Percutaneous spinal implants and methods

Information

  • Patent Grant
  • 7988709
  • Patent Number
    7,988,709
  • Date Filed
    Friday, February 17, 2006
    18 years ago
  • Date Issued
    Tuesday, August 2, 2011
    13 years ago
Abstract
Spinal implants and methods for the placement thereof are disclosed herein. In one variation, the implant includes a support member, a proximal retention member, and a distal retention member. The support member is configured to be disposed between adjacent spinous processes. The proximal retention member has a first configuration in which the proximal retention member is substantially disposed within a proximal portion of the support member, and a second configuration in which a portion of the proximal retention member is disposed outside of the support member. The distal retention member has a first configuration in which the distal retention member is substantially disposed within a distal portion of the support member, and a second configuration in which a portion of the distal retention member is disposed outside of the support member.
Description
BACKGROUND

The invention relates generally to percutaneous spinal implants, and more particularly, to percutaneous spinal implants for implantation, for example, between adjacent spinous processes.


Spinal stenosis is a back condition that impacts many individuals. Spinal stenosis is a progressive narrowing of the spinal canal that causes compression of the spinal cord. Each vertebra in the spinal column has an opening that extends through it. The openings are aligned vertically to form the spinal canal. The spinal cord runs through the spinal canal. As the spinal canal narrows, the spinal cord and nerve roots extending from the spinal cord and between adjacent vertebrae are compressed and can become inflamed. Spinal stenosis can cause pain, weakness, numbness, burning sensations, tingling, and in particularly severe cases, may cause loss of bladder or bowel function, or paralysis. The legs, calves and buttocks are most commonly affected by spinal stenosis, however, the shoulders and arms may also be affected.


Mild cases of spinal stenosis may be treated with rest or restricted activity, non-steroidal anti-inflammatory drugs (e.g., aspirin), corticosteroid injections (epidural steroids), and/or physical therapy. Some patients find that bending forward, sitting or lying down may help relieve the pain. In such instances, the pain relief may result from the action of bending forward, which may create more vertebral space in some instances, thereby temporarily relieving nerve compression. Because spinal stenosis is a progressive disease, surgery (i.e., decompressive laminectomy) may eventually be required to address the source of pressure causing the pain. Such known surgical procedures can involve removing bone and other tissues that have impinged upon the spinal canal and/or put pressure on the spinal cord. In some procedures, two adjacent vertebrae may also be fused to prevent an area of instability, improper alignment or slippage, such as that caused by spondylolisthesis. Surgical decompression can relieve pressure on the spinal cord or spinal nerve by widening the spinal canal to create more space. This procedure requires that the patient be given a general anesthesia as an incision is made in the patient to access the spine to remove the areas that are contributing to the pressure. Drawbacks of this procedure include the potential for blood loss, an increased chance of significant complications, and extended hospital stays.


Minimally-invasive procedures have been developed to provide access to the space between adjacent spinous processes such that major surgery of the type described above is not required. Such known procedures, however, may not be suitable in conditions where the spinous processes are severely compressed. Moreover, such known procedures may not allow various surgical implants to be repositioned or removed from the patient without requiring large or multiple incisions.


Thus, a need exists for improvements in the treatment of spinal conditions such as spinal stenosis.


SUMMARY

Apparatuses and methods for performing minimally-invasive medical procedures are described herein. In one embodiment, for example, an apparatus includes a support member, a proximal retention member, and a distal retention member. The support member is configured to be disposed between adjacent spinous processes. The proximal retention member has a first configuration in which the proximal retention member is substantially disposed within a proximal portion of the support member, and a second configuration in which a portion of the proximal retention member is disposed outside of the support member. The distal retention member has a first configuration in which the distal retention member is substantially disposed within a distal portion of the support member, and a second configuration in which a portion of the distal retention member is disposed outside of the support member.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1A is a schematic illustration of a posterior view of a medical device according to an embodiment of the invention in a first configuration disposed between two adjacent spinous processes.



FIG. 1B is a schematic illustration of a posterior view of a medical device according to an embodiment of the invention in a second configuration disposed between two adjacent spinous processes.



FIGS. 2A and 2B are perspective views of a medical device according to an embodiment of the invention in a first configuration and a second configuration, respectively.



FIG. 3 is a posterior view of the medical device illustrated in FIGS. 2A and 2B disposed between adjacent spinous processes in a second configuration.



FIG. 4 is a lateral view taken from a proximal perspective A-A of the medical device illustrated in FIG. 3 disposed between adjacent spinous processes in a second configuration.



FIG. 5 is a cross-sectional front view of the medical device illustrated in FIGS. 2A and 2B in a second configuration.



FIG. 6 is a cross-sectional plan view taken along section A-A of the medical device illustrated in FIGS. 2A and 2B in a second configuration.



FIG. 7 is a cross-sectional front view of a medical device according to an embodiment of the invention in a second configuration.



FIGS. 8A and 8B are cross-sectional plan views taken along section A-A of the medical device illustrated in FIG. 7 in a second configuration and a first configuration, respectively.



FIG. 9 is a cross-sectional front view of a medical device according to an embodiment of the invention in a second configuration.



FIGS. 10A through 10C are cross-sectional plan views taken along section A-A of the medical device illustrated in FIG. 9 in a second configuration, a first configuration, and a third configuration respectively.



FIGS. 11A and 11B are cross-sectional front views of a medical device according to an embodiment of the invention in a second configuration and a first configuration, respectively.



FIG. 12 is a cross-sectional front view of a medical device according to an embodiment of the invention in a second configuration.



FIG. 13 is a cross-sectional plan view taken along section A-A of the medical device illustrated in FIG. 12 in a second configuration.



FIGS. 14A and 14B are perspective views of a medical device according to an embodiment of the invention in a second configuration and a first configuration, respectively.



FIGS. 15A and 15B are lateral views of a medical device according to an embodiment of the invention in a first configuration and a second configuration, respectively.



FIGS. 16A and 16B are perspective views of the medical device illustrated in FIGS. 15A and 15B in a first configuration and a second configuration, respectively.



FIG. 17 is a cross-sectional plan view of the medical device illustrated in FIGS. 15A and 15B in a second configuration.





DETAILED DESCRIPTION

In one variation, the apparatus includes a support member, a proximal retention member, and a distal retention member. The support member is configured to be disposed between adjacent spinous processes. The proximal retention member has a first configuration in which the proximal retention member is substantially disposed within a proximal portion of the support member and a second configuration in which a portion of the proximal retention member is disposed outside of the support member. The distal retention member has a first configuration in which the distal retention member is substantially disposed within a distal portion of the support member and a second configuration in which a portion of the distal retention member is disposed outside of the support member.


In some embodiments, each of the proximal retention member and the distal retention member includes a first elongate member and a second elongate member. The second elongate member is configured to be slidably disposed within the first elongate member. The support member includes a side wall defining a multiple openings, each opening being configured to receive a portion of at least one of the first elongate member or the second elongate member therethrough.


In some embodiments, each of the proximal retention member and the distal retention member includes an elongate member having a longitudinal axis and a rotating member having a longitudinal axis normal to the longitudinal axis of the elongate member. A portion of the elongate member is flexible in a direction normal to its longitudinal axis. The rotating member is coupled to the elongate member and configured to rotate about its longitudinal axis, thereby moving the elongate member along its longitudinal axis.


In some embodiments, a method includes percutaneously inserting into a body a support member configured to be disposed between adjacent spinous processes. The support member defines an inner area and an opening substantially normal to the longitudinal axis that connects the inner area and an area outside the support member. The support member includes a retention member having a first configuration in which the retention member is substantially disposed within the inner area, and a second configuration in which a portion of the retention member is disposed through the opening to the area outside the support member. The support member is disposed to a location between the adjacent spinous processes when retention member is in the first configuration. The retention member is moved from the first configuration to the second configuration.


