Field of the Invention
This application is directed to heart pumps that can be applied percutaneously.
Description of the Related Art
Heart disease is a major health problem that claims many lives per year. After a heart attack, only a small number of patients can be treated with medicines or other non-invasive treatment. However, a significant number of patients can recover from a heart attack or cardiogenic shock if provided with mechanical circulatory support.
In a conventional approach, a blood pump having a fixed cross-section is surgically inserted a heart chamber, such as into the left ventricle of the heart and the aortic arch to assist the pumping function of the heart. Other known applications involve providing for pumping venous blood from the right ventricle to the pulmonary artery for support of the right side of the heart. The object of the surgically inserted pump is to reduce the load on the heart muscle for a period of time, which may be as long as a week, allowing the affected heart muscle to recover and heal. Surgical insertion, however, can cause additional serious stresses in heart failure patients.
Percutaneous insertion of a left ventricular assist device (“LVAD”), a right ventricular assist device (“RVAD”) or in some cases a system for both sides of the heart (sometimes called “biVAD”) therefore is desired. Conventional fixed cross-section ventricular assist devices designed to provide near full heart flow rate are too large to be advanced percutaneously, e.g., through the femoral artery. There is an urgent need for a pumping device that can be inserted percutaneous and also provide full cardiac rate flows of the left, right, or both the left and right sides of the heart when called for.
In one embodiment, a heart pump is provided that includes a catheter body, a housing, an impeller, and a diffuser. The catheter body includes a proximal end, a distal end, and an elongate body extending therebetween. The housing is coupled with the distal end of the catheter body and comprises a distal opening and a proximal opening. The impeller assembly is coupled with the distal end of the catheter body and positioned within the housing. The diffuser can include a flow directing surface. The diffuser is disposed between the distal end of the catheter body and the impeller. The diffuser is configured to be positioned within the housing and adjacent the proximal opening.
In another embodiment, a heart pump is provided that includes a catheter body comprising a proximal end, a distal end, and an elongate body extending therebetween. The pump also includes an impeller coupled with the distal end of the catheter body and comprising an axial lumen passing through a distal end of the impeller. The impeller comprises a tip positioned at the distal end of the impeller, the tip comprising a resealable member having a resealable path.
In another embodiment, a heart pump is provided that comprises a catheter body, an impeller, and a sheath. The catheter body has a proximal end, a distal end, and an elongate structure extending therebetween. The impeller is coupled with the distal end of the catheter body. The sheath is disposed over at least a portion of the distal end of the catheter body. The sheath also has an expandable distal end.
In another embodiment, a catheter assembly is provided that includes a catheter body, an impeller, and a deployment device. The catheter body comprises a proximal end, a distal end, and an elongate structure extending therebetween. The impeller is configured for relative motion in an axial direction, and is located at the distal end of the catheter body. The deployment device is located at the proximal end of the catheter assembly.
A more complete appreciation of the subject matter of the present inventions and the various advantages thereof can be realized by reference to the following detailed description, in which reference is made to the accompanying drawings in which:
A more detailed description of various embodiments of components for heart pumps useful to treat patients experiencing cardiac stress, including acute heart failure, are set forth below.
Major components of heart pumps that can be applied percutaneously to a patient are described below in Section I. Section II describes various structures that facilitate the rotatable support of a cantilevered impeller. Section III describes various structures that facilitate deployment and/or retrieval of one or more components of the distal end 108 of the heart pump 10 within the cardiovascular system. Section IV describes various methods and techniques in connection with specific structures of heart pumps
The infusion system 26 can provide a number of benefits to the heart pump 10 which are discussed below. In one embodiment, the infusion system 26 includes a source of infusant 34, a fluid conduit 38 extending from the infusant source 34 to the proximal end 104 of the catheter assembly 100 and a fluid conduit 42 extending from the proximal end of the catheter assembly 100 to a waste container 46. The flow of infusant to and from the catheter assembly 100 can be by any means, including a gravity system or one or more pumps. In the illustrated embodiment, the infusant source 34 includes an elevated container 50, which may be saline or another infusant as discussed below. Flow from the elevated container 50 can be regulated by a pressure cuff 54 to elevate the pressure of the fluid in the container 50 to increase flow or by a pinch valve 58 or by other means.
The patient monitoring system 30 can be used to monitor the operation of the patient and/or the pump 10. For example, the patient monitoring system 30 can include a user interface 60 coupled with a source of data 64. The data source 64 can include one or more patient conditions sensors, such as pressure sensors 68 that are in pressure communication with the patient and/or operating components within the patient. In one embodiment, the pressure sensors 68 fluidly communicate by a conduit 72 that extends between the sensors and a proximal portion of the catheter assembly 100. The conduit 72 can include a plurality of separable segments and can include a valve 76 to enable or disable the pressure communication to the sensors 68.
The heart pump 10 is adapted to provide an acute or other short-term treatment. A short-term treatment can be for less than a day or up to several days or weeks in some cases. With certain configurations the pump 10 can be used for a month or more.
The catheter assembly 100 extends between the proximal end 104 and the distal end 108. An impeller assembly 116 disposed at the distal end 108 is configured to pump blood to convey blood from one body cavity to another. In one arrangement, the impeller assembly 116 conveys blood proximally through or along a portion of the catheter assembly 100 to provide assistance to the left ventricle of the heart. In another embodiment, the impeller assembly 116 conveys blood distally through or along a portion of the catheter assembly 100 to provide assistance to the right ventricle of the heart. The heart pump 10 is useful as a heart assist device for treating patients with acute heart failure or other heart maladies. The heart pump 10 also can be used in connection with a surgical treatment to support the patient without providing full cardiovascular bypass. A patient could be supported on the device for longer term with proper controls and design.
The catheter assembly 100 is provided with a low profile configuration for percutaneous insertion. For example, the distal end 108 of the catheter assembly 100 can be configured to have about an 11 French (approximately 3.5 mm) size in a first configuration for insertion and an expanded configuration, such as up to about 21 French (approximately 7 mm), once positioned in the body. The larger size facilitates greater flow rates by the impeller assembly 116 as discussed below.
The catheter assembly 100 is configured to enable the distal end 108 to reach a heart chamber after being inserted initially into a peripheral vessel. For example, the catheter assembly 100 can have a suitable length to reach the left ventricle and sufficient pushability and torquability to traverse the intervening vasculature. The catheter assembly 100 may includes a multilumen catheter body 120 that is arranged to facilitate delivery and operation of the impeller assembly 116. Further details concerning various embodiments of the catheter body 120 are discussed below in connection with
A drive system is provided to drive an impeller within the impeller assembly 116. The drive system includes a motor 14 and a suitably configured drive controller (not shown) disposed within the control module 22. The motor 14 is in various embodiments is configured to be disposed outside the patient, e.g., adjacent to the proximal end 104 of the catheter assembly 100. In one advantageous embodiment, the drive system employs a magnetic drive arrangement. The motor 14 is arranged to generate magnetic fields that will be sensed by permanent magnets disposed within the proximal end 104 of the catheter assembly 100. This arrangement facilitates very efficient generation of torque used to drive the impeller assembly 116, as discussed below.
Some embodiments described herein could be incorporated into a system in which a motor is miniaturized sufficiently to be inserted into the patient in use, including into the vasculature. Such an embodiment could be operated by disposing control signal lines within the proximal portion of the catheter body 120. Also, it may be useful to provide the capability to measure blood pressure at the distal end 108 using a device disposed at the proximal end 104. For example, a pressure sensor at the distal end can communicate with a device outside the patient through a lumen of the catheter body 120. Various details of these optional features are described in U.S. Pat. No. 7,070,555, which is incorporated by reference herein for all purposes and in its entirety.
In another embodiment, a mechanical interface can be provided between the motor and the proximal end 104 of the catheter assembly 100. The mechanical interface can be between the motor 14 and a drive shaft positioned at the proximal end of the catheter assembly 100.
A torque coupling system is provided for transferring torque generated by the drive system to the impeller assembly 116. The torque coupling system is discussed further in Section II(C)—Torque Coupling System (as discussed below), but in general can include magnetic interface between the motor 14 and a drive assembly 146 disposed at the proximal end 104 of the catheter assembly 100. The drive assembly 146 is coupled with a proximal end of an elongate drive shaft 148 in one embodiment. The drive shaft 148 extends between the drive assembly 146 and the impeller assembly 116. A distal portion of the drive shaft 148 is coupled with the impeller assembly 116 as discussed below in connection with one embodiment illustrated in
As discussed above, the heart pump 10 may also includes an infusion system 26.
In one embodiment, the infusion inflow assembly 150 includes a catheter body 154 having a luer or other suitable connector 158 disposed at a proximal end thereof and an inflow port in fluid communication with one or more lumens within the catheter assembly 100. A lumen extending through the catheter body 154 is adapted to be fluidly coupled with a fluid source connected to the connector 158 to deliver the fluid into the catheter assembly 100 and through one or more flow paths as discussed below in connection with
The catheter assembly 100 can also include a sheath assembly 162 configured to constrain the impeller assembly 116 in a low profile configuration in a first state and to permit the impeller assembly 116 to expand to the enlarged configuration in a second state. The sheath assembly 162 has a proximal end 166, a distal end 170, and an elongate body 174 extending therebetween. In one embodiment, the elongate body 174 has a lumen extending between the proximal and distal ends 166, 170, the lumen being configured to be slidably disposed over the catheter body 120. The arrangement permits the sheath assembly 162 to be actuated between an advanced position and a retracted position. The retracted position is one example of a second state enabling the impeller assembly 116 to expand to an enlarged configuration. The advanced position is one example of a first state that enables the impeller assembly 116 to be collapsed to the low profile configuration. In some embodiments, a luer 102 or other suitable connector is in fluid communication with the proximal end 166 of the sheath assembly 162. The luer 102 can be configured to deliver fluids to the catheter assembly 100, such as priming fluid, infusant, or any other suitable fluid.
The impeller assembly 116 can take any suitable form, but in various embodiments includes an impeller 200 adapted to move a fluid such as blood from an inlet to an outlet of the catheter assembly 100. In certain embodiments the impeller 200 can be cantilevered or otherwise supported for rotation primarily at one end.
The shaft 204 and hub 208 can be joined in any suitable fashion, such as by embedding a distal portion of the shaft within the hub 208. The blades 212 can be spaced out proximal to distal along the axis of the shaft. In some embodiments, the blades 212 are provided in blade rows.
A. Infusant Delivery and Removal System
The operation and duty cycle of the impeller assembly 116 can be lengthened by providing a hydrodynamic bearing for supporting the shaft 204. A hydrodynamic bearing can be supported by a lubricant, such as isotonic saline, which can be delivered in a continuous flow. The lubricant can be delivered through the infusion system to an outside surface of the shaft 204. The infusant may be directed onto the shaft from a radially outward location. In some arrangements, the lubricant flow is controlled such that of a total lubricant volume introduced into the proximal end of the cannula, a first portion of the total volume of the lubricant flows proximally along the shaft 204. In some embodiments, a second portion of the total volume flows distally along the shaft, the first volume being different from the second volume. The second portion of the total volume can be substantially equal to the total volume introduced into the proximal end of the cannula less the first volume.
In one arrangement, the proximal end of the shaft 204 (e.g., as shown in
In other embodiments, such as in
At least the proximal portion of the shaft 204 can be made of a material that will not corrode or otherwise be made to be inert when immersed in the lubricant or other infusant. The material may be one that will not corrode in isotonic saline. Suitable materials may include a wide variety of metals, including alloys, and at least saline-resistant stainless steel and nickel-based alloys. Also, the shaft 204 could be made as a composite to include advantageous properties of a plurality of materials. In some cases the shaft 204 could be formed as a polymer. The class of polymers selected would include those that can form a shaft 204 of a certain stiffness suitable in this application. For example, polycarbonate or PEEK could be used. In certain configurations, the polycarbonate, PEEK, or other suitable polymer can provide enhanced performance by being combined with a second material or structure. A glass or carbon filled polycarbonate or other stiff polymer could also be used.
As discussed above, a hydrodynamic bearing between the shaft 204 and the bearings 232a, 232b may be utilized in various embodiments. In one such arrangement, a continuously replenished fluid film is provided at least between the inner wall of the bearing housing and an adjacent moving structure, such as the impeller shaft or an outer surface of a bearing. For example, the bearing housing 228 can be configured to permit a lubricant to be delivered therethrough into the lumen 234. The bearing housing 232 can include a plurality of channels 260 disposed therein extending proximally from a plurality of ports 264 located at the narrow portion 240 of the housing 228. Each port 264 can communicate with one of the channels 260 to provide fluid communication into the lumen 234.
As shown in
Fluid communication between the port 264 in the bearing housing 228 and the infusion inflow assembly 150 can be by any suitable combination of lumens within the catheter assembly 100. For example, in one embodiment, each of the channels 260 has a proximal port 272 that communications with an annular space 274 formed in the catheter assembly 100. The annular space 274 can be formed between a plurality of separate overlaid structures in the catheter assembly 100.
