Claims
- 1. A percussive rotational impact hammer assembly adapted to be installed in an outer casing for rotating a member, the hammer assembly comprising:a generally cylindrical hammer member having an interior engagement surface for engaging a member to be rotated, and an outer cylindrical sliding surface with a raised impact face and a raised return face disposed in circumferentially spaced relation; a hollow generally cylindrical piston member rotatably mounted concentrically on said hammer sliding surface and having an arcuate sidewall portion with an impact face and a return face disposed in circumferentially spaced relation, said hammer member sized and shaped to be received in a cylindrical outer casing having a cylindrical interior surface to define an annulus between said outer cylindrical sliding surface and the interior surface of the outer casing in which said piston rotatably oscillates, and said piston arcuate sidewall dividing the annulus into an impact chamber between said hammer impact face and said piston impact face and a return chamber between said hammer return face and said piston return face; and fluid conducting ports and passageways in said hammer member and said piston member for conducting pressurized fluid in pathways to alternately pressurize said return chamber and said impact chamber to rotatably oscillate said piston, such that upon pressurization of said return chamber said piston is rotated in a first direction to forcefully strike its said impact face on said hammer impact face and the kinetic energy of said piston and rotational movement is transmitted via said hammer member to the member engaged with said interior engagement surface, and upon pressurization of said impact chamber said piston is rotated in a reverse direction.
- 2. The percussive rotational impact hammer assembly according to claim 1, whereinsaid hammer member comprises a generally cylindrical member with a side wall having a larger diameter circular portion and a reduced diameter portion defining said sliding surface; and a semi-circular raised anvil surface on said reduced diameter portion extending partially around its circumference with opposed ends terminating a distance apart to define its said raised impact face said raised return-face.
- 3. The percussive rotational impact hammer assembly according to claim 2, whereinsaid piston member comprises a hollow cylindrical member having a circumferential portion of its side wall intermediate its ends removed to define a remaining arcuate side wall portion with the circumferentially spaced sides thereof defining its said impact face and return face.
- 4. The percussive rotational impact hammer assembly according to claim 3, whereinsaid fluid conducting ports and passageways in said hammer member comprise a circumferential impact passageway and a circumferential return passageway formed in an outer surface of said reduced diameter portion and extending partially around the circumference thereof and having opposed facing ends terminating a distance apart; a pressurized air supply port extending longitudinally through said hammer side having an inlet at one end thereof and an outlet exiting through exterior of said reduced diameter portion between said opposed facing ends of said impact and return passageways; and an impact air exhaust port and a return air exhaust port extending through said reduced diameter portion to the interior of said hammer member in circumferentially spaced relation.
- 5. The percussive rotational impact hammer assembly according to claim 4, whereinsaid fluid conducting ports and passageways in said piston member comprise a circumferential slotted passageway extending through said arcuate portion of said arcuate side wall portion with outer ends terminating a distance inwardly from its said impact face and return face, and lateral portions of said arcuate side wall at each side of said passageway outer ends defining an impact sealing surface and a return sealing surface for alternately opening and closing said impact air exhaust port and return air exhaust port and communication through said impact passageway and return passageway.
- 6. The percussive rotational impact hammer assembly according to claim 5, whereinin use, pressurized air is constantly delivered to said air inlet port of said hammer member; when said piston is in a first position, said slotted passageway in said arcuate portion of said piston side wall is in communication with said air supply port and with said return passageway on said hammer member and said return sealing surface of said piston member closes off said return exhaust port in said hammer member preventing air from flowing from said return chamber into the interior of said hammer member and said impact surface opens said impact exhaust port to allow air to exhaust from said impact chamber into said interior and closes off flow of pressurized air from said air supply port to said impact chamber, such that pressurized air passes from said air supply port through said return passageway into said return chamber; as pressurized air fills said return chamber bounded by said hammer member return face and said piston member return face, said piston member begins to rotate in a direction toward said hammer member impact face to an impact position such that said impact face of said piston forcefully strikes said impact face of said hammer member and the kinetic energy of said piston member and rotational movement is transmitted via said hammer member to the member engaged with said interior engagement surface; and upon reaching the impact position said return sealing surface of piston member closes off said return passageway on said hammer member preventing flow of pressurized air from said air supply port to said return chamber, and said impact sealing surface closes off said impact exhaust port in said hammer member preventing air from flowing from said impact chamber into said hammer member interior and opens said return exhaust port to exhaust air from said return chamber into the interior of said hammer member, said slotted passageway in said arcuate portion of said piston side wall remains in communication with said air supply port and pressurized air passes from said air supply port through said impact passageway into said impact chamber and said impact chamber becomes pressurized to return the piston to the first position aided by the rebound force from striking said impact face of said hammer member.