Although specific portions of the apparatus, such as one or more retention members, are configured to move between a first, a second configuration and/or a third configuration, for ease of reference, the entire apparatus may be referred to as being in a first configuration, a second configuration and/or a third configuration. However, one of ordinary skill in the art having he benefit of this disclosure would appreciate that the apparatus may be configured to include four or more configurations. Additionally, in some embodiments, the apparatus can be in many positions during the movement between the first, second and/or third configurations. For ease of reference, the apparatus is referred to as being in either a first configuration, a second configuration or a third configuration. Finally, in some embodiments, although an apparatus includes one or more retention members, the figures and accompanying description may show and describe only a single retention member. In such instances, it should be understood that the description of a single retention member applies to some or all other retention members that may be included in the embodiment.


As used in this specification and the appended claims, the singular forms “a,” “an” and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, the term “a member” is intended to mean a single member or a combination of members, “a material” is intended to mean one or more materials, or a combination thereof. Furthermore, the words “proximal” and “distal” refer to direction closer to and away from, respectively, an operator (e.g., surgeon, physician, nurse, technician, etc.) who would insert the medical device into the patient, with the tip-end (i.e., distal end) of the device inserted inside a patient's body first. Thus, for example, the implant end first inserted inside the patient's body would be the distal end of the implant, while the implant end to last enter the patient's body would be the proximal end of the implant.



FIGS. 1A and 1B are schematic illustrations of a posterior view of a medical device 3000 according to an embodiment of the invention disposed between two adjacent spinous processes S in a first configuration and a second configuration, respectively. The medical device 3000 includes a support member 3002, a proximal retention member 3010 and a distal retention member 3012. The support member 3002 has a proximal portion 3004 and a distal portion 3006, and is configured to be disposed between the spinous processes S to prevent over-extension/compression of the spinous processes S. In some embodiments, the support member 3002 distracts the adjacent spinous processes S. In other embodiments, the support member 3002 does not distract the adjacent spinous processes S.


The proximal retention member 3010 has a first configuration in which it is substantially disposed within the proximal portion 3004 of the support member 3002, as illustrated in FIG. 1A. Similarly, the distal retention member 3012 has a first configuration in which it is substantially disposed within the distal portion 3006 of the support member 3002. When the proximal retention member 3010 and the distal retention member 3012 are each in their respective first configuration, the medical device 3000 can be inserted between the adjacent spinous processes S.


The proximal retention member 3010 can be moved from the first configuration to a second configuration in which a portion of it is disposed outside of the support member 3002, as illustrated in FIG. 1B. Similarly, the distal retention member 3012 can be moved from the first configuration to a second configuration. When each is in their respective second configuration, the proximal retention member 3010 and the distal retention member 3012 limit lateral movement of the support member 3002 with respect to the spinous processes S by contacting the spinous processes S (i.e., either directly or through surrounding tissue). For purposes of clarity, the tissue surrounding the spinous processes S is not illustrated.


In use, the adjacent spinous processes S can be distracted prior to inserting the medical device 3000 into the patient. Distraction of spinous processes is disclosed, for example, in U.S. application Ser. No. 11/059,526, incorporated herein by reference in its entirety. When the spinous processes S are distracted, a trocar (not shown in FIGS. 1A or 1B) can be used to define an access passageway (not shown in FIGS. 1A and 1B) for the medical device 3000. In some embodiments, the trocar can be used to define the passage as well as to distract the spinous processes S.


Once an access passageway is defined, the medical device 3000 is inserted percutaneously and advanced, distal portion 3006 first, between the spinous processes S. The medical device 3000 can be inserted from the side of the spinous processes S (i.e., a posterior-lateral approach). The use of a curved shaft assists in the use of a lateral approach to the spinous processes S. Once the medical device 3000 is in place between the spinous processes S, the proximal retention member 3010 and the distal retention member 3012 are moved to their second configurations, either serially or simultaneously. In this manner, lateral movement of the support member 3002 with respect to the spinous processes S is limited.


When it is desirable to change the position of the medical device 3000, the proximal retention member 3010 and the distal retention member 3012 are moved back to their first configurations, thereby allowing the support member 3002 to be moved laterally. Once the support member 3002 is repositioned, the medical device 3000 can be returned to the second configuration. Similarly, when it is desirable to remove the medical device 3000, proximal retention member 3010 and the distal retention member 3012 are moved to their first configurations, thereby allowing the support member 3002 to be removed.


In some embodiments, the medical device 3000 is inserted percutaneously (i.e., through an opening in the skin) and in a minimally-invasive manner. For example, as discussed in detail herein, the overall sizes of portions of the medical device 3000 can be increased by moving the proximal retention member 3010 and the distal retention member 3012 to their respective second configurations after the medical device 3000 is inserted between the adjacent spinous processes S. When in the expanded second configuration, the sizes of portions of the medical device 3000 can be greater than the size of the opening. For example, the size of the opening/incision in the skin can be between 3 millimeters in length and 25 millimeters in length across the opening. In some embodiments, the size of the medical device 3000 in the expanded second configuration is between 3 and 25 millimeters across the opening.



FIGS. 2A, 2B, 3-6 illustrate a spinal implant 3100 according to an embodiment of the invention. FIGS. 2A and 2B are perspective views of the spinal implant 3100 in a first configuration and a second configuration, respectively. The spinal implant 3100 includes a support member 3102, a proximal retention member 3110 and a distal retention member 3112. The support member 3102 is positioned between adjacent spinous processes S, as illustrated in FIGS. 3 and 4. As shown in FIGS. 2A and 2B, the proximal retention member 3110 and the distal retention member 3112 are each repeatably positionable in a first configuration in which they are substantially disposed within the support member 3102 (FIG. 2A), and a second configuration in which a portion of each retention member 3110, 3112 is disposed outside of the support member 3102 (FIG. 2B). When the spinal implant 3100 is in the first configuration, it can be inserted between the adjacent spinous processes S, repositioned between the adjacent spinous processes and/or removed from the patient. When the spinal implant 3100 is in the second configuration, its lateral movement is limited, thereby allowing the desired position of the support member 3102 to be maintained.


In some embodiments, the support member 3102 distracts the adjacent spinous processes S. In other embodiments, the support member 3102 does not distract the adjacent spinous processes S. In yet other embodiments, the engagement of the spinous processes S by the support member 3102 is not continuous, but occurs upon spinal extension.


The support member 3102 can be made from any number of biocompatible materials, such as, for example, stainless steel, plastic, polyetheretherketone (PEEK), carbon fiber, ultra-high molecular weight (UHMW) polyethylene, and the like. The material of the support member 3102 can have a tensile strength similar to or higher than that of bone. In some embodiments, the support member 3102 is substantially rigid. In other embodiments, the support member 3102 or portions thereof is elastically deformable, thereby allowing it to conform to the shape of the spinous processes. In yet other embodiments, the support member 3102 includes a radiopaque material, such as bismuth, to facilitate tracking the position of the spinal implant 3100 during insertion and/or repositioning.


In the illustrated embodiment, the spinal implant 3100 includes a sensor 3124 coupled to the support member 3102. In some embodiments, the sensor 3124 is a strain gauge sensor that measures a force applied to the support member 3102. In some embodiments, the sensor 3124 can include multiple strain gauges to facilitate measuring multiple force quantities, such as a compressive force and/or a bending moment. In other embodiments, the sensor 3124 is a variable capacitance type pressure sensor configured to measure a force and/or a pressure applied to the support member 3102. In yet other embodiments, the sensor 3124 is a piezoelectric sensor that measures a force and/or a pressure applied to the support member 3102. In still other embodiments, the spinal implant 3100 can include multiple sensors located at various locations to provide a spatial profile of the force and/or pressure applied to the support member 3102. In this manner, a practitioner can detect changes in the patient's condition, such those that may result in a loosening of the spinal implant.


In some embodiments, the sensor 3124 can be remotely controlled by an external induction device. For example, an external radio frequency (RF) transmitter (not shown) can be used to supply power to and communicate with the sensor 3124. In other embodiments, an external acoustic signal transmitter (not shown) can be used to supply power to and communicate with the sensor 3124. One example of a implantable sensor configured to communicate to an external receiver using acoustic signals is given in U.S. Pat. No. 6,764,446, entitled “Implantable Pressure Sensors and Methods for Making and Using Them,” which is incorporated herein by reference in its entirety.


