1. Field of the Invention
The present invention relates to surgical lead bodies which provide electrical stimulation to nerve tissue of a patient. More particularly, but without restriction to the particular use which is shown and described, the present invention relates to a surgical lead body having a minimum cross section such that the surgical lead body may be percutaneously implanted through a modified Tuohy needle having an oblong shaped opening.
2. Description of the Related Art
It is known that nerve tissue stimulation is used to treat numerous neurological disorders, including, but not limited to, cerebral palsy, multiple sclerosis, amyotrophic lateral sclerosis, dystonia, and torticollis. It is further known that nerve tissue stimulation is useful to treat intractable malignant and nonmalignant pain. Stimulation of nerve tissue of the spinal cord, for example, is often accomplished through implanted medical leads in the epidural space of the spinal cavity. The implanted lead defines a lead body which includes neural stimulation electrodes that conduct electrical stimulation signals from a stimulation source, such as implantable pulse generators, to targeted nerve fibers in the epidural space. These medical leads may be percutaneous lead bodies which have a cylindrical shape with cylindrical electrodes spaced along the body of the lead. Also, the medical leads may be surgical lead bodies with electrodes spaced in an array on a paddle-type lead body.
As conventional, the percutaneous lead body is introduced into the epidural space of the spinal cord using a needle and stylet. The needle (commonly referred to as a Tuohy needle) and stylet are inserted into the targeted spinal column area between adjacent vertebrae until the tip of the needle and stylet are positioned into the epidural space. The stylet is withdrawn and a percutaneous lead body is inserted through the opening or lumen of the needle into the epidural space and positioned at the targeted stimulation area. The needle is then withdrawn leaving the percutaneous lead body in the desired stimulation position. Drawbacks encountered with known percutaneous lead bodies include migration or movement of the lead body after it is implanted. In addition, the cylindrical shape of the electrode in the percutaneous lead body generates omni-directional stimulation instead of one-directional, focused stimulation.
The surgical lead body which is typically a paddle-type lead body often has a rectangular, flat cross-section. Spaced in an array on one side of the paddle are the electrodes. The array of electrodes provides better stimulation coverage of the targeted nerve tissue than a percutaneous lead body. In contrast to the percutaneous lead body, however, the surgical lead body is surgically implanted into the epidural space. This requires a physician to perform a laminotomy, laminectomy, or similar procedure, prior to the insertion of the surgical lead into the epidural space. Once implanted, the surgical lead having the flat, rectangular shape is generally more stable than a percutaneous lead and provides one-directional stimulation—stimulation more focused than a percutaneous lead body. A drawback with the surgical lead body, however, is the performance of a laminotomy or similar surgical procedure. Anesthesiologists who frequently provide the nerve tissue stimulation for a patient are often prevented from using the surgical lead body as the laminotomy procedure is generally outside the scope of their practice.
Accordingly, it is an object of the present invention to provide an implantable lead body that provides the advantages of the surgical lead body but does not require performing a laminotomy, or other surgical procedure, prior to implantation. It is another object of the present invention to provide a lead body that may be percutaneously implanted at the targeted nerve tissue. It is yet another object to provide a lead body having the stability of a surgical lead. Another object is to provide a lead body having an array of spaced electrodes for better stimulation coverage of the targeted nerve tissue. Still another object of the present invention is to provide a lead body having one-directional, focused stimulation.
Briefly, in summary, the present invention comprises bonding together two percutaneous lead bodies, resulting in the functional equivalent of a surgical lead body. The inventive medical lead body forms columns of electrodes which are either adjacent to or offset from each other, thus forming an array of electrodes. The bonding of the percutaneous lead bodies is accomplished by a plurality of urethane bridges molded to each of the percutaneous lead bodies. The plurality of bridges provides structural integrity to the medical lead yet permits the desired flexibility of the lead body. One side of the inventive medical lead body is “masked” or coated with a suitable non-conductive material. The masking of one side of the medical lead body makes that side of the lead body non-conductive and effectively directs the stimulation signals transmitting from the cylindrical electrodes toward the desired stimulated area for focused stimulation. In contrast to the surgical lead body, the medical lead body of the present invention may be percutaneously implanted. The percutaneous implantation is achieved by inserting the inventive medical lead body through a modified Tuohy needle having an oblong cross-section or other similar needle, such as, the needle disclosed in U.S. patent application Ser. No. 09/303,045, which is incorporated herein by reference.
Examples of the more important features of this invention have been broadly outlined above in order that the detailed description which follows may be better understood and so that contributions which this invention provide to the art may be better appreciated. There are, of course, additional features of the invention which will be described herein and which will be included within the subject matter of the claims appended hereto.
The preferred embodiments of the invention will be described in relation to the accompanying drawings. In the drawings, the following figures have the following general nature:
In the accompanying drawings, like reference numbers are used throughout the various figures for identical structures.