- 7. The percussive rotational impact hammer assembly according to claim 6, whereinsaid impact face and said return face of said hammer member each have a stepped upper portion extending a distance circumferentially beyond said impact and return faces defining a small end chamber at the ends of said impact chamber and said return chamber which is not closed off during the cycle to prevent said piston from sticking.
- 8. A percussive rotational impact hammer assembly for rotating a member, the hammer assembly comprising:a generally cylindrical outer casing having a cylindrical interior surface; a generally cylindrical hammer member in said outer casing cylindrical interior surface having an interior engagement surface for engaging a member to be rotated, and an outer cylindrical sliding surface with a raised impact face and a raised return face disposed in circumferentially spaced relation; a hollow generally cylindrical piston member rotatably mounted concentrically on said hammer sliding surface and having an arcuate sidewall portion with an impact face and a return face disposed in circumferentially spaced relation, said hammer member sized and shaped to define an annulus between its said outer cylindrical sliding surface and the interior surface of the outer casing in which said piston rotatably oscillates, and said piston arcuate sidewall dividing the annulus into an impact chamber between said hammer impact face and said piston impact face and a return chamber between said hammer return face and said piston return face; and fluid conducting ports and passageways in said hammer member and said piston member for conducting pressurized fluid in pathways to alternately pressurize said return chamber and said impact chamber to rotatably oscillate said piston, such that upon pressurization of said return chamber said piston is rotated in a first direction to forcefully strike its said impact face on said hammer impact face and the kinetic energy of said piston and rotational movement is transmitted via said hammer member to the member engaged with said interior engagement surface, and upon pressurization of said impact chamber said piston is rotated in a reverse direction.
- 9. The percussive rotational impact hammer assembly according to claim 8, whereinsaid hammer member comprises a generally cylindrical member with a side wall having a larger diameter circular portion and a reduced diameter portion defining said sliding surface; and a semi-circular raised anvil surface on said reduced diameter portion extending partially around its circumference with opposed ends terminating a distance apart to define its said raised impact face said raised return face.
- 10. The percussive rotational impact hammer assembly according to claim 9, whereinsaid piston member comprises a hollow cylindrical member having a circumferential portion of its side wall intermediate its ends removed to define a remaining arcuate side wall portion with the circumferentially spaced sides thereof defining its said impact face and return face.
- 11. The percussive rotational impact hammer assembly according to claim 10, whereinsaid fluid conducting ports and passageways in said hammer member comprise a circumferential impact passageway and a circumferential return passageway formed in an outer surface of said reduced diameter portion and extending partially around the circumference thereof and having opposed facing ends terminating a distance apart; a pressurized air supply port extending longitudinally through said hammer side having an inlet at one end thereof and an outlet exiting through exterior of said reduced diameter portion between said opposed facing ends of said impact and return passageways; and an impact air exhaust port and a return air exhaust port extending through said reduced diameter portion to the interior of said hammer member in circumferentially spaced relation.
- 12. The percussive rotational impact hammer assembly according to claim 11, whereinsaid fluid conducting ports and passageways in said piston member comprise a circumferential slotted passageway extending through said arcuate side wall portion with outer ends terminating a distance inwardly from its said impact face and return face, and lateral portions of said arcuate side wall at each side of said passageway outer ends defining an impact sealing surface and a return sealing surface for alternately opening and closing said impact air exhaust port and return air exhaust port and communication through said impact passageway and return passageway.
