The present exemplary system and method relates to medical devices. More particularly, the present exemplary system and method relates to percutaneous orthopedic rod placement devices.
The use of bone stabilization/fixation devices to align or position bones is well established. Furthermore, the use of spinal bone stabilization/fixation devices to align or position specific vertebrae or a region of the spine is well established. Typically such devices for the spine utilize a spinal fixation element, comprised of a relatively rigid member such as a plate, a board, or a rod that is used as a coupler between adjacent vertebrae. Such a spinal fixation element can effect a rigid positioning of adjacent vertebrae when attached to the pedicle portion of the vertebrae using pedicle bone anchorage screws. Once the coupled vertebrae are spatially fixed in position, procedures can be performed, healing can proceed, or spinal fusion may take place.
Spinal fixation elements may be introduced to stabilize the various vertebrae of the spine. Some devices for this purpose are designed to be attached directly to the spine, but the generally invasive nature of standard paraspinal approach used to implant these devices may pose drawbacks. For example, muscle disruption and blood loss may result from standard paraspinal implantation approaches.
Conventional pedicle screw systems and even more recently designed pedicle screw systems also have several drawbacks. Some of these pedicle screw systems are rather large and bulky, which may result in more tissue damage in and around the surgical site when the pedicle screw system is installed during surgery. The prior art pedicle screw systems have a rod-receiving device that is pre-operatively coupled or attached to the pedicle screw. In addition, some of the prior art pedicle screw systems include numerous components that must all be carefully assembled together. Further, traditional pedicle screw systems are pre-operatively assembled, which makes these systems more difficult to install and maneuver in a spinal operation where MIS techniques are used.
In one of many possible embodiments, the present exemplary system provides a connection member for coupling to one or more pedicle screws including a tulip member having a screw head securing orifice defined by a wall member terminating in a seating member, a set screw member coupled to a surface of the wall member, a rod coupled to the wall member, and a pedicle screw head receiving orifice formed in the wall member, wherein the pedicle screw head receiving orifice is formed transverse to and intersects the screw head securing orifice.
Another exemplary embodiment provides a pedicle screw system including a pedicle screw, a tulip assembly, and a connector rod. According to this exemplary embodiment, the tulip assembly includes an outer tulip, a split ring and a saddle disposed in the outer tulip, and a set screw. Further, the connector rod includes a rod and a removable ball end disposed on one end of the connector rod. According to this exemplary embodiment, the tulip assembly and the rod may be percutaneously inserted into a patient. Further, the rod may be subcutaneously rotated to align with a plurality of pedicle screw assemblies.
Another embodiment of the present exemplary system and method provides a method for coupling a connection member to a pedicle screw including inserting a head of a pedicle screw through a first orifice in the connection member along a first line of motion, orienting the connection member with respect to the pedicle screw such that the screw shaft is oriented perpendicular to the first line of motion, seating the screw head in the connection member, and securing the position of the pedicle screw in the connection member.
The accompanying drawings illustrate various embodiments of the present system and method and are a part of the specification. The illustrated embodiments are merely examples of the present system and method and do not limit the scope thereof.
In the drawings, identical reference numbers identify similar elements or acts. The sizes and relative positions of elements in the drawings are not necessarily drawn to scale. For example, the shapes of various elements and angles are not drawn to scale, and some of these elements are arbitrarily enlarged and positioned to improve drawing legibility. Further, the particular shapes of the elements as drawn, are not intended to convey any information regarding the actual shape of the particular elements, and have been solely selected for ease of recognition in the drawings. Throughout the drawings, identical reference numbers designate similar but not necessarily identical elements.
The present specification provides a number of exemplary connection members and methods that can be used for any number of orthopedic rod placement systems. According to the present exemplary system and method, pecutaneous screw placement is facilitated. Specifically, the present exemplary systems and methods provide for the percutaneous placement of pedicle screws, followed by easy placement of the rod and one or more tulips simultaneously via a percutaneous tube. As will be described in further detail below, the present exemplary connection member may be percutaneously inserted either rod first, or tulip first. Furthermore, due to the fixed connection between the rod and the tulip of one exemplary system configuration, the profile and volume of the present exemplary system are reduced, when compared to traditional systems.
By way of example, pedicle screw systems may be fixed in the spine in a posterior lumbar fusion process via minimally invasive surgery (MIS) techniques. The systems are inserted into the pedicles of the spine and then interconnected with rods to manipulate (e.g., correct the curvature, compress or expand, and/or structurally reinforce) at least portions of the spine. Using the MIS approach to spinal fixation and/or correction surgery has been shown to decrease a patient's recovery time and reduce the risks of follow-up surgeries.