The support member 3102 includes a sidewall 3108 that defines an inner area 3120 and multiple openings 3114 that connect the inner area 3120 to an area outside of the support member 3102. When the spinal implant 3100 is in the first configuration, the proximal retention member 3110 and the distal retention member 3112 are substantially disposed within the inner area 3120 of the support member 3102, as shown in FIG. 2A. When the spinal implant 3100 is in the second configuration, a portion of each of the proximal retention member 3110 and the distal retention member 3112 extends through the openings 3114 to an area outside of the support member 3102. In the second configuration, the proximal retention member 3110 and the distal retention member 3112 engage the adjacent spinous processes, thereby limiting lateral movement of the spinal implant 3100.


The proximal retention member 3110 includes a first elongate member 3130 and a second elongate member 3132. Similarly, the distal retention member 3112 includes a first elongate member 3131 and a second elongate member 3133. As illustrated in FIG. 6, which shows is a cross-sectional plan view of the proximal portion 3104 of the support member 3102, the first elongate member 3130 is slidably disposed within a pocket 3134 defined by the second elongate member 3132. A biasing member 3136, such as a spring or an elastic member, is disposed within the pocket 3134 and is coupled to the first elongate member 3130 and the second elongate member 3132. In this manner, the retention members can be biased in the second configuration. In other embodiments, the biasing member 3136 can be configured to bias the retention members in the first configuration. In yet other embodiments, the retention members do not include a biasing member, but instead use other mechanisms to retain a desired configuration. Such mechanisms can include, for example, mating tabs and slots configured to lockably engage when the retention members are in a desired configuration.


In use, the spinal implant 3100 is positioned in the first configuration during insertion, removal or repositioning. As discussed above, the spinal implant 3100 is inserted percutaneously between adjacent spinous processes. The distal portion 3106 of the support member 3102 is inserted first and is moved past the spinous processes until the support member 3102 is positioned between the spinous processes. The support member 3102 can be sized to account for ligaments and tissue surrounding the spinous processes S. In some embodiments, the support member 3102 contacts the spinous processes between which it is positioned during a portion of the range of motion of the spinous processes S. In some embodiments, the support member 3102 of spinal implant 3100 is a fixed size and is not compressible or expandable. In yet other embodiments, the support member 3102 can compress to conform to the shape of the spinous processes S. Similarly, in some embodiments, the proximal retention member 3110 and the distal retention member 3112 are substantially rigid. In other embodiments, the retention members or portions thereof are elastically deformable, thereby allowing them to conform to the shape of the spinous processes.


In the illustrated embodiment, the spinal implant 3100 is held in the first configuration by an insertion tool (not shown) that overcomes the force exerted by the biasing member 3136, thereby disposing a portion of the first elongate member 3130 within the pocket 3134 of the second elongate member 3132. In this manner, the spinal implant 3100 can be repeatedly moved from the first configuration to the second configuration, thereby allowing it to be repositioned and/or removed percutaneously. As illustrated in FIG. 5, the first elongate member 3130 and the second elongate member 3132 each include notches 3138 configured to receive a portion of the insertion tool. When the insertion tool is released, the biasing member 3136 is free to extend, thereby displacing a portion of the first elongate member 3130 out of the pocket 3134 of the second elongate member 3132. In this manner, portions of both the first elongate member 3130 and the second elongate member 3132 are extended through the adjacent openings 3114 and to an area outside of the support member 3102. In some embodiments, the proximal retention member 3110 and the distal retention member 3112 are transitioned between their respective first and second configurations simultaneously. In other embodiments, the proximal retention member 3110 and the distal retention member 3112 are transitioned between their first and second configurations serially.


As illustrated, the first elongate member 3130 and the second elongate member 3132 each include one or more tabs 3140 that engage the side wall 3108 of the support member 3102 when in the second configuration, thereby ensuring that the first and second elongate members remain coupled to each other and that portions of the first and second elongate members remain suitably disposed within the support member 3102. In other embodiments, the first elongate member 3130 and the second elongate member 3132 are coupled to each other by other suitable mechanisms, such as mating tabs and slots configured to engage when the retention member reaches a predetermined limit of extension.



FIGS. 7, 8A and 8B are cross-sectional views of a spinal implant 3200 according to an embodiment of the invention. FIG. 7 illustrates a cross-sectional front view of the spinal implant 3200 in a second configuration, while FIGS. 8A and 8B illustrate a cross-sectional plan view of the spinal implant 3200 in the second configuration and a first configuration, respectively. The illustrated spinal implant 3200 includes a support member 3202, a retention member 3210 and a rotating member 3250. Although shown and described as including only a single retention member 3210, some embodiments can include one or more additional retention members having characteristics and functionality similar to those described for the retention member 3210.


As shown in FIGS. 8A and 8B, the retention member 3210 is repeatably positionable in a first configuration in which it is substantially disposed within the support member 3202, and a second configuration in which a portion the retention member 3210 is disposed outside of the support member 3102. When the spinal implant 3200 is in the first configuration, it can be inserted between adjacent spinous processes, repositioned between adjacent spinous processes and/or removed from the patient. When the spinal implant 3200 is in the second configuration, its lateral movement is limited, thereby allowing the desired position of the support member 3202 to be maintained.


The support member 3202 includes a sidewall 3208 that defines an inner area 3220 and multiple openings 3214 that connect the inner area 3220 to an area outside of the support member 3202. When the spinal implant 3200 is in the first configuration, the retention member 3210 is substantially disposed within the inner area 3220 of the support member 3202, as shown in FIG. 8B. When the spinal implant 3200 is in the second configuration, a portion of the proximal retention member 3210 extends through the openings 3214 to an area outside of the support member 3202. In the second configuration, the retention member 3210 is disposed adjacent the spinous processes, thereby limiting lateral movement of the spinal implant 3200.


The retention member 3210 includes an elongate member 3228 having two end portions 3244, a central portion 3242, and a longitudinal axis L1 (shown in FIG. 7). A portion of the elongate member 3228 is flexible such that it can be wound along the rotating member 3250, as described below. In some embodiments, the elongate member 3228 is monolithically formed such that it is flexible enough to be wound along the rotating member 3250 yet rigid enough to limit lateral movement of the support member 3202 when positioned in the second configuration. In other embodiments, the elongate member 3228 includes separate components that are coupled together to form the elongate member 3228. For example, the central portion 3242 of the elongate member 3228 can be a distinct component having a greater amount of flexibility, while the end portions 3244 can be distinct components having a greater amount of rigidity.


In the illustrated embodiment, elongate member 3228 has one or more tabs 3240 that engage the side wall 3208 of the support member 3202 when in the second configuration, thereby ensuring that the elongate member 3228 does not freely extend entirely outside of the support member 3202. In other embodiments, a portion of the elongate member 3228 is retained within the support member 3202 by other suitable mechanisms. For example, the width of the central portion 3242 of the elongate member 3228 can be greater than the width of the openings 3214, thereby ensuring that a portion of the elongate member 3228 will remain within the support member 3202.


The rotating member 3250 defines an outer surface 3252 and a slot 3254 through which the elongate member 3228 is disposed. The rotating member 3250 has a longitudinal axis L2 (shown in FIG. 7) about which it rotates. As illustrated in FIG. 8B, as the rotating member 3250 rotates, the elongate member 3228 is wound along the outer surface 3252 of the rotating member 3250. This causes the elongate member 3228 to move along its longitudinal axis L1, thereby causing the end portions 3244 of the elongate member 3228 to be retracted inwardly through the openings 3214. In this manner, the retention member 3210 can be repeatedly transitioned between the first configuration and the second configuration.


In some embodiments, the rotating member 3250 is rotated using an insertion tool (not shown) that includes a ratchet mechanism. The insertion tool can rotate the rotating member 3250 in a number of different ways, such as, for example, manually, pneumatically or electronically.