Fluid communication is provided in the catheter assembly 100 between the space 274 and the infusion inflow assembly 150. For example, a plurality of lumens 282 formed in the multi-lumen catheter body 120 can be dispersed circumferentially about the catheter body 120 at a peripheral circumferential region 284, as illustrated in
A proximal portion of the lumens 282 can take any suitable form. For example, the lumens 282 can communicate at their proximal end with a flow diverting structure (not shown) that is in fluid communication with the infusion inflow assembly 150. As described herein, in some embodiments the lumen 282 can be disposed circumferentially about the central lumen 286. The catheter assembly 100 can include a flow diverting structure or connector, e.g., disposed about the proximal end of the catheter body 120 that is configured to divert the infusant into the lumens 282 for distally directed flow therein. In other embodiments, the catheter assembly 120 can include a flow diverting structure disposed adjacent the distal end thereof that is configured to divert the infusant into the lumens 282 from the central lumen 286 for proximally directed flow in the lumens 282.
The bearings 232a, 232b can have different configurations to enhance the performance of the pump 10. For example, the proximal bearing 232a can be longer along the longitudinal axis of the bearing housing 228 than the distal bearing 232b. A longer proximal bearing 232a is believed to better control runout of the shaft 204. Better runout control on the shaft 204 is believed to enhance the control of the position of the blades 212 relative to the housing 202. Less runout reduces excessive variation in the gap between the blades 212 and the housing 202, providing biocompatibility benefits such as reduced hemolysis.
In some embodiments, such as those in
The continuous introduction of lubricant maintains a constant, predictable and durable rotational bearing state between stationary component, e.g., the bearing housing 282, and a moving component, e.g., the shaft 204, a component of the bearings 232a, 232b, or both the shaft 204 and a component of the bearings 232a, 232b. Also, continuous lubricant inflow provides a means for removing heat generated by the relative motion between the shaft 204 and the bearings. Also, the infusant can create fluid pressure within the catheter assembly 100 that can push debris generated within or by the pump 10 out of the bearing housing 220. Enhancing the volume of infusant that flows along the path indicated by the arrow 304 enhances the likelihood that debris generated by or present in the pump will be removed from the proximal end rather than to be trapped inside the distal portion of the catheter assembly 100.
Another technique for controlling infusant flow in the lumen 234 is to locate the port 264 between the bearings 232a, 232b and closer to one of the bearing. For example, the ports 264 can be located adjacent to the proximal bearing 232a in one embodiment. This provides a shorter path of egress out of the narrow portion 240 of the bearing housing 228 in the proximal direction.
Other strategies for controlling the flow of infusant within the bearing housing 228 include modifying a surface within one or more of the bearings 232a, 232b.
In other embodiments, it may be desirable to enhance distally directed flow. For example, the infusant may be provided with a fluid intended to be delivered to the patient. In such embodiments, the surface modification 233 can be provided on the distal bearing 232b. In certain embodiments, both proximal and distal bearings 232a, 232b are provided with flow enhancing modifications to enhance heat transfer or purging of the bearing assembly 220. In such embodiments, one of the bearings may have a greater degree of flow enhancement provided on the bearing surface.
The arrangement of the bearing assembly 220 can be a factor in selecting an appropriate infusant. Saline is a preferred infusant, but other sufficiently biocompatible infusants could be used. Other embodiments are configured such that little or no infusant flows out of the pump into the patient. For such embodiments, other infusant fluids can be used, such as glucose.
The physical connection between the bearing housing 228 and the catheter body 120 can be achieved in any suitable manner.
In one embodiment, the bearing housing 228 has an elongate channel 342 configured to receive a middle portion of the rod 332 and an enlarged depression 344 located at the distal end of the channel 342. The depression 344 has a width W that is sufficient to receive a wide distal end of the rod 332. The depression 344 can be configured to have an axial length along the housing 228 that can define a range of motion of the bearing housing 228 relative to the catheter body 120.
In one arrangement, the bearing housing 228 is positioned relative to the catheter body 120 and the rod 332 such that the distal portion of the rod 332 is located at the distal end of the depression 344. Thereafter, the catheter assembly 100 can be manipulated such that the bearing housing 228 moves distally relative to the catheter body 120 and the rod 332 such that the distal portion of the rod 332 is located at the proximal end of the depression 344. In the distal position, the impeller assembly 116 is located more distally than in the proximal position. As discussed further below, this enables a variety of techniques for unfurling the impeller blades 212 within the housing 202.
B. Bearing Configurations
Any suitable bearing can be used in the catheter assembly 100. The provision of an infusant for hydrodynamic support enables a wide range of bearing materials to be used. If saline or other more corrosive infusant is used, the bearing must be carefully configured to not degrade within the expected duty cycle of the pump 10. Some polymeric materials are advantageously not degraded by isotonic saline, and are acceptable materials from this perspective. Under the fluid-dynamic conditions, a hydrodynamic bearing that is supported by a biocompatible infusant such as isotonic saline is preferred. It is believed that certain polymer bearings in combination with isotonic saline can support such conditions as 35,000-50,000 psi-ft/min for an appropriate duty cycle. Other aspects that can guide the choice of bearing configurations include minimizing thermal expansion, given the heat that could be generated in the heart pump 10, and minimizing moisture absorption.
Any suitable polymeric material may be used for the bearings 232a, 232b. The polymeric material can include a homopolymer, a copolymer, or a mixture of polymers. The polymeric material can include thermoplastic or thermoset polymers. Examples of polymers that can be used for bearings 232a, 232b include, but are not limited to, one or more of a polyketone, a polyether, a polyacetal, a polyamide-imide, a polyacetal, polyether ether ketone (PEEK), polytetrafluoroethylene (PTFE), and polyphenylene sulfide (PPS).
The polymeric material can also include (e.g., can be mixed, combined, and/or filled with) one or more additives such as a reinforcer and a lubricant. Specific additives include, but are not limited to, graphite, carbon fiber, glass fiber, and PTFE. Those of ordinary skill in the art may appreciate that the additives may be polymeric or non-polymeric. In some embodiments, the polymeric material used for bearings 232a and/or 232b can include PEEK, carbon fiber, PTFE, and graphite. In other embodiments, the polymeric material can include PPS and glass fiber. In yet other embodiments, the polymeric material can include a polyamide-imide polymer, carbon fiber, and graphite. The polymeric material can include any suitable amount of additive(s). For example, the polymeric material can include a total amount of additive(s) in the range of from about 1 wt % to about 50 wt %, based on the total weight of the polymeric material. In other embodiments, the polymeric material used for bearings 232a, 232b may not include any additives.
The polymeric material chosen for bearings 232a, 232b can have particular characteristics that advantageously affect the performance of the bearings. For example, in order to minimize thermal expansion caused by the heat generated in the heart pump 10, a preferred material would be subject to a minimum of dimensional change, and can have a coefficient of thermal expansion in the range of from about 1.2×10−5° F.−1 to about 25.2×10−5° F.−1. In other embodiments, the polymer used for bearings 232a, 232b has a coefficient of friction in the range of from about 0.15 to about 0.3. In another example, in order to minimize or prevent water absorption, the selected polymeric material can have a water adsorption in the range of from about 0.01% to about 0.4% over a 24 hour period. In yet another example, the polymeric material can be suitable for high pressure and velocity performance, and can have a limiting pressure-velocity (PV) in the range of from about 20,000 psi-ft/min to about 50,000 psi-ft/min.
The polymeric material used for bearings 232a, 232b may be commercially available. Examples of suitable, commercially-available polymeric materials include, but are not limited to, Ketron PEEK-HPV, Turcite A, Turcite X, Turcite TX, Rulon LR, Rulon J, Rulon 641, Rulon AR, Techtron HPV PPS, Ryton PPS, Torlon 4301, and Torlon 4501. In some embodiments, the polymeric material used for bearings 232a, 232b is Ketron PEEK-HPV.
Of course, other bearing configurations and/or materials would be suitable under other conditions, e.g., with less corrosive infusants or if a hydrostatic or non-hydraulic bearing is used.
C. Torque Coupling Systems
A torque coupling system is provided to rotate the impeller 200 at a high rate to move blood from inside a heart camber to a location within a patient's vasculature in amounts sufficient to sustain the patient or provide treatment to the patient. The torque coupling system couples the impeller 200 with the motor 136, which may be disposed outside the patient. It is expected that the impeller 200 and the drive shaft 148 are to be rotated at 25,000-30,000 revolutions per minute for a period of seven to ten days. To provide reliable performance under these conditions, isotonic saline or other lubricant is provided between the drive shaft 148 and stationary components therearound.
The size of the elongate body 408 may be as small as possible to minimize the cross-sectional profile of the catheter assembly 100. The cross-sectional profile of the catheter assembly 100 corresponds to the crossing profile of the catheter assembly, which limits where the system can be inserted into the vasculature. The lumen 412 is sized to permit a guidewire to be advanced therethrough in some embodiments. The use of a guidewire is optional, but may simplify insertion.
In one embodiment, the elongate body 408 comprises a multi-layer construction. In some embodiments, each layer can include at least one coil wire or a plurality of coil wires all wound in a same orientation. For example, a two-layer, counter-wound wire construction is particularly advantageous. A first layer (e.g., an inner layer) of the elongate body 408 is provided by a coiled wire of nickel-molybdenum-chromium alloy, such as 35NLT or MP35N. In other embodiments, the wire material can be MP35N LT. In one embodiment, the wire has a 0.008 inch diameter and the coil has a 5 filar right-hand wound construction. The outer diameter of the first layer may be about 0.071 inch. A second layer (e.g., an outer layer) of the elongate body 408 can include the same material as the first layer, disposed on the outside of the first layer. The first and second layers can be wound in the same direction, or in opposite directions. For example, in some embodiments the first layer (e.g., an inner layer) can be left-hand wound and the second layer (e.g., an outer layer) can be right-hand wound, or vice versa. In other embodiments, both the first and second layers can be left-hand wound. In yet other embodiments, both the first and second layers can be right-hand wound. The wound coil wire construction can advantageously facilitate proximal and/or distal flow of infusant along the outer layer of the elongate body 408. For example, the outer layer can be constructed such that the infusant travels along the coil and/or in the direction of the winding. Those skilled in the art may appreciate that, depending on the direction of rotation of the elongate body 408, the infusant flow can advantageously be directed either proximally or distally. The second layer may be a 5 filar left-hand wound construction. In one embodiment, each layer is formed using a 0.008 inch diameter wire, in the above-noted coiled configuration. In other embodiments, the elongate body 408 can include three or more coil wire layers, wherein the layers are wound in alternating directions. In some embodiments, the outer diameter of the second layer can be between about 0.072 inch and about 0.074 inch, while in other embodiments the diameter can be much larger or smaller. In some aspects, for example, the outer diameter of the second layer can be about 0.073 inch. The inner diameter of the elongate body 408 can be at least about 0.039 inch in some implementations. In some embodiments, one or more ends of the elongate body 408 can be welded and square cut, for example, with a 0.1 inch maximum weld length on each end. The length of the elongate body 408 can vary, but in some embodiments, the length can be between about 47 inches and 48 inches, for example, about 47.5 inches.
Other materials and other constructions are possible. The elongate body 408 can be made of other non-ferrous metals or other corrosion resistant material or constructions with appropriate modulus. Other materials that could meet the corrosion requirements include stainless steel (e.g., 302, 304, or 316). In certain embodiments, the elongate body 408 can have a structure that enables other materials to be used. For example varying at least one of coil layers, filars, wire diameter, and coil diameter may enable an otherwise less robust material to operate below the fatigue stress of that material.
In another embodiment, a four layer construction is provided. The four layers comprise three wire-wound layers, e.g., similar to the arrangement described above, but included a third wound layer on the outer surface of the second layer. A low friction layer can be disposed on the outside surface of the elongate body 408. One material that could be used as a low-friction layer is PTFE, known commercially as Teflon®. The low-friction layer should be configured to have sufficient wear resistance, such as by selection of the appropriate PTFE material, e.g. polyphenylene sulphone-filled PTFE, and/or by insuring appropriate infusant flow is maintained during the entire duration of use of the device in order to prevent undesirable local elevated temperature of the PTFE material.
The drive shaft 148 operates within the multilumen catheter body 120. Because the drive shaft 148 is rotated at a very high rate when in use within the multilumen catheter body 120, the configuration of the surface forming the central lumen 286 is important. In some embodiments, this inner surface has high lubricity and high wear resistance. One material that can be used for the inner surface of the catheter body 120 is high density polyethylene (HDPE), which provides sufficient lubricity and wear resistance. In one embodiment, the entire multilumen catheter body 120 is formed of HDPE. PTFE provides good lubricity and could be used if made sufficiently wear resistant. One way to increase the wear resistance of PTFE is to impregnate it with polyphenylene sulphone (PPSO2), another is to gamma irradiate the material. One way to increase the lubricity of Polyimide materials is to impregnate it with Graphite, another is to impregnate it with Graphite and PTFE.
