The present invention relates to heart valve prostheses, preferably to aortic valve prostheses. More specifically, the invention relates to heart valve prostheses that can be implanted percutaneously by means of a catheter from a remote location without opening the chest cavity.
Heart valve surgery is used to repair or replace diseased heart valves. Valve surgery is an open-heart procedure conducted under general anesthesia. An incision is made through the patient's sternum (sternotomy), and the patient's heart is stopped while blood flow is rerouted through a heart-lung bypass machine.
Valve replacement may be indicated when there is a narrowing of the native heart valve, commonly referred to as stenosis, or when the native valve leaks or regurgitates. When replacing the valve, the native valve is excised and replaced with either a biologic or a mechanical valve. Mechanical valves require lifelong anticoagulant medication to prevent clot formation around the valve, which can lead to thromboembolic complications and catastrophic valve failure. Biologic tissue valves typically do not require such medication. Tissue valves can be obtained from cadavers (homografts) or can be from pigs (porcine valve) and cows (bovine pericardial valves). Recently equine pericardium has also been used for making valves. These valves are designed to be attached to the patient using a standard surgical technique.
Valve replacement surgery is a highly invasive operation with significant concomitant risk. Risks include bleeding, infection, stroke, heart attack, arrhythmia, renal failure, and adverse reactions to the anesthesia medications, as well as sudden death. Two to five percent of patients die during surgery.
Post-surgery, patients temporarily may be confused due to emboli and other factors associated with the heart-lung machine. The first two to three days following surgery are spent in an intensive care unit where heart functions can be closely monitored. The average hospital stay is between one and two weeks, with several more weeks to months required for complete recovery.
In recent years, advancements in minimally invasive, endoaortic, surgery interventional cardiology, and intervention radiology have encouraged some investigators to pursue percutaneous replacement of the aortic heart valve. Percutaneous Valve Technologies (“PVT”) of Fort Lee, N.J., has developed a balloon-expandable stent integrated with a bioprosthetic valve, which is the subject of U.S. Pat. Nos. 5,411,552, 5,840,081, 6,168,614, and 6,582,462 to Anderson et al. The stent/valve device is deployed across the native diseased valve to permanently hold the valve open, thereby alleviating a need to excise the native valve and to position the bioprosthetic valve in place of the native valve. PVT's device is designed for delivery in a cardiac catheterization laboratory under local anesthesia using fluoroscopic guidance, thereby avoiding general anesthesia and open-heart surgery. The device was first implanted in a patient in April of 2002.
PVT's device suffers from several drawbacks. Deployment of PVT's stent has several drawbacks, including that there is very little control over its deployment. This lack of control can endanger the coronary ostea above the aortic valve and the anterior leaflet of the mitral valve below the aortic valve.
Another drawback of the PVT device is its relatively large cross-sectional delivery profile. This is largely due to fabricating the tri-leaflet pericardial valve inside a robust stainless steel stent. Considering they have to be durable, the materials for the valve and the stent are very bulky, thus increasing the profile of the device. The PVT system's stent/valve combination is mounted onto a delivery balloon, making retrograde delivery through the aorta challenging. An antegrade transseptal approach may therefore be needed, requiring puncture of the septum and routing through the mitral valve, which significantly increases complexity and risk of the procedure. Very few cardiologists are currently trained in performing a transseptal puncture, which is a challenging procedure by itself.
Another drawback of the PVT device is its lack of fixation provision. It in effect uses its radial force to hold the stent in the desired position. For this to work, sufficient dilatation of the valve area has to be achieved; but this amount of dilation can cause damage to the annulus. Also, due to its inability to have an active fixation mechanism, the PVT device cannot be used to treat aortic regurgitation.
Another drawback to this system is that it does not address the leakage of blood around the implant, after its implantation.
Other prior art replacement heart valves use self-expanding stents that incorporate a valve. One such device is that disclosed in U.S. Pat. No. 7,018,406 to Seguin et al. and assigned to and made by CoreValve SA. In the endovascular aortic valve replacement procedure, accurate placement of aortic valves relative to coronary ostia and the mitral valve is critical. Standard self-expanding systems have very poor accuracy in deployment, however. Often the proximal end of the stent is not released from the delivery system until accurate placement is verified by fluoroscopy and the stent typically jumps once released. It is therefore often impossible to know where the ends of the stent will be with respect to the native valve, the coronary ostia, and the mitral valve. The anchoring mechanism is not actively provided (that is, there is no method of fixation other than the use of radial force and barbs that project into the surrounding tissue and not used as positioning marker (that is, markers seen under fluoroscopy to determine the position of the device).
A simple barb as used in the CoreValve device relies mainly on friction for holding the position.
