Some applications of the present invention relate in general to valve repair. More specifically, some applications of the present invention relate to repair of an atrioventricular valve of a patient.
Functional tricuspid regurgitation (FTR) is governed by several pathophysiologic abnormalities such as tricuspid valve annular dilatation, annular shape abnormality, pulmonary hypertension, left or right ventricle dysfunction, right ventricle geometry, and leaflet tethering. Treatment options for FTR are primarily surgical. The current prevalence of moderate-to-severe tricuspid regurgitation is estimated to be 1.6 million in the United States. Of these, only 8,000 patients undergo tricuspid valve surgeries annually, most of them in conjunction with left heart valve surgeries.
Some embodiments of the present invention provide techniques for tightening tethers of percutaneous implants transluminally, in order to enable percutaneous treatment of functional tricuspid regurgitation (FTR). In some applications of the invention, techniques are provided for fixing two or more tethers to each other, or two portions of a single tether to one another, in order to apply and maintain tension between two or more tissue anchors implanted in tissue of a subject.
In some applications of the present invention, a tether-securing device comprises a serrated tubular element that allows passage of one or more tethers or longitudinal portions of tethers band in one direction, but inhibits (e.g., prevents) the return of the tether(s) in the opposite direction.
In other applications of the present invention, a tether-securing device is configured to assume an unlocked configuration, in which one or more tethers are generally slidable through the device, and a one-way-locked configuration, in which the tether(s) are slidable only in one direction through the device. For some applications, the tether-securing device is configured to be biased to assume the one-way-locked configuration thereof, and is retained in the unlocked configuration by a constraint. For such applications, the devices automatically transition to the one-way-locked configuration when the constraint is removed.
In some applications of the present invention, excess portions of the tether(s) are cut off proximal to the tether-securing device after it is locked in place. For such applications, a delivery system for implanting the implant also comprises a tool for shearing off and retrieving the excess material, such as thoracoscopic scissors, as known in the art.
In other applications of the present invention, excess portions of the tether(s) are held in place by a fixation device such as a stent, which is placed in the vasculature leading to the atrium, such as the superior vena cava (SVC), the inferior vena cava (IVC), or the coronary sinus (CS). For such applications, the delivery system is configured to connect the excess material to the fixation device.
In some applications of the present invention, techniques are provided for using tether-securing devices to repair a heart valve, by fixedly coupling together textile bands that are coupled to different parts of an annulus of a heart valve.
There is therefore provided, in accordance with an application of the present invention, apparatus including:
at least one tether, having first and second tether end portions;
first and second tissue anchors, fixed to the first and the second tether end portions, respectively; and
a tether-securing device, which includes:
wherein the tether-securing device is configured:
For some applications, the locking pieces are configured to allow the proximal sliding when in the relaxed state.
For some applications, the locking pieces are convex, as viewed from outside the tether-securing device, at least when the locking pieces are in the relaxed state.
For some applications, the tubular element is cylindrical.
For some applications, the locking pieces are integral with the tubular element.
For some applications, the three or more locking pieces include exactly three locking pieces or exactly four locking pieces.
For some applications, the lumen is a securing-device lumen, and the apparatus further includes a delivery tool, which includes a catheter shaft, which (a) is configured to apply a constraining force to the locking pieces when the shaft is disposed in the securing-device lumen, which constraining force retains the tether-securing device in the unlocked configuration, and (b) is shaped so as to define a shaft lumen, through which the at least one tether removably slidably passes.
For some applications, a total axial length of the tether-securing device, when the locking pieces are in the relaxed state, is between 3 and 50 mm.
For any of the applications described above, each of the locking pieces may be shaped so as to define two curved edges that meet at a proximal tip. For some applications, the proximal edges are shaped so as to define uneven edge surfaces. For some applications, the uneven edge surfaces are shaped so as define teeth. For some applications, the uneven edge surfaces are rough.
For any of the applications described above, the at least one tether defines a plurality of securement protrusions spaced at intervals along the at least one tether. For some applications, the protrusions are defined by respective knots in the at least one tether. For some applications, the protrusions include respective elements selected from the group consisting of: cones, scales, and beads. For some applications, an average interval of the securement protrusions is between 1 and 5 mm.
For any of the applications described above, the at least one tether may include first and second tethers, which have the first and the second tether end portions, respectively.
For any of the applications described above, a single tether of the at least one tether may have the first and the second tether end portions, and the single tether may include at least the following non-overlapping longitudinal portions disposed in sequence along the single tether:
the first tether end portion,
a first portion that passes through the lumen,
a looped middle portion that extends out of and away from the lumen, and then loops back to the lumen,
a second portion that passes through the lumen, and
the second tether end portion.
For some applications, the apparatus further includes a fixation tether, which is connected to the looped middle portion of the single tether. For some applications, the apparatus further includes a venous tissue anchor, which is configured to be implanted in a vein selected from the group of veins consisting of: an inferior vena cava, a superior vena cava, and a coronary sinus, and which is connected to the fixation tether. For some applications, the venous tissue anchor includes a stent.
For any of the applications described above, the apparatus further includes:
a venous tissue anchor, which is configured to be implanted in a vein selected from the group of veins consisting of: an inferior vena cava, a superior vena cava, and a coronary sinus; and
a fixation tether, which is connected to the venous tissue anchor and the at least one tether.
For some applications, the venous tissue anchor includes a stent.
There is further provided, in accordance with an application of the present invention, apparatus including:
a tether-securing device, which includes a tubular element, which is shaped so as define a lateral wall that surrounds a lumen, wherein the lateral wall is shaped so as to define a one-way locking opening;
at least one tether, which (a) has at least a first tether end portion, and (b) passes through the lumen and the one-way locking opening; and
first and second tissue anchors, wherein the first tissue anchor is connected to the first tether end portion,
wherein the one-way locking opening is configured to (a) allow sliding of the at least one tether in a first direction through the one-way locking opening, and (b) inhibit sliding of the at least one tether in a second direction opposite the first direction.
For some applications, the one-way locking opening is shaped as a slit.
For some applications, the first direction is from inside the tubular element to outside the tubular element.
For some applications, the tubular element is cylindrical.
For some applications, an axial length of the tubular element is between 5 and 20 mm.
For any of the applications described above, the one-way locking opening may have uneven edges. For some applications, the uneven edges are jagged or serrated.
For any of the applications described above, the at least one tether may define a plurality of securement protrusions spaced at intervals along the at least one tether. For some applications, the protrusions are defined by respective knots in the at least one tether. For some applications, the protrusions include respective elements selected from the group consisting of: cones, scales, and beads. For some applications, an average interval of the securement protrusions is between 1 and 5 mm.
For any of the applications described above, a single tether of the at least one tether may have the first tether end portion and a second tether end portion, which second tether end portion is connected to the second tissue anchor, and the single tether may include at least the following non-overlapping longitudinal portions disposed in sequence along the single tether:
the first tether end portion,
a first portion that passes through the securing-device lumen and the one-way locking opening,
a looped middle portion that extends out of and away from the one-way locking opening, and then loops back to the one-way locking opening,
a second portion that passes through the securing-device lumen and the one-way locking opening, and
the second tether end portion.
For some applications, the lateral wall is shaped so as to define first and second non-constraining openings, which are sized and shaped to allow free sliding therethrough of two longitudinal portions, respectively, of the single tether. For some applications, the non-constraining openings are shaped as respective slits. For some applications, the apparatus further includes a fixation tether, which is connected to the looped middle portion of the single tether. For some applications, the apparatus further includes a venous tissue anchor, which is configured to be implanted in a vein selected from the group of veins consisting of: an inferior vena cava, a superior vena cava, and a coronary sinus, and which is connected to the fixation tether. For some applications, the venous tissue anchor includes a stent.
For any of the applications described above, the second tissue anchor may include a head and a tissue-coupling element, and the tether-securing device is fixed to the head, such that the tether-securing device surrounds at least a portion of the head. For some applications, the tether-securing device is configured to rotate with respect to the head. For some applications, the lateral wall is shaped so as to define a non-constraining opening, which is sized and shaped to allow free sliding therethrough of the at least one tether. For some applications, the non-constraining opening is shaped as a slit.
For any of the applications described above:
the at least one tether may include first and second tethers, which (a) have the first tether end portion and a second tether end portion, respectively, and (b) pass through (i) the lumen and (ii) the one-way locking opening,
the second tissue anchor may be connected to the second tether end portion, and
the one-way locking opening may be configured to (a) allow the sliding of the first and the second tethers in the first direction through the one-way locking opening, and (b) inhibit the sliding of the first and the second tethers in the second direction.
For some applications, the lateral wall is shaped so as to define first and second non-constraining openings, which are sized and shaped to allow free sliding therethrough of the first and the second tethers, respectively. For some applications, the non-constraining openings are shaped as respective slits.
For any of the applications described above, the apparatus may further include:
a venous tissue anchor, which is configured to be implanted in a vein selected from the group of veins consisting of: an inferior vena cava, a superior vena cava, and a coronary sinus; and
a fixation tether, which is connected to the venous tissue anchor and the at least one tether.
For some applications, the venous tissue anchor includes a stent.
There is still further provided, in accordance with an application of the present invention, apparatus including:
a tether, having first and second tether end portions;
first and second tissue anchors, fixed to the first and the second tether end portions, respectively; and
a tether-securing device,
the tether includes at least the following non-overlapping longitudinal portions disposed in sequence along the tether:
For some applications, the looped middle portion extends out of and away from the tether-securing device such that a longitudinal center of the looped middle portion is not in direct physical contact with any portion of the tether-securing device.
For some applications, the tether-securing device is configured to assume:
an unlocked configuration, in which the tether-securing device allows distal and proximal sliding of the first and the second portions of the tether therethrough, and
a one-way-locked configuration, in which the tether-securing device inhibits the distal sliding more than when in the unlocked configuration.
For some applications, the tether-securing device is configured to assume:
an unlocked configuration, in which the tether-securing device allows distal and proximal sliding of the first and the second portions of the tether therethrough, and
a locked configuration, in which the tether-securing device inhibits the distal and proximal sliding.
For some applications, the tether-securing device is configured to (a) allow sliding of the first and the second portions of the tether in a first direction through the tether-securing device, and (b) inhibit sliding of the first and the second portions of the tether in a second direction opposite the first direction.
For any of the applications described above, the apparatus may further include a fixation tether, which is connected to the looped middle portion of the tether. For some applications, the apparatus further includes a venous tissue anchor, which is configured to be implanted in a vein selected from the group of veins consisting of: an inferior vena cava, a superior vena cava, and a coronary sinus, and which is connected to the fixation tether. For some applications, the venous tissue anchor includes a stent.
There is additionally provided, in accordance with an application of the present invention, apparatus including:
an implant, which includes:
a multiple-anchor delivery tool, which includes:
For some applications:
the implant further includes a third tissue anchor, which includes (a) a third helical tissue coupling elements and (b) a third head, which includes a third tether interface,
the tether, which is coupled to the third tether interface,
the third tissue anchor is removably positioned in the catheter shaft at a third longitudinal location that is more proximal than the second longitudinal location, and
the multiple-anchor delivery tool further includes a third torque cable, which (a) is removably coupled to the third head, (b) extends within the catheter shaft proximally from the third head, and (c) transmits torque when rotated, and a portion of the second torque cable is removably positioned alongside the third tissue anchor in the catheter shaft.
For some applications, the first tether interface is rotatable with respect to the first tissue-coupling element.
