Perfect forward secrecy distributed denial of service attack detection

Information

  • Patent Grant
  • 9848013
  • Patent Number
    9,848,013
  • Date Filed
    Thursday, February 5, 2015
    9 years ago
  • Date Issued
    Tuesday, December 19, 2017
    6 years ago
Abstract
Provided are methods and systems for detecting a DoS attack when initiating a secure session. A method for detecting a DoS attack may commence with receiving, from a client, a request to initiate a secure session between the client and a server. The method may continue with sending a pre-generated key to the client. The method may further include establishing that the request from the client is suspected of the DoS attack. The establishment may be performed based on further actions associated with the client.
Description
TECHNICAL FIELD

This disclosure relates generally to computer and network security and, more particularly, to perfect forward secrecy (PFS) distributed denial of service (DDoS) attack defense.


BACKGROUND

The approaches described in this section could be pursued but are not necessarily approaches that have previously been conceived or pursued. Therefore, unless otherwise indicated, it should not be assumed that any of the approaches described in this section qualify as prior art merely by virtue of their inclusion in this section.


PFS is a property of key-agreement protocols ensuring that compromising of a session key derived from long-term keys is impossible even if one of the long-term keys is compromised in the future. By using a key-agreement protocol, two or more parties can agree on the session key in such a way that that all parties influence the generated session key. The PFS can be used in the Secure Sockets Layer (SSL) cryptographic protocol. The SSL protocol may use asymmetric cryptography to authenticate the counterparty with which the protocol is communicating. The asymmetric cryptography is a cryptographic algorithm that requires two separate keys, referred to as a private key and a public key, to encrypt and decrypt data flowing between parties. The private key and the public key can be mathematically linked so that encryption of an encryption key, also referred to as a session key, by one party using the public key allows decryption of the session key by another party using the private key. Therefore, before beginning to exchange information protected by the SSL protocol, a client and a server must securely exchange or agree upon the session key to use when encrypting data flowing between the client and the server.


SSL sessions between the client and the server commence with a PFS handshake procedure that includes a process of negotiation that dynamically sets parameters of a communications channel established between the client and the server. Some steps of the handshake procedure may be very expensive by requiring the server to perform time and resource consuming computations to generate a public key for transmission to the client. An attacker may take advantage of such workload on the server and send multiple session requests to the server without any intent to establish a valid session. The attacker can simply terminate the connection after receiving a public key generated by the server and immediately reconnect with a new request. Alternatively, the attacker may respond to the server by sending random numbers instead of generating and encrypting a valid session key based on the received public key. As such actions of the attacker can easily overwhelm the capacity of the server or interrupt proper functioning of the server, they can be used in a denial of service (DoS) attack or, in case of distributed attackers, a Distributed DoS (DDoS) attack on the server.


SUMMARY

This summary is provided to introduce a selection of concepts in a simplified form that are further described in the Detailed Description below. This summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter.


The present disclosure is related to approaches for detecting a DoS attack when initiating a secure session. Specifically, a method for detecting a DoS attack may commence with receiving, from a client, a request to initiate a secure session between the client and a server. The method may continue with sending a pre-generated key to the client. The method may further include establishing that the request from the client is suspected of the DoS attack. The establishment may be performed based on further actions associated with the client.


According to another approach of the present disclosure, there is provided a system for detecting a DoS vice attack. The system may comprise at least one processor. The processor may be operable to receive, from a client, a request to initiate a secure session between the client and a server. The processor may be further operable to send a pre-generated key to the client to establish the secure session. The processor may be further operable to establish, based on further actions associated with the client, that the request from the client is suspected of the DoS attack.


In further example embodiments of the present disclosure, the method operations are stored on a machine-readable medium comprising instructions, which when implemented by one or more processors perform the recited operations. In yet further example embodiments, hardware systems, or devices can be adapted to perform the recited operations. Other features, examples, and embodiments are described below.





BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments are illustrated by way of example, and not by limitation, in the figures of the accompanying drawings, in which like references indicate similar elements.



FIG. 1 shows an environment within which methods and systems for detecting a DoS attack when initiating a secure session can be implemented.



FIG. 2 is a schematic diagram of an SSL handshake procedure between a client and a server.



FIG. 3 is a process flow diagram showing a method for detecting a DoS attack when initiating a secure session.



FIG. 4 is a block diagram of a system for detecting a DoS attack when initiating a secure session.



FIG. 5 shows a diagrammatic representation of a computing device for a machine, within which a set of instructions for causing the machine to perform any one or more of the methodologies discussed herein can be executed.





DETAILED DESCRIPTION

The following detailed description includes references to the accompanying drawings, which form a part of the detailed description. The drawings show illustrations in accordance with example embodiments. These example embodiments, which are also referred to herein as “examples,” are described in enough detail to enable those skilled in the art to practice the present subject matter. The embodiments can be combined, other embodiments can be utilized, or structural, logical, and electrical changes can be made without departing from the scope of what is claimed. The following detailed description is therefore not to be taken in a limiting sense, and the scope is defined by the appended claims and their equivalents. In this document, the terms “a” and “an” are used, as is common in patent documents, to include one or more than one. In this document, the term “or” is used to refer to a nonexclusive “or,” such that “A or B” includes “A but not B,” “B but not A,” and “A and B,” unless otherwise indicated.