Another drawback of prior art self-expanding replacement heart valve systems is their lack of radial strength. In order for self-expanding systems to be easily delivered through a delivery sheath, the metal needs to flex and bend inside the delivery catheter without being plastically deformed. In arterial stents, this is not a challenge, and there are many commercial arterial stent systems that apply adequate radial force against the vessel wall and yet can collapse to a small enough of a diameter to fit inside a delivery catheter without plastically deforming. However, when the stent has a valve fastened inside it, as is the case in aortic valve replacement, the anchoring of the stent to vessel walls is significantly challenged during diastole. The force required to hold back arterial pressure and prevent blood from going back inside the ventricle during diastole will be directly transferred to the stent/vessel wall interface. Therefore the amount of radial force required to keep the self expanding stent/valve in contact with the vessel wall and prevent it from sliding will be much higher than in stents that do not have valves inside of them. Moreover, a self-expanding stent without sufficient radial force will end up dilating and contracting with each heartbeat, thereby distorting the valve, affecting its function and resulting in dynamic repositioning of the stent during delivery. Stent foreshortening or migration during expansion may lead to improper alignment.
Additionally, the stent disclosed in U.S. Pat. No. 6,425,916 to Garrison simply crushes the native valve leaflets against the heart wall and does not engage the leaflets in a manner that would provide positive registration of the device relative to the native position of the valve. This increases an immediate risk of blocking the coronary ostia, as well as a longer-term risk of migration of the device post-implantation. Further still, the stent comprises openings or gaps in which the replacement valve is seated post-delivery. Tissue may protrude through these gaps, thereby increasing a risk of improper seating of the valve within the stent.
In view of drawbacks associated with previously known techniques for endovascularly replacing a heart valve, it would be desirable to provide methods and apparatus that overcome those drawbacks.
Sadra et al. (U.S. published application No. 20050137701) describes a mechanism for anchoring a heart valve, the anchoring mechanism having an actuation system operated remotely. This mechanism addresses the fixation issue; however, considering the irregular shape of the aortic annulus there is a real potential for deforming the prosthetic valve annulus; this may require additional balloon angioplasty to give it its final shape, and also make the new valve more prone to fatigue and fracture. Moreover if full expansion of the stent is prone to deformation, the leaflet coaptation of the valve will be jeopardized.
Sadra et al. (U.S. published application No. 20050137691) describes a system with two pieces, a valve piece and an anchor piece. The valve piece connects to the anchor piece in such a fashion that it will reduce the effective valve area considerably. Valve area, i.e., the inner diameter of the channel after the valve leaflets open, is of prime importance when considering an aortic valve replacement in a stenotic valve. Garrison's valve is also implanted in the inner portion of the stent, compromising the effective valve outflow area. Sadra et al.'s and Garrison's valves overlook this very critically important requirement.
The technologies described above and other technologies (for example, those disclosed in U.S. Pat. No. 4,908,028 to Colon et al.; U.S. Published Application No. 2003/0014104, U.S. Published Application No. 2003/0109924, U.S. Published Application No. 2005/0251251, U.S. Published Application No. 2005/0203616, and U.S. Pat. No. 6,908,481 to Cribier; U.S. Pat. No. 5,607,469 to Frey; U.S. Pat. No. 6,723,123 to Kazatchkov et al.; Germany Patent No. DE 3,128,704 A1 to Kuepper; U.S. Pat. No. 3,312,237 to Mon et al.; U.S. Published Application No. 2005/0182483 to Osbourne et al.; U.S. Pat. No. 1,306,391 to Romanoff; U.S. Published Application No. 2005/0203618 to Sharkcawy et al.; U.S. Published Application No. 2006/0052802 to Sterman et al.; U.S. Pat. Nos. 5,713,952; and 5,876,437 to Vanney et al.) also use various biological, or other synthetic materials for fabrication of the prosthetic valve. The duration of function and physical deterioration of these new valves have not been addressed. Their changeability has not been addressed, in the percutaneous situation.
It is to the solution of these and other problems that the present invention is directed.
It is accordingly a primary object of the present invention to provide to methods and apparatus for endovascularly replacing a heart valve.
In is another object of the present invention to provide methods and apparatus for endovascularly replacing a heart valve with a replacement valve prosthesis using a balloon expandable and/or self expanding valve cage stent upon which a bi-leaflet or tri-leaflet elastic valve is inserted.
It is also a feature of this invention that the valve piece of the implant is removable, and thus exchangeable, in the event of long or medium term failure of the implanted valve.
It is another object of this invention to provide maximal valve area to the out flow tract of the left ventricle, thus minimizing the gradient across the valve, by using a supra annular implant of the valve piece to the valve cage stent.
These and other objects are achieved by a heart valve prosthesis comprising a cylindrical valve cage stent constructed to be implanted percutaneously in the planar axis of a native valve annulus, the valve cage stent having a superior rim; and an elastic and compressible, multi-leaflet valve insertable percutaneously into the body, the valve including a valve frame made from a memory metal and a tissue cover attached to the valve frame; and attachment means for attaching the valve to the superior rim of the valve cage.