For any of the applications described above, the first torque cable may be shaped so as to define a lumen therethrough, and the multiple-anchor delivery tool may further include a shaft, which removably passes through the lumen. For some applications:
the head is shaped so as to define a proximal coupling element,
the head, including the proximal coupling element, is shaped so as to define a first longitudinal channel at least partially therethrough, which channel is coaxial with the head,
a distal end of the first torque cable includes a distal coupling element, which is shaped so as to define a second longitudinal channel therethrough, which channel is coaxial with the lumen of the first torque cable,
the proximal and the distal coupling elements are shaped so as to define corresponding interlocking surfaces, and
the shaft, when disposed through the first and the second channels, prevents decoupling of the distal coupling element from the proximal coupling element.
For some applications, the shaft is shaped so as to define a sharp distal tip.
There is yet additionally provided, in accordance with an application of the present invention, a method including:
delivering, to a vicinity of an anatomical site of a subject, (a) at least one tether, having first and second tether end portions, (b) first and second tissue anchors, fixed to the first and the second tether end portions, respectively, and (c) a tether-securing device, which includes (i) a tubular element, which is shaped so as define a lumen through which the at least one tether passes, and has proximal and distal tube ends, and (ii) three or more locking pieces, which extend proximally from the proximal end of the tubular element;
implanting the first and the second tissue anchors in tissue of the subject;
tensioning the at least one tether by proximally sliding the at least one tether through the lumen while the tether-securing device is in an unlocked configuration in which the locking pieces are in a constrained state, in which state the locking pieces extend proximally and allow distal and proximal sliding of the at least one tether through the lumen; and
transitioning the tether-securing device to a one-way-locked configuration in which the locking pieces are in a relaxed state, in which state the locking pieces extend proximally and radially inward toward one another and inhibit the distal sliding more than when in the constrained state.
For some applications, the locking pieces are configured to allow proximal sliding when in the relaxed state, and tensioning includes further tensioning the at least one tether by further proximally sliding the at least one tether through the lumen after transitioning the tether-securing device to the one-way-locked configuration.
For some applications:
a single tether of the at least one tether has the first and the second tether end portions,
the single tether includes at least the following non-overlapping longitudinal portions disposed in sequence along the single tether:
tensioning the tether includes proximally sliding the first and the second portions of the tether through the lumen by pulling on the looped middle portion.
For some applications, the method further includes connecting a fixation tether to the looped middle portion of the single tether.
For some applications, the method further includes implanting a venous tissue anchor, which is connected to the fixation tether, in a vein selected from the group of veins consisting of: an inferior vena cava, a superior vena cava, and a coronary sinus.
For some applications, implanting the venous tissue anchor includes implanting a stent.
For some applications, the at least one tether includes first and second tethers, which have the first and the second tether end portions, respectively, and tensioning the at least one tether includes tensioning the first and the second tethers by proximally sliding the first and the second tethers through the lumen.
For some applications, each of the locking pieces is shaped so as to define two curved edges that meet at a proximal tip. For some applications, the proximal edges are shaped so as to define uneven edge surfaces. For some applications, the uneven edge surfaces are shaped so as define teeth. For some applications, the uneven edge surfaces are rough.
For some applications, the locking pieces are convex, as viewed from outside the tether-securing device, at least when the locking pieces are in the relaxed state.
For some applications, the at least one tether defines a plurality of securement protrusions spaced at intervals along the at least one tether. For some applications, the protrusions are defined by respective knots in the at least one tether. For some applications, the protrusions include respective elements selected from the group consisting of: cones, scales, and beads. For some applications, an average interval of the securement protrusions is between 1 and 5 mm.
For some applications, a total axial length of the tether-securing device, when the locking pieces are in the relaxed state, is between 10 and 50 mm.
For some applications, the tubular element is cylindrical.
For some applications, the locking pieces are integral with the tubular element.
For some applications, the three or more locking pieces include exactly three locking pieces or exactly four locking pieces.
For some applications:
the lumen is a securing-device lumen,
delivering the at least one tether and the tether-securing device includes delivering the at least one tether and the tether-securing device using a delivery tool, which includes a catheter shaft, which (a) applies a constraining force to the locking pieces when the shaft is disposed in the securing-device lumen, which constraining force retains the tether-securing device in the unlocked configuration, and (b) is shaped so as to define a shaft lumen, through which the at least one tether removably slidably passes, and
transitioning the tether-securing device to a one-way-locked configuration includes removing the catheter shaft from the securing-device lumen.
For some applications, the method further includes:
implanting a venous tissue anchor in a vein selected from the group of veins consisting of: an inferior vena cava, a superior vena cava, and a coronary sinus; and
connecting, to the at least one tether, a fixation tether which is connected to the venous tissue anchor.
For some applications, implanting the venous tissue anchor includes implanting a stent.
There is also provided, in accordance with an application of the present invention, a method including:
delivering, to a vicinity of an anatomical site of a subject:
implanting the first and the second tissue anchors in tissue of the subject; and
tensioning the at least one tether by sliding the at least one tether in the first direction through the one-way locking opening.
For some applications, a single tether of the at least one tether has the first tether end portion and a second tether end portion, which second tether end portion is connected to the second tissue anchor, and the single tether includes at least the following non-overlapping longitudinal portions disposed in sequence along the single tether:
the first tether end portion,
a first portion that passes through the securing-device lumen and the one-way locking opening,
a looped middle portion that extends out of and away from the one-way locking opening, and then loops back to the one-way locking opening,
a second portion that passes through the securing-device lumen and the one-way locking opening, and
the second tether end portion, and
tensioning the tether includes proximally sliding the first and the second portions of the tether through the one-way locking opening in the first direction by pulling, in the first direction, on the looped middle portion.
For some applications:
the lateral wall is shaped so as to define first and second non-constraining openings, which are sized and shaped to allow free sliding therethrough of two longitudinal portions, respectively, of the single tether, and
sliding the tether through the one-way locking opening further includes sliding the two non-overlapping longitudinal portions of the tether through the first and the second non-constraining openings, respectively.
For some applications, the non-constraining openings are shaped as respective slits. For some applications, the method further includes connecting a fixation tether to the looped middle portion of the single tether. For some applications, the method further includes implanting a venous tissue anchor, which is connected to the fixation tether, in a vein selected from the group of veins consisting of: an inferior vena cava, a superior vena cava, and a coronary sinus. For some applications, implanting the venous tissue anchor includes implanting a stent.
For some applications, the second tissue anchor includes a head and a tissue-coupling element, and the tether-securing device is fixed to the head, such that the tether-securing device surrounds at least a portion of the head. For some applications, the tether-securing device is configured to rotate with respect to the head.
For some applications, the lateral wall is shaped so as to define a non-constraining opening, which is sized and shaped to allow free sliding therethrough of the tether, and sliding the tether through the one-way locking opening further includes sliding the tether through the non-constraining opening.
For some applications, the non-constraining opening is shaped as a slit.
For some applications:
the at least one tether includes first and second tethers, which (a) have the first tether end portion and a second tether end portion, respectively, and (b) pass through (i) the lumen and (ii) the one-way locking opening,
the second tissue anchor is connected to the second tether end portion,
the one-way locking opening is configured to (a) allow the sliding of the first and the second tethers in the first direction through the one-way locking opening, and (b) inhibit the sliding of the first and the second tethers in the second direction, and
tensioning the at least one tether includes tensioning the first and the second tethers by sliding the first and the second tethers in the first direction through the one-way locking opening.
For some applications:
the lateral wall is shaped so as to define first and second non-constraining openings, which are sized and shaped to allow free sliding therethrough of the first and the second tethers, respectively,
the first and the second tethers slidably pass through the first and the second non-constraining openings, respectively, and
sliding the first and the second tethers through the one-way locking opening further includes sliding the first and the second tethers through the first and the second non-constraining openings, respectively.
For some applications, the non-constraining openings are shaped as respective slits.
For some applications, the one-way locking opening is shaped as a slit.
For some applications, the first direction is from inside the tubular element to outside the tubular element.
For some applications, the one-way locking opening has uneven edges. For some applications, the uneven edges are jagged or serrated.
For some applications, an axial length of the tubular element is between 5 and 20 mm.
For some applications, the tubular element is cylindrical.
For some applications, the at least one tether defines a plurality of securement protrusions spaced at intervals along the at least one tether. For some applications, the protrusions are defined by respective knots in the at least one tether. For some applications, the protrusions include respective elements selected from the group consisting of: cones, scales, and beads.
For some applications, an average interval of the securement protrusions is between 1 and 5 mm.
For some applications, the method further includes:
implanting a venous tissue anchor in a vein selected from the group of veins consisting of: an inferior vena cava, a superior vena cava, and a coronary sinus; and
connecting, to the at least one tether, a fixation tether which is connected to the venous tissue anchor.
For some applications, implanting the venous tissue anchor includes implanting a stent.
There is further provided, in accordance with an application of the present invention, a method including:
delivering, to a vicinity of an anatomical site of a subject, (a) a tether, having first and second tether end portions, (b) first and second tissue anchors, fixed to the first and the second tether end portions, respectively, and (c) a tether-securing device, wherein the tether includes at least the following non-overlapping longitudinal portions disposed in sequence along the tether: (i) the first tether end portion, (ii) a first portion that passes through the lumen, (iii) a looped middle portion that (1) extends out of and away from the tether-securing device and (2) then loops back to the tether-securing device, (iv) a second portion that passes through the tether-securing device, and (v) the second tether end portion;
implanting the first and the second tissue anchors in tissue of the subject; and
tensioning the tether by proximally sliding the first and the second portions of the tether through the tether-securing device by pulling on the looped middle portion.
For some applications, delivering the tether includes delivering the tether such that the looped middle portion extends out of and away from the tether-securing device, such that a longitudinal center of the looped middle portion is not in direct physical contact with any portion of the tether-securing device.
For some applications, the method further includes connecting a fixation tether to the looped middle portion of the tether. For some applications, the method further includes implanting a venous tissue anchor, which is connected to the fixation tether, in a vein selected from the group of veins consisting of: an inferior vena cava, a superior vena cava, and a coronary sinus. For some applications, implanting the venous tissue anchor includes implanting a stent.
For some applications, the tether-securing device is configured to assume:
an unlocked configuration, in which the tether-securing device allows distal and proximal sliding of the first and the second portions of the tether therethrough, and
a one-way-locked configuration, in which the tether-securing device inhibits the distal sliding more than when in the unlocked configuration.
For some applications, the tether-securing device is configured to assume:
an unlocked configuration, in which the tether-securing device allows distal and proximal sliding of the first and the second portions of the tether therethrough, and
a locked configuration, in which the tether-securing device inhibits the distal and proximal sliding.
For some applications, the tether-securing device is configured to (a) allow sliding of the first and the second portions of the tether in a first direction through the tether-securing device, and (b) inhibit sliding of the first and the second portions of the tether in a second direction opposite the first direction.
There is still further provided, in accordance with an application of the present invention, a method including:
advancing a distal end of a catheter shaft of a multiple-anchor delivery tool into a body of a subject, while (a) first and second tissue anchors are removably positioned in the catheter shaft at first and second longitudinal locations, respectively, the first longitudinal location more distal than the second longitudinal location, wherein the first and the second tissue anchors include (i) first and second helical tissue coupling elements, respectively, and (ii) first and second heads, respectively, which include first and second tether interfaces, and (b) a tether, which is connected to the first tether interface, and is coupled to the second tether interface, is removably positioned in the catheter shaft, wherein the multiple-anchor delivery tool includes first and second torque cables, which (a) are removably coupled to the first and the second heads, respectively, (b) extend within the catheter shaft proximally from the first and the second heads, respectively, and (c) transmit torque when rotated, wherein a portion of the first torque cable is removably positioned alongside the second tissue anchor in the catheter shaft;
implanting the first tissue anchor into tissue of the subject by rotating the first torque cable;
decoupling the first torque cable from the first tissue anchor;
after implanting the first tissue anchor, distally advancing the second tissue anchor in the catheter shaft;
implanting the second tissue anchor into tissue of the subject by rotating the second torque cable; and
decoupling the second torque cable from the second tissue anchor.