The techniques of the embodiments disclosed herein may be implemented using a variety of technologies. For example, the methods described herein may be implemented in software executing on a computer system or in hardware utilizing either a combination of microprocessors or other specially designed application-specific integrated circuits (ASICs), programmable logic devices, or various combinations thereof. In particular, the methods described herein may be implemented by a series of computer-executable instructions residing on a storage medium, such as a disk drive or computer-readable medium. It should be noted that methods disclosed herein can be implemented by a computer (e.g., a desktop computer, tablet computer, laptop computer), game console, handheld gaming device, cellular phone, smart phone, smart television system, and so forth.


As outlined in the summary, the embodiments of the present disclosure refer to detecting a DoS attack. A system for detecting a DoS attack can be responsible for detecting DoS attacks directed to a server. According to the present disclosure, a secure session can include an SSL session between a client and a server that begins with an exchange of messages, also referred to as an SSL handshake procedure. The client may contact the server by informing the server that the client wants to communicate with the server using the PFS. In other words, the client may send a request for initiating the secure session with the server. The request may include an SSL version number that the client supports, randomly generated data, cipher settings, and other information the server needs in order to establish an SSL session with the client. Providing such data to the server is not very resource-consuming for the client. In response to the request, the server may send an SSL version number supported by the server, randomly generated data, cipher settings, and other information that the client needs to communicate with the server using the SSL. Typically, the server can also send a key exchange message to the client. The key exchange message may include a public key. Because generation of the public key consumes a lot of computational resources of the server, it would be advantageous for the server to ensure that the client is not an attacker with intent to mount a DoS attack on the server.


To detect DoS attacks, the server may investigate validity of the client. For this purpose, the server may determine whether the client is on a whitelist. The whitelist may include a list of trusted clients, for example, clients that have previously established secure sessions with the server. If the client is on the whitelist, the server may continue with the conventional SSL handshake procedure. If, on the other hand, the client is not on the whitelist (i.e. the client is unknown), the server may send a pre-generated key to the client instead of performing the computation of the public key. The pre-generated key may be stored in a database associated with the server. After sending the pre-generated key, the server may monitor the client's further actions for any suspicious activities. The suspicious activities can include lack of response to the public key received from the server, sending random data in response to the public key instead of generating a premaster key, and repetitively closing and opening connections with the server without responding to the public key.


If the server had to generate a new key instead of using the pre-generated key each time a request is received from the client, the capacity of the server could be overwhelmed. However, sending the pre-generated key is not computationally expensive and allows the server to investigate the client prior to establishing a session and, possibly, detect and prevent a DoS attack.


If the client demonstrates its validity by sending a premaster key encrypted using the public key received from the server, the server can force a renegotiation of the secure session with the client. More specifically, the server may generate a new public key and send the new public key to the client. According to the conventional SSL handshake procedure, after receiving the new public key, the client may use the public key to encrypt a premaster key generated by the client. The server may receive the premaster key from the client. The server may use a private key of the server to decrypt the premaster key, and then both the server and the client may generate a master key based on the premaster key. Both the client and the server may use the master key to generate a session key, which is a symmetric key used to encrypt and decrypt data exchanged during the SSL secure session between the server and the client. Therefore, both the client and the server may generate the session key and encrypt the session key using the public key. The client may decrypt the session key received from the server using a private key of the client. Similarly, the server may decrypt the session key received from the client using the private key of the server. Therefore, no decryption key allowing decrypting data flowing between the client and the server is going across the wire.


Referring now to the drawings, FIG. 1 illustrates an environment 100 within which methods and systems for detecting a DoS attack when initiating a secure session can be implemented. The environment 100 may include a network 110, a client 120, a server 130, and a system 400 for detecting a DoS attack. The client 120 may include a network machine or a network resource that sends a request 140 for initiating a secure session to the server 130. The client 120 may communicate with the server 130 using the network 110.


The network 110 may include the Internet or any other network capable of communicating data between devices. Suitable networks may include or interface with any one or more of, for instance, a local intranet, a Personal Area Network, a LAN (Local Area Network), a WAN (Wide Area Network), a Metropolitan Area Network, a virtual private network, a storage area network, a frame relay connection, an Advanced Intelligent Network connection, a synchronous optical network connection, a digital T1, T3, E1 or E3 line, Digital Data Service connection, Digital Subscriber Line connection, an Ethernet connection, an Integrated Services Digital Network line, a dial-up port such as a V.90, V.34 or V.34bis analog modem connection, a cable modem, an Asynchronous Transfer Mode connection, or a Fiber Distributed Data Interface or Copper Distributed Data Interface connection. Furthermore, communications may also include links to any of a variety of wireless networks, including Wireless Application Protocol, General Packet Radio Service, Global System for Mobile Communication, Code Division Multiple Access or Time Division Multiple Access, cellular phone networks, Global Positioning System, cellular digital packet data, Research in Motion, Limited duplex paging network, Bluetooth radio, or an IEEE 802.11-based radio frequency network. The network 110 can further include or interface with any one or more of an RS-232 serial connection, an IEEE-1394 (Firewire) connection, a Fiber Channel connection, an IrDA (infrared) port, a Small Computer Systems Interface connection, a USB (Universal Serial Bus) connection or other wired or wireless, digital or analog interface or connection, mesh or Digi® networking. The network 110 may include a network of data processing nodes that are interconnected for the purpose of data communication.


