1. Field of Invention
The invention is directed to firing mechanisms for downhole tools and, in particular, to percussion operated firing mechanisms for perforation guns used in opened or cased wellbores.
2. Description of Art
Perforation of opened and cased wellbores using perforation charges is known. In general, perforating a well involves a special gun called a perforation gun that shoots several relatively small holes in the wellbore, e.g., the casing, the cement, or the formation itself, using explosive charges disposed on or within the perforation gun. The holes are formed in the side of the well opposite the producing zone. These communication tunnels or perforations can pierce the casing or liner, the cement around the casing or liner, or the formation. The perforations go through the casing, the cement, or the formation a short distance into the producing well formation. Well formations fluids, which can include oil, water, and gas, flow through these perforations and into the well.
The perforation gun can be run-in the wellbore on wireline or tubing. Firing of the explosives of the perforation gun are generally done by drop-bar, pressure, or by sending electronic signals to the perforation gun which activate an initiator which in turn detonates the perforation charges, such as through the use of detonation cord in communication with each perforation charge. Upon activation of the initiator, the explosives are detonated to shoot the holes in the wellbore.
Broadly, the firing heads and perforation guns disclosed herein comprise a percussion initiator comprising a firing pin disposed in sliding engagement within an inner wall surface of a tubular member. An opening in the outer and inner wall surfaces of the tubular member places a portion of the firing pin in fluid communication with the wellbore annulus. Disposed below the firing pin at a lower end of the tubular member is an initiator that is operatively associated with the explosive charge(s) of the perforating gun. The filing pin includes seals in sliding engagement with the inner wall surface of the tubular member. The seals are initially disposed above and below the opening. The seals below the opening, i.e., toward the initiator, are smaller than the seals toward the upper end, thereby creating a bias of movement toward the initiator.
In certain embodiments, a release mechanism maintains the firing pin in its initial position until being actuated to release the firing pin. In one specific embodiment of operation, actuation of the release mechanism comprises a preprogrammed signal sent from the surface of the wellbore to the release mechanism. Upon receiving the preprogrammed signal, the release mechanism actuates causing the firing pin to be released. The firing pin then moves in a first direction to strike the initiator due to hydrostatic pressure within the wellbore annulus acting on the firing pin in the first direction, i.e., in the direction of the bias. Upon striking the initiator, the initiator is activated setting off a chain reaction in which the perforation charges are detonated.
While the invention will be described in connection with the preferred embodiments, it will be understood that it is not intended to limit the invention to those embodiments. On the contrary, it is intended to cover all alternatives, modifications, and equivalents, as may be included within the spirit and scope of the invention as defined by the appended claims.
Referring now to
Also included in perforation gun 30 are one or more perforating charges 40 disposed within bore 36 and oriented to expel an explosive force outwardly from tubular member 31 and into the wellbore, e.g., into the casing, liner, cement, or the formation itself, all of which are understood to meet the definition of wellbore as used herein.
Perforating charges 40 are operatively associated with and, thus, detonated by firing head 50 disposed within bore 36 of tubular member 31. In one embodiment, each perforating charge 40 is connection with a detonator cord, such as primer cord or other detonating cord or device known in the art (not shown) to facilitate detonation of the perforating charges 40. The detonation cord is operatively associated with an initiator, such as initiator 90 discussed in greater detail below, so that when the initiator is activated, the detonation cord is activated causing the perforating charges 40 to explode and expel an explosive force outwardly from tubular member 31 and into the wellbore.
Referring to the embodiment of
Disposed within housing bore 65 in sliding engagement with housing inner wall surface 64 is firing pin 70. Firing pin 70 comprises shaft 71 having upper end 72, lower end 73 and one or more portions in sealing and sliding engagement with inner wall surface 63 of housing 60. As shown in
In the embodiment of
The three upper portions are referred to as first upper portion 74 which is located closest to opening 66, second upper portion 75 which is located closest to upper end 72, and third upper portion 76 which is disposed between first upper portion 74 and second upper portion 75. First upper gap 77 is disposed between first upper portion 74 and third upper portion 76. Second upper gap 78 is disposed between second upper portion 75 and third upper portion 76. Seals 97, such as elastomeric o-rings, are disposed within first and second upper gaps 77, 78.
The three lower portions are referred to as first lower portion 84 which is located closest to opening 66, second lower portion 85 which is located closest to lower end 73, and third lower portion 86 which is disposed between first lower portion 84 and second lower portion 85. First lower gap 87 is disposed between first lower portion 84 and third lower portion 86. Second lower gap 88 is disposed between second lower portion 85 and third lower portion 86. Seals 98, such as elastomeric o-rings, are disposed within first and second lower gaps 87, 88.
In one specific embodiment, first and second upper gaps 77, 78 are larger than first and second lower gaps 87, 88 so that seals 97 within first and second upper gaps 77, 78 are larger than seals 98 and, thus, provide greater frictional force along inner wall surface 64 as compared to seals 98. As a result, firing pin 70 is downwardly bias such that fluid pressure flowing through openings 38, 66 and acting on upper surface 89 of second lower portion 85 will cause firing pin 70 to move downward (assuming firing pin 70 is not being retained in its initial or run-in position by a release mechanism) because of a lesser frictional force (coefficient of friction) is present between the smaller seals 98 disposed within first and second lower gaps 87, 88.