For some applications:
the first torque cable is shaped so as to define a lumen therethrough,
the multiple-anchor delivery tool further includes a sharpened wire, which removably passes through the lumen, and which is initially positioned such that a distal end of the sharpened wire extends distally out of a distal end of the lumen, and
the method further includes withdrawing the sharpened wire proximally.
For some applications:
the head is shaped so as to define a proximal coupling element,
the head, including the proximal coupling element, is shaped so as to define a first longitudinal channel at least partially therethrough, which channel is coaxial with the head,
a distal end of the first torque cable includes a distal coupling element, which is shaped so as to define a second longitudinal channel therethrough, which channel is coaxial with the lumen of the first torque cable,
the proximal and the distal coupling elements are shaped so as to define corresponding interlocking surfaces,
the sharpened wire, when disposed through the first and the second channels, prevents decoupling of the distal coupling element from the proximal coupling element, and
withdrawing the sharpened wire proximally includes decoupling the distal coupling element from the proximal coupling element by withdrawing the sharpened wire proximally.
For some applications, the sharpened wire is shaped so as to define a sharp distal tip. For some applications, implanting the first tissue anchor includes inserting the sharp distal tip of the sharpened wire into the tissue.
For some applications:
advancing includes advancing the distal end of the catheter shaft into the body while (a) a third tissue anchor is removably positioned in the catheter shaft at a third longitudinal location that is more proximal than the second longitudinal location, and the third tissue anchor includes (i) a third helical tissue coupling elements and (ii) a third head, which includes a third tether interfaces, (b) the tether is coupled to the third tether interface,
the multiple-anchor delivery tool further includes a third torque cable, which (a) is removably coupled to the third head, (b) extends within the catheter shaft proximally from the third head, and (c) transmits torque when rotated, and a portion of the second torque cable is removably positioned alongside the third tissue anchor in the catheter shaft, and
the method further includes:
For some applications, the first tether interface is rotatable with respect to the first tissue-coupling element.
The present invention will be more fully understood from the following detailed description of applications thereof, taken together with the drawings, in which:
For some applications, first and second tissue anchors 52A and 52B are connected (e.g., permanently fixed) to first and second tether end portions 54A and 54B of the at least one tether 50, respectively (typically first and second tissue anchors 52A and 52B are connected to first and second tether ends of the at least one tether 50, respectively). The at least one tether 50 comprises an elongate flexible element, such as a cord, suture, or band. Typically, the at least one tether 50 has a high tensile strength, in order to enable the tether to apply tension, as described hereinbelow. It is noted that, although the tethers described herein are shown as ribbon-shaped sutures (i.e., having a generally rectangular cross-section), any suitable type of textile or suture, as is known in the art, may alternatively be used. For some applications, first and second tether end portions 54A and 54B are configured so as to define anchor-fixing loops 68A and 68B, respectively, which pass through corresponding interfaces on first and second tissue anchors 52A and 52B, respectively, so as to connect (e.g., permanently fix) the tether end portions to the tissue anchors.
Reference is still made to
The at least one tether 50 passes through securing-device lumen 36 and one-way locking opening 38. One-way locking opening 38 is configured to (a) allow sliding of the at least one tether 50 in a first direction through one-way locking opening 38, and (b) inhibit (e.g., prevent or limit) sliding of the at least one tether 50 in a second direction opposite the first direction. The one-way locking opening thus allows the tightening of tissue anchors 52A and 52B together, and resists the loosening of the anchors away from one another. For some applications, the first direction is from inside the tubular element to outside the tubular element. For some applications, in order to provide such unidirectional movement of the at least one tether, pawls 40A and 40B are configured to open outwardly but not open inwardly.
For some applications, such as shown in
Tether-securing device 30 thus fixes first and second portions 59A and 59B to each other. Typically, the longitudinal location of tether-securing device 30 along the single tether is set during an implantation procedure, such that respective distances between tether-securing device 30 and first and second tissue anchors 52A and 52B are set during the procedure rather than preconfigured. For some applications, these distances are set using echocardiography and by measuring regurgitant flow, annulus dimensions, and/or with the aid of radiopaque markers on tethers between the two tissue anchors. For some applications, the at least one tether 50 comprises exactly one tether 50.
For some applications, lateral wall 34 is shaped so as to define at least one non-constraining opening 60, such as first and second non-constraining openings 60A and 60B, disposed at respective circumferential locations different from the circumferential location of one-way locking opening 38. First and second non-constraining openings 60A and 60B are sized and shaped to allow free sliding therethrough of first and second longitudinal portions 62A and 62B of single tether 50, respectively. Typically, first and second non-overlapping longitudinal portions 62A and 62B slidably pass through first and second non-constraining openings 60A and 60B, respectively. For some applications, non-constraining openings 60 are shaped as respective slits (as shown), circles (not shown), or other shapes. For some applications in which the non-constraining openings are shaped as slits, the slits extend in a direction parallel to longitudinal axis 39 of tubular element 32.
For some applications, as shown, tubular element 32 is cylindrical. Alternatively, the tubular element may have other hollow shapes such as rectangular, triangular, or hexagonal. For some applications, an axial length of tubular element 32 is at least 5 mm, no more than 20 mm, and/or between 5 and 20 mm.
For some applications, first and second tissue anchor 52A and 52B comprise respective atrial tissue anchors. Alternatively or additionally, for some applications, first and second tissue anchor 52A and 52B comprise respective helical tissue-coupling elements, which puncture and screw into cardiac muscle tissue. For some applications, first and second tissue anchor 52A and 52B implement techniques described in U.S. Provisional Application 61/750,427, filed Jan. 9, 2013. Alternatively, each of first and second tissue anchors 52A and 52B comprises a clip, jaws, or a clamp which grips and squeezes a portion of cardiac muscle tissue and does not puncture the cardiac muscle tissue.
Valve-tensioning implant system 20 is typically implanted transvascularly, using a delivery system comprising one or more catheters introduced with the aid of a guidewire, through vasculature of the subject, such as (a) via the femoral vein, through an inferior vena cava 74, and into a right atrium 81, (b) via the basilic vein, through the subclavian vein through a superior vena cava 76, and into right atrium 81, or (c) via the external jugular vein, through the subclavian vein through superior vena cava 76, and into right atrium 81. (Right atrium 81 includes a septal leaflet 82, a posterior leaflet 84, and an anterior leaflet 86.) The procedure is typically performed with the aid of imaging, such as fluoroscopy, transesophageal, transthoracic echocardiography, intravascular ultrasound (IVUS), and/or echocardiography. The procedure may be performed using techniques described in US Patent Application Publication 2012/0035712, which is assigned to the assignee of the present application and is incorporated herein by reference, with reference to
First and second tissue anchor 52A and 52B are implanted at respective different second atrial sites 70A and 70B, each of which sites is selected from the group of sites consisting of: an annulus of tricuspid valve 22, and a wall of the right atrium of the heart above the annulus. For applications in which first and second tissue anchors 52A and 52B comprise respective helical tissue-coupling elements, the helical tissue-coupling elements are rotated into tissue at the sites, respectively. For example, first and second tissue coupling elements may be implanted within 1 cm of a first site on the annulus and within 1 cm of a second site on the annulus around the valve, respectively. For example, as shown in
The size of the tricuspid valve orifice is reduced by tensioning tether 50, so as to reduce regurgitation. Such tensioning may be performed by holding a catheter shaft (such as outer shaft 384, described hereinbelow with reference to
After tether 50 has been tensioned, an excess portion 94 of tether 50 near looped middle portion 88 remains free in right atrium 81. It is generally undesirable to leave this excess portion free to move around in the atrium. For some applications, excess portion is secured in a desired disposition in the vasculature of right atrium 81, such as in inferior vena cava 74 (as shown in
Reference is now made to
For some applications, lateral wall 34 is shaped so as to define at least two non-constraining openings 60, such as first and second non-constraining openings 60A and 60B, disposed at respective circumferential locations different from the circumferential location of one-way locking opening 38. First and second non-constraining openings 60A and 60B are sized and shaped to allow free sliding therethrough of first and second tethers 50A and 50B, respectively. First and second tethers 50A and 50B slidably pass through first and second non-constraining openings 60A and 60B, respectively. For some applications, non-constraining openings 60 are shaped as respective slits (as shown), circles (not shown), or other shapes. For some applications in which the non-constraining openings are shaped as slits, the slits extend in a direction parallel to longitudinal axis 39 of tubular element 32.
For some applications, free end portions 53 of first and second tethers 50A and 50B (opposite first and second tether end portions 54A and 54B) are connected, typically during the implantation procedure, to fixation tether 404, described hereinbelow with reference to
Reference is made to
Reference is now made to
Reference is still made to
Typically, first tissue anchor 252A is connected (e.g., permanently fixed) to first tether end portion 54A of tether 50. For some applications, first tether end portion 54A is configured so as to define anchor-fixing loop 68A, which passes through a corresponding interface on first tissue anchor 52A so as to connect (e.g., permanently fix) the tether end portion to the tissue anchor.
In this configuration, typically a single tether 50 of the at least one tether 50 has first and second tether end portions 54A and 54B. (The at least one tether 50 may or may not comprise additional tethers in addition to the single tether.) A longitudinal portion 257 of single tether 50 passes through (a) securing-device lumen 36 and (b) one-way locking opening 38 of tether-securing device 230. For some applications, the at least one tether 50 comprises exactly one tether 50.
For some applications, lateral wall 34 of tether-securing device 230 is shaped so as to define a non-constraining opening 60, such as exactly one non-constraining opening 60, as shown in
Valve-tensioning implant system 120 is typically implanted transcatheterly, using a delivery system comprising one or more catheters introduced with the aid of a guidewire, through vasculature of the subject, such as (a) via the femoral vein, through inferior vena cava 74, and into right atrium 81, (b) via the basilic vein, through the subclavian vein through superior vena cava 76, and into right atrium 81, or (c) via the external jugular vein, through the subclavian vein through superior vena cava 76, and into right atrium 81. The procedure is typically performed with the aid of imaging, such as fluoroscopy, transesophageal, transthoratic echocardiography, IVUS, and/or echocardiography. The procedure may be performed using techniques described in US Patent Application Publication 2012/0035712, which is assigned to the assignee of the present application and is incorporated herein by reference, with reference to
First and second tissue anchor 252A and 252B are implanted at respective different second atrial sites 270A and 270B, each of which sites is selected from the group of sites consisting of: an annulus of tricuspid valve 22, and a wall of the right atrium of the heart above the annulus. For applications in which first and second tissue anchors 252A and 252B comprise respective helical tissue-coupling elements, the helical tissue-coupling elements are rotated into tissue at the sites, respectively. For example, as shown in
The size of the tricuspid valve orifice is reduced by tensioning tether 50, so as to reduce regurgitation. Such tensioning may be performed by proximally pulling on second tether end portion 54B of tether 50, such that a portion of tether 50 is pulled through one-way locking opening 38. For example, a flexible longitudinal guide member 390 (as shown below in
After tether 50 has been tensioned, an excess portion 294 of tether 50, including second tether end portion 54B, remains free in right atrium 81. It is generally undesirable to leave this excess portion free to move around in the atrium. For some applications, excess portion is secured in a desired disposition in the vasculature of right atrium 81, such as in inferior vena cava 74 (as shown in
Reference is now made to
Reference is now made to
Tether-securing device 330 further comprises three or more locking pieces 341 (which may be considered pawls), which extend proximally from proximal end 335 of tubular element 332. Tether-securing device 330 is configured:
For some applications, such as shown in
Tether-securing device 330 thus fixes first and second portions 359A and 359B to each other, either (a) directly, if the two portions touch one another between locking pieces 341, or (b) indirectly, via the tether-securing device, if the two portions do not touch one another in the one-way locking opening (such as if they are at different circumferential positions around the tether-securing device). For some applications, the at least one tether 350 comprises exactly one tether 350. For applications in which the at least one tether 350 comprises two tethers 350, such as described hereinbelow with reference to
For some applications, locking pieces 341 comprise exactly three locking pieces (as shown) or exactly four locking pieces (configuration not shown). Typically, locking pieces 341 are integral with tubular element 332, and the locking pieces and tubular element are manufactured from a single piece of material. For some applications, tubular element 332 has an inner diameter of at least 3 mm, no more than 12 mm, and/or between 3 and 12 mm, and/or an outer diameter of at least 3.1 mm, no more than 12.1 mm, and/or between 3.1 and 12.1 mm.
