity test. If one or both filters do not pass the post filtration integrity test, the tandem sterile filtration process is repeated until both filters pass the test.


All vials are inspected for visible particulates, glass faults, fill high and stopper/cap integrity in front of a white and black background. Approximately 180 vial containers are then filled per 1-liter batch to a level of 5.2 mL to 5.7 mL each, with a fill target of 5.5 mL (the label claim is 5.0 mL). Fill volume accuracy is verified throughout the fill process. The filling machine loaded with vials and stoppers immediately stoppers each vial after it is filled. Capping occurs in line with filling and stopping or can occur separately under ISO Class 5 supply air. Weight check of the contents of the filled vials is performed throughout the filling process to assure that the vials receive the specified fill volume. Any rejected vials are discarded.


Example 4
Stability Analysis

To render the stability study more challenging 2 mL vials with 13 mm 0 stoppers and a fill volume of 1.0 mL were selected. The smaller vial size provided a greater surface to volume ratio which would amplify any container/closure effects on product stability. To assure that all surfaces of vial were challenged, the vials were stored in an inverted position. The tested storage conditions on inverted vials are: −20° C., +5° C., +25° C., and +40° C. RH.


The results of this study are depicted in Table 5. There is no appreciable purity loss at storage temperatures between between −20° C. and +25° C. over the 6-month test period and only about a 1.8% purity loss of the sample that is stored at 40° C. over the same period. The observed small but continuous increase of RRT values between 0.22 and 0.81 in the 40° C. samples attests to both, the excellent detecting power and stability-indicating capability of the RP-HPLC (TFA) method. The peptidomimetic macrocycle concentration stayed within an acceptable ±4% range over the 6-month period for all samples independent of the storage temperature.









TABLE 5





Product stability results of Aileron peptide1 formulated at 15 mg/mL in 20 mM sodium phosphate,


240 mM trehalose, 300 ppm Polysorbate 20 buffer in a 5-fold scaled-down, inverted container/closure


configuration to amplify any potential product degrading effects by the container/closure surface.

















Time Points











Intial
1 month
2 Months
















Storage
−20° C.
−20° C.
5° C.
25° C.
40° C.
−20° C.
5° C.
25° C.
40° C.


















Assay [%]
 100%
   97%
   96%
   99%
 103%
 104%
 101%
 102%
















Purity [%]
95.5%
95.9%
95.8%
96.1%
96.0%
95.8%
96.2%
96.1%
95.6%







Individual Impurities > 0.1%
















~RRT 0.22








0.08%


~RRT 0.32








0.09%


~RRT 0.47








0.08%


~RRT 0.81








0.08%


~RRT 0.84
0.11%



0.06%



0.13%


~RRT 0.88
0.17%
0.12%
0.12%
0.13%
0.13%
0.14%

0.14%
0.14%


~RRT 0.90
0.22%
0.16%
0.19%
0.18%
0.18%
0.16%
0.15%
0.20%
0.20%


~RRT 0.93
0.54%
0.47%
0.50%


0.51%
0.44%




~RRT 1.03
2.24%
2.21%
2.22%
2.20%
2.20%
2.18%
2.13%
2.27%
2.27%


~RRT 1.04
0.17%
0.11%
0.12%
0.17%
0.17%
0.15%
0.13%
ND
ND


~RRT 1.06



0.10%
0.10%


0.14%
0.14%


~RRT 1.07
0.12%
0.13%
0.15%
0.16%
0.16%
0.11%
0.07%
0.14%
0.14%


~RRT 1.10
0.95%
0.95%
0.93%
0.93%
0.99%
0.98%
0.89%
1.00%
1.06%







Particulate Matter [Number of particles per container)

















<10
μm
<1




<1
<1
<1
<1


>10
μm
140




38
23

28


>25
μm
33




7
6

5


>50
μm
4




2
3

2












Time Points










3 months
6 months















Storage
−20° C.
5° C.
25° C.
40° C.
−20° C.
5° C.
25° C.
40° C.





Assay [%]
   99%
   99%
   99%
   97%
 100%
   99%
   99%
   96%


Purity [%]
95.9%
95.8%
96.0%
95.2%
95.7%
95.5%
95.7%
93.9%







Individual Impurities > 0.1%















~RRT 0.22



0.08%



0.16%


~RRT 0.32



0.14%



0.33%


~RRT 0.47



0.14%



0.25%


~RRT 0.81



0.12%



0.25%


~RRT 0.84



0.14%



0.25%


~RRT 0.88


0.13%
0.13%
0.14%
0.17%
0.09%
0.18%


~RRT 0.90
0.18%
0.17%
0.21%
0.21%
0.19%
0.21%
0.20%
0.23%


~RRT 0.93
0.50%
0.51%


0.55%
0.54%
0.49%
0.52%


~RRT 1.03
2.23%
2.24%
2.40%
2.40%
2.15%
2.24%
2.21%
2.30%


~RRT 1.04
0.14%
0.14%


0.19%
0.15%
0.12%
0.16%


~RRT 1.06
0.00%
0.00%
0.16%
0.16%
0.09%
0.09%
0.13%
0.13%


~RRT 1.07
0.15%
0.15%
0.17%
0.17%
0.12%
0.18%
0.12%
0.16%


~RRT 1.10
0.95%
0.96%
0.99%
1.08%
0.92%
0.97%
0.99%
1.20%







Particulate Matter [Number of particles per container)
















<10
μm
<2
<1
<1
~8






>10
μm



31






>25
μm



3






>50
μm



0





RRT = relative retention time.






Example 5
Comparative Data for TRIS and Phosphate Buffers

Composition of Formulations


Two formulations, F1 and F2 were formulated. Table 6 shows the compositions of the two formulations. Formulations were filled into 6 mL, 0.20 mm, colorless vials. The vials were equipped with teflon serum-stoppers D777-1, 0.20 mm and aluminum caps without PP-cap, 0.20 mm. 6 vials of each formulation were prepared. The vials were stored at 2-8° C. Exposure to direct sunlight was avoided.