FIGS. 9 and 10A-10C are cross-sectional views of a spinal implant 3300 according to an embodiment of the invention. FIG. 9 illustrates a cross-sectional front view of the spinal implant 3300 in a second configuration, while FIGS. 10A-10C illustrate a cross-sectional plan view of the spinal implant 3300 in the second configuration, a first configuration, and a third configuration, respectively. The illustrated spinal implant 3300 includes a support member 3302 and a retention member 3310. Although shown and described as including only a single retention member 3310, some embodiments can include one or more additional retention members having characteristics and functionality similar to those described for the retention member 3310.


As shown in FIGS. 10A-10C, the retention member 3310 is repeatably positionable in a first configuration, a second configuration and a third configuration. A portion the retention member 3310 is disposed outside of the support member 3302 when positioned in the second configuration. The retention member 3310 is substantially disposed within the support member 3202 when positioned in each of the first and third configurations. As illustrated in FIGS. 10B and 10C, the orientation of the retention member 3310 differs between the first and third configurations. In this manner, the position of the spinal implant 3300 can be positioned appropriately depending on the direction in which it is being moved. For example, the spinal implant 3300 may be positioned in the first configuration to facilitate lateral movement of the support member 3302 in a distal direction, such as during insertion. Conversely, the spinal implant 3300 may be positioned in the third configuration to facilitate lateral movement of the support member 3302 in a proximal direction, such as during removal.


The support member 3302 includes a sidewall 3308 that defines an inner area 3320 and multiple openings 3314 that connect the inner area 3320 to an area outside of the support member 3302. When the spinal implant 3300 is in the second configuration, a portion of the proximal retention member 3310 extends through the openings 3314 to an area outside of the support member 3302.


The retention member 3310 includes a first elongate member 3330, a second elongate member 3332, and a hinge 3360 having a longitudinal axis L2 (shown in FIG. 9). Each of the first elongate member 3330 and the second elongate member 3332 has a distal end portion 3344 that extends through the openings 3314 when the spinal implant 3300 is in the second configuration and a proximal end portion 3346 that is pivotally coupled to the hinge 3360. In use, the hinge 3360 moves in a direction normal to its longitudinal axis L2, as indicated by the arrows in FIGS. 10B and 10C. The motion of the hinge is guided by a slot 3362 defined by the side wall 3308 of the support member 3302. The movement of the hinge 3360 allows the each of the first elongate member 3330 and the second elongate member 3332 to rotate about the longitudinal axis L2 of the hinge 3360, thereby positioning the distal end portion 3344 of each elongate member substantially within the inner area 3320 of the support member 3302.


In some embodiments, the slot 3362 includes detents or any other suitable mechanism (not shown) to maintain the hinge 3360 in the desired position. In other embodiments the hinge 3360 includes a biasing member (not shown) configured to bias the hinge 3360 in one of the first, second, or third configurations. In yet other embodiments, the elongate members include other suitable mechanisms to retain the retention member in a desired configuration. Such mechanisms can include, for example, mating tabs and slots configured to lockably engage when the elongate members are in a desired configuration.


In some embodiments, the first elongate member 3330 and the second elongate member 3332 are monolithically formed of a substantially rigid material. In other embodiments, the first elongate member 3330 and the second elongate member 3332 include separate components having different material properties. For example, the distal end portion 3344 can be formed from a material having a greater amount of flexibility, while the proximal end portion 3346 can be formed from a substantially rigid material. In this manner, movement of the spinal implant 3300 is not restricted when a portion of the of the distal end portion 3344 protrudes from the openings 3314 in either the first configuration or the third configuration.



FIGS. 11A and 11B are cross-sectional front views of a spinal implant 3400 according to an embodiment of the invention. The illustrated spinal implant 3400 includes a support member 3402, a retention member 3410 and a rotating member 3450. As shown in FIGS. 11A and 11B, the retention member 3410 is repeatably positionable in a first configuration in which it is substantially disposed within the support member 3402, and a second configuration in which a portion the retention member 3410 is disposed outside of the support member 3402. Although shown and described as including only a single retention member 3410, some embodiments include one or more additional retention members having characteristics and functionality similar to those described for the retention member 3410.


The support member 3402 includes a sidewall 3408 that defines an inner area 3420 and multiple openings 3414 that connect the inner area 3420 to an area outside of the support member 3402. When the spinal implant 3400 is in the second configuration, a portion of the proximal retention member 3410 extends through the openings 3414 to an area outside of the support member 3402.


The retention member 3410 includes a first elongate member 3430 and a second elongate member 3432, each having a distal end portion 3444 that extends through the openings 3414 when the spinal implant 3400 is in the second configuration, a proximal end portion 3446, and a longitudinal axis L1. As illustrated, the proximal end portions 3346 are coupled by two elastic members 3468, such as a spring or an elastic band. In some embodiments, the proximal end portions 3346 are coupled by a single elastic member. In other embodiments, the proximal end portions 3346 are indirectly coupled via the rotating member 3450. In such an arrangement, for example, a biasing member can be placed between the sidewall of the support member and each elongate member, thereby biasing each elongate member against the rotating member.


In the illustrated embodiment, the elongate members each include one or more tabs 3440 that engage the side wall 3408 of the support member 3402 when in the second configuration, thereby ensuring that the elongate members 3430, 3432 does not freely extend entirely outside of the support member 3402. In other embodiments, the elongate members do not include tabs, but are retained within the support member 3402 solely by the elastic members 3468. In yet other embodiments, the width of a portion of the elongate members can be greater than the width of the openings 3414, thereby ensuring that the elongate members will remain within the support member 3402.


The rotating member 3450 defines an outer surface 3452 having an eccentric shape and includes a longitudinal axis (not shown) about which it rotates. As illustrated in FIGS. 11A and 11B, as the rotating member 3450 rotates about its longitudinal axis, a portion of the proximal end portion 3346 of the first elongate member 3430 and the second elongate member 3432 engage the outer surface 3452 of the rotating member 3250. This causes the first elongate member 3430 and the second elongate member 3432 to move along their respective longitudinal axes L1, thereby causing the end portions 3444 of each elongate member to be extended outwardly through the openings 3414, as indicated by the arrows in FIG. 11A. In this manner, the retention member 3410 can be repeatedly transitioned between the first configuration and the second configuration.


In some embodiments, the rotating member 3450 is rotated using an insertion tool (not shown) that includes a ratchet mechanism. The insertion tool can rotate the rotating member 3450 in a number of different ways, such as, for example, manually, pneumatically or electronically.



FIGS. 12 and 13 illustrate a spinal implant 3500 according to an embodiment of the invention. FIG. 12 is a cross-sectional front view of the spinal implant 3500 in a second configuration. FIG. 13 is a cross-sectional plan view of the spinal implant 3500 taken along section A-A. The spinal implant 3500 includes a support member 3502 and a retention member 3510. Although only shown as being in a second or expanded configuration, it is understood from the previous descriptions that the retention member 3510 is repeatably positionable in a first configuration in which it is substantially disposed within the support member 3502, and the second configuration in which a portion the retention member 3510 is disposed outside of the support member 3502.


As illustrated, the retention member 3510 includes a first elongate member 3530 and a second elongate member 3532. The first elongate member 3530 is slidably disposed within a pocket 3534 defined by the second elongate member 3532. The first elongate member 3530 and the second elongate member 3532 each include one or more tabs 3540 that are coupled to the side wall 3508 of the support member 3502 by one or more biasing members 3536. In this manner, the retention member 3510 is biased in the first or retracted configuration. In other embodiments, the biasing members 3536 can be configured to bias the retention member 3510 in the second configuration. In yet other embodiments, the retention member 3510 is not retained by a biasing member 3536, but rather uses other suitable mechanisms to retain the desired configuration.