In response to receiving the request 140 for initiating a secure session with the server 130, the system 400 may initiate detecting a DoS attack as described in further detail below.



FIG. 2 is a schematic diagram of an SSL handshake procedure 200 between a client and a server, according to an example embodiment. The SSL handshake procedure 200 may commence with a ClientHello message 210 sent by the client 120 to the server 130. The ClientHello message 210 may include data related to the highest SSL protocol version the client 120 supports, a random number, a list of suggested cipher suites, compression methods, and so forth. The server 130 may respond with a ServerHello message 220. The ServerHello message 220 may include data related to the chosen protocol version, a random number, cipher suite, compression method from the choices offered by the client 120, and so forth. The server 130 may also send a Certificate message 230.


The server may further send a ServerKeyExchange message 240. The ServerKeyExchange message 240 may include a public key. The public key may be generated using key-agreement protocols, for example, by using ephemeral (transient) Diffie-Hellman (DHE) Key Exchange and ephemeral Elliptic Curve Diffie-Hellman (ECDHE) Key Exchange. The server 130 may further send a ServerHelloDone message 250 to the client to indicate that the server 130 has finished the handshake negotiation process.


The client 120 may send a ClientKeyExchange message 260, which may contain a premaster key or a public key depending on the selected cipher. The premaster key may be encrypted by the client 120 using the public key received from the server 130 in the ServerKeyExchange message 240.


The SSL handshake procedure 200 can also include sending a ClientipherSpec record 270 by the client 120, in which the client 120 informs the server 130 that any further data received from the client 120 will be authenticated.


Arrows 280 and 290 show steps of the SSL handshake procedure 200 at which the server 130 may be exposed to attacks. For example, generating the public key to be sent in the ServerKeyExchange message 240 may be a resource-consuming process for the server 130. However, if the client 120 terminates the connection after receiving the ServerKeyExchange message 240, the resources of the server 130 for computation of the public key can be wasted. Additionally, the ClientKeyExchange message 260 may comprise random numbers instead of the premaster key generated by using the public key. The server 130 may spend time for computation of the erroneous premaster key received from the client 120 and, thus, may be depleted of resources.



FIG. 3 shows a process flow diagram of a method 300 for detecting a DoS attack when initiating a secure session, according to an example embodiment. In some embodiments, the operations may be combined, performed in parallel, or performed in a different order. The method 300 may also include additional or fewer operations than those illustrated. The method 300 may be performed by processing logic that may comprise hardware (e.g., decision making logic, dedicated logic, programmable logic, and microcode), software (such as software run on a general-purpose computer system or a dedicated machine), or a combination of both.


The method 300 may commence with receiving, from a client, a request to initiate a secure session between the client and a server at operation 302. Receiving of the request from the client can initiate a handshake procedure being performed before initiating the secure session. The request may include an indication and the secure session between the client and the server may include a PFS cypher.


Optionally, the method 300 may continue with determining whether the client is on a whitelist at operation 304. In example embodiments, in response to the determination that client is absent from the whitelist, a pre-generated key may be sent to the client at operation 306. The pre-generated key may be previously generated by the server using a method for securely exchanging cryptographic keys over a public channel. In an example embodiment, the method for securely exchanging cryptographic keys over a public channel includes one or more of the following: DHE Key Exchange and ECDHE Key Exchange. The pre-generated key may include a public key of the secure session. Generation of the key may include the steps of creating long random numbers, taking a primitive root of the generated long random numbers, and performing modulo operations. The modulo operations can use the multiplicative group of integers modulo p, where p is prime, and g is a primitive root modulo p, and where (ga)b=(gb)a=mod p; a and b being private keys of the client and the server, respectively.


The method 300 may further include establishing that the request from the client is suspected of the DoS attack at operation 308. The establishing may be performed based on further actions associated with the client. In an example embodiment, the further actions associated with the client include at least one of the following: closing the connection by the client after receiving the pre-generated key from the server and opening a new connection; absence of further data from the client after receiving the pre-generated key by the client; absence of further data from the client after sending a ClientKeyExchange message by the client, failure to finish the handshake procedure within a predetermined time frame; providing, by the client, data without calculating a pre-master key, using a pre-loaded private key by the client, and so forth. The calculation of the pre-master key may include encrypting the pre-master key with the pre-generated key.


Optionally, the method 300 may include operation 310, at which the client may be monitored based on the further actions associated with the client. Additionally, the method 300 may optionally include analyzing the client based on the further actions associated with the client. For example, to detect if an unknown client with a lot of requests sends the pre-loaded private key to the server, the server may send the same key to the client in a ServerKeyExchange message. The server may put the data of the ClientKeyExchange message received from the client into the database for analyzing. The server may check the analyzed result to investigate if the client is using a pre-loaded private key.