The valve can be a bi-leaflet or a tri-leaflet valve. The bi-leaflet valve includes a frame, a tissue cover, a deformable hinge, and means for detachably connecting the valve to the valve cage stent. The frame has two substantially semicircular, expandable, and compressible parts, and the tissue cover is configured to cover the two parts of the frame with the straight sides of the two parts in spaced-apart relation. The tissue cover has a central aperture and the two parts of the frame have respective slots. The deformable hinge has oppositely extending arms extending through the slots and a stem received through the aperture. The superior rim of the valve cage stent has a valve mount affixed thereto for receiving a mating part on the hinge, thereby defining the attachment means.
The tri-leaflet valve includes a frame, a tissue cover, and means for detachably connecting the valve to the valve cage stent. The frame is cylindrical and has three commissural posts mounted thereon. The tissue cover has three cusps fitted and sewn to the valve frame, the commissural posts being sized to maintain the commissural height of the cusps. The valve cage stent has three commissural pins extending from the superior rim thereof, and the commissural posts of the frame are cannulated to receive the commissural pins of the valve cage stent, thereby defining the attachment means.
Other objects, features and advantages of the present invention will be apparent to those skilled in the art upon a reading of this specification including the accompanying drawings.
The invention is better understood by reading the following Detailed Description of the Preferred Embodiments with reference to the accompanying drawing figures, in which like reference numerals refer to like elements throughout, and in which:
In describing preferred embodiments of the present invention illustrated in the drawings, specific terminology is employed for the sake of clarity. However, the invention is not intended to be limited to the specific terminology so selected, and it is to be understood that each specific element includes all technical equivalents that operate in a similar manner to accomplish a similar purpose.
The present invention relates to heart valve prostheses that can be implanted percutaneously by means of a catheter from a remote location without opening the chest cavity. As shown in
Referring now to
Each part 132a and 132b of the frame 132 includes a slot 134 for receiving a hinge 135 having a shape when deployed that is similar to a lower-case “t”, as shown in
The tissue cover 133 (shown in
As discussed in greater detail below, in use, the bi-leaflet valve 130 is detachably connected to a valve mount 142 (shown in
The detachable and collapsible bi-leaflet construction of the valve 130 enables the valve 130 in conjunction with its entire delivery system to be sized down so that it can be inserted percutaneously using a catheter, as described below.
Referring now to
As shown in
As shown in
The present invention also encompasses a system and method for implanting the above-described percutaneous valve prostheses 10 in the body. In a first embodiment, the system comprises a valve cage stent 20 for implantation in the body by the use of a first catheter of a delivery system 500 (shown in
The valve cage stent 20 is a self-expanding or balloon expandable cylindrical valve cage stent 20, made from memory metal, or stainless steel respectively. The self-expanding valve cage stent and the balloon expandable valve cage stent are structurally the same (that is, they differ only in the material from which they are made). The valve cage stent 20 is fabricated from metal tubing (memory metal or stainless steel), so that it is cylindrical in shape, with the stent pattern being cut into the tubing by laser.
The expansion of the valve cage stent 20 produces maximal foreshortening of the ovals in the mid portion of the stent and thus provides active fixation of the stent to the annulus of the valve being replaced. The valve cage stent 20 has a fabric covering on its interior and parts of its exterior surfaces so in its expanded state it forms a complete seal and does not allow any leakage of blood.
For delivery, the valve cage stent 20 is mounted on a balloon 600 (
The valve cage stent 20 has provisions for the attachment of the prosthetic valve, depending on the type of prosthetic valve contemplated to be used. For example, in the case of a bi-leaflet valve, the valve is attached to the valve cage stent 120 via a valve mount affixed to the valve cage stent 120, as shown in
The delivery system employs a two stage procedure, both stages of which can be performed at the same session, only minutes apart. The first stage is insertion of the valve cage stent 20. In the case of a bi-leaflet valve, as shown in
The second stage is insertion of the elastic and compressible valve, which is restrained in another catheter (not shown) for delivery into the valve cage stent 20. As shown in
Because the bi-leaflet valve is detachable from the valve mount, it can be replaced when necessary. The valve mount has a snap-on or screw-in mechanism for attachment of the “t”-shaped hinge 135 thereto, as well as the above-described guide wire attached to it for placement of the valve. The use of a valve cage 20 allows for fabrication of a tri-leaflet tissue valve.
In addition, the connection of valve 30 to the valve cage stent 20 provides the best effective flow dynamics, the flexibility of the whole system 500 is greatly increased, and the profile of the whole system 500 is reduced so that it can be inserted through a small opening in the access vessel.
Modifications and variations of the above-described embodiments of the present invention are possible, as appreciated by those skilled in the art in light of the above teachings. It is therefore to be understood that, within the scope of the appended claims and their equivalents, the invention may be practiced otherwise than as specifically described.