In use, the retention member 3510 is transitioned from the first configuration to the second configuration by supplying a pressurized fluid (not shown) to the pocket 3534 via valve 3570. The pressure exerted by the fluid on each of the first elongate member 3530 and the second elongate member 3532 overcomes the force exerted by the biasing members 3536, thereby causing a portion the first elongate member 3530 to extend outwardly from the pocket 3534 of the second elongate member 3132, thereby allowing a portion of each elongate member to extend through the adjacent openings 3514 and to an area outside of the support member 3502. Similarly, the retention member 3510 is transitioned from the second configuration to the first configuration by opening the valve 3570 and relieving the pressure within the pocket 3534. In this manner, the spinal implant 3500 can be repeatedly moved from the first configuration to the second configuration, thereby allowing it to be repositioned and/or removed percutaneously.



FIGS. 14A and 14B illustrate perspective views of a spinal implant 3600 according to an embodiment of the invention. The spinal implant 3600 includes a support member 3602, a proximal retention member 3610, a distal retention member 3612, and an elastic member 3668. The support member 3602 defines a longitudinal axis L1 and has a sidewall 3608 that defines an inner area 3620 and has an outer surface 3616. As illustrated in FIG. 14B, the outer surface 3616 defines an area A normal to the longitudinal axis L1. As shown, the proximal retention member 3610 and the distal retention member 3612 are each repeatably positionable in a first configuration in which they are substantially disposed within the area A (FIG. 14B), and a second configuration in which a portion of each retention member 3610, 3612 is disposed outside of the area A (FIG. 14A).


As illustrated, the proximal retention member 3610 and the distal retention member 3612 are coupled by the elastic member 3668, a portion of which is disposed within the inner area 3620 of the support member 3602. In the illustrated embodiment, the elastic member 3668 has a sidewall 3674 that defines a lumen 3676. In other embodiments, the elastic member can be, for example, a spring, an elastic band, or any other suitable device for elastically coupling the proximal retention member 3610 and the distal retention member 3612.


The proximal retention member 3610 includes a first elongate member 3630 and a second elongate member 3632, each of which are pivotally coupled to a connection member 3678 by a hinge 3660. Similarly, the distal retention member 3612 includes a first elongate member 3631 and a second elongate member 3633 each of which are pivotally coupled to a connection member 3678 by a hinge 3660.


As illustrated in FIG. 14A, when the spinal implant 3600 is in the second configuration, the elastic member 3668 exerts a biasing force on each connection member 3678, thereby causing the connection members 3678 to remain adjacent to the support member 3602. In this configuration, the first elongate member 3630 and the second elongate member 3632 are fully extended. The spinal implant 3600 is transitioned from the second configuration to the first configuration by stretching the elastic member 3668, which allows the connection members 3678 to be disposed apart from the support member 3602, thereby allowing the elongate members to move within the area A, as illustrated in FIG. 14B. The support member 3602 includes slots 3672 in which the end portion of each elongate member can be disposed to maintain the spinal implant 3600 in the first configuration.


The elastic member 3668 can be stretched by an insertion tool (not shown), a portion of which can be configured to be disposed within the lumen 3676 of the elastic member 3668. For example, a first portion of an insertion tool can engage the connection member 3678 of the proximal retention member 3610 while a second portion of the insertion tool can engage the connection member 3678 of the distal retention member 3612. The tool can then be configured to exert an outward force on each of the connection members 3678, thereby stretching the elastic member 3668 and allowing the spinal implant to transition from the second configuration to the first configuration.


While the spinal implants are shown and described above as having one or more retention members that extend substantially symmetrically from a support member when in a second configuration, in some embodiments, a spinal implant includes a retention member that extends asymmetrically from a support member when in a second configuration. For example, FIGS. 15-17 illustrate a spinal implant 3700 according to an embodiment of the invention that includes a proximal retention member 3710 and a distal retention member 3712 that extend asymmetrically from a support member 3702. As shown in FIGS. 15 and 16, the proximal retention member 3710 and the distal retention member 3712 are each repeatably positionable in a first configuration in which they are substantially disposed within the support member 3702, and a second configuration in which a portion each is disposed outside of the support member 3702.


The support member 3702 includes a sidewall 3708 that defines an inner area 3720 and two openings 3714 that connect the inner area 3720 to an area outside of the support member 3702. When the spinal implant 3700 is in the second configuration, a portion of the proximal retention member 3710 and a portion of the distal retention member 3712 extend through the openings 3714 to an area outside of the support member 3702.


In the illustrated embodiment, the proximal retention member 3710 and the distal retention member 3712 each include a first end portion 3746 and a second end portion 3744. The first end portions 3746 of the proximal retention member 3710 and the distal retention member 3712 are coupled by a connecting member 3782 that has a longitudinal axis L1 (shown in FIG. 12). In some embodiments, the connecting member 3782, the proximal retention member 3710 and the distal retention member 3712 are separate components that are coupled together to form the illustrated structure. In other embodiments, the connecting member 3782, the proximal retention member 3710 and the distal retention member 3712 are monolithically formed.


The connecting member 3782 defines a longitudinal axis L1, about which it rotates. As illustrated, as the connecting member 3782 rotates, the proximal retention member 3710 and the distal retention member 3712 also rotate, thereby causing the end portions 3744 of the proximal retention member 3710 and the distal retention member 3712 to extend outwardly through the openings 3714. In this manner, the retention member 3210 can be repeatedly transitioned between the first configuration and the second configuration.


In some embodiments, the connecting member 3782 is rotated using an insertion tool (not shown) that includes a ratchet mechanism. The insertion tool can rotate the connecting member 3782 in a number of different ways, such as, for example, manually, pneumatically or electronically.


While various embodiments have been described above, it should be understood that they have been presented by way of example only, and not limitation. Where methods and steps described above indicate certain events occurring in certain order, those of ordinary skill in the art having the benefit of this disclosure would recognize that the ordering of certain steps may be modified and that such modifications are in accordance with the variations of the invention. Additionally, certain of the steps may be performed concurrently in a parallel process when possible, as well as performed sequentially as described above. Thus, the breadth and scope of the invention should not be limited by any of the above-described embodiments, but should be defined only in accordance with the following claims and their equivalents. While the invention has been particularly shown and described with reference to specific embodiments thereof, it will be understood that various changes in form and details may be made.


For example, although the embodiments above are primarily described as being spinal implants configured to be positioned between adjacent spinous processes, in alternative embodiments, the implants are configured to be positioned adjacent any bone, tissue or other bodily structure where it is desirable to maintain spacing while preventing axial or longitudinal movement of the implant.


Although the embodiments above have been shown and described as including a support member having a side wall defining a substantially rectangular shape, in alternative embodiments, the support member can have any number of different cross-sectional shapes, such as circular or oval. In other alternative embodiments, the support member does not include a side wall, but rather is a monolithic structure having internal cavities for containing one or more retention members.

