1. Field of the Invention
The present invention relates in general to electronic percussion instruments, and more particularly to a novel transducer for use therein.
2. Background Information
Electronic percussion instruments are a class of musical instruments which are designed to be played like traditional acoustic percussion instruments but offer an unlimited spectrum of sounds, ranging from the emulation of real acoustic instruments to heavily synthesized abstract sounds and noises. Electronic percussion instruments are comprised of a striking surface that the user strikes with their hand, foot or other implement such as a stick or mallet, a means to sense the strike and transfer it from acoustic energy into an electrical pulse (a transducer), and downstream electronics (a sound module) which is responsible for analyzing the electronic pulse and playing a sound which is representative of the characteristics of the strike (for example, amplitude, velocity, position, timing and others).
The striking surface could be made from almost any material and most electronic percussion manufacturers try to simulate the look and feel of acoustic instruments to allow the user to use traditional and existing playing skills. This is analogous to how electronic synthesizer keyboards try to emulate the look, feel, and playability of an acoustic piano. Both the synthesizer keyboard and traditional acoustic piano have the same key layout and can be played using similar skills, but are designed to produce musical sounds differently. The ultimate design for a musician trained as a piano player is to have the look, feel, and playability of a traditional acoustic piano with the versatility, expandability, and conveniences of the electronic synthesized keyboard instrument. Likewise, it would be an advantage for a traditionally trained percussionist who desires to utilize the advantages of electronic percussion instruments, to be able to retain the familiar look, feel, and playability of traditional acoustic percussion instruments.
The current state of the art in electronic percussion triggers utilizes inexpensive flat disc shaped piezo transducers which are mounted somewhere on the striking surface or connected components. There are several disadvantages to this approach.
Problems associated with current percussion transducers include:
Note that, while the ideal mounting location is referred to as the “center”, the term is not used in a precise geometric sense, but rather refers to a location sufficiently close to the geometric “center” or center axis to accomplish the purposes of the invention. The term “center axis” refers to an axis perpendicular to the striking surface of an instrument (whether represented by a physical structure or only a point) and roughly equidistant from symmetric points on the edge of said striking surface.
The foregoing problems are overcome, and other advantages are provided by a device for transferring mechanical vibrations of percussion instruments into electrical trigger pulses utilizing a ring shaped percussion transducer centrally mounted in relation to the striking surface.
When a user strikes the striking surface of a percussion instrument, the percussion transducer converts the impact into a representative electrical signal which may be transmitted to conventional downstream electronics so as to produce a sound responsive to the impact. The combination of a piezo transducer coupled to a striking surface is sometimes referred to as a “percussion trigger”. When a piezo transducer is used in conjunction with a percussion instrument, it is sometimes referred to as a “percussion transducer”.
In accordance with another feature of the invention, a relatively thin protective covering layer of a resilient material may be provided over the outer surfaces of a piezo electric percussion transducer assembly so as to dampen high-frequency resonances, function as a reinforcement and provide protection from normal wear and tear.
Among the advantages of the invention over previous percussion transducers are:
The objects of my invention are:
The various features of novelty which characterize the invention are pointed out with particularity in the claims annexed to and forming a part of this disclosure. For a better understanding of the invention, its advantages and objects, reference is made to the accompanying drawings and descriptive matter in which a preferred embodiment of the invention is illustrated.
The foregoing and still other objects of this invention will become apparent, along with various advantages and features of novelty residing in the present embodiments, from study of the following drawings, in which:
Referring to the drawings, the invention is a novel device for transferring mechanical vibrations of percussion instruments (i.e., instruments having a striking surface) into electrical trigger pulses utilizing a ring shaped percussion transducer suitable for being centrally mounted in relation to the striking surface of the percussion instrument. The ring shaped percussion transducer is illustrated in
Using a ring shaped piezo ceramic transducer, instead of a flat piezo disc such as described in U.S. Pat. No. 4,984,498, allows the transducer to be centrally mounted in relation to the striking surface of the percussion instrument and share the radial center. The ring transducer is mounted on the same axis as the striking surface. Although the ring transducer could be mounted anywhere along the spindle mount, it is most effective when acoustically coupled to the striking surface. This provides maximum sensitivity while reducing sympathetic vibrations from other closely mounted devices.