This application is a continuation of U.S. application Ser. No. 15/221,435, filed Jul. 27, 2016, now U.S. Pat. No. 10,350,065, which is a continuation of U.S. application Ser. No. 12/309,680, filed Aug. 20, 2009, now abandoned, which is a national stage entry of International Application No. PCT/US2007/016855, filed Jul. 27, 2007, which designates the United States and was published in English by the International Bureau on Jan. 31, 2008 as WO 2008/013915, which claims the benefit of U.S. Provisional Application No. 60/833,791, filed Jul. 28, 2006, which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3739402 | Cooley et al. | Jun 1973 | A |
4079468 | Liotta et al. | Mar 1978 | A |
4339831 | Johnson | Jul 1982 | A |
4340977 | Brownlee et al. | Jul 1982 | A |
4470157 | Love | Sep 1984 | A |
4553545 | Maass et al. | Nov 1985 | A |
4777951 | Cribier et al. | Oct 1988 | A |
4865600 | Carpentier et al. | Sep 1989 | A |
4994077 | Dobben | Feb 1991 | A |
5326371 | Love et al. | Jul 1994 | A |
5370685 | Stevens | Dec 1994 | A |
5411552 | Andersen et al. | May 1995 | A |
5415667 | Frater | May 1995 | A |
5545214 | Stevens | Aug 1996 | A |
5554185 | Block et al. | Sep 1996 | A |
5697382 | Love et al. | Dec 1997 | A |
5840081 | Andersen et al. | Nov 1998 | A |
6086612 | Jansen | Jul 2000 | A |
6113631 | Jansen | Sep 2000 | A |
6168614 | Andersen et al. | Jan 2001 | B1 |
6251093 | Valley et al. | Jun 2001 | B1 |
6458153 | Bailey et al. | Oct 2002 | B1 |
6582462 | Andersen et al. | Jun 2003 | B1 |
6610088 | Gabbay | Aug 2003 | B1 |
6652578 | Bailey et al. | Nov 2003 | B2 |
6716207 | Farnholtz | Apr 2004 | B2 |
6729356 | Baker et al. | May 2004 | B1 |
6730118 | Spenser et al. | May 2004 | B2 |
6746422 | Noriega et al. | Jun 2004 | B1 |
6749560 | Konstorum et al. | Jun 2004 | B1 |
6767362 | Schreck | Jul 2004 | B2 |
6780200 | Jansen | Aug 2004 | B2 |
6790229 | Berreklouw | Sep 2004 | B1 |
6875231 | Anduiza et al. | Apr 2005 | B2 |
6893460 | Spenser et al. | May 2005 | B2 |
6908481 | Cribier | Jun 2005 | B2 |
7018406 | Seguin et al. | Mar 2006 | B2 |
7186265 | Sharkawy et al. | Mar 2007 | B2 |
7192440 | Andreas et al. | Mar 2007 | B2 |
7198646 | Figulla et al. | Apr 2007 | B2 |
7276078 | Spenser et al. | Oct 2007 | B2 |
7329278 | Seguin et al. | Feb 2008 | B2 |
7381219 | Salahieh et al. | Jun 2008 | B2 |
7393360 | Spenser et al. | Jul 2008 | B2 |
7445631 | Salahieh et al. | Nov 2008 | B2 |
7462191 | Spenser et al. | Dec 2008 | B2 |
7510575 | Spenser et al. | Mar 2009 | B2 |
7524330 | Berreklouw | Apr 2009 | B2 |
7553324 | Andreas et al. | Jun 2009 | B2 |
7585321 | Cribier | Sep 2009 | B2 |
7618446 | Andersen et al. | Nov 2009 | B2 |
7621948 | Herrmann et al. | Nov 2009 | B2 |
7628805 | Spenser et al. | Dec 2009 | B2 |
7748389 | Salahieh et al. | Jul 2010 | B2 |
7753949 | Lamphere et al. | Jul 2010 | B2 |
7803185 | Gabbay | Sep 2010 | B2 |
7824443 | Salahieh et al. | Nov 2010 | B2 |
7892281 | Seguin et al. | Feb 2011 | B2 |
7914569 | Nguyen et al. | Mar 2011 | B2 |
7947075 | Goetz et al. | May 2011 | B2 |
7959672 | Salahieh et al. | Jun 2011 | B2 |
7972378 | Tabor et al. | Jul 2011 | B2 |
7981151 | Rowe | Jul 2011 | B2 |
8016877 | Seguin et al. | Sep 2011 | B2 |
8048153 | Salahieh et al. | Nov 2011 | B2 |
8052750 | Tuval et al. | Nov 2011 | B2 |
8070800 | Look et al. | Dec 2011 | B2 |