- 13. The percussive rotational impact hammer assembly according to claim 12, whereinin use, pressurized air is constantly delivered to said air inlet port of said hammer member; when said piston is in a first position, said slotted passageway in said arcuate portion of said piston side wall is in communication with said air supply port and with said return passageway on said hammer member and said return sealing surface of said piston member closes off said return exhaust port in said hammer member preventing air from flowing from said return chamber into the interior of said hammer member and said impact surface opens said impact exhaust port to allow air to exhaust from said impact chamber into said interior and closes off flow of pressurized air from said air supply port to said impact chamber, such that pressurized air passes from said air supply port through said return passageway into said return chamber; as pressurized air fills said return chamber bounded by said hammer member return face and said piston member return face, said piston member begins to rotate in a direction toward said hammer member impact face to an impact position such that said impact face of said piston forcefully strikes said impact face of said hammer member and the kinetic energy of said piston member and rotational movement is transmitted via said hammer member to the member engaged with said interior engagement surface; and upon reaching the impact position said return sealing surface of piston member closes off said return passageway on said hammer member preventing flow of pressurized air from said air supply port to said return chamber, and said impact sealing surface closes off said impact exhaust port in said hammer member preventing air from flowing from said impact chamber into said hammer member interior and opens said return exhaust port to exhaust air from said return chamber into the interior of said hammer member, said slotted passageway in said arcuate portion of said piston side wall remains in communication with said air supply port and pressurized air passes from said air supply port through said impact passageway into said impact chamber and said impact chamber becomes pressurized to return the piston to the first position aided by the rebound force from striking said impact face of said hammer member.
- 14. The percussive rotational impact hammer assembly according to claim 13, whereinsaid impact face and said return face of said hammer member each have a stepped upper portion extending a distance circumferentially beyond said impact and return faces defining a small end chamber at the ends of said impact chamber and said return chamber which is not closed off during the cycle to prevent said piston from sticking.
- 15. A downhole percussive rotational impact hammer assembly for rotating a bit, comprising:an elongate downhole tool having a generally cylindrical portion with a cylindrical interior surface; a generally cylindrical hammer member in said cylindrical interior surface having an interior engagement surface for engaging a bit to be rotated, and an outer cylindrical sliding surface with a raised impact face and a raised return face disposed in circumferentially spaced relation; a hollow generally cylindrical piston member rotatably mounted concentrically on said hammer sliding surface and having an arcuate sidewall portion with an impact face and a return face disposed in circumferentially spaced relation, said hammer member sized and shaped to define an annulus between its said outer cylindrical sliding surface and said interior surface in which said piston rotatably oscillates, and said piston arcuate sidewall dividing the annulus into an impact chamber between said hammer impact face and said piston impact face and a return chamber between said hammer return face and said piston return face; and fluid conducting ports and passageways in said hammer member and said piston member for conducting pressurized fluid in pathways to alternately pressurize said return chamber and said impact chamber to rotatably oscillate said piston, such that upon pressurization of said return chamber said piston is rotated in a first direction to forcefully strike its said impact face on said hammer impact face and the kinetic energy of said piston and rotational movement is transmitted via said hammer member to the member engaged with said interior engagement surface, and upon pressurization of said impact chamber said piston is rotated in a reverse direction.
- 16. The downhole percussive rotational impact hammer assembly according to claim 15, whereinsaid hammer member comprises a generally cylindrical member with a side wall having a larger diameter circular portion and a reduced diameter portion defining said sliding surface, and a semi-circular raised anvil surface on said reduced diameter portion extending partially around its circumference with opposed ends terminating a distance apart to define its said raised impact face said raised return face; and said piston member comprises a hollow cylindrical member having a circumferential portion of its side wall intermediate its ends removed to define a remaining arcuate side wall portion with the circumferentially spaced sides thereof defining its said impact face and return face.