Additionally, for the case when the client uses the pre-loaded private key in the PFS handshake procedure, if the client does not enable session identifier (ID) reuse or enable session ID reuse but never sends back same session ID, the server may monitor the client and put the client into the database for analyzing.


Based on the establishing that the request from the client is suspected of the DoS attack, initiation of the secure session may be denied. Additionally, the client may be added to a blacklist. Any requests from clients on the blacklist may be automatically denied by the server without performing a SSL handshaking procedure.


Alternatively, based on a determination that client is present on the whitelist, the established secure session may be determined to be valid and a regular handshake procedure may be carried out and renegotiation of the secure session may be forced. More specifically, a new key may be generated using a method for securely exchanging cryptographic keys over a public channel during the regular handshake procedure and sent to the client.



FIG. 4 shows a block diagram illustrating various modules of an example system 400 for detecting a DDoS attack when initiating a secure session. Specifically, the system 400 may include at least one processor 302. The processor 402 may be operable to receive, from a client, a request to initiate a secure session between the client and a server. In an example embodiment, the secure session includes a PFS cypher. The processor 402 may be optionally operable to determine whether the client is on a whitelist.


In response to the determination that client is absent from the whitelist, the processor 402 may be operable to send a pre-generated key to the client to establish a secure session. In an example embodiment, the pre-generated key may be previously generated by the server using a method for securely exchanging cryptographic keys over a public channel. The pre-generated key may be stored in the database 404. In an example embodiment, the method for securely exchanging cryptographic keys over a public channel includes at least one of the following: DHE Key Exchange and ECDHE Key Exchange.


The processor 402 may be further operable to establish, based on further actions associated with the client, that the request from the client is suspected of the DoS attack. In an example embodiment, the further actions associated with the client include at least one of the following: closing the connection by the client after receiving the pre-generated key from the server and opening a new connection; lack of further data from the client after receiving the pre-generated key; absence of further data from the client after receiving a ClientKeyExchange message from the client by the server; failure to finish the handshake procedure within a predetermined time frame; determining that the client provides data without calculating a pre-master key; using a pre-loaded private key by the client; and so forth. The calculation of the pre-master key may include encrypting the pre-master key with the pre-generated key.


The processor 402 may be further operable to monitor the client based on the further actions associated with the client. Optionally, the processor 402 may be further operable to analyze the client based on the further actions associated with the client.


Optionally, based on the establishing that the request from the client is suspected of the DoS attack, the processor 402 may be operable to deny initiation of the secure session and terminate the connection with the client. Additionally, based on the identification, the processor 402 may be operable to add the client to a blacklist.


Alternatively, based on a determination that client is on the whitelist, the processor 402 may determine the established secure session to be valid and may perform a regular handshake procedure and force renegotiation of the secure session. More specifically, the processor 402 may generate a new key using a method for securely exchanging cryptographic keys over a public channel during the regular handshake procedure and send the new key to the client.


The system 400 may further comprise a database 404 in communication with the processor 402. The database 404 may store computer-readable instructions for execution by the processor 402.



FIG. 5 illustrates an example computer system 500 that may be used to implement embodiments of the present disclosure. The computer system 500 may serve as a computing device for a machine, within which a set of instructions for causing the machine to perform any one or more of the methodologies discussed herein can be executed. The computer system 500 can be implemented in the contexts of the likes of computing systems, networks, servers, or combinations thereof. The computer system 500 includes one or more processor units 510 and main memory 520. Main memory 520 stores, in part, instructions and data for execution by processor 510. Main memory 520 stores the executable code when in operation. The computer system 500 further includes a mass data storage 530, portable storage medium drive(s) 540, output devices 550, user input devices 560, a graphics display system 570, and peripheral devices 580. The methods may be implemented in software that is cloud-based.


The components shown in FIG. 5 are depicted as being connected via a single bus 590. The components may be connected through one or more data transport means. Processor unit 510 and main memory 520 are connected via a local microprocessor bus, and mass data storage 530, peripheral device(s) 580, portable storage device 540, and graphics display system 570 are connected via one or more I/O buses.


Mass data storage 530, which can be implemented with a magnetic disk drive, solid state drive, or an optical disk drive, is a non-volatile storage device for storing data and instructions for use by processor unit 510. Mass data storage 530 stores the system software for implementing embodiments of the present disclosure for purposes of loading that software into main memory 520.


Portable storage device 540 operates in conjunction with a portable non-volatile storage medium, such as a floppy disk, CD, DVD, or USB storage device, to input and output data and code to and from the computer system 500. The system software for implementing embodiments of the present disclosure is stored on such a portable medium and input to the computer system 500 via the portable storage device 540.


User input devices 560 provide a portion of a user interface. User input devices 560 include one or more microphones, an alphanumeric keypad, such as a keyboard, for inputting alphanumeric and other information, or a pointing device, such as a mouse, a trackball, stylus, or cursor direction keys. User input devices 560 can also include a touchscreen. Additionally, the computer system 500 includes output devices 550. Suitable output devices include speakers, printers, network interfaces, and monitors.


