The invention is in the field of optical telecommunications, and more particularly, pertains to an optical communication system in which individual channel output power levels are equalized independent of channel wavelength and input power level.
In Wavelength Division Multiplexed (WDM) optical links it is difficult to assure that signals arriving at each channel's photodetector have a power level that is within the receiver's dynamic range. Even for simple point-to-point links, flattening filters are used in the Erbium Doped Fiber Amplifiers (EDFA's), MUX/DEMUX components' profiles of attenuation vs. wavelength must be trimmed, and the system must be carefully monitored to ensure that large inter-channel differences in concatenated connector and splice losses are not accumulated.
Typically, all WDM channels are amplified in a single amplifier, with the single amplifier being optimized for gain flatness. However, there are different power levels in each channel due to differences in accumulated channel losses at different frequencies. Variable Optical Attenuators (VOA's) are used in the respective channels to compensate for the losses. The VOA's require frequent adjustment to maintain required power levels, and if the power level in a given channel drops below a minimum level, a transponder is required in the line to increase the power level to the required level.
Thus, there is a need to be able to automatically readjust the power level on a per-channel basis so that the photodetector at the optical receiver receives a signal with an adequate Optical Signal to Noise Ratio (OSNR) and amplitude to achieve a desired Bit Error Rate (BER), but not so high a power level that the optical receiver or the electronics to follow are saturated.
In view of the above, it is an aspect of the invention to adjust the power levels in an optical communication system on a per-channel basis.
It is another aspect of the invention to adjust the power levels in an optical communication system on a per-channel basis by including in each channel an optical amplifier which is operated in the saturation mode.
It is yet another aspect of the inventions to adjust the power levels in an optical communication system on a per-channel basis by including in each channel an optical amplifier, with each such amplifier receiving a predetermined pump power for operating each such amplifier in the saturation mode.
It is still another aspect of the invention to connect Optical Line Terminals (OLT's) back-to-back at their respective pass-through interface channels, with each channel including an optical amplifier, with each such amplifier receiving a predetermined pump power for operating each such amplifier in the saturation mode.
It is still yet another aspect of the invention to adjust the power levels in each output channel from a demultiplexer in a WDM optical communication system on a per-channel basis, with each such output channel including an optical amplifier, with each such amplifier receiving a predetermined pump power for operating each such amplifier in the saturation mode, with the pump power being provided from either a predetermined power per-channel pump for each amplifier, or a single shared pump which supplies the predetermined power to each channel amplifier, wherein one or more of the pumps also are referred to as a “controller”.
It is a further aspect of the invention to adjust the power levels in each input channel to a multiplexer in a WDM optical communication system on a per-channel basis, with each such input channel including an optical amplifier, with each such amplifier receiving a predetermined pump power for operating each such amplifier in the saturation mode, with the pump power being provided from either a predetermined power per-channel pump for each amplifier, or a single shared pump which supplies the same predetermined power to each channel amplifier.
It is yet another further aspect of the invention to maximize the number of optical hops in an optical ring network by equalizing the output power level in the respective channels due operating the respective channel amplifiers at a predetermined power level by operating the amplifiers in the saturation mode.
It is still yet another further aspect of invention to prevent lasing in an optical ring network by operating an amplifier in each channel at a predetermined power level which can't be exceeded, such that one channel can't rob another channel of power due to the one channel's wavelength traversing the loop without being dropped.
In general, even though the optical amplifiers 14 and 22 have a flat gain, the amplitudes of the individual wavelengths are often different and require adjustment to attempt to equalize the gain of the respective channels. This equalization is typically accomplished using VOA's which are inserted in the respective channels. In addition, the OXC or OADM 18 introduces losses on the order of 1–5 db, which are reflected in the output power level of the respective channels. If the output power level in a given channel is below a threshold level, an expensive transponder is required to raise the power level above the threshold.
In
In contrast, it is seen that when operating on or near the flat portion of the curve the output power is substantially the same for different input power levels due to operating on the saturation part of the curve. For example, for an input power level of −10 db the output power level is −4 db. Thus, it is seen for a 10 db difference between input power levels of −20 db and −10 db there is only a 1 db difference between the output power levels of −5 db and −4 db, respectively. Accordingly, it seen that if amplifiers in different channels are each operating in the saturation mode their respective output power levels will be at a predetermined level which is substantially the same level for each amplifier.