TABLE 6







Composition of formulations F1 and F2:













Formu-






Peptidomimetric
lation
Buffer

Surfactant
Peptide


Macrocycle
Code
system
Excipient
%
(mg/ml)





Aileron peptide
F1
20 mM
240 mM
0.03
15


1

Na-Phosphate
Trehalose






pH 7.5






F2
20 mM Tris

0.03





pH 7.5









Two placebo formulations P1 (with 20 mM Na-phosphate buffer) and P2 (with 20 mM Tris buffer), without the peptidomimetic macrocycle, were also prepared.


Every filled 6 ml vial was visually inspected using Seidenader. The results of this observation are summarized in Table 7. The observation images are shown in FIG. 2.









TABLE 7







Comparative visual inspection of F1, F2, P1, and P2


indicate that the resulting formulations were


comparable and yielded minimal visible particles.










Form.
total filled/
no. of vials with particles














Code
inspected
0
1-5
6-10
>10
notes
















F1
6
4
2


1x faster








1x particle


F2
6
6






P1
6
5
1


1x faster


P2
6
6









Example 6
Shelf Life of the Peptidomimetic Macrocycles of the Invention

A pharmaceutical formulation of Aileron peptide 1, was formulated as described above and stored at varying temperatures (−20° C., 2-8° C., 25° C. 60% humidity and 40° C. 75% humidity. The purity of the samples was analyzed at regular time intervals. The results of these experiments for Aileron peptide 1 are summarized in FIG. 4. These experiments support a greater than 2 year shelf life at −20° C. and 2-8° C.


Example 7
Stability Testing of Aileron Peptide 1 was Performed on a Pharmaceutical Formulation

formulated as described above and stored at varying temperatures (−20° C., 2-8° C., 25° C. 60% humidity and 40° C. 75% humidity. The purity of the samples was analyzed at regular time intervals. The results of these experiments for Aileron peptide 1 are summarized in Tables 8, 9, 10, and 11.










TABLE 8








Storage: −20° C.















Initial
1 Month
2 Months
3 Months
6 Months
9 Months
12 Months





Appearance1
Conforms
Conforms
Conforms
Conforms
Conforms
Conforms
Conforms


pH2
7.6
7.6
7.6
7.6
7.6
7.6*
7.6


Assay
15.6
15.6
15.9
15.6
15.4
15.5
15.6


[mg/mL]









Purity [%]3
99.0
99.0
98.9
98.9
98.9
99.0
99.0


Impurities
0.4% @
0.4% @
0.4% @
0.4% @
0.4% @
0.4% @
0.4% @


[%]4
0.89
0.89
0.89
0.89
0.89
0.88
0.88



0.4% @
0.4% @
0.5% @
0.5% @
0.5% @
0.4% @
0.4% @



0.91
0.91
0.91
0.91
0.91
0.91
0.91



0.2% @
0.2% @
0.2% @
0.2% @
0.2% @
0.2% @
0.2% @



1.02
1.02
1.02
1.02
1.02
1.02
1.02


Particulate
184



18

557


Matter5









CCIT6
63



0

8


Endotoxin7
conforms





conforms



<1.8





<1.6



EU/mL





EU/mL
















TABLE 9







Storage: +5° C.















Initial
1 Month
2 Months
3 Months
6 Months
9 Months
12 Months





Appearance1
Conforms
Conforms
Conforms
Conforms
Conforms
Conforms
Conforms


pH2
7.6
7.6
7.6
7.7
7.7
7.6
7.6


Assay
15.6
15.7
15.8
15.8
15.5
15.6
15.6


[mg/mL]









Purity [%]3
99.0
99.0
99.0
99.0
98.9
99.0
99.0


Impurities
0.4% @
0.4% @
0.4% @
0.4% @
0.4% @
0.4% @
0.4% @


[%]4
0.89
0.89
0.89
0.89
0.89
0.89
0.89



0.4% @
0.4% @
0.4% @
0.4% @
0.5% @
0.4% @
0.4% @



0.91
0.91
0.91
0.91
0.91
0.91
0.91



0.2% @
0.2% @
0.2% @
0.2% @
0.2% @
0.2% @
0.2% @



1.02
1.02
1.02
1.02
1.02
1.02
1.02


Particulate
184
1


37

171


Matters5









CCIT6
63



4

11


Endotoxin7
conforms





conforms



<1.8





<1.6



EU/mL





EU/mL
















TABLE 10







Storage: +25° C./60% RH















Initial
1 Month
2 Months
3 Months
6 Months
9 Months
12 Months





Appearance1
Conforms
Conforms
Conforms
Conforms
Conforms
Conforms
Conforms


pH2
7.6
7.65
7.6
7.6
7.7
7.6
7.6


Assay
15.6
15.6
15.8
15.4
15.2
15.1
15.0


[mg/mL]









Purity [%]3
99.0
99.0
98.9
98.7
98.4
98.4
97.9


Impurities [%]4



0.2% @
0.3% @
0.4% @
0.5% @






0.23
0.23
0.23
0.23









0.2% @









0.32






0.1% @


0.4 @






0.82


0.82



0.4% @
0.4% @
0.4% @
0.4% @
0.4% @
0.4% @
0.4% @



0.89
0.89
0.89
0.89
0.89
0.89
0.88



0.4% @
0.4% @
0.4% @
0.4% @
0.4% @
0.4% @
0.4% @



0.91
0.91
0.91
0.91
0.91
0.91
0.91



0.2% @
0.2% @
0.2% @
0.2% @
0.2% @
0.2% @
0.2% @



1.02
1.02
1.02
1.02
1.02
1.02
1.02


Particulate
184



5

185


Matter5









CCIT6
63



1

8


Endotoxin7
conforms





conforms



<1.8





<1.6



EU/mL





EU/mL






1Visual appearance Specification: Upon thawing, clear, colorless, particulate-free solution