Graphics display system 570 includes a liquid crystal display or other suitable display device. Graphics display system 570 receives textual and graphical information and processes the information for output to the display device.


Peripheral devices 580 may include any type of computer support device to add additional functionality to the computer system.


The components provided in the computer system 500 of FIG. 5 are those typically found in computer systems that may be suitable for use with embodiments of the present disclosure and are intended to represent a broad category of such computer components that are well known in the art. Thus, the computer system 500 can be a personal computer, handheld computing system, telephone, mobile computing system, workstation, tablet, phablet, mobile phone, server, minicomputer, mainframe computer, or any other computing system. The computer may also include different bus configurations, networked platforms, multi-processor platforms, and the like. Various operating systems may be used including UNIX, LINUX, WINDOWS, MAC OS, PALM OS, ANDROID, IOS, QNX, and other suitable operating systems.


It is noteworthy that any hardware platform suitable for performing the processing described herein is suitable for use with the embodiments provided herein. Computer-readable storage media refer to any medium or media that participate in providing instructions to a central processing unit, a processor, a microcontroller, or the like. Such media may take forms including, but not limited to, non-volatile and volatile media such as optical or magnetic disks and dynamic memory, respectively. Common forms of computer-readable storage media include a floppy disk, a flexible disk, a hard disk, magnetic tape, any other magnetic storage medium, a Compact Disk Read Only Memory (CD-ROM) disk, DVD, Blu-ray disc, any other optical storage medium, RAM, Programmable Read-Only Memory, Erasable Programmable Read-Only Memory, Electronically Erasable Programmable Read-Only Memory, flash memory, and/or any other memory chip, module, or cartridge.


In some embodiments, the computer system 500 may be implemented as a cloud-based computing environment, such as a virtual machine operating within a computing cloud. In other embodiments, the computer system 500 may itself include a cloud-based computing environment, where the functionalities of the computer system 500 are executed in a distributed fashion. Thus, the computer system 500, when configured as a computing cloud, may include pluralities of computing devices in various forms, as will be described in greater detail below.


In general, a cloud-based computing environment is a resource that typically combines the computational power of a large grouping of processors (such as within web servers) and/or that combines the storage capacity of a large grouping of computer memories or storage devices. Systems that provide cloud-based resources may be utilized exclusively by their owners or such systems may be accessible to outside users who deploy applications within the computing infrastructure to obtain the benefit of large computational or storage resources.


The cloud may be formed, for example, by a network of web servers that comprise a plurality of computing devices, such as the computer system 500, with each server (or at least a plurality thereof) providing processor and/or storage resources. These servers may manage workloads provided by multiple users (e.g., cloud resource customers or other users). Typically, each user places workload demands upon the cloud that vary in real-time, sometimes dramatically. The nature and extent of these variations typically depends on the type of business associated with the user.


Thus, methods and systems for detecting a DoS attack when initiating a secure session have been described. Although embodiments have been described with reference to specific example embodiments, it will be evident that various modifications and changes can be made to these example embodiments without departing from the broader spirit and scope of the present application. Accordingly, the specification and drawings are to be regarded in an illustrative rather than a restrictive sense.