The percussion transducer generates electronic pulses which are converted into corresponding values using an external electronic interface which then generates sound.
While applicable to any percussion instrument, the construction and operation of the invention may be illustrated with respect to a cymbal.
As shown in
Means are provided for fastening the piezo electric transducer to the instrument. For example, in one embodiment the top and bottom sides of the piezo ceramic element (28) may be covered with thin adhesive layers (24). Bonded to the adhesive layers (24) are protective washers (22a and 22b). The outside and inside diameters of the washers (22a and 22b) are similar to that of the piezo ceramic element (28). A small notch (33) is cut into the outside edge of each washer (22a and 22b). A protective coating (20), preferably a relatively thin covering layer is preferably provided over the outer surfaces of the piezo electric transducer assembly. This layer provides a protective coating around the components to protect the assembly. Although many materials could be used to provide this protective coating, a liquid rubber coating, for example PERFORMIX PLASTI-DIP(TM), available from PlastiDip International, is suitable. This is a room temperature multipurpose rubber coating that exhibits excellent moisture, acid, alkaline, and abrasion resistance that essentially does not “harden”, but instead stays in a relatively resilient state that is resilient and soft to the touch. This resilient layer dampens high-frequency resonances, functions as a reinforcement for the solder joint on the top and bottom of the piezo electric ceramic ring and provides protection from normal wear and tear.
The two lead wires (32a and 32b) may be combined into a single cable (32) and connected to an electronic interface (76, shown on
The bottom washer (22b) is identical to the top washer (22a) and also allows the bottom lead wire (32b) to be attached to the bottom of the piezo element (28).
As shown in
The cymbal mounting device shown in
As shown in
For comparison, see
The foregoing examples show how to make and use of the invention. While the preferred embodiment has been described, other embodiments might be useful in certain situations. Although the ring shape is generally superior, differently shaped piezo transducers could be used as long as they were centrally located to the striking surface.
Although the round striking surface is generally superior, any shaped striking surface may be used.
Although the striking surface material should exhibit a natural playability for the user (such as a real metal cymbal or a plastic or rubber electronic or practice cymbal), any striking surface could be used. For example, a punk rock musician might use a trash can lid as a striking surface.
Several alternative methods of adhesion could be utilized including epoxy, double sided tape, conductive tape or conductive epoxy, solder, or glue.
The washers could be made of any material which either is conductive or non-conductive. Conductive washers bonded to the piezo transducer with XYZ-Axis electrically conductive tape (such as 3M 9713 (TM) tape available from the 3M company) may provide more sensitivity. Alternatively, the protective washers may not even be utilized.
The wire leads may be attached directly to the top and bottom electrodes of the piezo transducer using solder or other conductive bonding methods.
Conductive shims may be used to connect the piezo electrodes to the wire leads, thus providing an entirely flat connection surface.
More than one piezo transducer may be stacked together to provide increased sensitivity.
The percussion transducer may be mounted anywhere along the central axis of the striking surface or along its mounting spindle, however acoustically coupling the piezo to the striking surface provides maximum sensitivity while reducing sympathetic vibrations.
The percussion transducer may be mounted directly onto the striking surface
If the percussion transducer is mounted directly onto the striking surface, a pressure sensitive tape switch or Force Sensing Resistor (“FSR”) membrane switch may be attached around the circumference of the striking surface providing a method to “choke” the initial sound triggered by the percussion transducer, thus mimicking the effect of choking a real cymbal. The “choke” effect is a function of the electronic interface's interpretation of the transducer's electronic pulse signal and the state of the switch.
While a specific embodiment of the invention has been shown and described in detail to illustrate the application of the principles of the invention, it will be understood that the invention may be embodied otherwise without departing from such principles and that various modifications, alternate constructions, and equivalents will occur to those skilled in the art given the benefit of this disclosure. Thus, the invention is not limited to the specific embodiment described herein, but is defined by the appended claims.
This application is entitled to, and claims the benefit of, priority from U.S. Provisional Application Ser. No. 60/496,150, filed Aug. 19, 2003.
Number | Date | Country | |
---|---|---|---|
60496150 | Aug 2003 | US |