2pH Specification: 7.3 to 7.7




3Purity by RP-HPLC(TFA) Specification: ≧95%; no single impurity >3%




4>0.1% Impurities listed by RRT




5USP <788> (light obstruction) Specification: ≦6,000 particles ≧10 μm and ≦600 particles ≧25 μm per vial (upper cell: ≧10 μm particles; lower cells: ≧25 μm particles




6CCIT Specification: No dye intrusion




7Endotoxin: ≦4.4 EU/mL (based upon maximum patient dose of 17 mg ALRN-6924 per Kg of patient weight)














TABLE 11







Storage: +40° C./75% RH















Initial
1 Month
2 Months
3 Months
6 Months
9 Months
12 Months





Appearance1
conforms
conforms
conforms
OOS*
OOS**
OOS**
OOS**


pH2
7.6
7.64
7.6
7.6
7.6
7.5
7.5


Assay
15.6
15.6
15.4
15.1
14.6
14.4
14.1


[mg/mL]









Purity [%]3
99.0
98.8
98.6
98.1
97.2
96.2
95.9


Impurities:




0.3 @ 01.9
0.3 @ 01.9
0.3 @ 01.9


[%]4





0.2 @ 020
0.2 @ 020



n.d.
0.2% @
0.2% @
0.2% @
0.4% @
0.3% @
0.3% @




0.23
0.23
0.23
0.23
0.23
0.23








0.3% @
0.3% @








0.24
024








0.2% @
0.2% @








0.29
0.29





0.2% @
0.2% @
0.2% @
0.3% @
0.3% @





0.34
0.34
0.34
0.33
0.32









0.2% @









0.36







0.2% @
0.2% @
0.2% @







0.48
0.47
0.47








0.2% @
0.2% @








0.74
0.74






0.2% @
0.3% @
0.3% @
0.4% @






0.83
0.83
0.82
0.82



0.4% @
0.4% @
0.4% @
0.4% @
0.4% @
0.4% @
0.4% @



0.89
0.89
0.89
0.89
0.89
0.88
0.88



0.4% @
0.4% @
0.4% @
0.4% @
0.4% @
0.4% @
0.4% @



0.91
0.91
0.91
0.91
0.91
0.91
0.91



0.2% @
0.2% @
0.2% @
0.3% @
0.4% @
0.5% @




1.02
1.02
1.02
1.02
1.04
1.02







0.2% @
0.4% @
0.4% @
0.5% @






1.10
1.10
1.10
1.11





OOS*: Solution turned yellow


OOS**: Solution turned yellow (nonconformance confirmed)






Example 8
Stability testing of Aileron peptide 1

Aileron peptide 1 was performed on a pharmaceutical formulation formulated at a concentration of 15 mg/mL (20 mM sodium phosphate, 240 mM D-Trehalose, 330 ppm polysorbate 20, pH 7.5). 5 mL of this formulation was stored in a 10 mL clear serum vial (20 mm FluroTec®-coated stopper; 20 mm Flip-off™ seal). The formulation was stored at −15° C. and was tested at regular intervals. The results of this analysis are summarized in Table 12.












TABLE 12





Attribute
Test
Specification
Results








Appearance
Upon thawing: Clear,
Conforms




colorless, particulate-





free solution



Identity
PH
7.5 ± 0.2
7.6



Osmolality
220 to 400 mOsmol/Kg
327



RP-HPLC (TFA)
Co-elutes with ALRN-6924
Conforms




reference standard



Potency
qRP-HPLC (TFA)
15 ± 1.5 mg/mL
15.6


Purity
RP-HPLC(TFA)
Purity ≧95% by
99.0%




area integration





no single impurity >3%1
RRT 0.88:





0.4%





RRT 0.91:





0.4%





RRT 1.02:





0.2%


Safety
Particulate matter
≧10 μm: ≦6,000
≧10 μm:



USP <788>
particulates/vial
557




≧25 μm: ≦600
≧25 μm:




particulates/vial
8



Endotoxin,
≦4.4 EU/mL2
<1.6 EU/mL



USP <85>





Container/Closure
No dye intrusion
Conforms



Integrity





Sterility;
No growth
No growth



USP <71>





(Membrane





Filtration)






1Impurities >0.1% are listed based on their relative retention time (RRT) with respect to the Aileron peptide 1peptide peak.




2Based on a maximum patient dose of 17 mg Aileron peptide 1 per Kg of patient weight.







Example 9
Stability Testing of Multiple Batches of Aileron Peptide 1 Under Varying Storage Conditions

Samples 1-7 of Aileron peptide 1 were formulated at a concentration of 15 mg/mL (20 mM sodium phosphate, 240 mM D-Trehalose, 330 ppm polysorbate 20, pH 7.5). These samples were stored under different storage conditions as described in Table 13. The formulations were tested for appearances and purity. The results are summarized in Tables 14-16 below.










TABLE 13





Sample Number
Sample Description







Sample 1
Aileron peptide 1 Drug product configuration



Upright



15 mg/mL



12 month



−20° C. (/−5° C.)


Sample 2
Aileron peptide 1 Drug product configuration



Upright Storage Only/Return



15 mg/mL



12 month



−20° C. (+/−5° C.)


Sample 3
Aileron peptide 1 Drug product configuration



Inverted Storage Only/Return



15 mg/mL



12 month



25° C./60% RH (+/−2° C./+/−5% RH)


Sample 4
Aileron peptide 1Drug product configuration



Inverted



15 mg/mL



12 month



25° C./60% RH (+/−2° C./+/−5% RH)


Sample 5
Aileron peptide 1Drug product configuration



Inverted Storage Only/Return



15 mg/mL



12 month



5° C. (+/−3° C.)