Claims
  • 1. A method for detecting a Denial of Service (DoS) attack when initiating a secure session, the method comprising: receiving, by a processor, a request from a client to initiate the secure session between the client and a server;determining, by the processor, whether the client is on a whitelist;based on a determination that the client is absent from the whitelist, sending, by the processor, a pre-generated key to the client, the pre-generated key being generated prior to receiving the request and being generated without a communication from the client using a method for securely exchanging cryptographic keys over a public channel the pre-generated key being disassociated from one or more secure sessions between the client and the server; andbased on further actions associated with the client, wherein further actions include the client failure to finish a handshake procedure within a predetermined time frame, and the further actions performed by the client after the pre-generated key is sent to the client and prior to initiating the secure session, andbased on a determination that the established secure session is invalid;identifying the request from the client as taking part in a denial of service attack; andbased on the identification, denying initiation of the secure session.
  • 2. The method of claim 1, wherein the further actions by the client include opening and closing connections by the client.
  • 3. The method of claim 1, wherein the further actions associated with the client includes determining that the client is providing data without calculating a pre-master key.
  • 4. The method of claim 1, wherein the further actions associated with the client include using, by the client, a pre-loaded private key.
  • 5. The method of claim 1, wherein the secure session includes a Perfect Forward Secrecy (PFS) cypher.
  • 6. The method of claim 1, further comprising, based on the further actions associated with the client, monitoring the client.
  • 7. The method of claim 1, further comprising, based on the further actions associated with the client, analyzing the client.
  • 8. The method of claim 1, wherein the method for securely exchanging cryptographic keys over a public channel includes one or more of the following: an ephemeral Diffie-Hellman (DHE) Key Exchange and an ephemeral Elliptic Curve Diffie-Hellman (ECDHE) Key Exchange.
  • 9. A system for detecting a DoS attack when initiating a secure session, the system comprising: a hardware processor configured to: receive a request from a client to initiate the secure session between the client and a server;determining, by the processor, whether the client is on a whitelist;based on a determination that the client is absent from the whitelist, send a pre-generated key to the client, the pre-generated key being generated prior to receiving the request and being generated without a communication from the client using a method for securely exchanging cryptographic keys over a public channel the pre-generated key being disassociated from one or more secure sessions between the client and the server: andbased on further actions associated with the client, wherein further actions include the client failure to finish a handshake procedure within a predetermined time frame, the further actions performed by the client after the pre-generated key is sent to the client and prior to initiating the secure session and,based on a determination that the established secure session is invalid;identifying the request from the client as taking part in a denial of service attack; andbased on the identification, denying initiation of the secure session; anda database in communication with the hardware processor, the database comprising computer-readable instructions for execution by the hardware processor.
  • 10. The system of claim 9, wherein the further actions by the client include opening and closing connections by the client.
  • 11. The system of claim 9, wherein the further actions associated with the client include determining that the client is providing data without calculating a pre-master key.
  • 12. The system of claim 9, wherein the further actions associated with the client include using, by the client, a pre-loaded private key.
  • 13. The system of claim 9, wherein the secure session includes a PFS cypher.
  • 14. The system of claim 9, wherein the hardware processor is further configured to monitor the client based on the further actions associated with the client.
  • 15. The system of claim 9, wherein the hardware processor is further configured to analyze the client based on the further actions associated with the client.
  • 16. The system of claim 9, wherein the method for securely exchanging cryptographic keys over a public channel includes one or more of the following: a DHE Key Exchange and an ECDHE Key Exchange.