For some applications, each of locking pieces 341 is shaped so as to define two curved proximal edges 343A and 343B that meet at a proximal tip 345. For some applications, proximal edges 343A and 343B are shaped so as to define uneven edge surfaces, which, for example, may be jagged or serrated. The uneven edge surfaces of proximal edge 343A interconnect with the uneven edge surfaces of proximal edge 343B, thereby creating friction on the at least one tether 350 and inhibiting (e.g., preventing) sliding of the at least one tether through the tether-securing device, at least in the distal direction. For some applications, the uneven edge surfaces are shaped so as define teeth, such as shown in
In the relaxed state, such as shown in
For some applications, as shown, tubular element 332 is cylindrical. Alternatively, the tubular element has another shape. For some applications, an axial length of tubular element 332 is at least 3 mm, no more than 50 mm, and/or between 3 and 50 mm; an axial length of tether-securing device 330 when in the unlocked configuration is between 3 and 50 mm; and/or an axial length of tether-securing device 330 when in the one-way-locked configuration is between 3 and 50 mm.
Reference is again made to
Valve-tensioning implant system 320 is typically implanted transvascularly, using a delivery system comprising one or more catheters introduced with the aid of a guidewire, through vasculature of the subject, such as (a) via the femoral vein, through inferior vena cava 74, and into right atrium 81, (b) via the basilic vein, through the subclavian vein through superior vena cava 76, and into right atrium 81, or (c) via the external jugular vein, through the subclavian vein through superior vena cava 76, and into right atrium 81. The procedure is typically performed with the aid of imaging, such as fluoroscopy, transesophageal, transthoratic echocardiography, IVUS, and/or echocardiography. The procedure may be performed using techniques described in US Patent Application Publication 2012/0035712, which is assigned to the assignee of the present application and is incorporated herein by reference, with reference to
At the beginning of the procedure, tether-securing device 330 resides on inner shaft 382, such that the inner shaft holds locking pieces 341 in the constrained state, and tether-securing device 330 in the unlocked configuration. A distal end 386 of outer shaft 384 is held by the surgeon proximal to a proximal end of tether-securing device 330. Typically, tether-securing device 330 is delivered to a vicinity of the target site (e.g., to right atrium 81) with the at least one tether 350 pre-threaded through securing-device lumen 336.
As shown in
A size of a tricuspid valve orifice is reduced by tensioning tether 350, so as to reduce regurgitation. Such tensioning may be performed by distally advancing inner shaft 382 while proximally pulling on looped middle portion 388 of tether 350 (shown and labeled in
After tether 350 has been tensioned, tether-securing device 330 is transitioned to the one-way-locked configuration, by holding tether-securing device 330 in place by holding inner shaft 382 in place, and distally advancing outer shaft 384, as shown in
Reference is now made to
In some applications of the present invention, valve-tensioning implant system 320 further comprises a venous tissue anchor 400, for holding excess portion 394 secured in a desired disposition in the vasculature of right atrium 81. Venous tissue anchor 400 is configured to be implanted at an implantation site upstream of the tricuspid valve.
By way of example and not limitation, in the deployment configuration shown in
For some applications, venous tissue anchor 400 comprises an intraluminal stent 402. The stent is configured to be implanted in the vein by applying an outward radial force to the wall of the vein. Typically, the stent is configured to self-expand. For example, the stent may comprise a shape-memory alloy, such as Nitinol. Alternatively, the stent comprises a deformable metal, and is expanded by a tool, such as a balloon. For some applications, stent 402 comprises a plurality of interconnected superelastic metallic struts, arranged so as to allow crimping the stent into a relatively small diameter (typically less than 8 mm) catheter, while allowing deployment to a much larger diameter (typically more than 20 mm) in the vein, while still maintaining radial force against the tissue of the wall of the vein, in order to anchor stent 402 to the wall of the vein by friction. Typically, the stent is configured to not penetrate tissue of the wall of the vein. For some applications, stent 402 implements techniques described in U.S. Provisional Application 61/783,224, filed Mar. 14, 2013, which is assigned to the assignee of the present application and is incorporated herein by reference.
For applications in which venous tissue anchor 400 is implanted in superior vena cava 76 or inferior vena cava 78, intraluminal stent 402 typically has a greatest outer diameter of at least 20 mm, no more than 50 mm, and/or between 20 and 50 mm, when unconstrained and fully radially expanded, i.e., no forces are applied to the stent by a delivery tool, walls of a blood vessel, or otherwise. For applications in which first venous tissue anchor 400 is implanted in coronary sinus 115, intraluminal stent 402 typically has a greatest outer diameter of at least 8 mm, no more than 15 mm, and/or between 8 and 15 mm, when unconstrained and fully radially expanded.
Alternatively, excess portion 394 is cut and removed from the atrium, such as using techniques described hereinbelow with reference to
Reference is now made to
For some applications, after tension is applied to first and second tethers 350A and 350B and tether-securing device 330 has been transitioned to the one-way-locked configuration, excess portions 494 of tethers 350A and 350B are cut and removed from the atrium, using cutting tool 498. Alternatively, excess portions 494 are held in a desired disposition, such as using techniques described hereinabove with reference to
Reference is made to
Reference is now made to
Typically, tether 550 defines a plurality of securement protrusions 560 spaced at intervals (I) along tether 550, which protrusions serve as the friction-enhancing features. The protrusions may also serve to ratchet the tether unidirectionally through one-way locking opening 38 of tether-securing device 30, or proximal edges 343A and 343B of locking pieces 341 of tether-securing device 330, as the case may be. For some applications, an average interval of securement protrusions 560 along tether 550 is at least 1 mm, no more than 5 mm, and/or between 1 and 5 mm.
For some applications, protrusions 560 are defined by respective knots 570 in tether 550, such as shown in
Reference is now made to
For some applications, implant system 320 comprises a male coupling 680 of a first flexible-longitudinal-member-coupling element 682 of an intraluminal locking mechanism 684 which is connected to a female coupling during implantation, such as in order to allow implantation of the third tissue anchor with a separate catheter delivery system, such as described in above-mentioned US Patent Application Publication 2013/0018459, for example with reference to
Multiple-anchor delivery tool 600 comprises outer shaft 384 and inner shaft 382. Inner shaft 382 has proximal and distal ends 610 and 612. First and second tissue anchors 352A and 352B are initially removably positioned in inner shaft 382 at first and second longitudinal locations 614 and 616, respectively. First longitudinal location 614 is more distal than second longitudinal location 616. In other words, the tissue anchors are initially positioned in the desired sequence of deployment in inner shaft 382, with the first anchor to be deployed positioned more distally than the subsequent anchor(s) to be deployed. The tissue anchors are interconnected by tether 350.
Multiple-anchor delivery tool 600 further comprises first and second torque cables 620 and 622, which (a) are removably coupled to first and second heads 670A and 670B of first and second tissue anchors 352A and 352B, respectively, (b) extend within inner shaft 382 proximally from first and second heads 670A and 670B, respectively, and (c) transmit torque when rotated, for rotating tissue-coupling elements 648A and 648B of first and second tissue anchors 352A and 352B, respectively, into tissue. Typically, the torque cables additionally transmit axial force, to enable pushing of the tissue-coupling elements 648A and 648B into the tissue as they are rotated. A portion 630 of first torque cable 620 is initially removably positioned alongside second tissue anchor 352B in inner shaft 382. Thus each anchor is separately connected to a control handle 770 by its own torque cable, which allows full and separate control of deployment of each anchor by an operator of the multiple-anchor delivery tool.
For some applications, implant system 320 comprises one or more additional tissue anchors, and tool 600 correspondingly comprises one or more additional torque cables, removably coupled to the tissue coupling elements, as described herein. These additional tissue anchors are initially removably positioned in inner shaft 382 proximal to second longitudinal location 616. For example, implant system 320 may further comprise a third tissue anchor, which comprises (a) a third helical tissue coupling elements, and (b) a third head, which comprises a third tether interface; the tether is coupled to (e.g., slidably coupled to) the third tether interface; the third tissue anchor is removably positioned in inner shaft 382 at a third longitudinal location that is more proximal than second longitudinal location 616; and multiple-anchor delivery tool 600 further comprises a third torque cable, which (a) is removably coupled to the third head, (b) extends within the inner shaft proximally from the third head, and (c) transmits torque when rotated, wherein a portion of the second torque cable is removably positioned alongside the third tissue anchor in the inner shaft.
For some applications, first torque cable 620 is shaped so as to define a lumen 640 therethrough, and multiple-anchor delivery tool 600 further comprises a sharpened wire 642, which removably passes through lumen 640. A distal end of first torque cable 620 comprises a distal coupling element 650, which is configured to be removably coupled to a corresponding proximal coupling element 652 defined by a proximal portion of first head 670A. Distal and proximal coupling elements 650 and 652 are shaped so as to define corresponding interlocking surfaces, such that the coupling elements interlock, thereby mating the coupling elements to one another. First head 670A, including proximal coupling element 652, is shaped so as to define a first longitudinal channel 656 at least partially therethrough (typically entirely therethrough), which channel is coaxial with first head 670A. Distal coupling element 650 is shaped so as to define a second longitudinal channel 658 therethrough, which is coaxial with lumen 640 of first torque cable 620. First and second channels 656 and 658 are radially aligned with one another. When a portion of sharpened wire 642 is positioned in these channels, the sharpened wire prevents decoupling of distal coupling element 650 from proximal coupling element 652. Upon removal of sharpened wire 642 from channels 656 and 658 and the coupling elements 650 and 652, the coupling elements are free to be decoupled from one another.
For some applications, sharpened wire 642 is shaped so as to define a sharp distal tip 660. For these applications, first tissue anchor 352A typically is helical, and sharpened wire 642 is initially removably positioned within a channel defined by the helix. As tissue anchor 352A is screwed into tissue, sharpened wire 642 penetrates and advances into the tissue along with the anchor to a certain depth in the tissue. For some applications, when the shaft penetrates to the certain depth, the sharpened wire is withdrawn slightly. Typically, after tissue anchor 352A has been fully implanted, sharpened wire 642 is withdrawn entirely from the tissue, and removed from the patient's body. Optionally, the sharp distal tip of sharpened wire 642 is inserted into the tissue slightly, even before insertion of tissue anchor 352A, in order to prevent sliding of the tissue-coupling element on the surface of the tissue before commencement of insertion of the tissue-coupling element into the tissue.