Sample 6
Aileron peptide 1Drug product configuration



Inverted



15 mg/mL



12 month



5° C. (+/−3° C.)


Sample 7
Aileron peptide 1Drug product configuration



Inverted



15 mg/mL



12 month



40° C./75%RH (+/−2° C./+/−5% RH)
















TABLE 14







Results of analysis of sample 1.









Test
Acceptance Criteria
Test Result(s)





Appearance
Upon thawing: Clear, colorless,
Clear, colorless, particulate-free



particulate-free solution
solution.




Meets acceptance criteria.


pH
7.3 to 7.7
7.63




Meets acceptance criteria.


RP_HPLC (TFA) for Aileron
≧13.5 mg/mL; ≦16.5 mg/mL
Injection #1 = 15.58 mg/mL


peptide-1Concentration

Injection #2 = 15.54 mg/mL




Mean = 15.6 mg/mL




Meets acceptance criteria.


RP_HPLC (TFA) Purity by Area
≧95% for ALRN-6924 peak
Injection #1 = 98.6%


Integration

Injection #2 = 98.6%




Mean = 98.6%




Meets acceptance criteria.


RP_HPLC (TFA) Purity by Area
No single impurity >3%
Injection #1 = 0.41%


Integration for: Largest Impurity

Injection #2 = 0.42%


(RRT 0.91)

Mean = 0.41%




Meets acceptance criteria.


RP_HPLC (TFA) Purity by Area
Report Result ≧0.1%
Injection #1 = 0.07%


Integration for: Impurity (RRT

Injection #2 = 0.07%


0.87)

Mean = 0.07%


RP_HPLC (TFA) Purity by Area
Report Result ≧0.1%
Injection #1 = 0.39%


Integration for: Impurity (RRT

Injection #2 = 0.39%


0.88)

Mean = 0.39%


RP_HPLC (TFA) Purity by Area
Report Result ≧0.1%
Injection #1 = 0.11%


Integration for: Impurity (RRT

Injection #2 = 0.10%


0.94)

Mean = 0.11%


RP_HPLC (TFA) Purity by Area
Report Result ≧0.1%
Injection #1 = 0.16%


Integration for: Impurity (RRT

Injection #2 = 0.14%


1.02)

Mean = 0.15%


RP_HPLC (TFA) Purity by Area
Report Result ≧0.1%
Injection #1 = 0.09%


Integration for: Impurity (RRT

Injection #2 = 0.09%


1.04)

Mean = 0.09%


RP_HPLC (TFA) Purity by Area
Report Result ≧0.1%
Injection #1 = 0.07%


Integration for: Impurity (RRT

Injection #2 = 0.07%


1.10)

Mean = 0.07%


Total Impurities
Information
1.3%
















TABLE 15







Results of analysis of sample 4.









Test
Acceptance Criteria
Test Result(s)





Appearance
Upon thawing: Clear, colorless,
Clear, colorless, particulate-free



particulate-free solution
solution.




Meets acceptance criteria.


pH
7.3 to 7.7
7.64




Meets acceptance criteria.


RP_HPLC (TFA) for: Aileron
≧13.5 mg/mL; ≦16.5 mg/mL
Injection #1 = 14.98 mg/mL


peptide-1TEConcentration

Injection #2 = 15.00 mg/mL




Mean = 15.0 mg/mL




Meets acceptance criteria.


RP_HPLC (TFA) Purity by Area
≧95% for Aileron peptide-1 peak
Injection #1 = 96.3%


Integration

Injection #2 = 96.3%




Mean = 96.3%




Meets acceptance criteria.


RP_HPLC (TFA) Purity by Area
No single impurity >3%
Injection #1 = 0.47%


Integration for: Largest Impurity

Injection #2 = 0.47%


(RRT 0.23)

Mean = 0.47%




Meets acceptance criteria.


RP_HPLC (TFA) Purity by Area
Report Result ≧0.1%
Injection #1 = 0.11%


Integration for: Impurity (RRT

Injection #2 = 0.11%


0.16)

Mean = 0.11%


RP_HPLC (TFA) Purity by Area
Report Result ≧0.1%
Injection #1 = 0.13%


Integration for: Impurity (RRT

Injection #2 = 0.13%


0.19)

Mean = 0.13%


RP_HPLC (TFA) Purity by Area
Report Result ≧0.1%
Injection #1 = 0.07%


Integration for: Impurity (RRT

Injection #2 = 0.07%


0.22)

Mean = 0.07%


RP_HPLC (TFA) Purity by Area
Report Result ≧0.1%
Injection #1 = 0.10%


Integration for: Impurity (RRT

Injection #2 = 0.10%


0.24)

Mean = 0.10%


RP_HPLC (TFA) Purity by Area
Report Result ≧0.1%
Injection #1 = 0.07%


Integration for: Impurity (RRT

Injection #2 = 0.06%


0.25A)

Mean = 0.06%


RP_HPLC (TFA) Purity by Area
Report Result ≧0.1%
Injection #1 = 0.06%


Integration for: Impurity (RRT

Injection #2 = 0.05%


0.25B)

Mean = 0.06%


RP_HPLC (TFA) Purity by Area
Report Result ≧0.1%
Injection #1 = 0.15%


Integration for: Impurity (RRT

Injection #2 = 0.11%


0.28)

Mean = 0.13%


RP_HPLC (TFA) Purity by Area
Report Result ≧0.1%
Injection #1 = 0.11%


Integration for: Impurity (RRT

Injection #2 = 0.09%


0.29)

Mean = 0.10%


RP_HPLC (TFA) Purity by Area
Report Result ≧0.1%
Injection #1 = 0.07%


Integration for: Impurity (RRT

Injection #2 = 0.06%


0.31)