Claims
  • 1. An apparatus, comprising: a support member configured to be disposed between adjacent spinous processes, the support member having a length and a side wall defining a lumen;a proximal retention member having a first configuration in which the proximal retention member is substantially disposed within the lumen of the support member and in which at least a portion of the proximal retention member is at a first angular orientation relative to the support member, and a second configuration in which the portion of the proximal retention member is disposed outside of the support member and in which the portion of the proximal retention member is at a second angular orientation relative to the support member, the second angular orientation different from the first angular orientation;the proximal retention member having first and second end tips, wherein the tips move relative to each other as the proximal retention member moves from the first configuration to the second configuration;a distal retention member having a first configuration in which the distal retention member is substantially disposed within the lumen of the support member and in which at least a portion of the distal retention member is at a third angular orientation relative to the support member and a second configuration in which the portion of the distal retention member is disposed outside of the support member and in which the portion of the distal retention member is at a fourth angular orientation relative to the support member, the fourth angular orientation different from the third angular orientation;wherein the proximal and distal retention members are spaced apart from each other along a first longitudinal axis of the support member such that the proximal and distal retention members extend outwardly from the first longitudinal axis at different points along the first longitudinal axis;wherein the apparatus is configured such that, when the apparatus is disposed between adjacent spinous processes with the first longitudinal axis extending generally transverse to a sagittal plane defined by the spinous processes, each of the proximal and distal retention members is disposed entirely on respective sides of the sagittal plane such that neither the proximal nor distal retention member extends through the sagittal plane;wherein the length of the support member extends along the first longitudinal axis and the length of the support member remains constant in the first and second configurations.
  • 2. The apparatus of claim 1, wherein the support member is configured to contact the adjacent spinous processes upon spinal extension.
  • 3. The apparatus of claim 1, wherein the support member is configured to be inserted between the adjacent spinous processes percutaneously.
  • 4. The apparatus of claim 1, wherein: the proximal retention member is configured to move from the first configuration to the second configuration and from the second configuration to the first configuration; andthe distal retention member is configured to move from the first configuration to the second configuration and from the second configuration to the first configuration.
  • 5. The apparatus of claim 1, wherein each of the proximal retention member and the distal retention member includes: a first elongate member configured to extend through a first opening defined by the side wall of the support member;a second elongate member configured to extend through a second opening defined by the side wall of the support member;a hinge having a second longitudinal axis, the hinge configured to pivotally couple the first elongate member and the second elongate member along the second longitudinal axis such that the first elongate member is pivotable relative to the second elongate member, the hinge further configured to move in a direction normal to the second longitudinal axis such that each of the first elongate member and the second elongate member moves between the first configuration and the second configuration.
  • 6. The apparatus of claim 1, wherein: the proximal retention member is configured to be positioned in a third configuration in which the proximal retention member is substantially disposed within the lumen of the support member and in which the portion of the proximal retention member is at a fifth angular orientation relative to the support member, the fifth angular orientation different from the first angular orientation; andthe distal retention member is configured to be positioned in a third configuration in which the distal retention member is substantially disposed within the lumen of the support member and in which the portion of the distal retention member is at a sixth angular orientation relative to the support member, the sixth angular orientation different from the third angular orientation.
  • 7. The apparatus of claim 1, wherein: a first end of the proximal retention member is disposed apart from a second end of the proximal retention member by a first distance when the proximal retention member is in the first configuration; andthe first end of the proximal retention member is disposed apart from the second end of the proximal retention member by a second distance when the proximal retention member is in the second configuration, the second distance different from the first distance.
  • 8. The apparatus of claim 1, wherein: the portion of the proximal retention member is configured to contact a first lateral side of a first spinous process from the adjacent spinous processes when the proximal retention member is in the second configuration; andthe portion of the distal retention member is configured to contact a second lateral side of the first spinous process from the adjacent spinous processes when the distal retention member is in the second configuration.
  • 9. The apparatus of claim 1, wherein: the portion of the proximal retention member is a first portion, the first portion configured to contact a side of a first spinous process from the adjacent spinous processes when the proximal retention member is in the second configuration; anda second portion of the proximal retention member is disposed outside of the support member and configured to contact a side of a second spinous process from the adjacent spinous processes when the proximal retention member is in the second configuration.
  • 10. An apparatus, comprising: a support member having a length extending along a longitudinal axis, the support member configured to be disposed between adjacent spinous processes; wherein, when the support member is disposed between the adjacent spinous process, the longitudinal axis extends generally transverse to a sagittal plane defined by the spinous processes;a proximal retention member having a first elongate member, a second elongate member, and a first hinge having a first hinge pivot axis, the first hinge configured to pivotally couple the first elongate member and the second elongate member along the first hinge pivot axis such that the first elongate member is pivotable relative to the second elongate member, the first hinge further configured to move in a direction normal to the first hinge pivot axis, the proximal retention member having a first configuration in which the proximal retention member is substantially disposed within a proximal portion of the support member and a second configuration in which a portion of the first elongate member extends through a first opening defined by the support member and a portion of the second elongate member extends through a second opening defined by the support member;wherein the first opening extends through a first side of the support member and the second opening extends through a second side of the support member, the first side being opposite from the second side;a distal retention member having a first elongate member, a second elongate member, and a second hinge having a second hinge pivot axis, the second hinge configured to pivotally couple the first elongate member of the distal retention member and the second elongate member of the distal retention member along the second hinge pivot axis of the second hinge such that the first elongate member of the distal retention member is pivotable relative to the second elongate member of the distal retention member, the second hinge of the distal retention member further configured to move in a direction normal to the second hinge pivot axis, the distal retention member having a first configuration in which the distal retention member is substantially disposed within a distal portion of the support member and a second configuration in which a portion of the first elongate member of the distal retention member extends through a third opening defined by the support member and a portion of the second elongate member of the distal retention member extends through a fourth opening defined by the support member;wherein the third opening extends through the first side of the support member and the fourth opening extends through the second side of the support member;wherein the first and second hinge pivot axes are spaced apart;wherein the length of the support member remains constant when the proximal and distal retention members move between their respective first and second configurations.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation-in-part of U.S. patent application Ser. No. 11/252,879, entitled “Percutaneous Spinal Implants and Methods,” filed Oct. 19, 2005; and U.S. patent application Ser. No. 11/252,880, entitled “Percutaneous Spinal Implants and Methods,” filed Oct. 19, 2005each of which is a continuation-in-part of U.S. patent application Ser. No. 11/059,526entitled “Apparatus and Method for Treatment of Spinal Conditions,” filed Feb. 17, 2005, each of which are incorporated herein by reference in its entirety. This application also claims the benefit of U.S. Provisional Application Ser. No. 60/695,836 entitled “Percutaneous Spinal Implants and Methods,” filed Jul. 1, 2005, which is incorporated herein by reference in its entirety. This application is related to U.S. patent application Ser. Nos. 11/356,301, 11/356,296, 11/356,295, and 11/356,294 each entitled “Percutaneous Spinal Implants and Methods,” and filed on even date herewith, each of which is incorporated herein by reference in its entirety.