A rotor 470 is mounted on an outer surface of the support shaft 458 between sleeve bearings 474a, 474b, as shown in
The proximal end of the support shaft 458 has a tapered port 480 for receiving the guidewire. The proximal end can be configured for engaging the motor 136 in some embodiments. In other embodiments, a magnetic field is induced by the motor 136 in a manner that creates torque and rotation of the shaft 458.
An infusant outflow path 482 is provided within the drive assembly 146. The outflow path 482 is provided between an outer surface of the support shaft 458 and an inner surface 486 of the distal bearing. The flow path 482 continues from the distal bearing 474b radially outwardly along thrust surfaces 490a. The flow path continues proximally between the outer surface of the rotor 470 and the inner surface defining the cavity 454. The flow path 482 continues radially inwardly along the thrust surface 490a toward the support shaft 458. The flow path 482 continues proximally between the support shaft 458 and the proximal bearing 474a. Proximal of the bearing 474a, the flow of infusant exits the catheter assembly 100 through an outflow port 144 through which it can be directed to the waste container 46 or discarded. The flow path is shown in more detail in
The catheter assembly 100 can include one or more features that facilitate the deployment and/or retrieval of one or more components of the distal end 108 of the heart catheter assembly 100 (e.g., the impeller assembly 116 or a portion thereof).
A. Optionally-Expandable Diffuser
As shown in
The diffuser 502a, 502b can be disposed between the distal end of the elongate body of the catheter body and the impeller. The diffuser 502a, 502b can be configured to be positioned within the housing 202 and adjacent to the proximal opening of the housing. In some embodiments, the diffuser 502a, 502b can be axially aligned with the proximal opening of the housing 202. Advantageously, this configuration can maximize the flow directing capabilities of the diffuser 502a, 502b, as discussed further herein. The diffuser 502a, 502b can be located adjacent the proximal end of the hub 208. The diffuser 502a, 502b can include a proximal end 504a, 504b and a distal end 505a, 505b. The proximal end 504a, 504b of the diffuser 502a, 502b can be positioned adjacent the distal end of the bearing housing 228 (e.g., over a bearing 516 and/or a front thrust washer 518). As shown in
Advantageously, the relatively large diameter and/or the curved outer surface can assist in directing (e.g., diffusing) fluid flow out of the housing 202. The geometry of the diffuser 502a, 502b (e.g., the radius of curvature of the outer surface) can be optimized to control desired fluid properties such as boundary layer flow, laminar flow, and pressure gradients and to reduce outlet flow losses.
The diffuser 502a, 502b can include a wall 511. The wall 511 can include an inner surface 512 and the outer surface 513, described above. The wall 511 can have a thickness extending from the inner surface 512 to the outer surface 513. In some embodiments, the wall 511 can have a generally uniform thickness along the axial length of the diffuser 502a, 502b. One advantage of a generally uniform wall thickness is that the diffuser 502b can be more easily expanded and/or collapsed, as described herein. In other embodiments, the wall 511 can have a variable thickness along the axial length of the diffuser 502a, 502b. For example, as illustrated in
The inner surface 512 can define a chamber 506 through which the impeller shaft 204 can pass. As shown in
There can be many advantages to including a diffuser 502a that is connected to the impeller hub 208. For example, the unitary construction can be easier to manufacture and/or assemble. As described herein, the distal end of the diffuser 502a can be relatively thick and strong (e.g., stiff). In addition, it can be advantageous for the infusant to exit the catheter assembly 100 at the proximal outlet 508, which is generally at the downstream end of the diffuser 502a.
There can also be advantages to including a diffuser 502b that is a structure separate from and not directly attached to the impeller hub 208. In some embodiments, the diffuser 502b can be made from a material that is different from the material used to make impeller hub 208. For example, the diffuser 502b can be made from a material that is relatively more flexible (softer) than the material of the impeller hub 208. In other embodiments, the wall 511 of diffuser 502b can have a generally uniform thickness. These features of diffuser 502b can facilitate the expansion and/or contraction of the diffuser 502b, described further herein.
As shown in
In some embodiments, the relatively flexible material itself may not be significantly expandable (e.g., stretchable and/or elastic). Rather, the terms “expandable” and “collapsible” can refer to the overall expansion and/or collapse of the chamber 506 of the diffuser 502a, 502b. In other embodiments, the relatively flexible material itself may be significantly expandable (e.g., balloon-like).
The chamber 506 can be configured (e.g., sized) to allow fluid (e.g., infusant) flow through the diffuser 502a, 502b. The diffuser 502a, 502b can be configured for fluid communication with a fluid, such as an infusant, that passes through the bearing assembly 220. The bearing assembly 220 illustrated in
As illustrated in
As illustrated in
As described herein, the diffuser 502a, 502b can be expandable. In some embodiments, one or more forces exerted by the infusant can be used to expand the diffuser 502a, 502b. The flow rate of the infusant can be sufficient to establish an area of positive pressure within the diffuser 502a, 502b, thereby allowing at least a portion of the infusant to exit adjacent to a distal end of the device. In some embodiments, the static pressure of the infusant entering the chamber 506 can cause the diffuser 502a, 502b to expand. In any of these embodiments, an inflated diffuser 502a, 502b can be deflated by interrupting and/or discontinuing the flow of infusant into the diffuser 502a, 502b and by allowing the infusant to exit the diffuser via the proximal outlet 508 or the distal outlet 510. In some embodiments, the wall is elastic but the pliability is relatively low such that upon removal of the infusant flow a transition from expanded to low profile is rapid. The diffuser 502a, 502b self-collapses displacing the infusant out of the chamber 506 through one or more small apertures. In addition to promoting quick deflation, the relatively low pliability will provide a uniform diffuser profile, e.g., will not be deformed or deflected by any varying pressure or flow rate of the blood from the impeller 200. A lower infusant pressure configuration can also be provided by increasing the pliability of the structure forming the diffuser 502a, 502b. The structure can be of enhanced pliability by material selection or constructions (e.g., by being thinner or adopting other balloon-like features).
In other embodiments, the centrifugal force exerted by the infusant as it travels along the helical path 514a, 514b can be used to expand the diffuser 502a, 502b. As illustrated in
As illustrated in
Infusant exiting the diffuser 502a, 502b can be continuously replenished with additional infusant via the flow path 514. If the impeller shaft 204 stops rotating, the pressure generated from rotation can decrease to match the pressure acting on the outside of the diffuser 502a, 502b, thereby allowing the diffuser 502a, 502b to collapse.
In yet other embodiments, the diffuser 502a, 502b can be expanded and/or inflated by a combination of static and centrifugal forces. For example, the diffuser 502a, 502b can be expanded and/or inflated by a combination of the static force of the infusant as it enters the chamber 506 and the centrifugal force of the infusant as it travels along the helical path 514.
B. Relatively Axially-Moveable Impeller Housing
As illustrated in
As illustrated in
In the proximal position, illustrated in
Those skilled in the art may appreciate that the axial movement of the catheter body 120 and the impeller housing 202 relative to the impeller and/or the diffuser 502 can have the same relative effect as axially moving the impeller and/or the diffuser 502 relative to the catheter body 120 or the impeller housing 202, even if the impeller and/or the diffuser are not actually moved axially. Accordingly, in some embodiments the catheter body 120 in the proximal position can be referred to as the deployed position of the impeller and/or the diffuser 502. The catheter body 120 in the distal position can be referred to as the retracted position of the impeller and/or the diffuser 502.
The ability of the impeller and/or the diffuser 502 to be retracted and deployed relative to the impeller housing can have many advantages. For example, axial movement of the impeller housing relative to the impeller and/or the diffuser can reduce the profile of the pump to ease insertion and retrieval. In some embodiments, in the retracted position, the impeller hub 208, blades 212, and/or diffuser 502 can be positioned at the same axial location as a portion of the housing 202 that does not have a covering (e.g., the outlet 802). Accordingly, the cross-sectional area of the catheter assembly 100 measured at the axial position of the diffuser 502 in the retracted position, for example, is comparatively smaller than when it is in the deployed position. The smaller cross sectional area can be advantageous for minimizing trauma to a user during insertion into and/or retrieval from the body.
In other embodiments, the retracted position of the impeller and/or the diffuser can be distal of the deployed position of the impeller and/or the diffuser. In some embodiments, the impeller housing can have a rigidity that varies axially. For example, the impeller housing can have a proximal portion that is more rigid (e.g., less flexible) than a distal portion. In these embodiments, the impeller and/or the diffuser can reside in the proximal, rigid portion while in the deployed position. The impeller and/or the diffuser can reside in the distal, flexible portion while in the retracted position. Advantageously, when the impeller and/or the diffuser reside in the flexible portion of the impeller housing, this portion of the pump may be collapsed to a lower profile than would otherwise be achievable if the impeller and/or the diffuser remained in the rigid portion of the impeller housing.
As described herein, the catheter body can be coupled to the impeller housing. The retraction and deployment (e.g., movement between proximal and distal positions) of the impeller housing can be controlled by manipulation of a proximal end of the catheter assembly that results in an application of axial force to the catheter body. For example, the impeller housing can be moved axially by the rotational force applied by a nut disposed at the proximal end of the catheter assembly. A section of the proximal end of the catheter assembly is illustrated in
In some embodiments, axial force is applied to the catheter body via an impeller deployment assembly 800. The impeller deployment assembly includes a nut 804 that is engaged with a portion of the catheter assembly, such as a flow diverter 806. As described herein, the flow diverter 806 can be a part of the infusion inflow assembly 150, illustrated in
As illustrated in
In use, a rotational force can be applied to the nut 804. This application of rotational force can be converted into an axial force that is applied to the flow diverter 806 and the catheter body. As described herein, the pin 808 can be fixedly attached to the flow diverter 806 at one end and have a second end disposed within the inner surface of the nut 804 along the cam track thereof. The rotation of the nut 804 in a first direction (e.g., clockwise or counter-clockwise) can cause the pin 808 to translate from a proximal position (e.g., proximal end) to a distal position (e.g., distal end) in the longitudinal channel 810. Accordingly, the flow diverter 806, the catheter body, and the impeller housing can also translate from a proximal position to a distal position. As described herein, the distal translation of the catheter body and the impeller housing can improve the ease of the retraction of the impeller hub and the blades into the impeller housing. In embodiments where the outlet 802 is generally free of a polymeric coating, relative movement of at least a portion of the impeller and/or the diffuser proximally into the outlet 802 or distally into a more flexible region of the impeller housing (i.e., mid section of the housing where there is less strut material) can advantageously reduce the profile of the pump upon collapsing into the sheath. In addition, axial adjustment of the impeller housing relative to the impeller can advantageously promote more efficient flow dynamics. In some embodiments, the impeller is positioned closer to the outlet 802 than the middle portion of the housing in order to improve flow dynamics.
A rotational force applied to the nut 804 in a second direction (e.g., counter-clockwise or clockwise) can cause the pin 808 to translate from the distal position to the proximal position. Accordingly, the flow diverter 806, the catheter body 120, and the impeller housing 202 can also translate from a distal position to a proximal position. As described herein, the proximal translation of the catheter body 120 and the impeller housing 202 can effectively result in the deployment of the impeller hub 208 and the blades 212.
As discussed above, the catheter assembly can include a flow diverter 852 that is part of the infusion system. The flow diverter 852 may be coupled with a proximal portion 122 of the catheter body 120. In one embodiment, the proximal end of the proximal portion 122 is inserted into a recess 854 formed at a distal 852a end of the flow diverter 852. The connection between the proximal portion 122 of the catheter body 120 the flow diverter 852 can be further made secure by a strain relief 856 disposed at the junction and extending distally thereof. The strain relief 856 overlaps a proximal length of the proximal portion 122 and absorbs movements of the portions of the catheter assembly to isolate the connection between the flow diverter 852 and the catheter body. A cap 860 can be used to securely couple strain relief 856 to the flow diverter 852. A proximal portion 862 of the flow diverter 852 is received within a recess 864 of the housing 450. A seal device 866, such as an O-ring, may be provided between the proximal portion 862 of the flow diverter 852 and inside surface of the recess 864 to prevent infusion from exiting the housing 450 in an undesirable manner.