Mean = 0.06%


RP_HPLC (TFA) Purity by Area
Report Result ≧0.1%
Injection #1 = 0.21%


Integration for: Impurity (RRT

Injection #2 = 0.20%


0.32)

Mean = 0.20%


RP_HPLC (TFA) Purity by Area
Report Result ≧0.1%
Injection #1 = 0.14%


Integration for: Impurity (RRT

Injection #2 = 0.13%


0.36)

Mean = 0.13%


RP_HPLC (TFA) Purity by Area
Report Result ≧0.1%
Injection #1 = 0.07%


Integration for: Impurity (RRT

Injection #2 = 0.08%


0.39)

Mean = 0.08%


RP_HPLC (TFA) Purity by Area
Report Result ≧0.1%
Injection #1 = 0.13%


Integration for: Impurity (RRT

Injection #2 = 0.14%


0.41)

Mean = 0.14%


RP_HPLC (TFA) Purity by Area
Report Result ≧0.1%
Injection #1 = 0.12%


Integration for: Impurity (RRT

Injection #2 = 0.14%


0.47)

Mean = 0.13%


RP_HPLC (TFA) Purity by Area
Report Result ≧0.1%
Injection #1 = 0.35%


Integration for: Impurity (RRT

Injection #2 = 0.37%


0.82)

Mean = 0.36%


RP_HPLC (TFA) Purity by Area
Report Result ≧0.1%
Injection #1 = 0.07%


Integration for: Impurity (RRT

Injection #2 =0.07%


0.87)

Mean = 0.07%


RP_HPLC (TFA) Purity by Area
Report Result ≧0.1%
Injection #1 = 0.37%


Integration for: Impurity (RRT

Injection #2 = 0.35%


0.88)

Mean = 0.36%


RP_HPLC (TFA) Purity by Area
Report Result ≧0.1%
Injection #1 = 0.36%


Integration for: Impurity (RRT

Injection #2 = 0.35%


0.91)

Mean = 0.36%


RP_HPLC (TFA) Purity by Area
Report Result ≧0.1%
Injection #1 = 0.21%


Integration for: Impurity (RRT

Injection #2 = 0.22%


1.02)

Mean = 0.22%


RP_HPLC (TFA) Purity by Area
Report Result ≧0.1%
Injection #1 = 0.10%


Integration for: Impurity (RRT

Injection #2 = 0.10%


1.04)

Mean = 0.10%


RP_HPLC (TFA) Purity by Area
Report Result ≧0.1%
Injection #1 = 0.08%


Integration for: Impurity (RRT

Injection #2 = 0.09%


1.10)

Mean = 0.09%


RP_HPLC (TFA) Purity by Area
Report Result ≧0.1%
Injection #1 = 0.07%


Integration for: Impurity (RRT

Injection #2 = 0.08%


1.11)

Mean = 0.07%


Total Impurities
Information
3.6%
















TABLE 16







Results of analysis of sample 6.









Test
Acceptance Criteria
Test Result(s)





Appearance
Upon thawing: Clear, colorless,
Clear, colorless, particulate-free



particulate-free solution
solution.




Meets acceptance criteria.


pH
7.3 to 7.7
7.64




Meets acceptance criteria.


RP_HPLC (TFA) for Aileron
≧13.5 mg/mL; ≦16.5 mg/mL
Injection #1 = 15.61 mg/mL


peptide-1 Concentration

Injection #2 = 15.62 mg/mL




Mean = 15.6 mg/mL




Meets acceptance criteria.


RP_HPLC (TFA) Purity by Area
≧95% for Aileron peptide-1 peak
Injection #1 = 98.6%


Integration

Injection #2 = 98.6%




Mean = 98.6%




Meets acceptance criteria.


RP_HPLC (TFA) Purity by Area
No single impurity >3%
Injection #1 = 0.43%


Integration for: Largest Impurity

Injection #2 = 0.41%


(RRT 0.91)

Mean = 0.42%




Meets acceptance criteria.


RP_HPLC (TFA) Purity by Area
Report Result ≧0.1%
Injection #1 = 0.10%


Integration for: Largest Impurity

Injection #2 = 0.10%


(RRT 0.82)

Mean = 0.10%


RP_HPLC (TFA) Purity by Area
Report Result ≧0.1%
Injection #1 = 0.08%


Integration for: Largest Impurity

Injection #2 = 0.06%


(RRT 0.87)

Mean = 0.07%


RP_HPLC (TFA) Purity by Area
Report Result ≧0.1%
Injection #1 = 0.39%


Integration for: Largest Impurity

Injection #2 = 0.40%


(RRT 0.88)

Mean = 0.40%


RP_HPLC (TFA) Purity by Area
Report Result ≧0.1%
Injection #1 = 0.08%


Integration for: Largest Impurity

Injection #2 = 0.11%


(RRT 0.94)

Mean = 0.10%


RP_HPLC (TFA) Purity by Area
Report Result ≧0.1%
Injection #1 = 0.15%


Integration for: Largest Impurity

Injection #2 = 0.14%


(RRT 1.02)

Mean = 0.14%


RP_HPLC (TFA) Purity by Area
Report Result ≧0.1%
Injection #1 = 0.06%


Integration for: Largest Impurity

Injection #2 = 0.09%


(RRT 1.04)

Mean = 0.07%


RP_HPLC (TFA) Purity by Area
Report Result ≧0.1%
Injection #1 = 0.07%


Integration for: Largest Impurity

Injection #2 = 0.08%


(RRT 1.10)

Mean = 0.08%


Total Impurities
Information
1.4%
















TABLE 17







Results of analysis of sample 7.









Test
Acceptance Criteria
Test Result(s)





Appearance
Upon thawing: Clear, colorless,
Clear, yellow, particulate-free



particulate-free solution
solution.




Does not meet acceptance criteria.


pH
7.3 to 7.7
7.45




Meets acceptance criteria.