- 17. The downhole percussive rotational impact hammer assembly according to claim 16, whereinsaid fluid conducting ports and passageways in said hammer member comprise a circumferential impact passageway and a circumferential return passageway formed in an outer surface of said reduced diameter portion and extending partially around the circumference thereof and having opposed facing ends terminating a distance apart; a pressurized air supply port extending longitudinally through said hammer side having an inlet at one end thereof and an outlet exiting through exterior of said reduced diameter portion between said opposed facing ends of said impact and return passageways; and an impact air exhaust port and a return air exhaust port extending through said reduced diameter portion to the interior of said hammer member in circumferentially spaced relation; and said fluid conducting ports and passageways in said piston member comprise a circumferential slotted passageway extending through said arcuate side wall portion with outer ends terminating a distance inwardly from its said impact face and return face, and lateral portions of said arcuate side wall at each side of said passageway outer ends defining an impact sealing surface and a return sealing surface for alternately opening and closing said impact air exhaust port and return air exhaust port and communication through said impact passageway and return passageway.
- 18. A percussive rotational impact wrench assembly for tightening or loosening a member of a threaded connection, comprising:a wrench having a body portion with a cylindrical interior surface; a generally cylindrical hammer member in said cylindrical interior surface having an interior engagement surface for engaging a member of a threaded connection to be rotated, and an outer cylindrical sliding surface with a raised impact face and a raised return face disposed in circumferentially spaced relation; a hollow generally cylindrical piston member rotatably mounted concentrically on said hammer sliding surface and having an arcuate sidewall portion with an impact face and a return face disposed in circumferentially spaced relation, said hammer member sized and shaped to define an annulus between its said outer cylindrical sliding surface and said interior surface in which said piston rotatably oscillates, and said piston arcuate sidewall dividing the annulus into an impact chamber between said hammer impact face and said piston impact face and a return chamber between said hammer return face and said piston return face; and fluid conducting ports and passageways in said hammer member and said piston member for conducting pressurized fluid in pathways to alternately pressurize said return chamber and said impact chamber to rotatably oscillate said piston, such that upon pressurization of said return chamber said piston is rotated in a first direction to forcefully strike its said impact face on said hammer impact face and the kinetic energy of said piston and rotational movement is transmitted via said hammer member to the member engaged with said interior engagement surface, and upon pressurization of said impact chamber said piston is rotated in a reverse direction.
- 19. The percussive rotational impact wrench assembly according to claim 18, whereinsaid hammer member comprises a generally cylindrical member with a side wall having a larger diameter circular portion and a reduced diameter portion defining said sliding surface, and a semi-circular raised anvil surface on said reduced diameter portion extending partially around its circumference with opposed ends terminating a distance apart to define its said raised impact face said raised return face; and said piston member comprises a hollow cylindrical member having a circumferential portion of its side wall intermediate its ends removed to define a remaining arcuate side wall portion with the circumferentially spaced sides thereof defining its said impact face and return face.
- 20. The percussive rotational impact wrench assembly according to claim 19, whereinsaid fluid conducting ports and passageways in said hammer member comprise a circumferential impact passageway and a circumferential return passageway formed in an outer surface of said reduced diameter portion and extending partially around the circumference thereof and having opposed facing ends terminating a distance apart; a pressurized air supply port extending longitudinally through said hammer side having an inlet at one end thereof and an outlet exiting through exterior of said reduced diameter portion between said opposed facing ends of said impact and return passageways; and an impact air exhaust port and a return air exhaust port extending through said reduced diameter portion to the interior of said hammer member in circumferentially spaced relation; and said fluid conducting ports and passageways in said piston member comprise a circumferential slotted passageway extending through said arcuate side wall portion with outer ends terminating a distance inwardly from its said impact face and return face, and lateral portions of said arcuate side wall at each side of said passageway outer ends defining an impact sealing surface and a return sealing surface for alternately opening and closing said impact air exhaust port and return air exhaust port and communication through said impact passageway and return passageway.
CROSS REFERENCE TO RELATED APPLICATION
This application claims priority of U.S. Provisional Application Serial No. 60/326,081, filed Sep. 29, 2001, the pendency of which is extended until Sep. 30, 2002 under 35 U.S.C. 119(e)(3).
US Referenced Citations (9)
Provisional Applications (1)
|
Number |
Date |
Country |
|
60/326061 |
Sep 2001 |
US |