The flow diverter 852 also includes a lumen 868 that extends from a proximal end 852b to the distal end 852a thereof. The lumen 868 is configured to permit a proximal portion of the drive shaft 148 to reside therein. In some embodiments, flow diverter 852 is configured to cause some infusant to flow proximally in the lumen 868 between the drive shaft 148 and the inner surface of the flow diverter 852 that forms the lumen 868 to lubricate and cool the drive shaft. The flow diverter 852 can be configured to cause most or substantially all of the infusant entering the diverter through the lumen in the catheter body 154 to flow distally between the catheter body 120 and the drive shaft 148. In one arrangement, the lumen 868 is enlarged from a location proximal of where the catheter body 154 couples with the flow diverter 852 toward the distal end 852a of the flow diverter. This enlargement creates a path of least resistance toward the distal direction to divert the flow distally. In one embodiment, the lumen 868 is further enlarged at a location between where the catheter body 154 couples with the flow diverter 852 and the recess 854 such that a substantially continuous lumen can be formed to keep flow resistance at the junction between the flow diverter 852 and the proximal portion 122 of the catheter body 120 to a minimum.
The deployment device 850 includes a guide track 872 on a proximal portion 862 of the flow diverter 852, a guide member 874, and an actuator 876. The guide track 872 can comprise an axially oriented slot or recess formed in the outside surface of the proximal portion 862. The guide track 872 may be configured to slidably receive a guide member 874 such that relative movement can be provided between the guide track 872 and a guide member 874. A portion of the guide member 874 may extend through sidewall of the drive housing 450 such that the axial position of the guide member 874 can be fixed and relative movement is provided by movement of the flow diverter 852 relative to the guide member. In one embodiment the guide member 874 is a pin that has one end received in a small hole in the drive housing 450 and the other end disposed in the guide track 872.
The actuator 876 is configured to translate rotational motion thereof into axial motion of the flow diverter 852. For example, the actuator 876 can comprise a nut that includes internal threads that are engaged with external threads on the outside surface of the flow diverter 852. In various embodiments, a proximal portion of the actuator 876 is anchored to the drive housing 450 to prevent the actuator 876 from moving axially along the drive housing. In one embodiment a retention structure 882 is provided between the actuator 876 and the drive housing 450. One embodiment of the retention structure 882 is illustrated in detail B of
To move from the expanded configuration of
C. Impellers Having Self-Sealing Impeller Tips and Lumens with Valves
In some embodiments, the tip 602 of impeller hub 208 can be self-sealable or resealable (e.g., configured to automatically effectively form a seal to substantially stop the flow of a fluid in the absence of direct action by a user or operator to form the seal), as illustrated in
As shown in
The resealable path 604 can be created using a very small diameter, e.g., a 32 gauge (0.00925 inch or 0.235 mm) wire or pin. In some embodiments, the resealable path 604 can be created without coring the impeller tip 602 (e.g., without punching out or otherwise removing a cylinder of material). The resealable path 604 can be self-sealable. For example, the resealable path 604 can close or seal automatically, without the use of additional tools or implements. The resealable path 604 can be self-sealable due to the elastomeric properties of the material used for impeller tip 602 (e.g., a silicone or polyisoprene polymer) and/or the diameter of the resealable path 604. In some embodiments, circumferential and radial forces of the tip material and/or external pressure forces (illustrated with arrows at 612) exerted while the catheter assembly 100 is implanted can also contribute to sealing the resealable path 604.
In some embodiments, the tip 602 or resealable member 622, 624 can be made of the same material as the rest of the impeller system (e.g., hub, blades, shaft, and/or shaft extension). In other embodiments, the tip 602 or resealable member 622, 624 can be made from a different material than the rest of the impeller system (e.g., hub, blades, shaft, and/or shaft extension). For example, the tip 602 or resealable member 622, 624 can be made of a material that is more elastomeric (e.g., has greater elasticity) than the material from which the impeller shaft 204 and/or shaft extension 606 are formed. In another example, the tip 602 or resealable member 622, 624 can be made from a polyisoprene polymer and at least a portion of the impeller shaft 204 (e.g., the distal end) and/or shaft extension 606 are formed from an acrylonitrile butadiene styrene (ABS) polymer or a polycarbonate polymer.
In some embodiments where the impeller tip 602 comprises a resealable member 622 that is made separately from the rest of the impeller system, the resealable member 622 can include one or more proximally-extending tabs 616. The one or more tabs 616 can be disposed about the proximal end of resealable member 622. In some embodiments, the resealable member 622 can include one generally cylindrical tab 616 that is disposed about the proximal end of the resealable member 622. The one or more tabs 616 can be configured to mate with (e.g., can engage and/or be disposed within) one or more of the corresponding recesses 618 disposed on the distal end of a portion of the impeller assembly 116 (e.g., the hub 208, shaft 204, and/or shaft extension 606). As illustrated in
Engagement of the resealable member 622 with the distal end of the impeller assembly 116 as illustrated in
As illustrated in
Another embodiment of an impeller tip 602 that includes a resealable member 624 is illustrated in
Advantageously, the impeller tip 602 can be configured to receive a guidewire through both the resealable path and the non-resealable path 628. In some embodiments, the resealable path (when open) and/or the non-resealable path can have a diameter that is no more than one-half the diameter of the guidewire. Where the impeller tip 602 includes a resealable member 624 disposed therein, the resealable member can be advantageously protected from the trauma to which the outer surface of the impeller tip 602 may be exposed. In addition, the distally-extending non-resealable path can act as a guide or channel that directs the guidewire through the impeller. Furthermore, as discussed herein, the tapered shape of the distal portion of the resealable member 624 can help to reseal the resealable member 624, as radial forces extending inwards can surround the tapered portion and help to close the resealable path. Note in this case that the non-resealable member, also made of an elastomeric material (but different actual material), retains a level of elasticity that can stretch to a lesser degree than the resealable material to accommodate passage of the guidewire.
The impeller tip 602 illustrated in
In use, those skilled in the art may appreciate that non-sealable (e.g., non-resealable or non-self-sealing) devices may require a constant flow of infusant in the distal direction to prevent the proximal flow of fluid or blood into the device. Advantageously, a resealable tip can allow for guidewire passage through the center of the catheter assembly 100 to ease insertion without requiring a constant flush of infusant. The tip in various embodiments the resealable tip self-seals when the guidewire is removed. Valves discussed herein provide the advantage of preventing blood from entering other portions of the catheter assembly 100, such as the impeller shaft 204 or the lumen 234 or the bearing housing 228. In various embodiments, valves are configured to be actuated from an at least partially open configuration to a closed configuration, such as by application of a force or pressure on one side thereof.
D. Sheath Having Expandable Distal End
As described herein, the pump can include a sheath assembly. The sheath assembly can control the collapse and expansion of the impeller and/or the impeller housing. In some embodiments, the distal end of the sheath assembly can optionally include one or more structures that aid in the deployment and/or retrieval of the impeller assembly.
In some embodiments, as shown in
As illustrated in
In use, an outwardly-acting radial force resulting from the radial stiffness of the impeller housing can be applied to the elongate members 704 which causes the elongate members 704 to deflect outwards, as illustrated in
As illustrated in
In some embodiments, the elongate members 704 can be stiffer (in the circumferential and/or axial direction(s)) than the proximally-adjacent portion of the sheath assembly. Advantageously, the stiffer material can prevent or inhibit the distal-most end of the sheath assembly from folding over itself when it encounters resistance (e.g., advancing the sheath over an expanded cannula housing). In one embodiment, one or more elongate members 704 can be reinforced with a plurality of wires that extend to the distal-most tip of the elongate member 704. In another embodiment, one or more elongate members 704 can be made from a polymer that is stiffer than the material (e.g., a second polymer) of the proximally-adjacent portion of the sheath assembly.
As illustrated in
The integral funnel 710 can be slideable over the outer surface 716 and/or the inner surface 718 of the non-expandable portion 712. The contact surfaces between the non-expandable portion 712 and the integral funnel 710 and/or between the outer layer 713 and the inner layer 715 can be lubricated, e.g., using a silicone lubricant, to establish and/or maintain slidability and/or low friction. The integral funnel 710 can be made from a thin, flexible material, such as a polyurethane polymer. In some embodiments, the integral funnel 710 can be made from a material that is more flexible and/or elastic than the material that is used for all or a portion of the remainder of the sheath assembly. In some embodiments, the material used for the integral funnel 710 can have one or more membrane-like qualities. In use, the axial movement of the housing 202 (not shown) can frictionally engage the integral funnel 710, causing the integral funnel 710 to deploy or retract. For example, in embodiments where the outer layer 713 is affixed to the non-expandable portion 712 of the sheath, axial movement of the housing 202 in a distal direction can cause the inner layer 715 to translate distally (e.g., slide distally along the inner surface 718 of the sheath), thus deploying the conical portion 711 (e.g., pulling the conical portion 711 out of the sheath). Axial movement of the housing in a proximal direction can cause the inner layer 715 to translate proximally (e.g., slide proximally along the inner surface 718 of the sheath), thus retracting the conical portion 711 into the sheath (e.g., pulling the conical portion 711 into the sheath). The thin, flexible material of the conical portion 711 can advantageously allow the conical portion 711 to deform upon retraction into the sheath.
In embodiments where the inner layer 715 is affixed to the non-expandable portion of the sheath, axial movement of the housing 202 can cause the outer layer 713 to translate. For example, distal movement of the housing can cause the outer layer 713 to slide distally along the outer surface 716 of the sheath. Proximal movement of the housing can cause the outer layer 713 to slide proximally along the outer surface 716 of the sheath.
In some embodiments where the funnel 710 is a distal extension of the non-expandable portion 712 that is folded over the non-expandable portion 712, the funnel 710 can slide distally as the non-expandable portion 712 is moved proximally. In use, as the non-expandable portion 712 is moved proximally, the funnel 710 can slide distally to unfold and surround the impeller assembly 116.
Various methods and techniques are discussed above in connection with specific structures of heart pumps. The following elaborates on some aspects of these techniques and methods. The following discussion is to be read in light of and freely combined with the foregoing discussion.
A. Retracting and Deploying the Impeller Housing by Way of the Impeller Deployment Assembly at the Proximal End of the Catheter Body
As discussed above, in various embodiments the heart pump 10 is inserted in a less invasive manner, e.g., using techniques that can be employed in a catheter lab. Various general techniques pertinent to the heart pump 10 are described in U.S. patent application Ser. No. 12/829,359, filed on Jul. 1, 2010, and entitled Blood Pump With Expandable Cannula, which is incorporated by reference herein in its entirety and for all purposes.
Because the catheter assembly 100 is to be delivered through a small access site, it can be important to ensure that the impeller housing is reliably deployed and retracted, as described above. A clinician may begin a heart pumping procedure by introducing the catheter assembly 100 into the patient percutaneously, e.g., by urging the catheter assembly through the femoral artery and into a heart chamber. Because the impeller and impeller housing are advanced through a narrow artery in some embodiments, the impeller and impeller housing can initially be inserted into the patient in a retracted, or collapsed (or low profile), state, as described above. Once the distal end of the catheter assembly 100 (including the impeller housing) has reached the desired operating location (e.g., a heart chamber), the clinician can deploy the impeller housing into an advanced or expanded configuration.
One method of deploying the impeller and/or diffuser is by using the impeller deployment assembly 800, which can be located near the proximal end of the catheter assembly. As shown in
In some embodiments, the impeller 200 and housing 202 can be axially displaced relative to their operational positions during delivery of the distal end to the heart (e.g., the impeller and housing can be delivered to the vasculature in an axially separated configuration). As used in this context, “axially displaced” includes configurations where there is axial movement of the impeller 200 relative to any portion of the housing 202 prior to or during the process of delivery. For example, axial displacement includes conditions in which the impeller 200 is moved from a first position near a proximal end port (outlet for left side support or inlet for right side support) of the housing 202 to a second position distal the first position. The second position can be one that is still between the proximal end port and a distal end port (inlet for left side support or outlet for right side support) of the housing 202. The first position may be the operational position of the impeller 200 relative to the housing 202. Axial displacement also includes conditions in which the impeller is located proximal of an operational position, e.g., at a location proximal of a proximal end port of the housing 202, including being disposed within a non-expandable portion of the heart pump. When the clinician delivers the distal end of the heart pump to the heart chamber, rather than delivering the distal end with the impeller housing disposed over the impeller blades, the impeller housing can be in a proximally displaced position or retracted configuration (or distally displaced position or advanced configuration in other embodiments) with respect to the impeller, such that it is axially moved from the operational position, as discussed above.
In some embodiments, the impeller and the housing can be delivered in series (with the impeller being delivered before the housing, or vice versa). For example, in one embodiment, the impeller housing 202 is first advanced into position, e.g., in the heart. The housing 202 may then be expanded if the housing has expanded and compressed configurations. Thereafter the impeller 200 may be positioned, e.g., advanced through a catheter body similar to the catheter body 120 to be positioned within the impeller housing 202. Thereafter the impeller 200 can be rotated by a source of rotational energy. In various embodiments, the source of rotational energy can comprise a motor positioned outside of the patient to drive a shaft similar to the shaft 148. In other embodiment, the source of rotational energy can comprise a motor that is miniaturized to be positionable within the patient, as discussed in U.S. Pat. No. 7,070,555, which is incorporated by reference herein for all purposes and in its entirety. In another embodiment, the distal end of the impeller 200 can be configured to be advanced into position in the patient and, at a later stage of a procedure, the impeller housing 202 can be positioned thereover. In one technique, the impeller 200 is positioned in the heart chamber (or wherever the procedure is to occur), the clinician can then advance the impeller housing over the impeller blades and begin operating the heart pump. For removal of the catheter assembly from the patient after the procedure, the clinician can retract or displace the impeller housing proximally to axially displace and/or separate the impeller from the impeller housing.