US Referenced Citations (322)
Number Name Date Kind
624969 Peterson May 1899 A
1153797 Kegreisz Sep 1915 A
1516347 Pataky Nov 1924 A
1870942 Beatty Aug 1932 A
2077804 Morrison Apr 1937 A
2299308 Creighton Oct 1942 A
2485531 Dzus et al. Oct 1949 A
2607370 Anderson Aug 1952 A
2677369 Knowles May 1954 A
2685877 Dobelle Aug 1954 A
3065659 Eriksson et al. Nov 1962 A
3108595 Overment Oct 1963 A
3426364 Lumb Feb 1969 A
3648691 Lumb et al. Mar 1972 A
3779239 Fischer et al. Dec 1973 A
4011602 Rybicki et al. Mar 1977 A
4237875 Termanini Dec 1980 A
4257409 Bacal et al. Mar 1981 A
4274324 Giannuzzi Jun 1981 A
4289123 Dunn Sep 1981 A
4401112 Rezaian Aug 1983 A
4499636 Tanaka Feb 1985 A
4519100 Wills et al. May 1985 A
4553273 Wu Nov 1985 A
4554914 Kapp et al. Nov 1985 A
4573454 Hoffman Mar 1986 A
4592341 Omagari et al. Jun 1986 A
4599086 Doty Jul 1986 A
4604995 Stephens et al. Aug 1986 A
4611582 Duff Sep 1986 A
4632101 Freedland Dec 1986 A
4636217 Ogilvie et al. Jan 1987 A
4646998 Pate Mar 1987 A
4657550 Daher Apr 1987 A
4662808 Camilleri May 1987 A
4686970 Dove et al. Aug 1987 A
4696887 Sodhi Sep 1987 A
4704057 McSherry Nov 1987 A
4759769 Hedman et al. Jul 1988 A
4787378 Sodhi Nov 1988 A
4822226 Kennedy Apr 1989 A
4827918 Olerud May 1989 A
4834600 Lemke May 1989 A
4863476 Shepperd Sep 1989 A
4886405 Blomberg Dec 1989 A
4892545 Day et al. Jan 1990 A
4913144 Del Medico Apr 1990 A
4931055 Bumpus et al. Jun 1990 A
4932975 Main et al. Jun 1990 A
5000166 Karpf Mar 1991 A
5011484 Breard Apr 1991 A
5047055 Bao et al. Sep 1991 A
5059193 Kuslich Oct 1991 A
5092866 Breard et al. Mar 1992 A
5098433 Freedland Mar 1992 A
5171278 Pisharodi Dec 1992 A
5201734 Cozad et al. Apr 1993 A
5267999 Olerud Dec 1993 A
5290312 Kojimoto et al. Mar 1994 A
5306275 Bryan Apr 1994 A
5306310 Siebels Apr 1994 A
5312405 Korotko et al. May 1994 A
5356423 Tihon et al. Oct 1994 A
5360430 Lin Nov 1994 A
5366455 Dove Nov 1994 A
5370697 Baumgartner Dec 1994 A
5390683 Pisharodi Feb 1995 A
5395370 Muller et al. Mar 1995 A
5401269 Buttner-Janz et al. Mar 1995 A
5403316 Ashman Apr 1995 A
5415661 Holmes May 1995 A
5437672 Alleyne Aug 1995 A
5437674 Worcel et al. Aug 1995 A
5439463 Lin Aug 1995 A
5454812 Lin Oct 1995 A
5456689 Kresch et al. Oct 1995 A
5458641 Ramirez Jimenez Oct 1995 A
5480442 Bertagnoli Jan 1996 A
5496318 Howland et al. Mar 1996 A
5518498 Lindenberg et al. May 1996 A
5554191 Lahille et al. Sep 1996 A
5562662 Brumfield et al. Oct 1996 A
5562735 Margulies Oct 1996 A
5571192 Schonhoffer Nov 1996 A
5609634 Voydeville Mar 1997 A
5609635 Michelson Mar 1997 A
5628756 Barker, Jr. et al. May 1997 A
5630816 Kambin May 1997 A
5645599 Samani Jul 1997 A
5653762 Pisharodi Aug 1997 A
5653763 Errico et al. Aug 1997 A
5658335 Allen Aug 1997 A
5665122 Kambin Sep 1997 A
5674295 Ray et al. Oct 1997 A
5676702 Ratron Oct 1997 A
5685826 Bonutti Nov 1997 A
5690649 Li Nov 1997 A
5693100 Pisharodi Dec 1997 A
5702395 Hopf Dec 1997 A
5702452 Argenson et al. Dec 1997 A
5702455 Saggar Dec 1997 A
5707390 Bonutti Jan 1998 A
5716416 Lin Feb 1998 A
5723013 Jeanson et al. Mar 1998 A
5725341 Hofmeister Mar 1998 A
5746762 Bass May 1998 A
5755797 Baumgartner May 1998 A
5800547 Schafer et al. Sep 1998 A
5810815 Morales Sep 1998 A
5836948 Zucherman et al. Nov 1998 A
5849004 Bramlet Dec 1998 A
5860977 Zucherman et al. Jan 1999 A
5888196 Bonutti Mar 1999 A
5941881 Barnes Aug 1999 A
5976186 Bao et al. Nov 1999 A
5980523 Jackson Nov 1999 A
6022376 Assell et al. Feb 2000 A
6048342 Zucherman et al. Apr 2000 A
6068630 Zucherman et al. May 2000 A
6126689 Brett Oct 2000 A
6126691 Kasra et al. Oct 2000 A
6127597 Beyar et al. Oct 2000 A
6132464 Martin Oct 2000 A
6190413 Sutcliffe Feb 2001 B1
6190414 Young Feb 2001 B1
6214050 Huene Apr 2001 B1
6245107 Ferree Jun 2001 B1
6293949 Justis et al. Sep 2001 B1
6336930 Stalcup et al. Jan 2002 B1
6348053 Cachia Feb 2002 B1
6352537 Strnad Mar 2002 B1
6364883 Santilli Apr 2002 B1
6371987 Weiland et al. Apr 2002 B1
6375682 Fleischmann et al. Apr 2002 B1
6402750 Atkinson et al. Jun 2002 B1
6402751 Hoeck et al. Jun 2002 B1
6419704 Ferree Jul 2002 B1
6432130 Hanson Aug 2002 B1
6440169 Elberg et al. Aug 2002 B1
6447513 Griggs Sep 2002 B1
6451019 Zucherman et al. Sep 2002 B1
6500178 Zucherman et al. Dec 2002 B2
6511508 Shahinpoor et al. Jan 2003 B1
6514256 Zucherman et al. Feb 2003 B2
6520991 Huene Feb 2003 B2
6554833 Levy Apr 2003 B2
6582433 Yun Jun 2003 B2
6582467 Teitelbaum et al. Jun 2003 B1
6592585 Lee et al. Jul 2003 B2
6626944 Taylor Sep 2003 B1
6645207 Dixon et al. Nov 2003 B2
6685742 Jackson Feb 2004 B1
6695842 Zucherman et al. Feb 2004 B2
6709435 Lin Mar 2004 B2
6723126 Berry Apr 2004 B1
6730126 Boehm, Jr. et al. May 2004 B2
6733534 Sherman May 2004 B2
6736818 Perren et al. May 2004 B2
6743257 Castro Jun 2004 B2
6758863 Estes et al. Jul 2004 B2
6761720 Senegas Jul 2004 B1
6770096 Bolger et al. Aug 2004 B2
6783530 Levy Aug 2004 B1
6835205 Atkinson et al. Dec 2004 B2
6905512 Paes et al. Jun 2005 B2
6946000 Senegas et al. Sep 2005 B2
6981975 Michelson Jan 2006 B2
7011685 Arnin et al. Mar 2006 B2
7041136 Goble et al. May 2006 B2
7048736 Robinson et al. May 2006 B2
7081120 Li et al. Jul 2006 B2
7087083 Pasquet et al. Aug 2006 B2
7097648 Globerman et al. Aug 2006 B1
7101375 Zucherman et al. Sep 2006 B2
7163558 Senegas et al. Jan 2007 B2
7201751 Zucherman et al. Apr 2007 B2
7217293 Branch, Jr. May 2007 B2
7238204 Le Couedic et al. Jul 2007 B2
7306628 Zucherman et al. Dec 2007 B2
7335203 Winslow et al. Feb 2008 B2
7377942 Berry May 2008 B2
7431735 Liu et al. Oct 2008 B2
7442208 Mathieu et al. Oct 2008 B2
7445637 Taylor Nov 2008 B2
7458981 Fielding et al. Dec 2008 B2
7582106 Teitelbaum et al. Sep 2009 B2
7604652 Arnin et al. Oct 2009 B2
7611316 Panasik et al. Nov 2009 B2
7621950 Globerman et al. Nov 2009 B1
20020143331 Zucherman et al. Oct 2002 A1
20030040746 Mitchell et al. Feb 2003 A1
20030045940 Eberlein et al. Mar 2003 A1
20030065330 Zucherman et al. Apr 2003 A1
20030153915 Nekozuka et al. Aug 2003 A1
20040010312 Enayati Jan 2004 A1
20040010316 William et al. Jan 2004 A1
20040087947 Lim et al. May 2004 A1
20040097931 Mitchell May 2004 A1
20040133204 Davies Jul 2004 A1
20040133280 Trieu Jul 2004 A1