8070802 | Lamphere et al. | Dec 2011 | B2 |
8075615 | Eberhardt et al. | Dec 2011 | B2 |
8092520 | Quadri | Jan 2012 | B2 |
8118866 | Herrmann et al. | Feb 2012 | B2 |
8136218 | Millwee et al. | Mar 2012 | B2 |
8157852 | Bloom et al. | Apr 2012 | B2 |
8182528 | Salahieh et al. | May 2012 | B2 |
8182530 | Huber | May 2012 | B2 |
8216301 | Bonhoeffer et al. | Jul 2012 | B2 |
8219229 | Cao et al. | Jul 2012 | B2 |
8220121 | Hendriksen et al. | Jul 2012 | B2 |
8221493 | Boyle et al. | Jul 2012 | B2 |
8226710 | Nguyen et al. | Jul 2012 | B2 |
8236045 | Benichou et al. | Aug 2012 | B2 |
8246675 | Zegdi | Aug 2012 | B2 |
8246678 | Salahieh et al. | Aug 2012 | B2 |
8252051 | Chau et al. | Aug 2012 | B2 |
8252052 | Salahieh et al. | Aug 2012 | B2 |
8287584 | Salahieh et al. | Oct 2012 | B2 |
8303653 | Bonhoeffer et al. | Nov 2012 | B2 |
8323335 | Rowe et al. | Dec 2012 | B2 |
8403983 | Quadri et al. | Mar 2013 | B2 |
8414644 | Quadri et al. | Apr 2013 | B2 |
8444689 | Zhang | May 2013 | B2 |
8449599 | Chau et al. | May 2013 | B2 |
8454685 | Hariton et al. | Jun 2013 | B2 |
8460368 | Taylor et al. | Jun 2013 | B2 |
8470023 | Eidenschink et al. | Jun 2013 | B2 |
8475523 | Duffy | Jul 2013 | B2 |
8479380 | Malewicz et al. | Jul 2013 | B2 |
8500733 | Watson | Aug 2013 | B2 |
8500798 | Rowe et al. | Aug 2013 | B2 |
8518096 | Nelson | Aug 2013 | B2 |
8579965 | Bonhoeffer et al. | Nov 2013 | B2 |
8585755 | Chau et al. | Nov 2013 | B2 |
8585756 | Bonhoeffer et al. | Nov 2013 | B2 |
8591570 | Revuelta et al. | Nov 2013 | B2 |
8597348 | Rowe et al. | Dec 2013 | B2 |
8617236 | Paul et al. | Dec 2013 | B2 |
8652145 | Maimon et al. | Feb 2014 | B2 |
8652202 | Alon et al. | Feb 2014 | B2 |
8652203 | Quadri et al. | Feb 2014 | B2 |
8668733 | Haug et al. | Mar 2014 | B2 |
8673000 | Tabor et al. | Mar 2014 | B2 |
8679174 | Ottma et al. | Mar 2014 | B2 |
8679404 | Liburd et al. | Mar 2014 | B2 |
8721708 | Seguin et al. | May 2014 | B2 |
8721714 | Kelley | May 2014 | B2 |
8728155 | Montorfano et al. | May 2014 | B2 |
8747459 | Nguyen et al. | Jun 2014 | B2 |
8747460 | Tuval et al. | Jun 2014 | B2 |
8758432 | Solem | Jun 2014 | B2 |
8764818 | Gregg | Jul 2014 | B2 |
8771345 | Tuval et al. | Jul 2014 | B2 |
8771346 | Tuval et al. | Jul 2014 | B2 |
8778020 | Gregg et al. | Jul 2014 | B2 |
8784337 | Voeller et al. | Jul 2014 | B2 |
8784478 | Tuval et al. | Jul 2014 | B2 |
8790387 | Nguyen et al. | Jul 2014 | B2 |
8795356 | Quadri et al. | Aug 2014 | B2 |
8795357 | Yohanan et al. | Aug 2014 | B2 |
8828078 | Salahieh et al. | Sep 2014 | B2 |
8828079 | Thielen et al. | Sep 2014 | B2 |
8834564 | Tuval et al. | Sep 2014 | B2 |
8858620 | Salahieh et al. | Oct 2014 | B2 |
8870948 | Erzberger et al. | Oct 2014 | B1 |
8876894 | Tuval et al. | Nov 2014 | B2 |
8876895 | Tuval et al. | Nov 2014 | B2 |
8911455 | Quadri et al. | Dec 2014 | B2 |
8939960 | Rosenman et al. | Jan 2015 | B2 |
8945209 | Bonyuet et al. | Feb 2015 | B2 |
8951299 | Paul et al. | Feb 2015 | B2 |
8992608 | Haug et al. | Mar 2015 | B2 |
8998979 | Seguin et al. | Apr 2015 | B2 |
9005273 | Salahieh et al. | Apr 2015 | B2 |
9011521 | Haug et al. | Apr 2015 | B2 |
9028545 | Taylor | May 2015 | B2 |
9055937 | Rowe et al. | Jun 2015 | B2 |
9078749 | Lutter et al. | Jul 2015 | B2 |
9084676 | Chau et al. | Jul 2015 | B2 |