The configurations enabling displaced or serial delivery also can decouple the design of the impeller housing 202 from the complexities of the design of the impeller 200. For example, the impeller housing 202 can have a greater range of expansion from a collapsed state to an expanded state. If no structures are disposed inside the housing 202 in the collapsed state, greater compression and a lower crossing profile can be achieved compared to where the housing 202 must be sized in the collapsed state to accommodate the impeller 200 in its collapsed state. This provides one or more of the benefits of access through smaller vessels, in smaller patients, or a larger expanded size in standard patients through typical access (e.g., femoral vessel). Similarly, greater compression of the impeller 200 may be possible if the impeller 200 is delivered using a dedicated compression sheath or device that is not required to expand and/or to be present around the impeller during operation. As a result, larger blades may be delivered from the same collapsed profile, providing the advantages of higher flow discussed above. More details of serial delivery of blood pumps are discussed in U.S. Pat. No. 7,022,100, which is incorporated by reference herein for all purposes and in its entirety.
Once the impeller is deployed, the clinician can conduct the procedure, e.g., by running the heart pump within a heart chamber. Once the procedure is finished, the clinician can remove the catheter assembly from the patient by retracting the impeller. The clinician can simply rotate the nut 804 in a direction opposite to that rotated for deploying the impeller. The nut can then translate from the proximal position to the distal position, which in turn can cause the flow diverter 806, the catheter body, and the impeller housing to also translate from the proximal position to the distal position. The impeller can thereby be retracted proximally into an area near the outlet 802 to reduce the profile of the pump upon collapsing into the sheath. Thus, the clinician can both deploy and retract the impeller by rotating a nut located near the proximal end of the catheter assembly.
B. Controlling the Collapse and Deployment of the Impeller Housing with the Sheath Assembly
As mentioned above in Section IV(A), it can be advantageous in certain embodiments to enable a clinician to deploy and retract the impeller assembly prior to and after a heart procedure. One method of collapsing the impeller housing can be performed by advancing the sheath assembly 162 distally over the impeller housing to collapse the impeller assembly, e.g., for removal of the catheter assembly from the patient after a heart procedure. As mentioned above, elongate body 174 of the catheter assembly 162 can be slidably disposed over the catheter body 120. The clinician can distally advance the elongate body 174 over the impeller housing, or alternatively proximally retract the catheter body 120 such that the impeller housing collapses into the elongate body 174 of the sheath assembly 162.
As
It will be apparent to those skilled in the art that various modifications and variations can be made in the present embodiments without departing from the scope or spirit of the advantages of the present application. Thus, it is intended that the present application cover the modifications and variations of these embodiments and their equivalents.
This application is a continuation of U.S. patent application Ser. No. 13/345,597, filed on Jan. 6, 2012, entitled Percutaneous Heart Pump, which claims priority to U.S. Provisional Application Ser. No. 61/430,537 filed Jan. 6, 2011, entitled Percutaneous Heart Pump, the contents of each of which are hereby incorporated by reference herein for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
1902418 | Pilgrim | Mar 1933 | A |
2356659 | Aguiar | Oct 1942 | A |
2649052 | Weyer | Aug 1953 | A |
2664050 | Abresch | Dec 1953 | A |
2684035 | Kemp | Jul 1954 | A |
2789511 | Warren | Apr 1957 | A |
2896926 | Chapman | Jul 1959 | A |
2935068 | Donaldson | May 1960 | A |
3080824 | Boyd et al. | Mar 1963 | A |
3455540 | Marcmann | Jul 1969 | A |
3510229 | Smith | May 1970 | A |
3812812 | Hurwitz | May 1974 | A |
3860968 | Shapiro | Jan 1975 | A |
3904901 | Renard et al. | Sep 1975 | A |
3995617 | Watkins et al. | Dec 1976 | A |
4115040 | Knorr | Sep 1978 | A |
4129129 | Amrine | Dec 1978 | A |
4135253 | Reich et al. | Jan 1979 | A |
4143425 | Runge | Mar 1979 | A |
4149535 | Volder | Apr 1979 | A |
4304524 | Coxon et al. | Dec 1981 | A |
4382199 | Isaacson | May 1983 | A |
4392836 | Sugawara | Jul 1983 | A |
4439096 | Rockwood et al. | Mar 1984 | A |
4458366 | MacGregor | Jul 1984 | A |
4540402 | Aigner | Sep 1985 | A |
4560375 | Schulte et al. | Dec 1985 | A |
4589822 | Clausen et al. | May 1986 | A |
4625712 | Wampler | Dec 1986 | A |
4655745 | Corbett | Apr 1987 | A |
4686982 | Nash | Aug 1987 | A |
4696667 | Masch | Sep 1987 | A |
4704121 | Moise | Nov 1987 | A |
4728319 | Masch | Mar 1988 | A |
4753221 | Kensey et al. | Jun 1988 | A |
4769006 | Papantonakos | Sep 1988 | A |
4817586 | Wampler | Apr 1989 | A |
4846152 | Wampler et al. | Jul 1989 | A |
4895557 | Moise et al. | Jan 1990 | A |
4900227 | Trouplin | Feb 1990 | A |
4902272 | Milder et al. | Feb 1990 | A |
4906229 | Wampler | Mar 1990 | A |
4908012 | Moise et al. | Mar 1990 | A |
4919647 | Nash | Apr 1990 | A |
4944722 | Carriker et al. | Jul 1990 | A |
4955856 | Phillips | Sep 1990 | A |
4957504 | Chardack | Sep 1990 | A |
4964864 | Summers et al. | Oct 1990 | A |
4969865 | Hwang et al. | Nov 1990 | A |
4976270 | Parl et al. | Dec 1990 | A |
4985014 | Orejola | Jan 1991 | A |
4994017 | Yozu | Feb 1991 | A |
4995857 | Arnold | Feb 1991 | A |
5000177 | Hoffmann | Mar 1991 | A |
5021048 | Buckholtz | Jun 1991 | A |
5045072 | Castillo et al. | Sep 1991 | A |
5049134 | Golding et al. | Sep 1991 | A |
5061256 | Wampler | Oct 1991 | A |
5089016 | Millner et al. | Feb 1992 | A |
5092844 | Schwartz et al. | Mar 1992 | A |
5098256 | Smith | Mar 1992 | A |
5106368 | Uldall et al. | Apr 1992 | A |
5112200 | Isaacson et al. | May 1992 | A |
5112292 | Hwang et al. | May 1992 | A |
5112349 | Summers et al. | May 1992 | A |
5129883 | Black | Jul 1992 | A |
5142155 | Mauze et al. | Aug 1992 | A |
5147186 | Buckholtz | Sep 1992 | A |
5163910 | Schwartz et al. | Nov 1992 | A |
5169378 | Figuera | Dec 1992 | A |
5171212 | Buck et al. | Dec 1992 | A |
5190528 | Fonger et al. | Mar 1993 | A |
5195960 | Hossain et al. | Mar 1993 | A |
5201679 | Velte et al. | Apr 1993 | A |
5211546 | Isaacson et al. | May 1993 | A |
5221270 | Parker | Jun 1993 | A |
5234407 | Teirstein et al. | Aug 1993 | A |
5234416 | Macaulay et al. | Aug 1993 | A |
5290227 | Pasque | Mar 1994 | A |
5300112 | Barr | Apr 1994 | A |
5312341 | Turi | May 1994 | A |
5314407 | Auth et al. | May 1994 | A |
5344443 | Palma et al. | Sep 1994 | A |
5346458 | Affeld | Sep 1994 | A |
5360317 | Clausen et al. | Nov 1994 | A |
5376114 | Jarvik | Dec 1994 | A |
5393197 | Lemont et al. | Feb 1995 | A |
5393207 | Maher et al. | Feb 1995 | A |
5405341 | Martin | Apr 1995 | A |
5405383 | Barr | Apr 1995 | A |
5415637 | Khosravi | May 1995 | A |
5437541 | Vainrub et al. | Aug 1995 | A |
5449342 | Hirose et al. | Sep 1995 | A |
5458459 | Hubbard et al. | Oct 1995 | A |
5490763 | Abrams et al. | Feb 1996 | A |
5505701 | Anaya Fernandez de Lomana | Apr 1996 | A |
5527159 | Bozeman, Jr. et al. | Jun 1996 | A |
5533957 | Aldea | Jul 1996 | A |
5534287 | Lukic | Jul 1996 | A |
5554114 | Wallace et al. | Sep 1996 | A |
5588812 | Taylor et al. | Dec 1996 | A |
5609574 | Kaplan et al. | Mar 1997 | A |
5613935 | Jarvik | Mar 1997 | A |
5643226 | Cosgrove et al. | Jul 1997 | A |
5678306 | Bozeman, Jr. et al. | Oct 1997 | A |
5692882 | Bozeman et al. | Dec 1997 | A |
5702418 | Ravenscroft | Dec 1997 | A |
5704926 | Sutton | Jan 1998 | A |
5707218 | Maher et al. | Jan 1998 | A |
5722930 | Larson et al. | Mar 1998 | A |
5725513 | Ju et al. | Mar 1998 | A |
5725570 | Heath | Mar 1998 | A |
5730628 | Hawkins | Mar 1998 | A |
5735897 | Buirge | Apr 1998 | A |
5738649 | Macoviak | Apr 1998 | A |
5741234 | Aboul-Hosn | Apr 1998 | A |
5741429 | Donadio, III et al. | Apr 1998 | A |
5746709 | Rom et al. | May 1998 | A |
5749855 | Reitan | May 1998 | A |
5755784 | Jarvik | May 1998 | A |
5776111 | Tesio | Jul 1998 | A |
5776161 | Globerman | Jul 1998 | A |
5776190 | Jarvik | Jul 1998 | A |
5779721 | Nash | Jul 1998 | A |
5807311 | Palestrant | Sep 1998 | A |
5814011 | Corace | Sep 1998 | A |
5824070 | Jarvik | Oct 1998 | A |
5851174 | Jarvik et al. | Dec 1998 | A |
5859482 | Crowell et al. | Jan 1999 | A |
5868702 | Stevens | Feb 1999 | A |
5868703 | Bertolero | Feb 1999 | A |
5888241 | Jarvik | Mar 1999 | A |
5888242 | Antaki et al. | Mar 1999 | A |
5911685 | Siess et al. | Jun 1999 | A |
5921913 | Siess | Jul 1999 | A |
5941813 | Sievers et al. | Aug 1999 | A |
5951263 | Taylor et al. | Sep 1999 | A |
5957941 | Ream | Sep 1999 | A |
5964694 | Siess et al. | Oct 1999 | A |
5971704 | Blattmann | Oct 1999 | A |
6007478 | Siess et al. | Dec 1999 | A |
6007479 | Rottenberg et al. | Dec 1999 | A |
6015272 | Antaki et al. | Jan 2000 | A |
6015434 | Yamane | Jan 2000 | A |
6018208 | Maher et al. | Jan 2000 | A |
6027863 | Donadio, III et al. | Feb 2000 | A |
6053705 | Schob et al. | Apr 2000 | A |
6056719 | Mickley | May 2000 | A |
6058593 | Siess | May 2000 | A |
6059760 | Sandmore et al. | May 2000 | A |
6068610 | Ellis et al. | May 2000 | A |
6071093 | Hart | Jun 2000 | A |
6083260 | Aboul-Hosn | Jul 2000 | A |
6086527 | Talpade | Jul 2000 | A |
6086570 | Aboul-Hosn et al. | Jul 2000 | A |
6106494 | Saravia et al. | Aug 2000 | A |
6113536 | Aboul-Hosn et al. | Sep 2000 | A |
6123659 | Le Blanc et al. | Sep 2000 | A |
6123725 | Aboul-Hosn | Sep 2000 | A |
6132363 | Freed et al. | Oct 2000 | A |
6135943 | Yu et al. | Oct 2000 | A |
6136025 | Barbut et al. | Oct 2000 | A |
6139487 | Siess | Oct 2000 | A |
6152704 | Aboul-Hosn et al. | Nov 2000 | A |