RP_HPLC (TFA) for Aileron
≧13.5 mg/mL; ≦16.5 mg/mL
Injection #1 = 14.09 mg/mL


peptide-1 Concentration

Injection #2 = 14.05 mg/mL




Mean = 14.1 mg/mL




Meets acceptance criteria.


RP_HPLC (TFA) Purity by Area
≧95% for Aileron peptide-1 peak
Injection #1 = 94.3%


Integration

Injection #2 = 94.3%




Mean = 94.3%




Does not meet acceptance criteria.


RP_HPLC (TFA) Purity by Area
No single impurity >3%
Injection #1 = 0.58%


Integration for: Largest Impurity

Injection #2 = 0.59%


(RRT 1.02)

Mean = 0.59%




Meets acceptance criteria.


RP_HPLC (TFA) Purity by Area
Report Result ≧0.1%
Injection #1 = 0.07%


Integration for: Largest Impurity

Injection #2 = 0.07%


(RRT 0.11)

Mean = 0.07%


RP_HPLC (TFA) Purity by Area
Report Result ≧0.1%
Injection #1 = 0.07%


Integration for: Largest Impurity

Injection #2 = 0.07%


(RRT 0.12)

Mean = 0.07%


RP_HPLC (TFA) Purity by Area
Report Result ≧0.1%
Injection #1 = 0.08%


Integration for: Largest Impurity

Injection #2 = 0.08%


(RRT 0.16)

Mean = 0.08%


RP_HPLC (TFA) Purity by Area
Report Result ≧0.1%
Injection #1 = 0.39%


Integration for: Largest Impurity

Injection #2 = 0.39%


(RRT 0.19A)

Mean = 0.39%


RP_HPLC (TFA) Purity by Area
Report Result ≧0.1%
Injection #1 = 0.12%


Integration for: Largest Impurity

Injection #2 = 0.12%


(RRT 0.19B)

Mean = 0.12%


RP_HPLC (TFA) Purity by Area
Report Result ≧0.1%
Injection #1 = 0.15%


Integration for: Largest Impurity

Injection #2 = 0.15%


(RRT 0.20)

Mean = 0.15%


RP_HPLC (TFA) Purity by Area
Report Result ≧0.1%
Injection #1 = 0.26%


Integration for: Largest Impurity

Injection #2 = 0.26%


(RRT 0.23)

Mean = 0.26%


RP_HPLC (TFA) Purity by Area
Report Result ≧0.1%
Injection #1 = 0.27%


Integration for: Largest Impurity

Injection #2 = 0.27%


(RRT 0.24)

Mean = 0.27%


RP_HPLC (TFA) Purity by Area
Report Result ≧0.1%
Injection #1 = 0.15%


Integration for: Largest Impurity

Injection #2 = 0.14%


(RRT 0.25)

Mean = 0.14%


RP_HPLC (TFA) Purity by Area
Report Result ≧0.1%
Injection #1 = 0.10%


Integration for: Largest Impurity

Injection #2 = 0.09%


(RRT 0.28)

Mean = 0.09%


RP_HPLC (TFA) Purity by Area
Report Result ≧0.1%
Injection #1 = 0.17%


Integration for: Largest Impurity

Injection #2 = 0.18%


(RRT 0.29)

Mean = 0.17%


RP_HPLC (TFA) Purity by Area
Report Result ≧0.1%
Injection #1 = 0.30%


Integration for: Largest Impurity

Injection #2 = 0.30%


(RRT 0.32)

Mean = 0.30%


RP_HPLC (TFA) Purity by Area
Report Result ≧0.1%
Injection #1 = 0.16%


Integration for: Largest Impurity

Injection #2 = 0.15%


(RRT 0.36)

Mean = 0.16%


RP_HPLC (TFA) Purity by Area
Report Result ≧0.1%
Injection #1 = 0.14%


Integration for: Largest Impurity

Injection #2 = 0.14%


(RRT 0.41)

Mean = 0.14%


RP_HPLC (TFA) Purity by Area
Report Result ≧0.1%
Injection #1 = 0.06%


Integration for: Largest Impurity

Injection #2 = 0.06%


(RRT 0.43)

Mean = 0.06%


RP_HPLC (TFA) Purity by Area
Report Result ≧0.1%
Injection #1 = 0.19%


Integration for: Largest Impurity

Injection #2 = 0.18%


(RRT 0.47)

Mean = 0.18%


RP_HPLC (TFA) Purity by Area
Report Result ≧0.1%
Injection #1 = 0.23%


Integration for: Largest Impurity

Injection #2 = 0.23%


(RRT 0.74)

Mean = 0.23%


RP_HPLC (TFA) Purity by Area
Report Result ≧0.1%
Injection #1 = 0.35%


Integration for: Largest Impurity

Injection #2 = 0.36%


(RRT 0.82)

Mean = 0.35%


RP_HPLC (TFA) Purity by Area
Report Result ≧0.1%
Injection #1 = 0.09%


Integration for: Largest Impurity

Injection #2 = 0.09%


(RRT 0.83)

Mean = 0.09%


RP_HPLC (TFA) Purity by Area
Report Result ≧0.1%
Injection #1 = 0.07%


Integration for: Largest Impurity

Injection #2 = 0.06%


(RRT 0.87)

Mean = 0.07%


RP_HPLC (TFA) Purity by Area
Report Result ≧0.1%
Injection #1 = 0.41%


Integration for: Largest Impurity

Injection #2 = 0.41%


(RRT 0.88)

Mean = 0.41%


RP_HPLC (TFA) Purity by Area
Report Result ≧0.1%
Injection #1 = 0.43%


Integration for: Largest Impurity

Injection #2 = 0.43%


(RRT 0.91)

Mean = 0.43%


RP_HPLC (TFA) Purity by Area
Report Result ≧0.1%
Injection #1 = 0.06%


Integration for: Largest Impurity

Injection #2 = 0.06%


(RRT 0.96)