After implantation of tissue anchor 352A, sharpened wire 642 is withdrawn proximally from the channel of tissue anchor 352A and from channels 656 and 658 of distal and proximal coupling elements 650 and 652, thereby decoupling the coupling elements from one another, and decoupling first torque cable 620 from first head 670A. After such proximal withdrawal, sharpened wire 642 typically remains within lumen 640 of first torque cable 620.
For some applications, the decoupling of first torque cable 620 and first head 670A is performed alternatively or additionally using techniques described in US Patent Application Publication 2012/0035712, which is assigned to the assignee of the present application and is incorporated herein by reference, such as with reference to
Second torque cable 622 and second tissue anchor 352B similarly comprise the above-mentioned elements (e.g., the sharpened wire and coupling elements), and are similarly configured, as do any additional torque cables and tissue anchors that may be provided, as described above.
Multiple-anchor delivery tool 600 further comprises control handle 770, which is configured to control the deployment of the tissue anchors, by rotating the torque cables, distally advancing the anchors through inner shaft 382, and proximally withdrawing the sharpened wires and torque cables. Control handle 770 may implement features of handle portion 1004, described with reference to
Reference is now made to
Distal end 612 of inner shaft 382 of multiple-anchor delivery tool 600 is advanced into a body of a subject, while (a) first and second tissue anchors 352A and 352B are removably positioned in inner shaft 382 at first and second longitudinal locations 614 and 616, respectively, first longitudinal location 614 more distal than second longitudinal location 616. Portion 630 of first torque cable 620 is removably positioned alongside second tissue anchor 352B in inner shaft 382. Thus, inner shaft 382 does not need to be withdrawn and reintroduced from the body during the implantation procedure.
As shown in
As shown in
As shown in
Tether 350 may be tensioned so as to apply tension between the first and the second tissue anchors, such as described hereinabove with reference to
The scope of the present invention includes embodiments described in the following applications, which are assigned to the assignee of the present application and are incorporated herein by reference. In an embodiment, techniques and apparatus described in one or more of the following applications are combined with techniques and apparatus described herein:
In particular, the stents described herein may be used as one or more of the stents described in the above-listed applications, in combination with the other techniques described therein.
It will be appreciated by persons skilled in the art that the present invention is not limited to what has been particularly shown and described hereinabove. Rather, the scope of the present invention includes both combinations and subcombinations of the various features described hereinabove, as well as variations and modifications thereof that are not in the prior art, which would occur to persons skilled in the art upon reading the foregoing description.
The present application claims priority from U.S. Provisional Application 61/897,491, filed Oct. 30, 2013, which is assigned to the assignee of the present application and is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3874388 | King et al. | Apr 1975 | A |
4214349 | Munch | Jul 1980 | A |
4423525 | Vallana et al. | Jan 1984 | A |
4493329 | Crawford et al. | Jan 1985 | A |
4532926 | O'Holla | Aug 1985 | A |
4602911 | Ahmadi et al. | Jul 1986 | A |
4625727 | Leiboff | Dec 1986 | A |
4778468 | Hunt et al. | Oct 1988 | A |
4853986 | Allen | Aug 1989 | A |
5108420 | Marks | Apr 1992 | A |
5330521 | Cohen | Jul 1994 | A |
5450860 | O'Connor | Sep 1995 | A |
5473812 | Morris et al. | Dec 1995 | A |
5474518 | Farrer Velazquez | Dec 1995 | A |
5643289 | Sauer et al. | Jul 1997 | A |
5776178 | Pohndorf et al. | Jul 1998 | A |
5792400 | Talja et al. | Aug 1998 | A |
5843120 | Israel et al. | Dec 1998 | A |
5843164 | Frantzen et al. | Dec 1998 | A |
5948000 | Larsen et al. | Sep 1999 | A |
5957953 | DiPoto et al. | Sep 1999 | A |
5961440 | Schweich, Jr. et al. | Oct 1999 | A |
6024756 | Huesbsch et al. | Feb 2000 | A |
6027523 | Schmieding | Feb 2000 | A |
6045497 | Schweich, Jr. et al. | Apr 2000 | A |
6050936 | Schweich, Jr. et al. | Apr 2000 | A |
6077214 | Mortier et al. | Jun 2000 | A |
6183512 | Howanec, Jr. et al. | Feb 2001 | B1 |
6193734 | Bolduc et al. | Feb 2001 | B1 |
6210432 | Solem et al. | Apr 2001 | B1 |
6298272 | Peterfeso et al. | Oct 2001 | B1 |
6299635 | Frantzen | Oct 2001 | B1 |
6332893 | Mortier et al. | Dec 2001 | B1 |
6338738 | Bellotti et al. | Jan 2002 | B1 |
6402780 | Williamson, IV et al. | Jun 2002 | B2 |
6402781 | Langberg et al. | Jun 2002 | B1 |
6406420 | McCarthy et al. | Jun 2002 | B1 |
6533810 | Hankh et al. | Mar 2003 | B2 |
6537198 | Vidlund et al. | Mar 2003 | B1 |
6537314 | Langberg et al. | Mar 2003 | B2 |
6575976 | Grafton | Jun 2003 | B2 |
6585766 | Huynh et al. | Jul 2003 | B1 |
6602288 | Cosgrove et al. | Aug 2003 | B1 |
6613078 | Barone | Sep 2003 | B1 |
6613079 | Wolinsky et al. | Sep 2003 | B1 |
6616684 | Vidlund et al. | Sep 2003 | B1 |
6619291 | Hlavka et al. | Sep 2003 | B2 |
6622730 | Ekvall et al. | Sep 2003 | B2 |
6626899 | Houser et al. | Sep 2003 | B2 |
6626930 | Allen et al. | Sep 2003 | B1 |
6629534 | St. Goar et al. | Oct 2003 | B1 |
6629921 | Schweich, Jr. et al. | Oct 2003 | B1 |
6641597 | Burkhart et al. | Nov 2003 | B2 |
6645193 | Mangosong | Nov 2003 | B2 |
6702846 | Mikus et al. | Mar 2004 | B2 |
6709456 | Langberg et al. | Mar 2004 | B2 |
6718985 | Hlavka et al. | Apr 2004 | B2 |
6719767 | Kimblad | Apr 2004 | B1 |
6723038 | Schroeder et al. | Apr 2004 | B1 |
6730118 | Spenser et al. | May 2004 | B2 |
6743198 | Tihon | Jun 2004 | B1 |
6746472 | Frazier et al. | Jun 2004 | B2 |
6764510 | Vidlund et al. | Jul 2004 | B2 |
6776754 | Wilk | Aug 2004 | B1 |
6797001 | Mathis et al. | Sep 2004 | B2 |
6810882 | Langberg et al. | Nov 2004 | B2 |
6884250 | Monassevitch et al. | Apr 2005 | B2 |
6893459 | Macoviak | May 2005 | B1 |
6908478 | Alferness et al. | Jun 2005 | B2 |
6929660 | Ainsworth et al. | Aug 2005 | B1 |
6989028 | Lashinski et al. | Jan 2006 | B2 |
6997951 | Solem et al. | Feb 2006 | B2 |
7011682 | Lashinski et al. | Mar 2006 | B2 |
7041097 | Webler | May 2006 | B1 |
7044967 | Solem et al. | May 2006 | B1 |
7056333 | Walshe | Jun 2006 | B2 |
7063711 | Loshakove et al. | Jun 2006 | B1 |
7077861 | Spence | Jul 2006 | B2 |
7083628 | Bachman | Aug 2006 | B2 |
7087064 | Hyde | Aug 2006 | B1 |
7094244 | Schreck | Aug 2006 | B2 |
7101395 | Tremulis et al. | Sep 2006 | B2 |
7101396 | Artof et al. | Sep 2006 | B2 |
7112219 | Vidlund et al. | Sep 2006 | B2 |
7125421 | Tremulis et al. | Oct 2006 | B2 |
7144363 | Pai et al. | Dec 2006 | B2 |
7159593 | McCarthy et al. | Jan 2007 | B2 |
7166127 | Spence et al. | Jan 2007 | B2 |
7169187 | Datta et al. | Jan 2007 | B2 |
7175625 | Culbert | Feb 2007 | B2 |
7186262 | Saadat | Mar 2007 | B2 |
7189199 | McCarthy et al. | Mar 2007 | B2 |
7192442 | Solem et al. | Mar 2007 | B2 |
7192443 | Solem et al. | Mar 2007 | B2 |
7201772 | Schwammenthal et al. | Apr 2007 | B2 |
7211110 | Rowe et al. | May 2007 | B2 |
7241257 | Ainsworth et al. | Jul 2007 | B1 |
7247134 | Vidlund et al. | Jul 2007 | B2 |
7258697 | Cox et al. | Aug 2007 | B1 |
7291168 | Macoviak et al. | Nov 2007 | B2 |
7311728 | Solem et al. | Dec 2007 | B2 |
7316706 | Bloom et al. | Jan 2008 | B2 |
7316710 | Cheng et al. | Jan 2008 | B1 |
7329279 | Haug et al. | Feb 2008 | B2 |
7331972 | Cox | Feb 2008 | B1 |
7335213 | Hyde et al. | Feb 2008 | B1 |
7338506 | Caro | Mar 2008 | B2 |
7351256 | Hojeibane et al. | Apr 2008 | B2 |
7371244 | Chatlynne et al. | May 2008 | B2 |
7374573 | Gabbay | May 2008 | B2 |
7381210 | Zarbatany et al. | Jun 2008 | B2 |
7381220 | Macoviak et al. | Jun 2008 | B2 |
7390329 | Westra et al. | Jun 2008 | B2 |
7431692 | Zollinger et al. | Oct 2008 | B2 |
7431726 | Spence et al. | Oct 2008 | B2 |
7485143 | Webler et al. | Feb 2009 | B2 |
7500989 | Solem et al. | Mar 2009 | B2 |
7503931 | Kowalsky et al. | Mar 2009 | B2 |
7510575 | Spenser et al. | Mar 2009 | B2 |
7527646 | Rahdert et al. | May 2009 | B2 |
7530995 | Quijano et al. | May 2009 | B2 |
7547321 | Silvestri et al. | Jun 2009 | B2 |