Referring to
As depicted in the figures, the medical lead 10 includes a pair of percutaneous lead bodies 12, 14 which are joined together in parallel relation along the edges of each lead. Note that the lead bodies 12, 14 may be molded as a one-piece body depending on desired rigidity of the lead 10, more fully discussed below. As conventional, each of the lead bodies 12, 14 define a cylindrical lead body and a round end. The lead body is made from polyurethane or other suitable material. Spaced along each of the lead bodies 12, 14 is at least one electrode 16 to provide electrical stimulation to the targeted nerve tissue. Each electrode is typically cylindrical in shape and thus provides stimulation in all directions away from the lead body. It should be understood that other shapes and types of electrodes may be used with the present invention and still be considered to be within the scope of the same. Each of the lead bodies 12, 14 further include at least one wire conductor, not shown, connected to the electrodes. As conventional, each wire conductor of the lead bodies 12, 14 may be coupled to an implantable neurological pulse generator, additional, intermediate wiring, or other stimulation device. The stimulation pulses produced by the implantable neurological pulse generator or other stimulation device are carried from the pulse generator through the wire conductors to the electrodes in each lead body 12, 14 and out to the targeted tissue. The plurality of electrodes permits varying stimulation of the targeted area. That is, one or more of the electrodes on the lead bodies 12, 14 transmit the stimulation pulses to targeted human tissue depending on the desired stimulation.
As depicted, the percutaneous lead bodies 12, 14 are joined in parallel relation and bonded together by a urethane material, such as polyurethane or other suitable material. The bonding is preferably achieved by a plurality of urethane bridges 20 spaced along the lead bodies. It should be noted that other attachments or means for bonding the lead bodies may be used with the present invention. The preferred urethane bridges 20 are molded to the lead bodies 12, 14 through a heating process not pertinent to the present invention. The spaced apart location of the bridges 20 creates a sufficiently rigid lead assembly that may be inserted through the needle and yet is flexible for enhanced positioning at the targeted area for effective stimulation coverage. The number and location of the urethane bridges will vary depending on the desired rigidity or flexibility of the medical lead 10 and these variations are considered to be within the scope of the present invention. Note that the percutaneous lead bodies 12, 14 may be molded as a single lead, thereby effectively creating a single, continuous urethane bridge between the lead bodies, a bridge extending the full length of the lead bodies 12, 14.
As illustrated in
Alternatively, as shown in
The medical lead 10 of the present invention defines two sides. As exemplified in
The preferred embodiments of the invention are now described so as to enable a person of ordinary skill in the art to make and use the same. Variations of the preferred embodiments are possible without being outside the scope of the present invention. As an example, one or more percutaneous lead bodies may be bonded to either of the percutaneous lead bodies 12, 14. These additional lead bodies may be bonded in a manner similar to the bonding described above. Alternatively, a third percutaneous lead body may be percutaneously positioned alongside the bonded lead bodies 12, 14 and may be used to provide electrical stimulation similar to that taught by the Holsheimer model disclosed in U.S. Pat. Nos. 5,501,703 and 5,643,330, both owned by Medtronic, Inc. of Minneapolis, Minn., and both incorporated herein by reference. Therefore, to particularly point out and distinctly claim the subject matter regarded as the invention, the following claims conclude the specification.
This application is a continuation of U.S. application Ser. No. 09/500,201, filed Feb. 8, 2000, now U.S. Pat. No. 6,587,733.
Number | Name | Date | Kind |
---|---|---|---|
3474791 | Bentov | Oct 1969 | A |
3646940 | Timm et al. | Mar 1972 | A |
3911928 | Lagergren | Oct 1975 | A |
4744370 | Harris | May 1988 | A |
4961434 | Stypulkowski | Oct 1990 | A |
5000194 | van den Honert et al. | Mar 1991 | A |
5127403 | Brownlee | Jul 1992 | A |
5251634 | Weinberg | Oct 1993 | A |
5405373 | Petersson et al. | Apr 1995 | A |
5423877 | Mackey | Jun 1995 | A |
5628779 | Bornzin et al. | May 1997 | A |
5649970 | Loeb et al. | Jul 1997 | A |
5697951 | Harpstead et al. | Dec 1997 | A |
5702437 | Baudino | Dec 1997 | A |
5713923 | Ward et al. | Feb 1998 | A |
5843148 | Gijsbers | Dec 1998 | A |
5865843 | Baudino | Feb 1999 | A |
5895416 | Barreras, Sr. et al. | Apr 1999 | A |
5913882 | King | Jun 1999 | A |
5919222 | Hjelle et al. | Jul 1999 | A |
6134478 | Spehr | Oct 2000 | A |
6141594 | Flynn et al. | Oct 2000 | A |
6205361 | Kuzma et al. | Mar 2001 | B1 |
6212434 | Scheiner et al. | Apr 2001 | B1 |
6240320 | Spehr et al. | May 2001 | B1 |
6493590 | Wessman et al. | Dec 2002 | B1 |
6510347 | Borkan | Jan 2003 | B2 |
6526321 | Spehr | Feb 2003 | B1 |
Number | Date | Country |
---|---|---|
0 580 928 | Feb 1994 | EP |
0 862 925 | Sep 1998 | EP |
1453424 | Oct 1976 | GB |
WO 9936122 | Jul 1990 | WO |
WO 9956818 | Nov 1999 | WO |
WO 9962591 | Dec 1999 | WO |
WO 0108744 | Feb 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20030229387 A1 | Dec 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09500201 | Feb 2000 | US |
Child | 10457212 | US |