Mean = 0.06%


RP_HPLC (TFA) Purity by Area
Report Result ≧0.1%
Injection #1 = 0.07%


Integration for: Largest Impurity

Injection #2 = 0.08%


(RRT 1.04)

Mean = 0.07%


RP_HPLC (TFA) Purity by Area
Report Result ≧0.1%
Injection #1 = 0.12%


Integration for: Largest Impurity

Injection #2 = 0.12%


(RRT 0.96)

Mean = 0.12%


RP_HPLC (TFA) Purity by Area
Report Result ≧0.1%
Injection #1 = 0.49%


Integration for: Largest Impurity

Injection #2 = 0.49%


(RRT 1.11)

Mean = 0.49%


Total Impurities
Information
5.6%









Example 10
von Heijne (VH) Value Calculation

von Heijne values were calculated using a method adapted from Hessa et al., Recognition of transmembrane helices by the endoplasmic reticulum translocon, Nature: 433, 377-381 (2005). Briefly, each amino acid is assigned a fixed value, regardless of location along the polypeptide chain, according to the Table 18 below:









TABLE 18







von Heijne Score of various amino acids










Amino Acid
von Heijne Score














I
−0.6



L
−0.5



Nle
−0.5



$
−0.5



St
−0.5



$e
−0.5



$r8
−0.5



$r5
−0.5



$s8
−0.5



$s5
−0.5



$er8
−0.5



F
−0.3



V
−0.3



Aib
−0.1



M
−0.1



C
−0.1



Abu
−0.1



Ac—
0



—NH2
0



A
0.1



a
0.1



W
0.3



T
0.5



Y
0.6



G
0.6



S
0.8



N
2



H
2



P
2.2



Q
2.2



E
2.5



R
2.5



K
2.5



D
3.5










The von Heijne value (VH) for the polypeptide is then calculated as the sum total of values for all amino acids in the polypeptide. For example, a pentapeptide of the sequence Ac-AAAAA-NH2 would have a VH score of 5*(0.1)=0.5.


Example 11
Reverse-Phase HPLC Retention Time Determination

Peptides were analyzed by reverse-phase HPLC on a 100×2.1 mm Phenomenex 2.6 micron, 100 Angstrom C18 column using the following mobile phase gradient at room temperature:















Time
Flow rate
% A
% B


(min)
mL/min)
(0.1% TFA in water)
(0.1% TFA in acetonitrile)


















0
0.6
80
20


20.0
0.6
20
80


20.1
0.6
5
95


21.0
0.6
5
95


21.1
0.6
80
20


21.2
0.6
5
95


21.5
0.6
5
95


21.8
0.6
80
20


23.5
0.6
80
20









In some embodiments, the retention time (RT) was then normalized to a 0-100 scale by the following equation: RT=[RT raw (from above)*3.317-0.534]*3.3333. In some embodiments, the retention times were not normalizd.