Traditional percutaneous fixation techniques are really only percutaneous in name. That is, they still require significant paraspinous tissue damage in order to fixedly couple a connector rod between two or more tulips. This is due in part to the implants that are available to the surgeon. The present exemplary system and method allows a surgeon to place spinal screws and rods via a true percutaneous approach by providing for pivoting of the rod beneath the skin in a fascial plane, lateral to the multifidous.
The ability to efficiently perform spinal fixation and/or correction surgeries using MIS techniques is enhanced by the use of pedicle screw systems provided in accordance with the present exemplary systems and methods, which systems and methods provide a number of advantages over conventional systems. For example, a pedicle screw system in accordance with one embodiment of the present exemplary system and method provides the advantage that the pedicle screw may be inserted into the bone without being pre-operatively coupled with the rod-coupling assembly (hereinafter referred to as a tulip assembly). This is advantageous because the surgeon often needs to do other inter-body work after inserting the pedicle screw, but before attaching the larger and bulkier tulip assembly. Such an advantageous pedicle screw system may be even more crucial when using MIS techniques because the inter-body spatial boundaries in which the surgeon must work may be quite limited.
The term “distraction,” when used herein and when used in a medical sense, generally relates to joint surfaces and suggests that the joint surfaces move perpendicular to one another. However when “traction” and/or “distraction” is performed, for example on spinal sections, the spinal sections may move relative to one another through a combination of distraction and gliding, and/or other degrees of freedom.
In the following description, certain specific details are set forth in order to provide a thorough understanding of various embodiments of the present percutaneous pedicle screw system. However, one skilled in the relevant art will recognize that the present exemplary system and method may be practiced without one or more of these specific details, or with other methods, components, materials, etc. In other instances, well-known structures associated with pedicle screws have not been shown or described in detail to avoid unnecessarily obscuring descriptions of the embodiments of the systems and methods.
Unless the context requires otherwise, throughout the specification and claims which follow, the word “comprise” and variations thereof, such as, “comprises” and “comprising” are to be construed in an open, inclusive sense, that is as “including, but not limited to.”
Reference in the specification to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment. The appearance of the phrase “in one embodiment” in various places in the specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments.
Exemplary Structure
In one exemplary embodiment, the pedicle screw (110) is cannulated, which means a channel (not shown) extends axially through the pedicle screw (12)) extends through the entire length of the pedicle screw (110). The channel (not shown) allows the pedicle screw (110) to be maneuvered over and receive a Kirschner wire, commonly referred to as a K-wire. The K-wire is typically pre-positioned using imaging techniques, for example, fluoroscopy imaging, and then used to provide precise placement of the pedicle screw (110). While the pedicle screw (110) illustrated in
In addition to the exemplary pedicle screw (110), the exemplary percutaneous pedicle screw system (100) includes a tulip assembly (160) that may be coupled to the head portion (115) of the pedicle screw (110) after the pedicle screw has been percutaneously inserted into a desired pedicle, while allowing for an orientation of a connector rod (180) beneath a patient's skin. As illustrated in
As shown, the tulip housing (140) includes an inner bore (142) that extends concentrically along the axis of the cylindrically shaped tulip housing. As shown, a split ring (120) and a saddle (130) are disposed in the lower portion of the tulip housing (140). According to one exemplary embodiment, the positioning of the split ring (120) and the saddle (130) in the lower portion of the tulip housing (140), in connection with the profile of the inner bore (142) allows the tulip assembly (160) to be snapped onto the head portion (115) of a pedicle screw (110) after the pedicle screw has been secured to a bony feature, as is described in detail in U.S. patent application Ser. No. 11/327,132 filed on Jan. 6, 2006, titled “Bone Fixation System and Method for Using the Same,” which reference is incorporated herein by reference, in its entirety. According to one exemplary embodiment, the tulip housing (140) includes a ring expansion channel and a tapered retention bore formed in the inner bore (142) configured to interact with the split ring fastener (120) during reception and fixation of the head portion (115) of the pedicle screw (110). According to one exemplary embodiment, the ring expansion channel (not shown) has a maximum diameter sufficiently large to receive the split ring fastener (120) and accommodate expansion of the split ring fastener as it receives the head portion (115) of the pedicle screw (110). Moreover, the saddle (130) may interact with the top portion of the head (115) to positional secure the head portion of the pedicle screw (110) there between. Additionally, a tapered retention bore may be formed in the expansion channel. The as detailed in the incorporated application, the tapered retention bore is configured to interact with a seating taper of the split ring fastener (120). According to one exemplary embodiment, the tulip assembly (160) may be positionally fixed relative to the pedicle screw (110), at least partially, by forcing the split ring fastener (120) along the tapered retention bore (not shown). According to one exemplary embodiment, interaction between the tapered retention bore and the seating taper constricts the split ring fastener (120) about the head portion (115) of the pedicle screw (110), positionally fixing the tulip assembly (160) relative to the pedicle screw.