  • 17. A non-transitory processor-readable medium having embodied thereon a program being executable by at least one processor to perform a method for detecting a DoS attack when initiating a secure session, the method comprising: receiving a request from a client to initiate the secure session between the client and a server;determining, by the processor, whether the client is on a whitelist;based on a determination that the client is absent from the whitelist, sending a pre-generated key to the client, the pre-generated key being generated prior to receiving the request and being generated without a communication from the client using a method for securely exchanging cryptographic keys over a public channel the pre-generated key being disassociated from one or more secure sessions between the client and the server; andbased on further actions associated with the client, wherein further actions include the client failure to finish a handshake procedure within a predetermined time frame, and the further actions performed by the client after the pre-generated key is sent to the client and prior to initiating the secure session, and based on a determination that the established secure session is invalid;identifying the request from the client as taking part in a denial of service attack; andbased on the identification, denying initiation of the secure session.
US Referenced Citations (197)
Number Name Date Kind
4001819 Wise Jan 1977 A
4780905 Cruts et al. Oct 1988 A
5101402 Chiu et al. Mar 1992 A
5163088 LoCascio Nov 1992 A
5359659 Rosenthal Oct 1994 A
5414833 Hershey et al. May 1995 A
5511122 Atkinson Apr 1996 A
5584023 Hsu Dec 1996 A
5684875 Ellenberger Nov 1997 A
5757908 Cooper et al. May 1998 A
5805801 Holloway et al. Sep 1998 A
5835727 Wong et al. Nov 1998 A
5892903 Klaus Apr 1999 A
5905859 Holloway et al. May 1999 A
5940002 Finn et al. Aug 1999 A
5960177 Tanno Sep 1999 A
6006272 Aravamudan et al. Dec 1999 A
6170061 Beser Jan 2001 B1
6185681 Zizzi Feb 2001 B1
6205115 Ikebe et al. Mar 2001 B1
6219706 Fan et al. Apr 2001 B1
6237036 Ueno et al. May 2001 B1
6249866 Brundrett et al. Jun 2001 B1
6259789 Paone Jul 2001 B1
6347376 Attwood et al. Feb 2002 B1
6363486 Knapton, III Mar 2002 B1
6449651 Dorfman et al. Sep 2002 B1
6505192 Godwin et al. Jan 2003 B1
6539435 Bolmarcich et al. Mar 2003 B2
6553005 Skirmont et al. Apr 2003 B1
6578147 Shanklin et al. Jun 2003 B1
6594780 Shen et al. Jul 2003 B1
6715081 Attwood et al. Mar 2004 B1
6732279 Hoffman May 2004 B2
6735702 Yavatkar et al. May 2004 B1
6754832 Godwin et al. Jun 2004 B1
6757822 Feiertag et al. Jun 2004 B1
6779117 Wells Aug 2004 B1
6973040 Ricciulli Dec 2005 B1
6988106 Enderwick et al. Jan 2006 B2
7092357 Ye Aug 2006 B1
7194766 Noehring et al. Mar 2007 B2
7200760 Riebe et al. Apr 2007 B2
7221757 Alao May 2007 B2
7234161 Maufer et al. Jun 2007 B1
7277963 Dolson et al. Oct 2007 B2
7372809 Chen et al. May 2008 B2
7392241 Lin et al. Jun 2008 B2
7409712 Brooks et al. Aug 2008 B1
7418733 Connary et al. Aug 2008 B2
7478429 Lyon Jan 2009 B2
7533409 Keane et al. May 2009 B2
7543052 Cesa Klein Jun 2009 B1
7577833 Lai Aug 2009 B2
7596695 Liao et al. Sep 2009 B2
7620733 Tzakikario et al. Nov 2009 B1
7665138 Song et al. Feb 2010 B2
7739494 McCorkendale Jun 2010 B1
7823194 Shay Oct 2010 B2
7845004 Bardsley et al. Nov 2010 B2
7925766 Jayawardena et al. Apr 2011 B2
7953855 Jayawardena et al. May 2011 B2
8010469 Kapoor et al. Aug 2011 B2
8089871 Iloglu et al. Jan 2012 B2
8220056 Owens, Jr. Jul 2012 B2
8239670 Kaufman et al. Aug 2012 B1
8276203 Nakhre et al. Sep 2012 B2
8286227 Zheng Oct 2012 B1
8289981 Wei et al. Oct 2012 B1
8301802 Wei et al. Oct 2012 B2
8375453 Jackson et al. Feb 2013 B2
8448245 Banerjee et al. May 2013 B2
8478708 Larcom Jul 2013 B1
8595845 Basavapatna et al. Nov 2013 B2
8719446 Spatscheck et al. May 2014 B2
8800034 McHugh et al. Aug 2014 B2
8813228 Magee et al. Aug 2014 B2
8832832 Visbal Sep 2014 B1
8881284 Gabriel Nov 2014 B1
8948380 Goto Feb 2015 B2
9129116 Wiltzius Sep 2015 B1
9130996 Martini Sep 2015 B1
9215208 Fraize et al. Dec 2015 B2
9245121 Luo et al. Jan 2016 B1
9246926 Erlingsson et al. Jan 2016 B2
9294503 Thompson et al. Mar 2016 B2
9300623 Earl et al. Mar 2016 B1
9537886 Gareau Jan 2017 B1
9571465 Sharifi Mehr et al. Feb 2017 B1
9584318 Yang et al. Feb 2017 B1
20010042204 Blaker et al. Nov 2001 A1
20020087708 Low et al. Jul 2002 A1
20020108059 Canion Aug 2002 A1
20020165912 Wenocur Nov 2002 A1
20020188839 Noehring et al. Dec 2002 A1
20030023846 Krishna et al. Jan 2003 A1
20030023876 Bardsley et al. Jan 2003 A1
20030028585 Yeager et al. Feb 2003 A1
20030035547 Newton Feb 2003 A1
20030061507 Xiong et al. Mar 2003 A1
20030069973 Ganesan et al. Apr 2003 A1
20030123667 Weber et al. Jul 2003 A1
20030196081 Savarda et al. Oct 2003 A1
20030200456 Cyr et al. Oct 2003 A1
20040008711 Lahti et al. Jan 2004 A1
20040054807 Harvey et al. Mar 2004 A1
20040057579 Fahrny Mar 2004 A1
20040059951 Pinkas et al. Mar 2004 A1
20040059952 Newport et al. Mar 2004 A1
20040091114 Carter et al. May 2004 A1
20040093524 Sakai May 2004 A1
20040111635 Boivie et al. Jun 2004 A1