9125738 | Figulla et al. | Sep 2015 | B2 |
9138312 | Tuval et al. | Sep 2015 | B2 |
9161834 | Taylor et al. | Oct 2015 | B2 |
9173737 | Hill et al. | Nov 2015 | B2 |
9180004 | Alkhatib | Nov 2015 | B2 |
9277990 | Klima et al. | Mar 2016 | B2 |
9277993 | Gamarra et al. | Mar 2016 | B2 |
9295551 | Straubinger et al. | Mar 2016 | B2 |
9326815 | Watson | May 2016 | B2 |
9331328 | Eberhardt et al. | May 2016 | B2 |
9339382 | Tabor et al. | May 2016 | B2 |
9445897 | Bishop et al. | Sep 2016 | B2 |
9456877 | Weitzner et al. | Oct 2016 | B2 |
9681968 | Goetz et al. | Jun 2017 | B2 |
9700329 | Metzger et al. | Jul 2017 | B2 |
9700411 | Klima et al. | Jul 2017 | B2 |
9795479 | Lim | Oct 2017 | B2 |
9833313 | Board et al. | Dec 2017 | B2 |
9861473 | Lafontaine | Jan 2018 | B2 |
9861476 | Salahieh et al. | Jan 2018 | B2 |
9861477 | Backus et al. | Jan 2018 | B2 |
9867698 | Kovalsky et al. | Jan 2018 | B2 |
9877830 | Lim et al. | Jan 2018 | B2 |
9889029 | Li et al. | Feb 2018 | B2 |
9895225 | Rolando et al. | Feb 2018 | B2 |
9925045 | Creaven et al. | Mar 2018 | B2 |
20010007956 | Letac et al. | Jul 2001 | A1 |
20020032481 | Gabbay | Mar 2002 | A1 |
20040117009 | Cali et al. | Jun 2004 | A1 |
20040210304 | Seguin et al. | Oct 2004 | A1 |
20050033398 | Seguin | Feb 2005 | A1 |
20050075727 | Wheatley | Apr 2005 | A1 |
20050096738 | Cali et al. | May 2005 | A1 |
20050107872 | Mensah et al. | May 2005 | A1 |
20050137682 | Justino | Jun 2005 | A1 |
20050137686 | Salahieh et al. | Jun 2005 | A1 |
20050137687 | Salahieh et al. | Jun 2005 | A1 |
20050137691 | Salahieh et al. | Jun 2005 | A1 |
20050137693 | Haug et al. | Jun 2005 | A1 |
20050159811 | Lane | Jul 2005 | A1 |
20050182486 | Gabbay | Aug 2005 | A1 |
20050216079 | MaCoviak | Sep 2005 | A1 |
20050234546 | Nugent et al. | Oct 2005 | A1 |
20050283231 | Haug et al. | Dec 2005 | A1 |
20060020327 | Lashinski et al. | Jan 2006 | A1 |
20060052867 | Revuelta et al. | Mar 2006 | A1 |
20060058872 | Salahieh et al. | Mar 2006 | A1 |
20060074484 | Huber | Apr 2006 | A1 |
20060173537 | Yang et al. | Aug 2006 | A1 |
20060212110 | Osborne et al. | Sep 2006 | A1 |
20060241745 | Solem | Oct 2006 | A1 |
20060253191 | Salahieh et al. | Nov 2006 | A1 |
20060265056 | Nguyen et al. | Nov 2006 | A1 |
20060287717 | Rowe et al. | Dec 2006 | A1 |
20060293745 | Carpentier et al. | Dec 2006 | A1 |
20070010876 | Salahieh et al. | Jan 2007 | A1 |
20070043435 | Seguin et al. | Feb 2007 | A1 |
20070050021 | Johnson | Mar 2007 | A1 |
20070100432 | Case et al. | May 2007 | A1 |
20070129794 | Realyvasquez | Jun 2007 | A1 |
20070142906 | Figulla et al. | Jun 2007 | A1 |
20070255394 | Ryan | Nov 2007 | A1 |
20080021546 | Patz et al. | Jan 2008 | A1 |
20080071366 | Tuval et al. | Mar 2008 | A1 |
20080082164 | Friedman | Apr 2008 | A1 |
20080082165 | Wilson et al. | Apr 2008 | A1 |
20080147183 | Styrc | Jun 2008 | A1 |
20080161911 | Revuelta et al. | Jul 2008 | A1 |
20080183273 | Mesana et al. | Jul 2008 | A1 |
20080208328 | Antocci et al. | Aug 2008 | A1 |
20080228254 | Ryan | Sep 2008 | A1 |
20090005863 | Goetz et al. | Jan 2009 | A1 |
20090171456 | Kveen et al. | Jul 2009 | A1 |
20090188964 | Orlov | Jul 2009 | A1 |
20090270972 | Lane | Oct 2009 | A1 |
20090276027 | Glynn | Nov 2009 | A1 |
20090276040 | Rowe et al. | Nov 2009 | A1 |