7549983 | Roue et al. | Jun 2009 | B2 |
7608102 | Adams et al. | Oct 2009 | B2 |
7618449 | Tremulis et al. | Nov 2009 | B2 |
7628797 | Tieu et al. | Dec 2009 | B2 |
7632303 | Stalker et al. | Dec 2009 | B1 |
7637946 | Solem et al. | Dec 2009 | B2 |
7655040 | Douk et al. | Feb 2010 | B2 |
7666204 | Thornton et al. | Feb 2010 | B2 |
7695512 | Lashinski et al. | Apr 2010 | B2 |
7704277 | Zakay et al. | Apr 2010 | B2 |
7722523 | Mortier et al. | May 2010 | B2 |
7736378 | Maahs | Jun 2010 | B2 |
7758632 | Hojeibane et al. | Jul 2010 | B2 |
7766816 | Chin et al. | Aug 2010 | B2 |
7771467 | Svensson | Aug 2010 | B2 |
7780702 | Shiono | Aug 2010 | B2 |
7780726 | Seguin | Aug 2010 | B2 |
7785366 | Maurer et al. | Aug 2010 | B2 |
7803187 | Hauser | Sep 2010 | B2 |
7806910 | Anderson | Oct 2010 | B2 |
7841502 | Walberg et al. | Nov 2010 | B2 |
7871433 | Lattouf | Jan 2011 | B2 |
7883539 | Schweich, Jr. et al. | Feb 2011 | B2 |
7892214 | Kagan et al. | Feb 2011 | B2 |
7930016 | Saadat | Apr 2011 | B1 |
7947207 | McNiven et al. | May 2011 | B2 |
7988725 | Gross et al. | Aug 2011 | B2 |
7991484 | Sengupta et al. | Aug 2011 | B1 |
7992567 | Hirotsuka et al. | Aug 2011 | B2 |
7993368 | Gambale et al. | Aug 2011 | B2 |
7993397 | Lashinski et al. | Aug 2011 | B2 |
8010207 | Smits et al. | Aug 2011 | B2 |
8029518 | Goldfarb et al. | Oct 2011 | B2 |
8052592 | Goldfarb et al. | Nov 2011 | B2 |
8075616 | Solem et al. | Dec 2011 | B2 |
8092520 | Quadri | Jan 2012 | B2 |
8092525 | Eliasen et al. | Jan 2012 | B2 |
8100820 | Hauser et al. | Jan 2012 | B2 |
8108054 | Helland | Jan 2012 | B2 |
8142493 | Spence et al. | Mar 2012 | B2 |
8142495 | Hasenkam et al. | Mar 2012 | B2 |
8157810 | Case et al. | Apr 2012 | B2 |
8202281 | Voss | Jun 2012 | B2 |
8202315 | Hlavka et al. | Jun 2012 | B2 |
8216302 | Wilson et al. | Jul 2012 | B2 |
8226707 | White | Jul 2012 | B2 |
8236013 | Chu | Aug 2012 | B2 |
8236049 | Rowe et al. | Aug 2012 | B2 |
8252005 | Findlay, III et al. | Aug 2012 | B2 |
8262567 | Sharp et al. | Sep 2012 | B2 |
8262724 | Seguin et al. | Sep 2012 | B2 |
8262725 | Subramanian | Sep 2012 | B2 |
8267981 | Boock et al. | Sep 2012 | B2 |
8313497 | Walberg et al. | Nov 2012 | B2 |
8313498 | Pantages et al. | Nov 2012 | B2 |
8323312 | Clark | Dec 2012 | B2 |
8323335 | Rowe et al. | Dec 2012 | B2 |
8332051 | Sommer et al. | Dec 2012 | B2 |
8361088 | McIntosh | Jan 2013 | B2 |
8382829 | Call et al. | Feb 2013 | B1 |
8394008 | Annest et al. | Mar 2013 | B2 |
8398672 | Kleshinski et al. | Mar 2013 | B2 |
8409273 | Thornton et al. | Apr 2013 | B2 |
8419753 | Stafford | Apr 2013 | B2 |
8430893 | Ma | Apr 2013 | B2 |
8449606 | Eliasen et al. | May 2013 | B2 |
8460368 | Taylor et al. | Jun 2013 | B2 |
8460371 | Hlavka et al. | Jun 2013 | B2 |
8475525 | Maisano et al. | Jul 2013 | B2 |
8480691 | Dana et al. | Jul 2013 | B2 |
8480730 | Maurer et al. | Jul 2013 | B2 |
8518107 | Tsukashima et al. | Aug 2013 | B2 |
8523881 | Cabiri et al. | Sep 2013 | B2 |
8524132 | Von Oepen et al. | Sep 2013 | B2 |
8529621 | Alfieri et al. | Sep 2013 | B2 |
8545553 | Zipory et al. | Oct 2013 | B2 |
8568475 | Nguyen et al. | Oct 2013 | B2 |
8568476 | Rao et al. | Oct 2013 | B2 |
8591460 | Wilson et al. | Nov 2013 | B2 |
8597347 | Maurer et al. | Dec 2013 | B2 |
8628569 | Benichou et al. | Jan 2014 | B2 |
8628571 | Hacohen et al. | Jan 2014 | B1 |
8647368 | Ducharme | Feb 2014 | B2 |
8663248 | Zung et al. | Mar 2014 | B2 |
8685080 | White | Apr 2014 | B2 |
8685083 | Perier et al. | Apr 2014 | B2 |
8728097 | Sugimoto et al. | May 2014 | B1 |
8747463 | Fogarty et al. | Jun 2014 | B2 |
8753357 | Roorda et al. | Jun 2014 | B2 |
8753373 | Chau et al. | Jun 2014 | B2 |
8758402 | Jenson et al. | Jun 2014 | B2 |
8778017 | Eliasen et al. | Jul 2014 | B2 |
8784481 | Alkhatib et al. | Jul 2014 | B2 |
8790394 | Miller et al. | Jul 2014 | B2 |
8795356 | Quadri et al. | Aug 2014 | B2 |
8808366 | Braido et al. | Aug 2014 | B2 |
8808368 | Maisano et al. | Aug 2014 | B2 |
8845723 | Spence et al. | Sep 2014 | B2 |
8852270 | Maurer et al. | Oct 2014 | B2 |
8858594 | Clark | Oct 2014 | B2 |
8858623 | Miller et al. | Oct 2014 | B2 |
8864822 | Spence et al. | Oct 2014 | B2 |
8870949 | Rowe | Oct 2014 | B2 |
8870950 | Hacohen | Oct 2014 | B2 |
8893947 | Reynolds et al. | Nov 2014 | B2 |
8911461 | Traynor et al. | Dec 2014 | B2 |
8926691 | Chau et al. | Jan 2015 | B2 |
8945177 | Dell et al. | Feb 2015 | B2 |
8945211 | Sugimoto | Feb 2015 | B2 |
8951285 | Sugimoto et al. | Feb 2015 | B2 |
8961594 | Maisano et al. | Feb 2015 | B2 |
8961596 | Maisano | Feb 2015 | B2 |
8968335 | Robinson et al. | Mar 2015 | B2 |
8968336 | Conklin et al. | Mar 2015 | B2 |
8968395 | Hauser et al. | Mar 2015 | B2 |
8979750 | Van Bladel et al. | Mar 2015 | B2 |
8979922 | Jayasinghe et al. | Mar 2015 | B2 |
8979923 | Spence et al. | Mar 2015 | B2 |
9005273 | Salahieh et al. | Apr 2015 | B2 |
9011468 | Ketai et al. | Apr 2015 | B2 |
9017347 | Oba et al. | Apr 2015 | B2 |
9107749 | Bobo et al. | Apr 2015 | B2 |
8961595 | Alkhatib | May 2015 | B2 |
9034032 | McLean et al. | May 2015 | B2 |
9078652 | Conklin et al. | Jul 2015 | B2 |
9084676 | Chau et al. | Jul 2015 | B2 |
9131939 | Call et al. | Sep 2015 | B1 |
9138335 | Cartledge et al. | Sep 2015 | B2 |
9180005 | Lashinski et al. | Nov 2015 | B1 |
9192471 | Bolling | Nov 2015 | B2 |
9211115 | Annest et al. | Dec 2015 | B2 |
9211203 | Pike et al. | Dec 2015 | B2 |
9241706 | Paraschac et al. | Jan 2016 | B2 |
9259218 | Robinson | Feb 2016 | B2 |
9259317 | Wilson et al. | Feb 2016 | B2 |
9282965 | Kokish | Mar 2016 | B2 |
9289282 | Olson et al. | Mar 2016 | B2 |
9289297 | Wilson et al. | Mar 2016 | B2 |
9301749 | Rowe et al. | Apr 2016 | B2 |
9314242 | Bachman | Apr 2016 | B2 |
9358111 | Spence et al. | Jun 2016 | B2 |
9408607 | Cartledge et al. | Aug 2016 | B2 |
9474605 | Rowe et al. | Oct 2016 | B2 |
9662212 | Van Bladel et al. | May 2017 | B2 |
20010018611 | Salem et al. | Aug 2001 | A1 |
20020013571 | Goldfarb et al. | Jan 2002 | A1 |
20020032481 | Gabbay | Mar 2002 | A1 |
20020107564 | Cox et al. | Aug 2002 | A1 |
20020151961 | Lashinski et al. | Oct 2002 | A1 |
20020177904 | Huxel et al. | Nov 2002 | A1 |
20030033003 | Harrison et al. | Feb 2003 | A1 |
20030057156 | Peterson et al. | Mar 2003 | A1 |
20030083742 | Spence et al. | May 2003 | A1 |
20030093096 | McGuckin, Jr. et al. | May 2003 | A1 |
20030167071 | Martin et al. | Sep 2003 | A1 |
20030229350 | Kay | Dec 2003 | A1 |
20030229361 | Jackson | Dec 2003 | A1 |
20030236568 | Hojeibane et al. | Dec 2003 | A1 |
20040117009 | Cali et al. | Jun 2004 | A1 |
20040133274 | Webler et al. | Jul 2004 | A1 |
20040172046 | Hlavka et al. | Sep 2004 | A1 |
20040181287 | Gellman | Sep 2004 | A1 |
20040186566 | Hindrichs et al. | Sep 2004 | A1 |
20040193092 | Deal | Sep 2004 | A1 |
20040236372 | Anspach, III | Nov 2004 | A1 |
20040236419 | Milo | Nov 2004 | A1 |
20040260389 | Case et al. | Dec 2004 | A1 |
20050016560 | Voughlohn | Jan 2005 | A1 |
20050055089 | Macoviak et al. | Mar 2005 | A1 |
20050059934 | Chanduszko et al. | Mar 2005 | A1 |
20050065434 | Bavaro et al. | Mar 2005 | A1 |
20050075723 | Schroeder et al. | Apr 2005 | A1 |
20050090827 | Gedebou | Apr 2005 | A1 |
20050107812 | Starksen et al. | May 2005 | A1 |
20050107871 | Realyvasquez et al. | May 2005 | A1 |
20050137686 | Salahieh et al. | Jun 2005 | A1 |
20050137688 | Salahieh et al. | Jun 2005 | A1 |
20050143770 | Carter et al. | Jun 2005 | A1 |
20050149182 | Alferness et al. | Jul 2005 | A1 |
20050154448 | Cully et al. | Jul 2005 | A1 |
20050171601 | Cosgrove et al. | Aug 2005 | A1 |
20050177180 | Kaganov et al. | Aug 2005 | A1 |
20050177228 | Solem et al. | Aug 2005 | A1 |
20050203606 | Vancamp | Sep 2005 | A1 |
20050216039 | Lederman | Sep 2005 | A1 |
20050216079 | MaCoviak | Sep 2005 | A1 |
20050222488 | Chang et al. | Oct 2005 | A1 |
20050222665 | Aranyi | Oct 2005 | A1 |
20050228422 | Machold et al. | Oct 2005 | A1 |
20050251208 | Elmer et al. | Nov 2005 | A1 |
20050273138 | To et al. | Dec 2005 | A1 |
20060004442 | Spenser et al. | Jan 2006 | A1 |
20060020326 | Bolduc et al. | Jan 2006 | A9 |
20060020327 | Lashinski et al. | Jan 2006 | A1 |
20060020335 | Kowalsky et al. | Jan 2006 | A1 |
20060052821 | Abbott et al. | Mar 2006 | A1 |
20060079736 | Chin et al. | Apr 2006 | A1 |
20060106278 | Machold et al. | May 2006 | A1 |
20060106279 | Machold et al. | May 2006 | A1 |
20060106423 | Weisel et al. | May 2006 | A1 |
20060129166 | Lavelle | Jun 2006 | A1 |
20060161265 | Levine et al. | Jul 2006 | A1 |