20040167625 Beyar et al. Aug 2004 A1
20040199255 Mathieu et al. Oct 2004 A1
20040220568 Zucherman et al. Nov 2004 A1
20040260397 Lambrecht et al. Dec 2004 A1
20050010293 Zucherman et al. Jan 2005 A1
20050049708 Atkinson et al. Mar 2005 A1
20050085814 Sherman et al. Apr 2005 A1
20050143827 Globerman et al. Jun 2005 A1
20050165398 Reiley Jul 2005 A1
20050203512 Hawkins et al. Sep 2005 A1
20050203519 Harms et al. Sep 2005 A1
20050203624 Serhan et al. Sep 2005 A1
20050228391 Levy et al. Oct 2005 A1
20050245937 Winslow Nov 2005 A1
20050261768 Trieu Nov 2005 A1
20050273166 Sweeney Dec 2005 A1
20050288672 Ferree Dec 2005 A1
20060004447 Mastrorio et al. Jan 2006 A1
20060004455 Leonard et al. Jan 2006 A1
20060015181 Elberg Jan 2006 A1
20060064165 Zucherman et al. Mar 2006 A1
20060084983 Kim Apr 2006 A1
20060084985 Kim Apr 2006 A1
20060084987 Kim Apr 2006 A1
20060084988 Kim Apr 2006 A1
20060085069 Kim Apr 2006 A1
20060085070 Kim Apr 2006 A1
20060085074 Raiszadeh Apr 2006 A1
20060089654 Lins et al. Apr 2006 A1
20060089719 Trieu Apr 2006 A1
20060095136 McLuen May 2006 A1
20060106381 Ferree et al. May 2006 A1
20060106397 Lins May 2006 A1
20060111728 Abdou May 2006 A1
20060116690 Pagano Jun 2006 A1
20060122620 Kim Jun 2006 A1
20060129239 Kwak Jun 2006 A1
20060136060 Taylor Jun 2006 A1
20060184247 Edidin et al. Aug 2006 A1
20060184248 Edidin et al. Aug 2006 A1
20060195102 Malandain Aug 2006 A1
20060217726 Maxy et al. Sep 2006 A1
20060224159 Anderson Oct 2006 A1
20060224241 Butler et al. Oct 2006 A1
20060235387 Peterman Oct 2006 A1
20060235532 Meunier et al. Oct 2006 A1
20060241601 Trautwein et al. Oct 2006 A1
20060241613 Bruneau et al. Oct 2006 A1
20060241757 Anderson Oct 2006 A1
20060247623 Anderson et al. Nov 2006 A1
20060247640 Blackwell et al. Nov 2006 A1
20060264938 Zucherman et al. Nov 2006 A1
20060271044 Petrini et al. Nov 2006 A1
20060271049 Zucherman et al. Nov 2006 A1
20060271061 Beyar et al. Nov 2006 A1
20060282079 Labrom et al. Dec 2006 A1
20060293662 Boyer, II et al. Dec 2006 A1
20060293663 Walkenhorst et al. Dec 2006 A1
20070005064 Anderson et al. Jan 2007 A1
20070032790 Aschmann et al. Feb 2007 A1
20070043362 Malandain et al. Feb 2007 A1
20070073289 Kwak et al. Mar 2007 A1
20070100340 Lange et al. May 2007 A1
20070123861 Dewey et al. May 2007 A1
20070142915 Altarac et al. Jun 2007 A1
20070151116 Malandain Jul 2007 A1
20070162000 Perkins Jul 2007 A1
20070167945 Lange et al. Jul 2007 A1
20070173822 Bruneau et al. Jul 2007 A1
20070173823 Dewey et al. Jul 2007 A1
20070191833 Bruneau et al. Aug 2007 A1
20070191834 Bruneau et al. Aug 2007 A1
20070191837 Trieu Aug 2007 A1
20070191838 Bruneau et al. Aug 2007 A1
20070198091 Boyer et al. Aug 2007 A1
20070225807 Phan et al. Sep 2007 A1
20070233068 Bruneau et al. Oct 2007 A1
20070233074 Anderson et al. Oct 2007 A1
20070233076 Trieu Oct 2007 A1
20070233081 Pasquet et al. Oct 2007 A1
20070233089 DiPoto et al. Oct 2007 A1
20070250060 Anderson et al. Oct 2007 A1
20070270823 Trieu et al. Nov 2007 A1
20070270824 Lim et al. Nov 2007 A1
20070270825 Carls et al. Nov 2007 A1
20070270826 Trieu et al. Nov 2007 A1
20070270827 Lim et al. Nov 2007 A1
20070270828 Bruneau et al. Nov 2007 A1
20070270829 Carls et al. Nov 2007 A1
20070270834 Bruneau et al. Nov 2007 A1
20070270874 Anderson Nov 2007 A1
20070272259 Allard et al. Nov 2007 A1
20070276368 Trieu et al. Nov 2007 A1
20070276369 Allard et al. Nov 2007 A1
20070276493 Malandain et al. Nov 2007 A1
20070276496 Lange et al. Nov 2007 A1
20070276497 Anderson Nov 2007 A1
20070282443 Globerman et al. Dec 2007 A1
20080021457 Anderson et al. Jan 2008 A1
20080021460 Bruneau et al. Jan 2008 A1
20080058934 Malandain et al. Mar 2008 A1
20080114357 Allard et al. May 2008 A1
20080114358 Anderson et al. May 2008 A1
20080114456 Dewey et al. May 2008 A1
20080147190 Dewey et al. Jun 2008 A1
20080161818 Kloss et al. Jul 2008 A1
20080167685 Allard et al. Jul 2008 A1
20080183209 Robinson et al. Jul 2008 A1
20080183211 Lamborne et al. Jul 2008 A1
20080183218 Mueller et al. Jul 2008 A1
20080215094 Taylor Sep 2008 A1
20080221685 Altarac et al. Sep 2008 A9
20080234824 Youssef et al. Sep 2008 A1
20080262617 Froehlich et al. Oct 2008 A1
20080281360 Vittur et al. Nov 2008 A1
20080281361 Vittur et al. Nov 2008 A1
20090062915 Kohm et al. Mar 2009 A1
20090105766 Thompson et al. Apr 2009 A1
20090105773 Lange et al. Apr 2009 A1
20090234389 Chuang et al. Sep 2009 A1
20090270918 Attia et al. Oct 2009 A1
20100121379 Edmond May 2010 A1
Foreign Referenced Citations (59)
Number Date Country
2821678 Nov 1979 DE
3922044 Feb 1991 DE
4012622 Jul 1991 DE
0322334 Feb 1992 EP
0767636 Jan 1999 EP
1004276 May 2000 EP
1011464 Jun 2000 EP
1138268 Oct 2001 EP
1148850 Oct 2001 EP
1148851 Oct 2001 EP
1302169 Apr 2003 EP
1330987 Jul 2003 EP
1552797 Jul 2005 EP
1854433 Nov 2007 EP
1905392 Apr 2008 EP
1982664 Oct 2008 EP
2623085 May 1989 FR
2625097 Jun 1989 FR
2681525 Mar 1993 FR
2700941 Aug 1994 FR
2703239 Oct 1994 FR
2707864 Jan 1995 FR
2717675 Sep 1995 FR
2722087 Jan 1996 FR
2722088 Jan 1996 FR
2724554 Mar 1996 FR
2725892 Apr 1996 FR
2730156 Aug 1996 FR
2731643 Sep 1996 FR
2775183 Aug 1999 FR
2799948 Apr 2001 FR
2816197 May 2002 FR
02-224660 Sep 1990 JP
09-075381 Mar 1997 JP
988281 Jan 1983 SU
1484348 Jun 1989 SU
WO 9426192 Nov 1994 WO
WO 9426195 Nov 1994 WO
WO 9718769 May 1997 WO
WO 9820939 May 1998 WO
WO 9926562 Jun 1999 WO
WO 0044319 Aug 2000 WO
WO 0154598 Aug 2001 WO
WO 03057055 Jul 2003 WO
WO 2004047689 Jun 2004 WO
WO 2004047691 Jun 2004 WO
WO 2004084768 Oct 2004 WO
WO 2004110300 Dec 2004 WO
WO 2005009300 Feb 2005 WO
WO 2005011507 Feb 2005 WO
WO 2005044118 May 2005 WO
WO 2005048856 Jun 2005 WO
WO 2005110258 Nov 2005 WO
WO 2006064356 Jun 2006 WO
WO 2007034516 Mar 2007 WO
WO 2007052975 May 2007 WO
WO 2009083276 Jul 2009 WO
WO 2009083583 Jul 2009 WO
WO 2009098536 Aug 2009 WO
Related Publications (1)
Number Date Country
20070225706 A1 Sep 2007 US
Provisional Applications (1)
Number Date Country
60695836 Jul 2005 US
Continuation in Parts (3)
Number Date Country
Parent 11252879 Oct 2005 US
Child 11356302 US
Parent 11252880 Oct 2005 US
Child 11252879 US
Parent 11059526 Feb 2005 US
Child 11252880 US