Claims
  • 1.-293. (canceled)
  • 294. An aqueous pharmaceutical formulation comprising: (i) a peptidomimetic macrocycle or a pharmaceutically acceptable salt thereof, wherein the amount of the peptidomimetic macrocycle in the aqueous pharmaceutical formulation is equal to or greater than 15 mg/mL;(ii) a buffering agent;(iii) a stabilizing agent; and(iv) a tonicity agent wherein the molar ratio of the peptidomimetic macrocycle to the buffering agent is in the range of 0.01-2.5.
  • 295. The aqueous pharmaceutical formulation of claim 294, wherein the peptidomimetic macrocycle or pharmaceutically acceptable salt thereof has a length value of from 14 to 20 amino acids.
  • 296. The aqueous pharmaceutical formulation of claim 294, wherein the peptidomimetic macrocycle or pharmaceutically acceptable salt thereof has a von Heijne value of from 2 to 9.
  • 297. The aqueous pharmaceutical formulation of claim 294, wherein the peptidomimetic macrocycle or pharmaceutically acceptable salt thereof has a percent alanine content of from 15% to 40%.
  • 298. The aqueous pharmaceutical formulation of claim 294, wherein the peptidomimetic macrocycle or pharmaceutically acceptable salt thereof comprises a first, second, third, fourth, fifth or sixth C-terminal amino acid that is hydrophobic.
  • 299. The aqueous pharmaceutical formulation of claim 294, wherein the peptidomimetic macrocycle or pharmaceutically acceptable salt thereof comprises an α-helix.
  • 300. The aqueous pharmaceutical formulation of claim 294, wherein: (i) the amount of the buffering agent in the aqueous pharmaceutical formulation is 0.001-10% w/v;(ii) the amount of the stabilizing agent in the aqueous pharmaceutical formulation is 0.001-10% w/v; and(iii) the amount of the tonicity agent in the aqueous pharmaceutical formulation 1.0-10% w/v.
  • 301. The aqueous pharmaceutical formulation of claim 294, wherein the pharmaceutically acceptable salt of the peptidomimetic macrocycle is a sodium, potassium, lithium, calcium, zinc or magnesium salt.
  • 302. The aqueous pharmaceutical formulation of claim 294, wherein the amount of the peptidomimetic macrocycle present in the aqueous pharmaceutical formulation is from about 0.1 to about 10% w/v.
  • 303. The aqueous pharmaceutical formulation of claim 294, wherein the concentration of the peptidomimetic macrocycle present in the aqueous pharmaceutical formulation is about 15-100 mg/mL.
  • 304. The aqueous pharmaceutical formulation of claim 294, wherein the buffering agent is a phosphate buffer.
  • 305. The aqueous pharmaceutical formulation of claim 294, wherein the amount of the buffering agent is from about 0.001-10% w/v.
  • 306. The aqueous pharmaceutical formulation of claim 294, wherein the stabilizing agent is a non-ionic stabilizing agent, a fatty acid ester, a surfactant, or an anti-oxidant.
  • 307. The aqueous pharmaceutical formulation of claim 294, wherein the stabilizing agent is polysorbate 20, polysorbate 21, polysorbate 40, polysorbate 60, polysorbate 61, polysorbate 65, polysorbate 80, polysorbate 81, polysorbate 85 or polysorbate 120.
  • 308. The aqueous pharmaceutical formulation of claim 294, wherein the amount of the stabilizing agent present in the aqueous pharmaceutical formulation is from about 0.001% to about 10% w/v.
  • 309. The aqueous pharmaceutical formulation of claim 294, wherein the aqueous pharmaceutical formulation comprises from about 250 ppm to about 350 ppm of polysorbate 20.
  • 310. The aqueous pharmaceutical formulation of claim 294, wherein the aqueous pharmaceutical formulation is dissolved into a diluent prior to administration into a subject.
  • 311. The aqueous pharmaceutical formulation of claim 294, wherein the tonicity agent is selected from a group consisting of glucose, fructose, galactose, sucrose, lactose, maltose, trehalose, and mixtures thereof.
  • 312. The aqueous pharmaceutical formulation of any one of claim 294, wherein the tonicity agent is D-trehalose.
  • 313. The aqueous pharmaceutical formulation of claim 294, wherein the amount of the tonicity agent present in the aqueous pharmaceutical formulation is from about 1% to about 15% w/v.
  • 314. The aqueous pharmaceutical formulation of claim 294, wherein the concentration of the tonicity agent is from about 200 mM to about 300 mM.
  • 315. The aqueous pharmaceutical formulation of claim 294, wherein the pH of the aqueous pharmaceutical formulation is from about 4.0 to about 9.0.
  • 316. The aqueous pharmaceutical formulation of claim 294, wherein the aqueous pharmaceutical formulation upon storage for 24 months at from about 2° C. to about 8° C. comprises at least 95% of the initial amount of the peptidomimetic macrocycle.
  • 317. The aqueous pharmaceutical formulation of claim 294, wherein aqueous pharmaceutical formulation is prepared by adding the peptidomimetic macrocycle or a pharmaceutically acceptable salt thereof to water or an aqueous solution, wherein the peptidomimetic macrocycle is capable of binding to the MDM2 and/or MDMX proteins.
  • 318. The method of claim 317, wherein the pharmaceutically acceptable salt is a sodium salt, potassium salt or calcium salt.
  • 319. The aqueous pharmaceutical formulation of claim 294, wherein the molecular weight of the peptidomimetic macrocycle is in the range of 1800-2000 D.
  • 320. The aqueous pharmaceutical formulation of claim 294, wherein the peptidomimetic macrocycle comprises an amino acid sequence which is at least about 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95% identical to an amino acid sequence in any of Table 1, Table 1a, Table 1b, and Table 1c, and wherein the peptidomimetic macrocycle has the formula:
  • 321. The aqueous pharmaceutical formulation of claim 320, wherein at least one of the macrocycle-forming linker has a formula -L1-L2-, wherein L1 and L2 are independently alkylene, alkenylene, alkynylene, heteroalkylene, cycloalkylene, heterocycloalkylene, cycloarylene, heterocycloarylene, or [—R4—K—R4-]n, each being optionally substituted with R5;each R4 is independently alkylene, alkenylene, alkynylene, heteroalkylene, cycloalkylene, heterocycloalkylene, arylene, or heteroarylene;each K is independently O, S, SO, SO2, CO, CO2, or CONR3; andeach R3 independently is hydrogen, alkyl, alkenyl, alkynyl, arylalkyl, heteroalkyl, cycloalkyl, heterocycloalkyl, cycloalkylalkyl, cycloaryl, or heterocycloaryl, optionally substituted with R5;
  • 322. The aqueous pharmaceutical formulation of claim 320, wherein R1 and R2 are independently —H, alkyl, alkenyl, alkynyl, arylalkyl, cycloalkyl, cycloalkylalkyl, heteroalkyl, or heterocycloalkyl, unsubstituted or substituted with halo-.
  • 323. The aqueous pharmaceutical formulation of claim 320, wherein x+y+z=2,3 or 6.
  • 324. A method modulating the activity of p53 and/or MDM2 and/or MDMX in a subject comprising administering to the subject a stable aqueous pharmaceutical formulation comprising a peptidomimetic macrocycle capable of binding to the MDM2 and/or MDMX proteins, wherein the amount of the peptidomimetic macrocycle in the aqueous pharmaceutical formulation is greater than 15 mg/mL and wherein the aqueous pharmaceutical formulation contains less than 2% w/v of any micelle forming agent.
  • 325. A method of making an aqueous pharmaceutical formulation comprising adding greater than 15 mg/mL of a peptidomimetic macrocycle or a pharmaceutically acceptable salt thereof to water or an aqueous solution, wherein the aqueous pharmaceutical formulation comprises less than 2% w/v of any micelle forming agent.
  • 326. The method of claim 325, wherein the peptidomimetic macrocycle is capable of binding to the MDM2 and/or MDMX proteins.
  • 327. The method of claim 325, comprising adding a sodium salt of the peptidomimetic macrocycle to water or an aqueous solution.
  • 328. The method of claim 325, further comprising adjusting the pH of the solution comprising the buffering agent and the stabilizing agent during the addition of the peptidomimetic macrocycle.
  • 329. The method of claim 325, further comprising filtration of the aqueous pharmaceutical formulation obtained after the addition of the peptidomimetic macrocycle to the aqueous solution.
  • 330. The method of claim 325, wherein the method is used for commercial manufacturing of the aqueous pharmaceutical formulation.
CROSS REFERENCE

This application claims priority to U.S. Provisional Application No. 62/054,842, filed Sep. 24, 2014, which is incorporated herein by reference in its entirety.

Provisional Applications (1)
Number Date Country
62054842 Sep 2014 US