6162194 | Shipp | Dec 2000 | A |
6176822 | Nix et al. | Jan 2001 | B1 |
6176848 | Rau | Jan 2001 | B1 |
6186665 | Maher et al. | Feb 2001 | B1 |
6190304 | Downey et al. | Feb 2001 | B1 |
6190357 | Ferrari et al. | Feb 2001 | B1 |
6200260 | Bolling | Mar 2001 | B1 |
6210133 | Aboul-Hosn et al. | Apr 2001 | B1 |
6210318 | Lederman | Apr 2001 | B1 |
6210397 | Aboul-Hosn et al. | Apr 2001 | B1 |
6214846 | Elliott | Apr 2001 | B1 |
6217541 | Yu | Apr 2001 | B1 |
6227797 | Watterson et al. | May 2001 | B1 |
6228063 | Aboul-Hosn | May 2001 | B1 |
6234960 | Aboul-Hosn et al. | May 2001 | B1 |
6234995 | Peacock, III | May 2001 | B1 |
6245007 | Bedingham et al. | Jun 2001 | B1 |
6245026 | Campbell et al. | Jun 2001 | B1 |
6247892 | Kazatchkov et al. | Jun 2001 | B1 |
6248091 | Voelker | Jun 2001 | B1 |
6254359 | Aber | Jul 2001 | B1 |
6254564 | Wilk et al. | Jul 2001 | B1 |
6287319 | Aboul-Hosn et al. | Sep 2001 | B1 |
6287336 | Globerman et al. | Sep 2001 | B1 |
6295877 | Aboul-Hosn et al. | Oct 2001 | B1 |
6299635 | Frantzen | Oct 2001 | B1 |
6305962 | Maher et al. | Oct 2001 | B1 |
6387037 | Bolling et al. | May 2002 | B1 |
6395026 | Aboul-Hosn et al. | May 2002 | B1 |
6413222 | Pantages et al. | Jul 2002 | B1 |
6422990 | Prem | Jul 2002 | B1 |
6425007 | Messinger | Jul 2002 | B1 |
6428464 | Bolling | Aug 2002 | B1 |
6447441 | Yu et al. | Sep 2002 | B1 |
6454775 | Demarais et al. | Sep 2002 | B1 |
6468298 | Pelton | Oct 2002 | B1 |
6503224 | Forman et al. | Jan 2003 | B1 |
6508777 | Macoviak et al. | Jan 2003 | B1 |
6508787 | Erbel et al. | Jan 2003 | B2 |
6517315 | Belady | Feb 2003 | B2 |
6517528 | Pantages | Feb 2003 | B1 |
6527699 | Goldowsky | Mar 2003 | B1 |
6532964 | Aboul-Hosn et al. | Mar 2003 | B2 |
6533716 | Schmitz-Rode et al. | Mar 2003 | B1 |
6544216 | Sammler et al. | Apr 2003 | B1 |
6547519 | de Blanc et al. | Apr 2003 | B2 |
6565598 | Lootz | May 2003 | B1 |
6609883 | Woodard et al. | Aug 2003 | B2 |
6610004 | Viole et al. | Aug 2003 | B2 |
6613008 | Aboul-Hosn et al. | Sep 2003 | B2 |
6616323 | McGill | Sep 2003 | B2 |
6623420 | Reich et al. | Sep 2003 | B2 |
6623475 | Siess | Sep 2003 | B1 |
6641093 | Coudrais | Nov 2003 | B2 |
6641558 | Aboul-Hosn et al. | Nov 2003 | B1 |
6645241 | Strecker | Nov 2003 | B1 |
6652548 | Evans et al. | Nov 2003 | B2 |
6660014 | Demarais et al. | Dec 2003 | B2 |
6673105 | Chen | Jan 2004 | B1 |
6692318 | McBride | Feb 2004 | B2 |
6709418 | Aboul-Hosn et al. | Mar 2004 | B1 |
6716189 | Jarvik et al. | Apr 2004 | B1 |
6749598 | Keren et al. | Jun 2004 | B1 |
6776578 | Belady | Aug 2004 | B2 |
6776794 | Hong et al. | Aug 2004 | B1 |
6783328 | Lucke et al. | Aug 2004 | B2 |
6790171 | Grundeman et al. | Sep 2004 | B1 |
6794784 | Takahashi et al. | Sep 2004 | B2 |
6794789 | Siess et al. | Sep 2004 | B2 |
6814713 | Aboul-Hosn et al. | Nov 2004 | B2 |
6817836 | Nose et al. | Nov 2004 | B2 |
6818001 | Wulfman et al. | Nov 2004 | B2 |
6860713 | Hoover | Mar 2005 | B2 |
6866625 | Avre et al. | Mar 2005 | B1 |
6866805 | Hong et al. | Mar 2005 | B2 |
6887215 | McWeeney | May 2005 | B2 |
6889082 | Bolling et al. | May 2005 | B2 |
6901289 | Dahl et al. | May 2005 | B2 |
6926662 | Aboul-Hosn et al. | Aug 2005 | B1 |
6935344 | Aboul-Hosn et al. | Aug 2005 | B1 |
6942611 | Siess | Sep 2005 | B2 |
6949066 | Bearnson et al. | Sep 2005 | B2 |
6966748 | Woodard et al. | Nov 2005 | B2 |
6972956 | Franz et al. | Dec 2005 | B2 |
6974436 | Aboul-Hosn et al. | Dec 2005 | B1 |
6981942 | Khaw et al. | Jan 2006 | B2 |
6984392 | Bechert et al. | Jan 2006 | B2 |
7010954 | Siess et al. | Mar 2006 | B2 |
7011620 | Siess | Mar 2006 | B1 |
7014417 | Salomon | Mar 2006 | B2 |
7022100 | Aboul-Hosn et al. | Apr 2006 | B1 |
7027875 | Siess et al. | Apr 2006 | B2 |
7037069 | Arnold et al. | May 2006 | B2 |
7070555 | Siess | Jul 2006 | B2 |
7122019 | Kesten et al. | Oct 2006 | B1 |
7125376 | Viole et al. | Oct 2006 | B2 |
7144365 | Bolling et al. | Dec 2006 | B2 |
7150711 | Nusser et al. | Dec 2006 | B2 |
7160243 | Medvedev | Jan 2007 | B2 |
7172551 | Leasure | Feb 2007 | B2 |
7175588 | Morello | Feb 2007 | B2 |
7229258 | Wood et al. | Jun 2007 | B2 |
7241257 | Ainsworth et al. | Jul 2007 | B1 |
7262531 | Li et al. | Aug 2007 | B2 |
7264606 | Jarvik et al. | Sep 2007 | B2 |
7267667 | Houde et al. | Sep 2007 | B2 |
7284956 | Nose et al. | Oct 2007 | B2 |
7288111 | Holloway et al. | Oct 2007 | B1 |
7290929 | Smith et al. | Nov 2007 | B2 |
7329236 | Kesten et al. | Feb 2008 | B2 |
7331921 | Viole et al. | Feb 2008 | B2 |
7335192 | Keren et al. | Feb 2008 | B2 |
7341570 | Keren et al. | Mar 2008 | B2 |
7381179 | Aboul-Hosn et al. | Jun 2008 | B2 |
7393181 | McBride et al. | Jul 2008 | B2 |
7469716 | Parrino et al. | Dec 2008 | B2 |
7491163 | Viole et al. | Feb 2009 | B2 |
7534258 | Gomez | May 2009 | B2 |
7605298 | Bechert et al. | Oct 2009 | B2 |
7619560 | Penna | Nov 2009 | B2 |
7633193 | Masoudipour et al. | Dec 2009 | B2 |
7645225 | Medvedev et al. | Jan 2010 | B2 |
7657324 | Westlund et al. | Feb 2010 | B2 |
7682673 | Houston et al. | Mar 2010 | B2 |
7722568 | Lenker et al. | May 2010 | B2 |
7731675 | Aboul-Hosn et al. | Jun 2010 | B2 |
7736296 | Siess et al. | Jun 2010 | B2 |
7758521 | Morris et al. | Jul 2010 | B2 |
7766892 | Keren et al. | Aug 2010 | B2 |
7780628 | Keren et al. | Aug 2010 | B1 |
7785246 | Aboul-Hosn et al. | Aug 2010 | B2 |
7811279 | John | Oct 2010 | B2 |
7819833 | Ainsworth et al. | Oct 2010 | B2 |
7820205 | Takakusagi et al. | Oct 2010 | B2 |
7828710 | Shifflette | Nov 2010 | B2 |
7841976 | McBride et al. | Nov 2010 | B2 |
7878967 | Khanal | Feb 2011 | B1 |
7918828 | Lundgaard et al. | Apr 2011 | B2 |
7927068 | McBride et al. | Apr 2011 | B2 |
7935102 | Breznock et al. | May 2011 | B2 |
7942804 | Khaw | May 2011 | B2 |
7942844 | Moberg et al. | May 2011 | B2 |
7955365 | Doty | Jun 2011 | B2 |
7993259 | Kang et al. | Aug 2011 | B2 |
7998054 | Bolling | Aug 2011 | B2 |
7998190 | Gharib et al. | Aug 2011 | B2 |
8012079 | Delgado | Sep 2011 | B2 |
8025647 | Siess et al. | Sep 2011 | B2 |
8079948 | Shifflette | Dec 2011 | B2 |
8110267 | Houston et al. | Feb 2012 | B2 |
8114008 | Hidaka et al. | Feb 2012 | B2 |
8123669 | Siess et al. | Feb 2012 | B2 |
8177703 | Smith et al. | May 2012 | B2 |
8206350 | Mann et al. | Jun 2012 | B2 |
8209015 | Glenn | Jun 2012 | B2 |
8216122 | Kung | Jul 2012 | B2 |
8235943 | Breznock et al. | Aug 2012 | B2 |
8236040 | Mayberry et al. | Aug 2012 | B2 |
8236044 | Robaina | Aug 2012 | B2 |
8255050 | Mohl | Aug 2012 | B2 |
8257312 | Duffy | Sep 2012 | B2 |
8262619 | Chebator et al. | Sep 2012 | B2 |
8277470 | Demarais et al. | Oct 2012 | B2 |
8317715 | Belleville et al. | Nov 2012 | B2 |
8329913 | Murata et al. | Dec 2012 | B2 |
8333687 | Farnan et al. | Dec 2012 | B2 |
8348991 | Weber et al. | Jan 2013 | B2 |
8364278 | Pianca | Jan 2013 | B2 |
8376707 | McBride et al. | Feb 2013 | B2 |
8382818 | Davis et al. | Feb 2013 | B2 |
8388565 | Shifflette | Mar 2013 | B2 |
8409128 | Ferrari | Apr 2013 | B2 |
8414645 | Dwork et al. | Apr 2013 | B2 |
8439859 | Pfeffer | May 2013 | B2 |
8449443 | Rodefeld | May 2013 | B2 |
8485961 | Campbell et al. | Jul 2013 | B2 |
8489190 | Pfeffer et al. | Jul 2013 | B2 |
8491285 | Haser et al. | Jul 2013 | B2 |
8535211 | Campbell et al. | Sep 2013 | B2 |
8540615 | Aboul-Hosn et al. | Sep 2013 | B2 |
8545379 | Marseille et al. | Oct 2013 | B2 |
8545380 | Farnan et al. | Oct 2013 | B2 |
8579858 | Reitan | Nov 2013 | B2 |
8585572 | Mehmanesh | Nov 2013 | B2 |
8591393 | Walters | Nov 2013 | B2 |
8597170 | Walters | Dec 2013 | B2 |
8617239 | Reitan | Dec 2013 | B2 |
8636638 | Timms | Jan 2014 | B2 |
8684904 | Campbell et al. | Apr 2014 | B2 |
8690749 | Nunez | Apr 2014 | B1 |
8721516 | Scheckel | May 2014 | B2 |
8721517 | Zeng et al. | May 2014 | B2 |
8727959 | Reitan et al. | May 2014 | B2 |
8734331 | Evans et al. | May 2014 | B2 |
8784441 | Rosenbluth et al. | Jul 2014 | B2 |
8790236 | LaRose et al. | Jul 2014 | B2 |
8795576 | Tao et al. | Aug 2014 | B2 |
8801590 | Mohl | Aug 2014 | B2 |
8814776 | Hastie et al. | Aug 2014 | B2 |
8814933 | Siess | Aug 2014 | B2 |
8849398 | Evans | Sep 2014 | B2 |
8944748 | Liebing | Feb 2015 | B2 |
8992406 | Corbett | Mar 2015 | B2 |
8998792 | Scheckel | Apr 2015 | B2 |
9028216 | Schumacher et al. | May 2015 | B2 |
9089634 | Schumacher et al. | Jul 2015 | B2 |
9089670 | Scheckel | Jul 2015 | B2 |
9138518 | Campbell | Sep 2015 | B2 |
9162017 | Evans et al. | Oct 2015 | B2 |
9217442 | Wiessler et al. | Dec 2015 | B2 |
9308302 | Zeng | Apr 2016 | B2 |
9314558 | Er | Apr 2016 | B2 |
9327067 | Zeng et al. | May 2016 | B2 |
9328741 | Liebing | May 2016 | B2 |
9358330 | Schumacher | Jun 2016 | B2 |
20020107506 | McGuckin, Jr. et al. | Aug 2002 | A1 |
20020111663 | Dahl | Aug 2002 | A1 |
20030018380 | Craig et al. | Jan 2003 | A1 |
20030135086 | Khaw | Jul 2003 | A1 |
20030205233 | Aboul-Hosn et al. | Nov 2003 | A1 |
20030208097 | Aboul-Hosn et al. | Nov 2003 | A1 |
20030231959 | Snider | Dec 2003 | A1 |
20040148009 | Buzzard et al. | Jul 2004 | A1 |
20050049696 | Siess et al. | Mar 2005 | A1 |
20050085683 | Bolling et al. | Apr 2005 | A1 |
20050090883 | Westlund | Apr 2005 | A1 |
20050113631 | Bolling et al. | May 2005 | A1 |
20050137680 | Ortiz et al. | Jun 2005 | A1 |
20050165269 | Aboul-Hosn et al. | Jul 2005 | A9 |
20050165466 | Morris | Jul 2005 | A1 |
20050250975 | Carrier et al. | Nov 2005 | A1 |
20060018943 | Bechert et al. | Jan 2006 | A1 |
20060058869 | Olson et al. | Mar 2006 | A1 |
20060063965 | Aboul-Hosn et al. | Mar 2006 | A1 |
20060089521 | Chang | Apr 2006 | A1 |
20060155158 | Aboul-Hosn | Jul 2006 | A1 |
20060264695 | Viole et al. | Nov 2006 | A1 |
20060270894 | Viole et al. | Nov 2006 | A1 |
20070100314 | Keren et al. | May 2007 | A1 |
20070156006 | Smith | Jul 2007 | A1 |
20070253842 | Horvath et al. | Nov 2007 | A1 |
20080004645 | To et al. | Jan 2008 | A1 |
20080103442 | Kesten et al. | May 2008 | A1 |
20080103516 | Wulfman et al. | May 2008 | A1 |
20080114339 | McBride | May 2008 | A1 |
20080119943 | Armstrong et al. | May 2008 | A1 |
20080132748 | Shifflette | Jun 2008 | A1 |