20090281618 | Hill et al. | Nov 2009 | A1 |
20090292350 | Eberhardt et al. | Nov 2009 | A1 |
20090306768 | Quadri | Dec 2009 | A1 |
20100114305 | Kang et al. | May 2010 | A1 |
20100191326 | Alkhatib | Jul 2010 | A1 |
20100217382 | Chau et al. | Aug 2010 | A1 |
20100249894 | Oba et al. | Sep 2010 | A1 |
20100305685 | Millwee et al. | Dec 2010 | A1 |
20110004296 | Lutter et al. | Jan 2011 | A1 |
20110224785 | Hacohen | Sep 2011 | A1 |
20110264196 | Savage et al. | Oct 2011 | A1 |
20110313515 | Quadri et al. | Dec 2011 | A1 |
20120022639 | Hacohen et al. | Jan 2012 | A1 |
20120041550 | Salahieh et al. | Feb 2012 | A1 |
20120059454 | Millwee et al. | Mar 2012 | A1 |
20120078360 | Rafiee | Mar 2012 | A1 |
20120101572 | Kovalsky et al. | Apr 2012 | A1 |
20120123529 | Levi et al. | May 2012 | A1 |
20120215303 | Quadri et al. | Aug 2012 | A1 |
20120290062 | McNamara et al. | Nov 2012 | A1 |
20120310328 | Olson et al. | Dec 2012 | A1 |
20130006294 | Kashkarov et al. | Jan 2013 | A1 |
20130053950 | Rowe et al. | Feb 2013 | A1 |
20130131788 | Quadri et al. | May 2013 | A1 |
20130144378 | Quadri et al. | Jun 2013 | A1 |
20130253635 | Straubinger et al. | Sep 2013 | A1 |
20130253642 | Brecker | Sep 2013 | A1 |
20130310928 | Morriss et al. | Nov 2013 | A1 |
20140052242 | Revuelta et al. | Feb 2014 | A1 |
20140100651 | Kheradvar et al. | Apr 2014 | A1 |
20140100653 | Savage et al. | Apr 2014 | A1 |
20140142694 | Tabor et al. | May 2014 | A1 |
20140163668 | Rafiee | Jun 2014 | A1 |
20140194981 | Menk et al. | Jul 2014 | A1 |
20140214153 | Ottma et al. | Jul 2014 | A1 |
20140214154 | Nguyen et al. | Jul 2014 | A1 |
20140214155 | Kelley | Jul 2014 | A1 |
20140222136 | Geist et al. | Aug 2014 | A1 |
20140222139 | Nguyen et al. | Aug 2014 | A1 |
20140277390 | Ratz et al. | Sep 2014 | A1 |
20140277422 | Ratz et al. | Sep 2014 | A1 |
20140277427 | Ratz et al. | Sep 2014 | A1 |
20140296973 | Bergheim et al. | Oct 2014 | A1 |
20140303719 | Cox et al. | Oct 2014 | A1 |
20140309728 | Dehdashtian et al. | Oct 2014 | A1 |
20140309732 | Solem | Oct 2014 | A1 |
20140324160 | Benichou et al. | Oct 2014 | A1 |
20140336754 | Gurskis et al. | Nov 2014 | A1 |
20140343670 | Bakis et al. | Nov 2014 | A1 |
20140343671 | Yohanan et al. | Nov 2014 | A1 |
20140358223 | Rafiee et al. | Dec 2014 | A1 |
20140364939 | Deshmukh et al. | Dec 2014 | A1 |
20140364943 | Conklin | Dec 2014 | A1 |
20140371842 | Marquez et al. | Dec 2014 | A1 |
20140371847 | Madrid et al. | Dec 2014 | A1 |
20140379067 | Nguyen et al. | Dec 2014 | A1 |
20140379068 | Thielen et al. | Dec 2014 | A1 |
20140379077 | Tuval et al. | Dec 2014 | A1 |
20150012085 | Salahieh et al. | Jan 2015 | A1 |
20150018944 | O'Connell et al. | Jan 2015 | A1 |
20150039083 | Rafiee | Feb 2015 | A1 |
20150148731 | Mcnamara et al. | May 2015 | A1 |
20150157457 | Hacohen | Jun 2015 | A1 |
20150297346 | Duffy et al. | Oct 2015 | A1 |
20150327994 | Morriss et al. | Nov 2015 | A1 |
20160158010 | Lim et al. | Jun 2016 | A1 |
20160166383 | Lim et al. | Jun 2016 | A1 |
20160184097 | Lim et al. | Jun 2016 | A1 |
20160199206 | Lim et al. | Jul 2016 | A1 |
20160279386 | Dale et al. | Sep 2016 | A1 |
20170128209 | Morriss et al. | May 2017 | A1 |
20170216023 | Lane et al. | Aug 2017 | A1 |
20170216575 | Asleson et al. | Aug 2017 | A1 |
20170258614 | Griffin | Sep 2017 | A1 |