In another particular embodiment, seals 99 are disposed within grooves 93 disposed toward upper end 72 of firing pin 70. The location of seals 99 is to prevent fluid leakage into the upper portion of bore 65 when seals 97 are disposed below opening 66 during firing. In addition, the location of seals 97, 98 are such that when seals 98 are no longer in sliding engagement with inner wall surface 64 of bore 65, fluid is permitted to leak into the lower portion of bore 65 above initiator 95 causing lower end 73 of firing pin 70 to moved away from contact with initiator 95. Thus, in the event that initiator does not activate, perforation gun 30 can be removed from the wellbore with a decreased likelihood that the initiator will be activated causing the perforation charges to detonate.
In an alternative embodiment shown in
In other embodiments, the downward movement bias of firing pin 70 is established by a contact area of one or more lower portions with inner wall surface 64 of housing 60 being smaller than a contact area of one or more upper portions with inner wall surface 64. In still other embodiments, the downward bias is provided by the contact area of one or more lower portions with inner wall surface 64 of housing 60 having a lower coefficient of friction than the contact area of one or more upper portions with inner wall surface 64. Thus, the downward bias can be provided by any method or device known in the art which results in firing pin 70 being moved in the direction toward the initiator due to hydrostatic pressure acting on firing pin 70.
Disposed at lower end 62 of housing 60 is initiator 90. Initiator 90 is operatively associated with one or more perforation charges 40 through known methods and devices in the art. Upon activation of initiator 90, the one or more perforation charges 40 are detonated causing a force to be expelled outward from perforation gun 30 and into the wellbore.
In one specific embodiment, release mechanism 95 is disposed at upper end 72 of housing 60. Release mechanism 95 maintains firing pin 70 in its initial, or run-in, position (
In one specific embodiment, the electronically activated release mechanism 95 is connected to an electronics package located downhole as part of perforation gun 30. For example, the electronics package monitors pressure, temperature, vibration, magnetic sensors, other means of communicating pressure downhole, and the like so that the release signal is determined by the programming of the electronics package. The electronics package receives a firing signal for inputs such as surface-applied pressure pulses, vibration of the drill string, temperature, magnetic sensors, and a combination of these and other methods. When the electronics packages senses a preprogrammed release signal, such as pressure pulse sequences, the electronics packages sends a signal to the electronic release mechanism 95 to release firing pin 70. As a result, firing pin 70 is propelled in a downward direction into initiator 90 due to hydrostatic pressure acting on firing pin 70. Firing pin 70 attains a sufficient velocity to engage or strike initiator 90 with sufficient energy to cause detonation of initiator 90. Initiator 90 then begins the explosive train contained within perforating gun 30 in the same manner as current perforation guns.
In another embodiment, the electronics packages is located at the surface of the well and is activated by sensing a release signal similarly to the embodiment discussed above. In this type of embodiment, the electronics package located at the surface is in electrical contact with the release mechanism located downhole.
In one specific operation of the perforation guns and firing heads disclosed herein, the perforation gun is loaded with the desired or necessary number and arrangement of perforation charges for perforating the wellbore. Operatively associated with the perforation charges is a percussion initiator. The initiator is disposed at a lower end of a tubular member. Disposed within the tubular member is the firing head. The firing head comprises a firing pin in sliding engagement with the inner wall surface of the tubular member. In one specific embodiment, the firing head is operatively associated with a release mechanism that is operatively associated with an electronics package that is preprogrammed to send a release signal to the release mechanism at a predetermined stimulus, e.g., pressure, temperature, or the like.
The perforation gun is run-in the wellbore to the desired location. Thereafter, the release mechanism is actuated thereby allowing the firing pin to move within the tubular member. Hydrostatic pressure within the wellbore annulus acts on the firing pin causing the firing pin to move toward the initiator at a velocity sufficient to activate or ignite the initiator. The firing pin strikes the initiator which in turn detonates the perforation charges. In one particular embodiment, the release mechanism is actuated by an electronic signal sent from electronics located at the wellbore surface by an operator operating the electronics.
In another specific embodiment, a time delay is programmed into the release mechanism so that the firing pin is not released until a predetermined amount of time has passed from the moment the release mechanism receives the from the operator the signal actuating the release mechanism.
It is to be understood that the invention is not limited to the exact details of construction, operation, exact materials, or embodiments shown and described, as modifications and equivalents will be apparent to one skilled in the art. For example, openings 38, 66 are not required to be in complete alignment as shown in
Number | Name | Date | Kind |
---|---|---|---|
5911277 | Hromas et al. | Jun 1999 | A |
7819198 | Birckhead et al. | Oct 2010 | B2 |
Number | Date | Country | |
---|---|---|---|
20130126167 A1 | May 2013 | US |