20080167679 | Papp | Jul 2008 | A1 |
20080275290 | Viole et al. | Nov 2008 | A1 |
20090018567 | Escudero et al. | Jan 2009 | A1 |
20090024085 | To et al. | Jan 2009 | A1 |
20090099638 | Grewe | Apr 2009 | A1 |
20090112312 | LaRose et al. | Apr 2009 | A1 |
20090118567 | Siess | May 2009 | A1 |
20090163864 | Breznock | Jun 2009 | A1 |
20090182188 | Marseille et al. | Jul 2009 | A1 |
20090234378 | Escudero et al. | Sep 2009 | A1 |
20100030186 | Stivland | Feb 2010 | A1 |
20100041939 | Siess | Feb 2010 | A1 |
20100047099 | Miyazaki et al. | Feb 2010 | A1 |
20100127871 | Pontin | May 2010 | A1 |
20100210895 | Aboul-Hosn et al. | Aug 2010 | A1 |
20100268017 | Siess | Oct 2010 | A1 |
20100274330 | Burwell et al. | Oct 2010 | A1 |
20100286791 | Goldsmith | Nov 2010 | A1 |
20110071338 | McBride et al. | Mar 2011 | A1 |
20110076439 | Zeilon | Mar 2011 | A1 |
20110152906 | Escudero et al. | Jun 2011 | A1 |
20110152907 | Escudero et al. | Jun 2011 | A1 |
20110237863 | Ricci et al. | Sep 2011 | A1 |
20120004495 | Bolling et al. | Jan 2012 | A1 |
20120029265 | LaRose et al. | Feb 2012 | A1 |
20120059213 | Spence | Mar 2012 | A1 |
20120142994 | Toellner | Jun 2012 | A1 |
20120172654 | Bates | Jul 2012 | A1 |
20120172655 | Campbell | Jul 2012 | A1 |
20120172656 | Walters | Jul 2012 | A1 |
20120178985 | Walters | Jul 2012 | A1 |
20120178986 | Campbell et al. | Jul 2012 | A1 |
20120184803 | Simon et al. | Jul 2012 | A1 |
20120224970 | Schumacher et al. | Sep 2012 | A1 |
20120226097 | Smith et al. | Sep 2012 | A1 |
20120234411 | Scheckel | Sep 2012 | A1 |
20120245404 | Smith et al. | Sep 2012 | A1 |
20120265002 | Roehn et al. | Oct 2012 | A1 |
20130041202 | Toellner | Feb 2013 | A1 |
20130053622 | Corbett | Feb 2013 | A1 |
20130066140 | McBride et al. | Mar 2013 | A1 |
20130085318 | Toellner | Apr 2013 | A1 |
20130096364 | Reichenbach et al. | Apr 2013 | A1 |
20130103063 | Escudero et al. | Apr 2013 | A1 |
20130106212 | Nakazumi et al. | May 2013 | A1 |
20130129503 | McBride et al. | May 2013 | A1 |
20130138205 | Kushwaha et al. | May 2013 | A1 |
20130204362 | Toellner et al. | Aug 2013 | A1 |
20130209292 | Baykut et al. | Aug 2013 | A1 |
20130237744 | Pfeffer et al. | Sep 2013 | A1 |
20130245360 | Schumacher | Sep 2013 | A1 |
20130303969 | Keenan et al. | Nov 2013 | A1 |
20130303970 | Keenan et al. | Nov 2013 | A1 |
20130331639 | Campbell et al. | Dec 2013 | A1 |
20130345492 | Pfeffer et al. | Dec 2013 | A1 |
20140005467 | Farnan et al. | Jan 2014 | A1 |
20140010686 | Tanner et al. | Jan 2014 | A1 |
20140012065 | Fitzgerald et al. | Jan 2014 | A1 |
20140039465 | Schulz et al. | Feb 2014 | A1 |
20140067057 | Callaway et al. | Mar 2014 | A1 |
20140088455 | Christensen et al. | Mar 2014 | A1 |
20140148638 | LaRose et al. | May 2014 | A1 |
20140163664 | Goldsmith | Jun 2014 | A1 |
20140255176 | Bredenbreuker et al. | Sep 2014 | A1 |
20140275725 | Schenck et al. | Sep 2014 | A1 |
20140275726 | Zeng et al. | Sep 2014 | A1 |
20140301822 | Scheckel | Oct 2014 | A1 |
20140303596 | Schumacher et al. | Oct 2014 | A1 |
20150025558 | Wulfman et al. | Jan 2015 | A1 |
20150031936 | LaRose et al. | Jan 2015 | A1 |
20150051435 | Siess et al. | Feb 2015 | A1 |
20150051436 | Spanier et al. | Feb 2015 | A1 |
20150080743 | Siess | Mar 2015 | A1 |
20150087890 | Spanier et al. | Mar 2015 | A1 |
20150141738 | Toellner et al. | May 2015 | A1 |
20150141739 | Hsu et al. | May 2015 | A1 |
20150151032 | Voskoboynikov | Jun 2015 | A1 |
20150209498 | Franano et al. | Jul 2015 | A1 |
20150250935 | Anderson et al. | Sep 2015 | A1 |
20150290372 | Muller et al. | Oct 2015 | A1 |
20150343179 | Schumacher et al. | Dec 2015 | A1 |
20160184500 | Zeng | Jun 2016 | A1 |
20160250399 | Tiller et al. | Sep 2016 | A1 |
20160250400 | Schumacher et al. | Sep 2016 | A1 |
20160256620 | Scheckel et al. | Sep 2016 | A1 |
Number | Date | Country |
---|---|---|
2701810 | Apr 2009 | CA |
0 533 432 | Sep 1992 | EP |
1 207 934 | May 2002 | EP |
1 393 762 | Mar 2004 | EP |
1 591 079 | Nov 2005 | EP |
2 263 732 | Dec 2010 | EP |
2 298 374 | Mar 2011 | EP |
2267800 | Apr 1974 | FR |
2 239 675 | Jul 1991 | GB |
S48-23295 | Mar 1973 | JP |
06-114101 | Apr 1994 | JP |
10-099447 | Apr 1998 | JP |
500877 | Sep 2002 | TW |
WO 8905164 | Jun 1989 | WO |
WO 9526695 | Oct 1995 | WO |
WO 9715228 | May 1997 | WO |
WO 9737697 | Oct 1997 | WO |
WO 0012148 | Mar 2000 | WO |
WO 0019097 | Apr 2000 | WO |
WO 0043062 | Jul 2000 | WO |
WO 0061207 | Oct 2000 | WO |
WO 0069489 | Nov 2000 | WO |
WO 0117581 | Mar 2001 | WO |
WO 0124867 | Apr 2001 | WO |
WO 02070039 | Sep 2002 | WO |
WO 03103745 | Dec 2003 | WO |
WO 2005089674 | Sep 2005 | WO |
WO 2005123158 | Dec 2005 | WO |
WO 2009073037 | Jun 2009 | WO |
WO 2009076460 | Jun 2009 | WO |
WO 2010127871 | Nov 2010 | WO |
WO 2010133567 | Nov 2010 | WO |
WO 2010149393 | Dec 2010 | WO |
WO 2011035926 | Mar 2011 | WO |
WO 2011035929 | Mar 2011 | WO |
WO 2011039091 | Apr 2011 | WO |
WO 2011076439 | Jun 2011 | WO |
WO 2011089022 | Jul 2011 | WO |
WO 2012007140 | Jan 2012 | WO |
WO 2012007141 | Jan 2012 | WO |
WO 2013148697 | Oct 2013 | WO |
WO 2013160407 | Oct 2013 | WO |
WO 2014019274 | Feb 2014 | WO |
WO 2015063277 | May 2015 | WO |
Entry |
---|
Abiomed, “Impella 5.0 with the Impella Console, Circulatory Support System, Instructions for Use & Clinical Reference Manual,” Jun. 2010, in 122 pages. |
Abiomed—Recovering Hearts. Saving Lives., Impella 2.5 System, Instructions for Use, Jul. 2007, in 86 sheets. |
Aboul-Hosn et al., “The Hemopump: Clinical Results and Future Applications”, Assisted Circulation 4, 1995, in 14 pages. |
Barras et al., “Nitinol-Its Use in Vascular Surgery and Other Applications,” Eur. J. Vasc. Endovasc. Surg., 2000, pp. 564-569; vol. 19. |
Biscarini et al., “Enhanced Nitinol Properties for Biomedical Applications,” Recent Patents on Biomedical Engineering, 2008, pp. 180-196, vol. 1(3). |
Cardiovascular Diseases (CVDs) Fact Sheet No. 317; World Health Organization [Online], Sep. 2011. http://www.who.int/mediacentre/factsheets/fs317/en/index.html, accessed on Aug. 29, 2012. |
Compendium of Technical and Scientific Information for the HEMOPUMP Temporary Cardiac Assist System, Johnson & Johnson Interventional Systems, 1988, in 15 pages. |
Dekker et al., “Efficacy of a New lntraaortic Propeller Pump vs the lntraaortic Balloon Pump*, An Animal Study”, Chest, Jun. 2003, vol. 123, No. 6, pp. 2089-2095. |
Duerig et al., “An Overview of Nitinol Medical Applications,” Materials Science Engineering, 1999, pp. 149-160; vol. A273. |
European Search Report received in European Patent Application No. 05799883.3, dated May 10, 2011, in 4 pages. |
Extended European Search Report received in European Patent Application No. 07753903.9, dated Oct. 8, 2012, in 7 pages. |
Federal and Drug Administration 510(k) Summary for Predicate Device IMPELLA 2.5 (K112892), prepared Sep. 5, 2012. |
Grech, “Percutaneous Coronary Intervention. I: History and Development,” BMJ., May 17, 2003, pp. 1080-1082, vol. 326. |
Hsu et al., “Review of Recent Patents on Foldable Ventricular Assist Devices,” Recent Patents on Biomedical Engineering, 2012, pp. 208-222, vol. 5. |
Ide et al., “Evaluation of the Pulsatility of a New Pulsatile Left Ventricular Assist Device-the Integrated Cardioassist Catheter-in Dogs,” J. of Thorac and Cardiovasc Sur, Feb. 1994, pp. 569-0575, vol. 107(2). |
Ide et al., “Hemodynamic Evaluation of a New Left Ventricular Assist Device: An Integrated Cardioassist Catheter as a Pulsatile Left Ventricle-Femoral Artery Bypass,” Blackwell Scientific Publications, Inc., 1992, pp. 286-290, vol. 16(3). |
Impella CP®—Instructions for Use & Clinical Reference Manual (United States only), Abiomed, Inc., Jul. 2014, 148 pages, www.abiomed.com. |
Impella LD® with the Impella® Controller—Circulatory Support System—Instructions for Use & Clinical Reference Manual (United States only), Abiomed, Inc., Sep. 2010, 132 pages, www.abiomed.com. |
International Preliminary Examination Report received in International Patent Application No. PCT/US2003/04853, mailed on Jul. 26, 2004, in 5 pages. |
International Preliminary Examination Report received in International Patent Application No. PCT/US2003/04401, dated May 18, 2004, in 4 pages. |
International Preliminary Report on Patentability and Written Opinion of the International Searching Authority received in International Patent Application No. PCT/US2005/033416, mailed on Mar. 20, 2007, in 7 pages. |
International Preliminary Report on Patentability and Written Opinion of the International Searching Authority received in International Patent Application No. PCT/US2007/007313, mailed on Sep. 23, 2008, in 6 pages. |
International Preliminary Report on Patentability and Written Opinion received in International Patent Application No. PCT/US2014/020878, mailed Sep. 15, 2015, in 8 pages. |
International Search Report and Written Opinion received in International Patent Application No. PCT/US2005/033416, mailed on Dec. 11, 2006, in 8 pages. |
International Search Report and Written Opinion received in International Patent Application No. PCT/US2007/007313, mailed on Mar. 4, 2008, in 6 pages. |
International Search Report and Written Opinion received in International Patent Application No. PCT/US2012/020382, mailed on Jul. 31, 2012, in 11 pages. |
International Search Report and Written Opinion received in International Patent Application No. PCT/US2012/020369, mailed on Jul. 30, 2012, in 10 pages. |
International Search Report and Written Opinion received in International Patent Application No. PCT/US2012/020553, mailed on Aug. 17, 2012, in 8 pages. |
International Search Report and Written Opinion received in International Patent Application No. PCT/US2012/020383, mailed on Aug. 17, 2012; in 9 pages. |
International Search Report and Written Opinion received in International Patent Application No. PCT/US2013/040798, mailed Aug. 21, 2013, in 16 pages. |
International Search Report and Written Opinion received in International Patent Application No. PCT/US2013/040799, mailed Aug. 21, 2013, in 19 pages. |