Turning to the structure of the tulip housing (140), the tulip housing defines an inner bore (142) and a rod cut out (145) formed in the side of the tulip housing. According to one exemplary embodiment, the inner bore (142) may have a number of features and operational surface variations formed therein. For example, as mentioned above, the lower portion of the inner bore (142) may include a number of varying diameters to house the split ring (120) and saddle (130) members and allow their operational translations and expansions. Additionally, according to the exemplary embodiment illustrated in
As mentioned, a ball end (170) may be disposed within the inner bore (142) of the tulip housing (140). According to one exemplary embodiment, the ball end (170) includes a center bore (172) and an expansion split (174) formed in the side wall thereof. According to one exemplary embodiment, the center bore (172) has a diameter substantially equal to or slightly smaller than the outer diameter of the connector rod (180). According to this exemplary embodiment, when the rod is inserted into the center bore (172) of the ball end (170), the ball end may expand, due to the expansion split (174), and compressibly couple the connector rod (180). Additionally, corresponding features on the end of the connector rod (180) and the split ball end (170), such as apposing tapers, single or multiple radial grooves, threading or any other features may also be used to maintain the connector rod and the ball end engaged. According to one exemplary embodiment, the ball end (170) is configured to be coupled to the connector rod (180) as described above and facilitate rotation of the connector rod within the inner bore (142) of the tulip housing (140).
Further, the set screw (150) is configured to matingly engage the internal threads formed on the inner bore (142) to compress the ball end (170) and the connector rod (180) when they are in a desired position. This will positionally secure the connector rod relative to the tulip assembly (160). Additionally, as will be described in further detail below, advancement of the set screw (150) in the inner bore (142) will impart a compressive force through the ball end (170) to the saddle (130). Consequently, the saddle (130) will further seat the split ring (120) within the tapered retention bore, either by directly forcing the split ring into the tapered bore via contact or indirectly forcing the split ring into the tapered bore by forcing the head of the pedicle screw downward, further coupling the tulip assembly (160) on the head (115) of the pedicle screw (110).
As mentioned, the alternative percutaneous pedicle screw structure (200) includes the rod (280) securely coupled to the side wall of the tulip housing (240) by a rod coupling feature (270). According to one exemplary embodiment, the alternative percutaneous pedicle screw system (200), the rod (280) may be securely coupled to the tulip housing (240) because the side head reception orifice (210) is leveraged to eliminate a need for rotation of the rod (280) independent of the tulip housing (240), as will be described in detail below. According to one exemplary embodiment, the rod (280) may be coupled to the side wall of the tulip housing (240) using any number of joining methods known in the art including, but in no way limited to, welding, brazing, or the use of adhesives. Alternatively, the rod coupling feature (270) may include any number of mechanical joining features including, but in no way limited to, a threaded engagement feature or an interference press fit feature.
As best seen in
Continuing with
According to one exemplary embodiment, when the head portion (115) of a pedicle screw (110) is received, via the head reception orifice (210), and the percutaneous pedicle screw system (200) has been properly positioned, the set screw (250) may be advanced along the thru-bore to positionally secure the exemplary percutaneous pedicle screw system. Specifically, when advanced along the thru-bore (310), the set screw (250) will force the head portion (115) of the pedicle screw (110) to seat in the seating taper (225) of the bottom orifice (220). According to this exemplary embodiment, forcing the head portion (115) of the pedicle screw (110) into the seating taper (225) will positionally secure the tulip housing (240) and the rod (280) relative to the pedicle screw. Additionally, by advancing the set screw (250) sufficiently along the thru-bore (310), the head reception orifice (210) will be reduced to prevent the head portion (115) of the pedicle screw (110) from exiting the tulip housing (240). According to one exemplary embodiment, the set screw (250) may include a concave surface on the underside thereof configured to matingly receive the head portion (115) of the pedicle screw (110) when engaged.