This is seen more clearly with respect to
For example, if there are 32 channels and each channel requires 20 MW of power, a 4×32 coupler can be used, with each of the 4 pumps providing 160 MW of power. Thus, each pump splits power between 8 of the 32 channels.
In the configuration shown in
It is understood that there may be a single pump per channel, with the pump power being the same or different for the respective amplifiers. If the pump powers are different, it is understood that the respective amplifiers have different saturation levels.
Also, it is understood that there may be multiple shared pumps used in the practice of the invention. For example, if there are 32 channels there may be 16 pumps, with 2 channels sharing a pump; or 8 pumps with 4 channels sharing a pump; or 4 pumps with 8 channels sharing a pump, and so on.
In contrast, according to the present invention, due to the equalization of output power level in the respective channels in the optical ring, due to operating the respective channel amplifiers in the saturation mode, recent modeling results have shown that up to twenty-three hops may be made without introduction of a transponder in the lightpath.
A further advantage that is derived in such an optical ring using amplifiers operating at a predetermined output power level in each of the channels, is the prevention of lasing. Since the power level output of the amplifiers in the respective channels is constrained not to rise above a predetermined level, a given channel's wavelength that traverses the ring without being dropped can't rob power from another channel, due to the respective output power levels of the amplifiers being held at the predetermined level.
Accordingly, system cost is reduced, as fewer expensive transponders are required. Cost of the optical amplifiers are decreased as less gain is required, VOA's are not required, automatic gain control is not required and equalization is not required. System level costs are also decreased as simpler software is required since no VOA control is required. Further, an inadvertent ring connection in a given channel will not cause ringing due to the amplifiers in the channel operating in the saturation mode.
In summary, in the apparatus of the present invention each channel in an optical communication system includes an optical amplifier which operates in the saturation mode such that each amplifier has substantially the same output power level independent of channel wavelength and input power level.
Although certain embodiments of the invention have been described and illustrated herein, it will be readily apparent to those of ordinary skill in the art that a number of modifications and substitutions can be made to the preferred example methods and apparatus disclosed and described herein without departing from the true spirit and scope of the invention.
This application is a continuation U.S. application Ser. No. 09/461,052, filed Dec. 15, 1999 now U.S. Pat. No. 6,735,394.
Number | Name | Date | Kind |
---|---|---|---|
5185826 | Delavaux | Feb 1993 | A |
5241414 | Giles et al. | Aug 1993 | A |
5392154 | Chang et al. | Feb 1995 | A |
5452116 | Kirkby et al. | Sep 1995 | A |
5506723 | Junginger | Apr 1996 | A |
5721637 | Simon et al. | Feb 1998 | A |
5724167 | Sabella | Mar 1998 | A |
5745283 | Inagaki et al. | Apr 1998 | A |
5815613 | Fatehi et al. | Sep 1998 | A |
5872650 | Lee et al. | Feb 1999 | A |
5912761 | Jander et al. | Jun 1999 | A |
5920423 | Grubb et al. | Jul 1999 | A |
5933271 | Waarts et al. | Aug 1999 | A |
5936763 | Mitsuda et al. | Aug 1999 | A |
6016219 | Fatehi et al. | Jan 2000 | A |
6134034 | Terahara | Oct 2000 | A |
6339495 | Cowle et al. | Jan 2002 | B1 |
6359728 | Angellieri et al. | Mar 2002 | B1 |
6515777 | Arnold et al. | Feb 2003 | B1 |
6735394 | Yue et al. | May 2004 | B1 |
Number | Date | Country |
---|---|---|
0 585 005 | Feb 1994 | EP |
0 896 448 | Feb 1999 | EP |
0903882 | Mar 1999 | EP |
WO 9907096 | Feb 1999 | WO |
Number | Date | Country | |
---|---|---|---|
20040179846 A1 | Sep 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09461052 | Dec 1999 | US |
Child | 10808443 | US |