20060173524 | Salahieh et al. | Aug 2006 | A1 |
20060178700 | Quinn | Aug 2006 | A1 |
20060200199 | Bonutti et al. | Sep 2006 | A1 |
20060229708 | Powell et al. | Oct 2006 | A1 |
20060241745 | Solem | Oct 2006 | A1 |
20060241748 | Lee et al. | Oct 2006 | A1 |
20060252984 | Rahdert et al. | Nov 2006 | A1 |
20060259044 | Onuki et al. | Nov 2006 | A1 |
20060259135 | Navia et al. | Nov 2006 | A1 |
20060265042 | Catanese, III et al. | Nov 2006 | A1 |
20060276871 | Lamson et al. | Dec 2006 | A1 |
20060282161 | Huynh et al. | Dec 2006 | A1 |
20070005081 | Findlay, III et al. | Jan 2007 | A1 |
20070010829 | Nobles et al. | Jan 2007 | A1 |
20070016287 | Cartledge et al. | Jan 2007 | A1 |
20070016288 | Gurskis et al. | Jan 2007 | A1 |
20070021781 | Jervis et al. | Jan 2007 | A1 |
20070032787 | Hassett et al. | Feb 2007 | A1 |
20070032796 | Chin-Chen et al. | Feb 2007 | A1 |
20070032820 | Chin-Chen et al. | Feb 2007 | A1 |
20070038221 | Fine et al. | Feb 2007 | A1 |
20070038296 | Navia et al. | Feb 2007 | A1 |
20070049942 | Hindrichs et al. | Mar 2007 | A1 |
20070049970 | Belef et al. | Mar 2007 | A1 |
20070049971 | Chin et al. | Mar 2007 | A1 |
20070051377 | Douk et al. | Mar 2007 | A1 |
20070055340 | Pryor | Mar 2007 | A1 |
20070060989 | Deem et al. | Mar 2007 | A1 |
20070061010 | Hauser et al. | Mar 2007 | A1 |
20070066863 | Rafiee et al. | Mar 2007 | A1 |
20070083168 | Whiting et al. | Apr 2007 | A1 |
20070093869 | Bloom et al. | Apr 2007 | A1 |
20070100427 | Perouse | May 2007 | A1 |
20070112425 | Schaller et al. | May 2007 | A1 |
20070118151 | Davidson | May 2007 | A1 |
20070162107 | Haug et al. | Jul 2007 | A1 |
20070168013 | Douglas | Jul 2007 | A1 |
20070179530 | Tieu et al. | Aug 2007 | A1 |
20070185532 | Stone et al. | Aug 2007 | A1 |
20070198082 | Kapadia et al. | Aug 2007 | A1 |
20070203391 | Bloom et al. | Aug 2007 | A1 |
20070208389 | Amundson et al. | Sep 2007 | A1 |
20070219558 | Deutsch | Sep 2007 | A1 |
20070250160 | Rafiee | Oct 2007 | A1 |
20070265658 | Nelson et al. | Nov 2007 | A1 |
20070265700 | Eliasen et al. | Nov 2007 | A1 |
20070270943 | Solem et al. | Nov 2007 | A1 |
20070276437 | Call et al. | Nov 2007 | A1 |
20070282375 | Hindrichs et al. | Dec 2007 | A1 |
20070282429 | Hauser et al. | Dec 2007 | A1 |
20070288086 | Kalmann et al. | Dec 2007 | A1 |
20070288089 | Gurskis et al. | Dec 2007 | A1 |
20080003539 | Lundgren | Jan 2008 | A1 |
20080027268 | Buckner et al. | Jan 2008 | A1 |
20080027446 | Stone et al. | Jan 2008 | A1 |
20080027483 | Cartledge et al. | Jan 2008 | A1 |
20080033475 | Meng | Feb 2008 | A1 |
20080035160 | Woodson et al. | Feb 2008 | A1 |
20080039845 | Bonutti et al. | Feb 2008 | A1 |
20080077231 | Heringes et al. | Mar 2008 | A1 |
20080091264 | Machold et al. | Apr 2008 | A1 |
20080097595 | Gabbay | Apr 2008 | A1 |
20080125861 | Webler et al. | May 2008 | A1 |
20080140116 | Bonutti | Jun 2008 | A1 |
20080140188 | Rahdert et al. | Jun 2008 | A1 |
20080167714 | St. Goar et al. | Jul 2008 | A1 |
20080234729 | Page et al. | Sep 2008 | A1 |
20080262609 | Gross et al. | Oct 2008 | A1 |
20080275469 | Fanton et al. | Nov 2008 | A1 |
20080281411 | Berreklouw | Nov 2008 | A1 |
20080288044 | Osborne | Nov 2008 | A1 |
20080288062 | Andrieu et al. | Nov 2008 | A1 |
20080300629 | Surti | Dec 2008 | A1 |
20090005792 | Miyamoto et al. | Jan 2009 | A1 |
20090082828 | Ostroff | Mar 2009 | A1 |
20090082847 | Zacharias et al. | Mar 2009 | A1 |
20090084386 | McClellan | Apr 2009 | A1 |
20090099649 | Chobotov et al. | Apr 2009 | A1 |
20090118776 | Kelsch et al. | May 2009 | A1 |
20090143808 | Houser | Jun 2009 | A1 |
20090149872 | Gross et al. | Jun 2009 | A1 |
20090171439 | Nissl | Jul 2009 | A1 |
20090216265 | DeVries et al. | Aug 2009 | A1 |
20090254103 | Deutsch | Oct 2009 | A1 |
20090259307 | Gross et al. | Oct 2009 | A1 |
20090264995 | Subramanian | Oct 2009 | A1 |
20090276040 | Rowe et al. | Nov 2009 | A1 |
20090287304 | Dahlgren et al. | Nov 2009 | A1 |
20090306622 | Machold et al. | Dec 2009 | A1 |
20090326648 | Machold et al. | Dec 2009 | A1 |
20100023117 | Yoganathan et al. | Jan 2010 | A1 |
20100023118 | Medlock et al. | Jan 2010 | A1 |
20100029071 | Russell et al. | Feb 2010 | A1 |
20100030329 | Frater | Feb 2010 | A1 |
20100049293 | Zukowski et al. | Feb 2010 | A1 |
20100063542 | van der Burg et al. | Mar 2010 | A1 |
20100063586 | Hasenkam et al. | Mar 2010 | A1 |
20100121349 | Meier et al. | May 2010 | A1 |
20100121434 | Paul et al. | May 2010 | A1 |
20100121435 | Subramanian et al. | May 2010 | A1 |
20100130992 | Machold et al. | May 2010 | A1 |
20100161041 | Maisano et al. | Jun 2010 | A1 |
20100161042 | Maisano et al. | Jun 2010 | A1 |
20100161043 | Maisano et al. | Jun 2010 | A1 |
20100161047 | Cabiri | Jun 2010 | A1 |
20100168791 | Kassab et al. | Jul 2010 | A1 |
20100174358 | Rabkin et al. | Jul 2010 | A1 |
20100185278 | Schankereli | Jul 2010 | A1 |
20100204662 | Orlov et al. | Aug 2010 | A1 |
20100211166 | Miller et al. | Aug 2010 | A1 |
20100217309 | Hansen et al. | Aug 2010 | A1 |
20100217382 | Chau et al. | Aug 2010 | A1 |
20100228269 | Garrison et al. | Sep 2010 | A1 |
20100249908 | Chau et al. | Sep 2010 | A1 |
20100249920 | Bolling et al. | Sep 2010 | A1 |
20100256690 | Appenzeller et al. | Oct 2010 | A1 |
20100280603 | Maisano et al. | Nov 2010 | A1 |
20100280604 | Zipory et al. | Nov 2010 | A1 |
20100280605 | Hammer et al. | Nov 2010 | A1 |
20100286628 | Gross | Nov 2010 | A1 |
20100286767 | Zipory et al. | Nov 2010 | A1 |
20100298930 | Orlov | Nov 2010 | A1 |
20100324598 | Anderson | Dec 2010 | A1 |
20110004296 | Lutter et al. | Jan 2011 | A1 |
20110011917 | Loulmet | Jan 2011 | A1 |
20110022164 | Quinn et al. | Jan 2011 | A1 |
20110029066 | Gilad et al. | Feb 2011 | A1 |
20110029071 | Zlotnick et al. | Feb 2011 | A1 |
20110035000 | Nieminen et al. | Feb 2011 | A1 |
20110040366 | Goetz et al. | Feb 2011 | A1 |
20110071626 | Wright et al. | Mar 2011 | A1 |
20110077733 | Solem | Mar 2011 | A1 |
20110082538 | Dahlgren et al. | Apr 2011 | A1 |
20110087146 | Ryan et al. | Apr 2011 | A1 |
20110093002 | Rucker et al. | Apr 2011 | A1 |
20110106245 | Miller et al. | May 2011 | A1 |
20110106247 | Miller et al. | May 2011 | A1 |
20110112619 | Foster et al. | May 2011 | A1 |
20110112632 | Chau et al. | May 2011 | A1 |
20110184510 | Maisano et al. | Jul 2011 | A1 |
20110190879 | Bobo et al. | Aug 2011 | A1 |
20110208283 | Rust | Aug 2011 | A1 |
20110224785 | Hacohen | Sep 2011 | A1 |
20110238088 | Bolduc et al. | Sep 2011 | A1 |
20110238112 | Kim et al. | Sep 2011 | A1 |
20110251641 | Sauer et al. | Oct 2011 | A1 |
20110251678 | Eidenschink et al. | Oct 2011 | A1 |
20110264208 | Duffy et al. | Oct 2011 | A1 |
20110288635 | Miller | Nov 2011 | A1 |
20110301698 | Miller et al. | Dec 2011 | A1 |
20120016343 | Gill | Jan 2012 | A1 |
20120022633 | Olson et al. | Jan 2012 | A1 |
20120022639 | Hacohen et al. | Jan 2012 | A1 |
20120022640 | Gross et al. | Jan 2012 | A1 |
20120035712 | Maisano et al. | Feb 2012 | A1 |
20120083806 | Goertzen | Apr 2012 | A1 |
20120123531 | Tsukashima et al. | May 2012 | A1 |
20120179244 | Schankereli et al. | Jul 2012 | A1 |
20120215236 | Matsunaga et al. | Aug 2012 | A1 |
20120222969 | Osborne et al. | Sep 2012 | A1 |
20120226349 | Tuval et al. | Sep 2012 | A1 |
20120232373 | Hallander et al. | Sep 2012 | A1 |
20120245604 | Tegzes | Sep 2012 | A1 |
20120283757 | Miller et al. | Nov 2012 | A1 |
20120296349 | Smith et al. | Nov 2012 | A1 |
20130030522 | Rowe et al. | Jan 2013 | A1 |
20130325115 | Maisano et al. | Jan 2013 | A1 |
20130053951 | Ruyra Baliarda | Feb 2013 | A1 |
20130079873 | Migliazza et al. | Mar 2013 | A1 |
20130085529 | Housman | Apr 2013 | A1 |
20130096664 | Goetz et al. | Apr 2013 | A1 |
20130096672 | Reich et al. | Apr 2013 | A1 |
20130110230 | Solem | May 2013 | A1 |
20130166017 | Cartledge et al. | Jun 2013 | A1 |
20130166022 | Conklin | Jun 2013 | A1 |
20130172978 | Vidlund et al. | Jul 2013 | A1 |
20130190863 | Call et al. | Jul 2013 | A1 |
20130231701 | Voss et al. | Sep 2013 | A1 |
20130281760 | Farnan et al. | Oct 2013 | A1 |
20130325110 | Khalil et al. | Dec 2013 | A1 |
20130331930 | Rowe et al. | Dec 2013 | A1 |
20140018911 | Zhou et al. | Jan 2014 | A1 |
20140031864 | Jafari et al. | Jan 2014 | A1 |
20140031928 | Murphy et al. | Jan 2014 | A1 |
20140058405 | Foster | Feb 2014 | A1 |
20140066693 | Goldfarb et al. | Mar 2014 | A1 |
20140067054 | Chau et al. | Mar 2014 | A1 |
20140114390 | Tobis et al. | Apr 2014 | A1 |
20140121763 | Duffy et al. | May 2014 | A1 |