20170325954 | Perszyk | Nov 2017 | A1 |
20170348096 | Anderson | Dec 2017 | A1 |
20170367823 | Hariton et al. | Dec 2017 | A1 |
20180055636 | Valencia et al. | Mar 2018 | A1 |
20180085218 | Eidenschink | Mar 2018 | A1 |
20180110534 | Gavala et al. | Apr 2018 | A1 |
Number | Date | Country |
---|---|---|
2827556 | Jul 2012 | CA |
102006052564 | Dec 2007 | DE |
1171059 | Jan 2002 | EP |
1369098 | Dec 2003 | EP |
1255510 | Apr 2007 | EP |
1827558 | Sep 2007 | EP |
1239901 | Oct 2007 | EP |
1935377 | Mar 2010 | EP |
2237746 | Oct 2010 | EP |
2238947 | Oct 2010 | EP |
2398543 | Dec 2011 | EP |
1281375 | Feb 2012 | EP |
2745805 | Jun 2014 | EP |
2749254 | Jul 2014 | EP |
2750630 | Jul 2014 | EP |
2777617 | Sep 2014 | EP |
2967858 | Jan 2016 | EP |
2926766 | Feb 2016 | EP |
2985006 | Feb 2016 | EP |
2168536 | Apr 2016 | EP |
2262451 | May 2017 | EP |
3184083 | Jun 2017 | EP |
2446915 | Jan 2018 | EP |
3057541 | Jan 2018 | EP |
3037064 | Mar 2018 | EP |
3046511 | Mar 2018 | EP |
3142603 | Mar 2018 | EP |
3294220 | Mar 2018 | EP |
1264471 | Feb 1972 | GB |
2398245 | Aug 2004 | GB |
9749355 | Dec 1997 | WO |
2004030569 | Apr 2004 | WO |
2005011534 | Feb 2005 | WO |
2006127765 | Nov 2006 | WO |
2007058857 | May 2007 | WO |
2007123658 | Nov 2007 | WO |
2008013915 | Jan 2008 | WO |
2008070797 | Jun 2008 | WO |
2008103722 | Aug 2008 | WO |
2008125153 | Oct 2008 | WO |
2009026563 | Feb 2009 | WO |
2009033469 | Mar 2009 | WO |
2009091509 | Jul 2009 | WO |
2009134701 | Nov 2009 | WO |
2010005524 | Jan 2010 | WO |
2010022138 | Feb 2010 | WO |
2010037141 | Apr 2010 | WO |
2010040009 | Apr 2010 | WO |
2011111047 | Sep 2011 | WO |
2012177942 | Dec 2012 | WO |
2014110171 | Jul 2014 | WO |
2014210124 | Dec 2014 | WO |
Entry |
---|
Boujemline, Younes, et al., “Steps Toward the Percutaneous Replacement of Atrioventricular Valves,” JACC, vol. 46, No. 2, Jul. 19, 2005:360-5. |
Condado, Jose Antonio, et al., “Percutaneous Treatment of Heart Valves,” Rev Esp Cardio. 2006;59(12):1225-31, Applicant believes this may have been available as early as Dec. 2006. |
Leon, Martin B., et al., “Transcatheter Aortic Valve Replacement in Patients with Critical Aortic Stenosis: Rationale, Device Descriptions, Early Clinical Experiences, and Perspectives,” Semin. Thorac. Cardiovasc. Surg. 18:165-174, 2006 in 10 pages, Applicant believes this may have been available as early as the Summer of 2006. |
Ma, Liang, et al., “Double-Crowned Valved Stents For Off-Pump Mitral Valve Replacement,” European Journal of Cardio-thoracic Surgery 28 (2005) 194-199, Applicant believes this may have been available as early as Aug. 2005. |
Pluth, James R., M.D., et al., “Aortic and Mitral Valve Replacement with Cloth-Covered Braunwald-Cutter Prosthesis, A Three-Year Follow-up,” The Annals Of Thoracic Surgery, vol. 20, No. 3, Sep. 1975, pp. 239-248. |
Seidel, Wolfgang, et al., “A Mitral Valve Prosthesis and a Study of Thrombosis on Heart Valves in Dogs,” JSR—vol. II, No. 3—May, 1962, submitted for publication Oct. 9, 1961. |
Number | Date | Country | |
---|---|---|---|
20190321174 A1 | Oct 2019 | US |
Number | Date | Country | |
---|---|---|---|
60833791 | Jul 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15221435 | Jul 2016 | US |
Child | 16503179 | US | |
Parent | 12309680 | US | |
Child | 15221435 | US |