Both of the illustrated percutaneous pedicle screw systems (100, 200) are configured to provide elegant solutions to maintaining polyaxial movement in the orthopedic rod placement system. Additionally, both exemplary systems may be used to perform a truly percutaneous rod placement according to MIS insertion methods, as will be described in detail below.
Exemplary Method and Operation
While the exemplary percutaneous pedicle screw systems (100, 200) described above may be used in traditional orthopedic applications, the current exemplary methods and operations will be described, for ease of explanation only, in the context of percutaneous rod placement methods using MIS techniques. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the present exemplary systems and methods.
As mentioned above, the exemplary method begins by first incising a patient and placing a K-wire into a desired pedicle (step 400).
With the K-wire in place, a pedicle screw is placed in the desire pedicle using the K-wire as a guide (step 405;
As illustrated in
Returning again to the exemplary method of
With one or more percutaneous tubes in place (530), a percutaneous pedicle screw tulip and connector rod may then be passed down the percutaneous tube and the tulip may be snapped onto a first pedicle screw head (step 420). According to the exemplary embodiment illustrated in
With the connector rod (180) inserted into the tulip assembly (160) and coupled to the pedicle screw (110), the connector rod may then be rocked over onto the head of an adjacent tulip through slots in the percutaneous tubes along the fascial plane lateral to the multifidus (step 325).
When the rod is secured in an adjacent tulip, the percutaneous tubes may be removed (step 425) and the wounds treated.
The method illustrated in
In contrast to the first percutaneous pedicle screw system (100;
Once the second tulip assembly is engaged, the set screw (250) is tightened to secure the assembly (step 630). As mentioned previously and as shown in
The set screw (250) is then advanced down the thru-bore (310;
The above-mentioned insertion methods allow for the insertion and fixation of the screw assemblies subcutaneously, due to the short rod requirement of a one level coupling. Particularly, when coupling only two vertebra, the rod used is sufficiently short to allow for the assembly to be inserted tulip first, followed by the rod being rocked over, subcutaneously. However, 2 or 3 level procedures that couple more than 2 vertebra incorporate rods having greater lengths. Consequently,
As illustrated in
Either as the system is being placed into a substantially horizontal position, or thereafter, the rod (280) can be inserted into one or more previously placed tulip assemblies (step 1120). The tulip assembly may then be coupled to the head portion (115) of the pedicle screw (110) by pulling the percutaneous pedicle screw system (200) back towards the head portion of the screw, passing the screw head through the side orifice in the tulip (step 1130).
In conclusion, the present exemplary percutaneous pedicle screw systems and methods provide a number of exemplary connection members and methods that can be used for pecutaneous screw placement. Specifically, the present exemplary systems and methods provide for the percutaneous placement of pedicle screws, followed by easy placement of the rod and one or more tulips simultaneously via a percutaneous tube. Specifically, the present exemplary system and method allows a surgeon to place spinal screws and rods via a true percutaneous approach by providing for pivoting of the rod beneath the skin in a fascial plane, lateral to the multifidous. Using the disclosed MIS approach to spinal fixation and/or correction surgery will effectively decrease a patient's recovery time and reduce the risks of follow-up surgeries.
It will be understood that various modifications may be made without departing from the spirit and scope of the present exemplary systems and methods. For example, while the exemplary implementations have been described and shown using screws to anchor into bony structures, the scope of the present exemplary system and methods is not so limited. Any means of anchoring can be used, such as a cam, screw, staple, nail, pin, or hook.
The preceding description has been presented only to illustrate and describe embodiments of invention. It is not intended to be exhaustive or to limit the invention to any precise form disclosed. Many modifications and variations are possible in light of the above teaching. It is intended that the scope of the invention be defined by the following claims.
This application claims the benefit under 35 U.S.C. § 119(e) of U.S. Provisional Patent Application No. 60/665,032 filed Mar. 23, 2005, titled “Percutaneous Pedicle Screw System,” and U.S. Provisional Patent Application No. 60/741,653 filed Dec. 2, 2005, titled “Open End Percutaneous Screw Assembly.” The provisional applications are incorporated herein by reference in their entireties.
Number | Date | Country | |
---|---|---|---|
60665032 | Mar 2005 | US | |
60741653 | Dec 2005 | US |