International Search Report and Written Opinion received in International Patent Application No. PCT/US2013/040809, mailed Sep. 2, 2013, in 25 pages. |
International Search Report and Written Opinion received in International Patent Application No. PCT/US2013/048332, mailed Oct. 16, 2013, in 17 pages. |
International Search Report and Written Opinion received in International Patent Application No. PCT/US2013/048343, mailed Oct. 11, 2013, in 15 pages. |
International Search Report and Written Opinion received in International Patent Application No. PCT/US2014/020878, mailed May 7, 2014, in 13 pages. |
International Search Reort and Written Opinion received in International Patent Application No. PCT/US2015/026013, mailed Jul. 8, 2015, in 12 pages. |
International Search Report and Written Opinion received in International Patent Application No. PCT/US2015/026014, mailed Jul. 15, 2015, in 13 pages. |
International Search Report and Written Opinion received in International Patent Application No. PCT/US2015/026025, mailed Jul. 20, 2015, in 12 pages. |
International Search Report and Written Opinion received in International Patent Application No. PCT/US2015/025959, mailed Aug. 28, 2015, in 16 pages. |
International Search Report and Written Opinion received in International Patent Application No. PCT/US2015/025960, mailed Sep. 3, 2015, in 15 pages, |
International Search Report and Written Opinion received in International Patent Application No. PCT/US2015/045370, mailed Nov. 18, 2015, in 12 pages. |
International Search Report received in International Patent Application No. PCT/US2003/004401, mailed on Nov. 10, 2003, in 9 pages. |
International Search Report received in International Patent Application No. PCT/US2003/004853, mailed on Jul. 3, 2003, in 3 pages. |
International Search Report Written Opinion received in International Patent Application No. PCT/US2010/040847, mailed on Dec. 14, 2010, in 17 pages. |
JOMED Reitan Catheter Pump RCP, Percutaneous Circulatory Support, in 10 pages. |
JOMED Reitan Catheter Pump RCP, Feb. 18, 2003, in 4 pages. |
Kunst et al., “Integrated unit for programmable control of the 21F Hemopump and registration of physiological signals,” Medical & Biological Engineering & Computing, Nov. 1994, pp. 694-696. |
Krishnamani et al., “Emerging Ventricular Assist Devices for Long-Term Cardiac Support,” National Review, Cardiology, Feb. 2010, pp. 71-76, vol. 7. |
Mihaylov et al., “Development of a New Introduction Technique for the Pulsatile Catheter Pump,” Artificial Organs, 1997, pp. 425-427; vol. 21(5). |
Mihaylov et al., “Evaluation of the Optimal Driving Mode During Left Ventricular Assist with Pulsatile Catheter Pump in Calves,” Artificial Organs, 1999, pp. 1117-1122; vol. 23(12). |
Minimally Invasive Cardiac Assist JOMED Catheter PumpTM, in 6 pages. |
Morgan, “Medical Shape Memory Alloy Applications—The Market and its Products,” Materials Science and Engineering, 2004, pp. 16-23, vol. A 378. |
Morsink et al., “Numerical Modelling of Blood Flow Behaviour in the Valved Catheter of the PUCA-Pump, a LVAD,” The International Journal of Artificial Organs, 1997, pp. 277-284; vol. 20(5). |
Nishimura et al, “The Enabler Cannula Pump: A Novel Circulatory Support System,” The International Journal of Artificial Organs, 1999, pp. 317-323; vol. 22(5). |
Petrini et al., “Biomedical Applications of Shape Memory Alloys,” Journal of Metallurgy, 2011, pp. 1-15. |
Raess et al., “Impella 2.5,” J. Cardiovasc. Transl. Res., 2009, pp. 168-172, vol. 2(2). |
Rakhorst et al., “In Vitro Evaluation of the Influence of Pulsatile Intraventricular Pumping on Ventricular Pressure Patterns,” Artificial Organs, 1994, pp. 494-499, vol. 18(7). |
Reitan, Evaluation of a New Percutaneous Cardiac Assist Device, Department of Cardiology, Faculty of Medicine, Lund University, Sweden, 2002, in 172 pages. |
Reitan et al., “Hemodynamic Effects of a New Percutaneous Circulatory Support Device in a Left Ventricular Failure Model,” ASAIO Journal, 2003, pp. 731-736, vol. 49. |
Reitan et al., “Hydrodynamic Properties of a New Percutaneous Intra-Aortic Axial Flow Pump,” ASAIO Journal 2000, pp. 323-328. |
Rothman, “The Reitan Catheter Pump: A New Versatile Approach for Hemodynamic Support”, London Chest Hospital Barts & The London NHS Trust, Oct. 22-27, 2006 (TCT 2006: Transcatheter Cardiovascular Therapeutics 18th Annual Scientific Symposium, Final Program), in 48 pages. |
Schmitz-Rode et al., “An Expandable Percutaneous Catheter Pump for Left Ventricular Support,” Journal of the American College of Cardiology, 2005, pp. 1856-1861, vol. 45(11). |
Shabari et al., “Improved Hemodynamics with a Novel Miniaturized Intra-Aortic Axial Flow Pump in a Porcine Model of Acute Left Ventricular Dysfunction,” ASAIO Journal, 2013, pp. 240-245; vol. 59. |
Sharony et al, “Cardiopulmonary Support and Physiology—The Intra-Aortic Cannula Pump: A Novel Assist Device for the Acutely Failing Heart,” The Journal of Thoracic and Cardiovascular Surgery, Nov. 1992, pp. 924-929, vol. 118(5). |
Sharony et al., “Right Heart Support During Off-Pump Coronary Artery Surgery—A Multi-Center Study,” The Heart Surgery Forum, 2002, pp. 13-16, vol. 5(1). |
Sieβ et al., “Hydraulic refinement of an intraarterial microaxial blood pump”, The International Journal of Artificial Organs, 1995, vol. 18, No. 5, pp. 273-285. |
Sieβ, “Systemanalyse und Entwicklung intravasaler Rotationspumpen zur Herzunterstützung”, Helmholtz-Institut fur Blomedixinische Technik an der RWTH Aachen, Jun. 24, 1998, in 105 pages. |
Siess et al., “Basic design criteria for rotary blood pumps,” H. Masuda, Rotary Blood Pumps, Springer, Japan, 2000, pp. 69-83. |
Siess et al., “Concept, realization, and first in vitro testing of an intraarterial microaxial blood pump,” Artificial Organs, 1995, pp. 644-652, vol. 19, No. 7, Blackwell Science, Inc., Boston, International Society for Artificial Organs. |
Siess et al., “From a lab type to a product: A retrospective view on Impella's assist technology,” Artificial Organs, 2001, pp. 414-421, vol. 25, No. 5, Blackwell Science, Inc., International Society for Artificial Organs. |
Siess et al., “System analysis and development of intravascular rotation pumps for cardiac assist,” Dissertation, Shaker Verlag, Aachen, 1999, 39 pages. |
Smith et al., “First-In-Man Study of the Reitan Catheter Pump for Circulatory Support in Patients Undergoing High-Risk Percutaneous Coronary Intervention,” Catheterization and Cardiovascular Interventions, 2009, pp. 859-865, vol. 73(7). |
Sokolowski et al., “Medical Applications of Shape Memory Polymers,” Biomed. Mater. 2007, pp. S23-S27, vol. 2. |
“Statistical Analysis and Clinical Experience with the Recover® Pump Systems”, Impella CardioSystems GmbH, 2 sheets. |
Stoeckel et al., “Self-Expanding Nitinol Stents—Material and Design Considerations,” European Radiology, 2003, in 13 sheets. |
Stolinski et al., “The heart-pump interaction: effects of a microaxial blood pump,” International Journal of Artificial Organs, 2002, pp. 1082-1088, vol. 25, Issue 11. |
Supplemental European Search Report received from the European Patent Office in EP Application No. EP 05799883 dated Mar. 19, 2010, 3 pages (033VEP). |
Takagaki et al., “A Novel Miniature Ventricular Assist Device for Hemodynamic Support,” ASAIO Journal, 2001, pp. 412-416; vol. 47. |
Throckmorton et al., “Flexible Impeller Blades in an Axial Flow Pump for Intravascular Cavopulmonary Assistance of the Fontan Physiology,” Cardiovascular Engineering and Technology, Dec. 2010, pp. 244-255, vol. 1(4). |
Throckmorton et al., “Uniquely shaped cardiovascular stents enhance the pressure generation of intravascular blood pumps,” The Journal of Thoracic and Cardiovascular Surgery, Sep. 2012, pp. 704-709, vol. 133, No. 3. |
Verkerke et al., “Numerical Simulation of the PUCA Pump, A Left Ventricular Assist Device,” Abstracts of the XIXth ESAO Congress, The International Journal of Artificial Organs, 1992, p. 543, vol. 15(9). |
Verkerke et al., “Numerical Simulation of the Pulsating Catheter Pump: A Left Ventricular Assist Device,” Artificial Organs, 1999, pp. 924-931, vol. 23(10). |
Verkerke et al., “The PUCA Pump: A Left Ventricular Assist Device,” Artificial Organs, 1993, pp. 365-368, vol. 17(5). |
Wampler et al., “The Sternotomy Hemopump, A Second Generation Intraarterial Ventricular Assist Device,” ASAIO Journal, 1993, pp. M218-M223, vol. 39. |
Weber et al., “Principles of Impella Cardiac Support,” Supplemental to Cardiac Interventions Today, Aug./Sep. 2009. |
Written Opinion received in International Patent Application No. PCT/US2003/04853, dated Feb. 25, 2004, 5 pages. |
Extended European Search Report received in European Patent Application No. 14779928.2, dated Oct. 7, 2016, in 6 pages. |
Extended European Search Report received in European Patent Application No. 14764392.8, dated Oct. 27, 2016, in 7 pages. |
Extended European Search Report received in European Patent Application No. 13813687.4, dated Feb. 24, 2016, in 6 pages. |
Extended European Search Report received in European Patent Application No. 13813867.2, dated Feb. 26, 2016, in 6 pages. |
International Search Report and Written Opinion received in International Patent Application No. PCT/US2016/014371, mailed May 2, 2016, in 18 pages. |
International Search Report and Written Opinion received in International Patent Application No. PCT/US2016/014379, mailed Jul. 25, 2016, in 19 pages. |
International Search Report and Written Opinion received in International Patent Application No. PCT/US2016/014391, mailed May 2, 2016, in 17 pages. |
Nullity Action against the owner of the German part DE 50 2007 005 015.6 of European patent EP 2 047 872 B1, dated Jul. 13, 2015, in 61 pages. |
Third Party Submission filed in U.S. Appl. No. 15/623,575 dated Dec. 15, 2017, 14 pages. |
Number | Date | Country | |
---|---|---|---|
20160082167 A1 | Mar 2016 | US |
Number | Date | Country | |
---|---|---|---|
61430537 | Jan 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13345597 | Jan 2012 | US |
Child | 14858354 | US |