20140142689 | De Canniere et al. | May 2014 | A1 |
20140200657 | Maurer et al. | Jul 2014 | A1 |
20140214259 | Vidlund et al. | Jul 2014 | A1 |
20140243894 | Groothuis et al. | Aug 2014 | A1 |
20140275757 | Goodwin et al. | Sep 2014 | A1 |
20140277390 | Ratz et al. | Sep 2014 | A1 |
20140277427 | Ratz et al. | Sep 2014 | A1 |
20140296962 | Cartledge et al. | Oct 2014 | A1 |
20140309730 | Alon et al. | Oct 2014 | A1 |
20140324164 | Gross et al. | Oct 2014 | A1 |
20140358224 | Tegels et al. | Dec 2014 | A1 |
20140371843 | Wilson et al. | Dec 2014 | A1 |
20140379074 | Spence et al. | Dec 2014 | A1 |
20140379076 | Vidlund et al. | Dec 2014 | A1 |
20150045879 | Longoria et al. | Feb 2015 | A1 |
20150051698 | Ruyra Baliarda et al. | Feb 2015 | A1 |
20150066082 | Moshe et al. | Mar 2015 | A1 |
20150066138 | Alexander et al. | Mar 2015 | A1 |
20150094800 | Chawla | Apr 2015 | A1 |
20150100116 | Mohl et al. | Apr 2015 | A1 |
20150127097 | Neumann et al. | May 2015 | A1 |
20150142049 | Delgado et al. | May 2015 | A1 |
20150142103 | Vidlund | May 2015 | A1 |
20150142105 | Bolling et al. | May 2015 | A1 |
20150182336 | Zipory et al. | Jul 2015 | A1 |
20150196693 | Lin | Jul 2015 | A1 |
20150320414 | Conklin et al. | Nov 2015 | A1 |
20150351909 | Bobo, Jr. et al. | Dec 2015 | A1 |
20160022417 | Karapetian et al. | Jan 2016 | A1 |
20160022422 | Annest et al. | Jan 2016 | A1 |
20160038285 | Glenn et al. | Feb 2016 | A1 |
20160081829 | Rowe | Mar 2016 | A1 |
20160120672 | Martin et al. | May 2016 | A1 |
20160128689 | Sutherland et al. | May 2016 | A1 |
20160157862 | Hernandez et al. | Jun 2016 | A1 |
20160174979 | Wei | Jun 2016 | A1 |
20160228246 | Zimmerman | Aug 2016 | A1 |
20160228252 | Keidar | Aug 2016 | A1 |
20160235526 | Lashinski et al. | Aug 2016 | A1 |
20160256269 | Cahalane et al. | Sep 2016 | A1 |
20160270776 | Miraki et al. | Sep 2016 | A1 |
20160270916 | Cahalane et al. | Sep 2016 | A1 |
20160287383 | Rowe | Oct 2016 | A1 |
20160287387 | Wei | Oct 2016 | A1 |
Number | Date | Country |
---|---|---|
2398971 | Oct 2000 | CN |
102007043830 | Apr 2009 | DE |
1357843 | Nov 2003 | EP |
1397176 | Mar 2004 | EP |
1562522 | Aug 2005 | EP |
1646332 | Apr 2006 | EP |
1718249 | Nov 2006 | EP |
1759663 | Mar 2007 | EP |
1836971 | Sep 2007 | EP |
1928357 | Jun 2008 | EP |
1968491 | Sep 2008 | EP |
2023858 | Feb 2009 | EP |
2399549 | Dec 2011 | EP |
2410948 | Feb 2012 | EP |
2465568 | Jun 2012 | EP |
1568326 | Aug 2005 | ER |
2930137 | Oct 2009 | FR |
2006-520651 | Sep 2006 | JP |
9205093 | Apr 1992 | WO |
2004069055 | Aug 2004 | WO |
2004082538 | Sep 2004 | WO |
2005012063 | Mar 2005 | WO |
2005058206 | Jun 2005 | WO |
2005102194 | Nov 2005 | WO |
2006019498 | Feb 2006 | WO |
2006097931 | Sep 2006 | WO |
2006105008 | Oct 2006 | WO |
2006105009 | Oct 2006 | WO |
2007080595 | Jul 2007 | WO |
2007140309 | Dec 2007 | WO |
2008065044 | Jun 2008 | WO |
2008068756 | Jun 2008 | WO |
2009039400 | Mar 2009 | WO |
2009101617 | Aug 2009 | WO |
2010004546 | Jan 2010 | WO |
2010071494 | Jun 2010 | WO |
2010073246 | Jul 2010 | WO |
2010099032 | Sep 2010 | WO |
2010108079 | Sep 2010 | WO |
2010128502 | Nov 2010 | WO |
2010128503 | Nov 2010 | WO |
2011014496 | Feb 2011 | WO |
2011037891 | Mar 2011 | WO |
2011051942 | May 2011 | WO |
2011089601 | Jul 2011 | WO |
2011097355 | Aug 2011 | WO |
2011143263 | Nov 2011 | WO |
2011153408 | Dec 2011 | WO |
2012127309 | Sep 2012 | WO |
2013003228 | Jan 2013 | WO |
2013011502 | Jan 2013 | WO |
2013028145 | Feb 2013 | WO |
2013179295 | Dec 2013 | WO |
2014043527 | Mar 2014 | WO |
2014087402 | Jun 2014 | WO |
2014018903 | Jul 2014 | WO |
2014108903 | Jul 2014 | WO |
2014141239 | Sep 2014 | WO |
2015015497 | Feb 2015 | WO |
2015063580 | May 2015 | WO |
2015193728 | Dec 2015 | WO |
2016011275 | Jan 2016 | WO |
2016087934 | Jun 2016 | WO |
Entry |
---|
First Chinese Office Action dated Jun. 30, 2014: Appln. No. 201180015301.6. |
Japanese Office Action translation dated Oct. 28, 2014; Appln. No. 549463/2012. |
Shikhar Agarwal, et al; “Interventional Cardiology Perspective of Functional Tricuspid Regurgitation”, Circ. Cardiovas. Interv. 2009; vol. 2, pp. 565-573. |
Ottavio Alfieri; “An Effective Technique to Correct Anterior Mitral Leaflet Prolapse”, J. Card. Surg. 14(6): 468-470; 1999. |
Ottavio Alfieri, et al; “The double-orifice technique in mitral valve repair: A simple solution for complex problems”, The Journal of Thoracic and Cardiovascular Surgery, 2001; vol. 122: pp. 674-681. |
Ottavio Alfieri, et al; “Novel Suture Device for Beating-Heart Mitral Leaflet Approximation”, Presented at the Poster Session of the Thirty-Eighth Annual Meeting of the Society of Thoracic Surgeons, Fort Lauderdale, FL, Jan. 28-30, 2002; 8 pages. |
Amplatzer Cardiacc Plug Brochure (English Pages), AGA Medical Corporation, Plymouth, MN Copyright 2008-2011, downloaded Jan. 11, 2011, 16 pages. |
Brian S. Beale; “Surgical Repair of Collateral Ligament Injuries”, Presented at 63rd CVMA Convention, Halifax, Nova Scotia, Canada, Jul. 6-9, 2011; 4 pages. |
Dentistry Today: “Implant Direct”, product information page, Jun. 1, 2011, downloaded Dec. 10, 2012 from http://dentistrytoday.com/top25implanti/5558-implant-direct. |
Francesco Maisano, et al; “The double-orifice technique as a standardized approach to treat mitral regurgitation due to severe myxomatous disease: surgical technique”, European Journal of Cardio-thoracic Surgery, 17, pp. 201-205, 2000. |
Smith & Nephew MINITAC™ TI2.0 Suture Anchor Product Description, downloaded on Dec. 9, 2012 from http://global.smith-nephew.com/us/MINITAC_TI_2_SUTURE_ANCHR_3127.htm. |
U.S. Appl. No. 60/902,146, filed Feb. 16, 2007. |
U.S. Appl. No. 61/897,491, filed Oct. 30, 2013. |
USPTO NFOA dated Jul. 6, 2012 in connection with U.S. Appl. No. 12/692,061. |
USPTO Interview Summary dated Nov. 5, 2012 in connection with U.S. Appl. No. 12/692,061. |
USPTO NOA dated Mar. 6, 2013 in connection with U.S. Appl. No. 12/692,061. |
USPTO NOA dated May 10, 2013 in connection with U.S. Appl. No. 12/692,061. |
USPTO NOA dated Dec. 4, 2014 in connection with U.S. Appl. No. 13/188,175. |
USPTO NFOA dated Dec. 5, 2013 in connection with U.S. Appl. No. 13/485,145. |
USPTO FOA dated Jul. 7, 2014 in connection with U.S. Appl. No. 13/485,145. |
USPTO FOA dated Sep. 25, 2014 in connection with U.S. Appl. No. 13/485,145. |
USPTO NOA dated Dec. 9, 2014 in connection with U.S. Appl. No. 13/485,145. |
USPTO NFOA dated Nov. 25, 2014 in connection with U.S. Appl. No. 13/553,081. |
USPTO Summary dated Feb. 2, 2015 in connection with U.S. Appl. No. 14/143,355. |
Invitation to Pay Additional Fees dated Apr. 4, 2014; PCT/IL2014/05002. |
International Search Report and Written Opinion dated May 19, 2011; PCT/IL11/00064. |
international Search Report and Written Opinion dated Jan. 22, 2013; PCT/IL2012/000282. |
International Search Report and Written Opinion dated Mar. 17, 2014; PCT/IL13/50937. |
International Search Report and Written Opinion dated Dec. 6, 2013; PCT/IL2013/050470. |
International Search Report and Written Opinion dated May 28, 2014; PCT/IL2014/050027. |
International Search Report and Written Opinion dated Jun. 30, 2014; PCT/IL2014/050233. |
Invitation to Pay Additional Fees; dated Oct. 13, 2016; PCT/IB2016/000840. |
USPTO NFOA dated Sep. 14, 2016 in connection with U.S. Appl. No. 13/574,088. |
USPTO Interview Summary dated Dec. 5, 2016 in connection with U.S. Appl. No. 13/574,088. |
Extended European Search Report dated Apr. 10, 2015; Appln. No./Patent No. 11734451.5-1662/2525741 PCT/IL2011000064. |
Extended European Search Report dated May 15, 2015; Appln. No./Patent No. 12814417.7-1506/2734157 PCT/IL2012000282. |
Invitation to Pay Additional Fees; dated Apr. 20, 2015; PCT/IB2014/002351. |
International Search Report and Written Opinion dated Jun. 10, 2015; PCT/IB2014/002351. |
Japanese Office Action dated Jul. 7, 2015; Application No. 549463/2012. |
Second Chinese Office Action dated Feb. 10, 2015; Appln. No. 201180015301.6. |
Third Chinese Office Action dated Jun. 30, 2015; Appln. No. 201180015301.6. |
USPTO NOA dated Sep. 14, 2015 in connection with U.S. Appl. No. 13/553,081. |
USPTO RR dated Feb. 25, 2015 in connection with U.S. Appl. No. 13/574,088. |
USPTO NFOA dated Oct. 7, 2015 in connection with U.S. Appl. No. 13/754,088. |
Invitation to Pay Additional Fees; dated Oct. 26, 2015; PCT/IB15/01196. |
Number | Date | Country | |
---|---|---|---|
20150119936 A1 | Apr 2015 | US |
Number | Date | Country | |
---|---|---|---|
61897491 | Oct 2013 | US |