20040148520 Talpade et al. Jul 2004 A1
20040172538 Satoh et al. Sep 2004 A1
20040187032 Gels et al. Sep 2004 A1
20050021999 Touitou et al. Jan 2005 A1
20050041584 Lau et al. Feb 2005 A1
20050044068 Lin et al. Feb 2005 A1
20050044352 Pazi et al. Feb 2005 A1
20050125684 Schmidt Jun 2005 A1
20050180416 Jayawardena et al. Aug 2005 A1
20050193199 Asokan Sep 2005 A1
20050198099 Motsinger et al. Sep 2005 A1
20050235145 Slick et al. Oct 2005 A1
20050257093 Johnson et al. Nov 2005 A1
20050278527 Liao et al. Dec 2005 A1
20060056297 Bryson et al. Mar 2006 A1
20060061507 Mohamadi Mar 2006 A1
20060143707 Song et al. Jun 2006 A1
20060179319 Krawczyk Aug 2006 A1
20060185014 Spatscheck et al. Aug 2006 A1
20060230444 Iloglu et al. Oct 2006 A1
20060265585 Lai Nov 2006 A1
20070143769 Bu et al. Jun 2007 A1
20070157027 Palekar Jul 2007 A1
20070169194 Church et al. Jul 2007 A1
20070186282 Jenkins Aug 2007 A1
20070214088 Graham Sep 2007 A1
20070280114 Chao et al. Dec 2007 A1
20070283429 Chen et al. Dec 2007 A1
20080183885 Durrey et al. Jul 2008 A1
20080256623 Worley et al. Oct 2008 A1
20090077663 Sun et al. Mar 2009 A1
20090083537 Larsen Mar 2009 A1
20090168995 Banga et al. Jul 2009 A1
20100131646 Drako May 2010 A1
20100138921 Na et al. Jun 2010 A1
20100284300 Deshpande et al. Nov 2010 A1
20110082947 Szeto et al. Apr 2011 A1
20110093785 Lee et al. Apr 2011 A1
20110131646 Park et al. Jun 2011 A1
20110138177 Qiu et al. Jun 2011 A1
20110153744 Brown Jun 2011 A1
20110188452 Borleske et al. Aug 2011 A1
20110249572 Singhal et al. Oct 2011 A1
20110282997 Prince et al. Nov 2011 A1
20120036272 El Zur Feb 2012 A1
20120042060 Jackowski et al. Feb 2012 A1
20120096546 Dilley et al. Apr 2012 A1
20120110472 Amrhein et al. May 2012 A1
20120144461 Rathbun Jun 2012 A1
20120155274 Wang et al. Jun 2012 A1
20120159623 Choi Jun 2012 A1
20120163186 Wei et al. Jun 2012 A1
20120170753 Pandrangi Jul 2012 A1
20120173684 Courtney et al. Jul 2012 A1
20120174196 Bhogavilli Jul 2012 A1
20120227109 Dimuro Sep 2012 A1
20120250866 Matsuo Oct 2012 A1
20120260329 Suffling Oct 2012 A1
20120266242 Yang et al. Oct 2012 A1
20130019025 Chaturvedi et al. Jan 2013 A1
20130103834 Dzerve et al. Apr 2013 A1
20130139245 Thomas May 2013 A1
20130198845 Anvari Aug 2013 A1
20130212265 Rubio Vidales et al. Aug 2013 A1
20130227646 Haggerty Aug 2013 A1
20130243194 Hawkes Sep 2013 A1
20130263256 Dickinson et al. Oct 2013 A1
20140137190 Carey et al. May 2014 A1
20140269308 Oshiba Sep 2014 A1
20140280832 Oshiba Sep 2014 A1
20140325588 Jalan et al. Oct 2014 A1
20140325648 Liu Oct 2014 A1
20140344925 Muthiah Nov 2014 A1
20150033341 Schmidtler et al. Jan 2015 A1
20150058977 Thompson et al. Feb 2015 A1
20150143118 Sheller May 2015 A1
20150220745 Nellitheertha et al. Aug 2015 A1
20150281177 Sun Oct 2015 A1
20150326685 Erickson Nov 2015 A1
20150381585 Vaterlaus Dec 2015 A1
20160036651 Sureshchandra Feb 2016 A1
20160134655 Thompson et al. May 2016 A1
20160182509 Kantecki et al. Jun 2016 A1
20160226896 Bhogavilli Aug 2016 A1
20160344836 Erickson Nov 2016 A1
Foreign Referenced Citations (14)
Number Date Country
477140 Feb 2002 TW
574655 Feb 2004 TW
N1197237 Feb 2004 TW
I225999 Jan 2005 TW
1241818 Oct 2005 TW
1252976 Apr 2006 TW
W01998042108 Sep 1998 WO
WO1999048303 Sep 1999 WO
WO2000062167 Oct 2000 WO
WO2006039529 Apr 2006 WO
W02014150617 Sep 2014 WO
W02014151072 Sep 2014 WO
W02014176461 Oct 2014 WO
W02015030977 Mar 2015 WO
Non-Patent Literature Citations (21)
Entry
Castelluccia et al, Improving Secure Server Performance by Re-balancing SSL/TLS Handshake, ACM, Mar. 24, 2006, pp. 26-34.
Lin et al, Counteract Syn Flooding Using Second Chance Packet Filtering, ACM, Jan. 16, 2009, pp. 216-220.
Dainotti, Albert et al. Tie: A Community-Oriented Traffic Classification Platform. May 11, 2009. Springer-Verlag, Traffic Monitoring and Analysis: Proceedings First International Workshop, TMA 2009. pp. 64-74. Retrieved from: Inspec. Accession No. 11061142.
Oracle Corporation. Oracle Intelligent Agent User's Guide, Release 9.2.0, Part No. A96676-01. Mar. 2002.
SOL11243. iRules containing the RULE—INIT iRule event do not re-initialize when a syntax error is corrected. f5. support.com May 24, 2010.
Mutz, “Linux Encryption How To,” available at http://encryptionhowto.sourceforge.net/Encryption-HOWTO-1.html.
Ganesan et al., “YAPPERS: a peer-to-peer lookup service over arbitrary topology,” IEEE, pp. 1250-1260, Mar. 30-Apr. 3, 2003.
Annexstein et al., “Indexing Techniques for File Sharing in Scalable Peer-to-Peer Networks,” IEEE, pp. 10-15, Oct. 14-16, 2002.
Ling et al., “A Content-Based Resource Location Mechanism in PeerlS,” IEEE, pp. 279-288, Dec. 12-14, 2002.
Obimo et al., “A parallel algorithm for determining the inverse of a matrix for use in blockcipher encryption/decryption,” Journal of Supercomputing, vol. 39, No. 2, pp. 113-130, Feb. 2007.
Long et al., “ID-based threshold decryption secure against adaptive chosen-ciphertext attack,” Computers and Electrical Engineering, vol. 33, No. 3, pp. 166-176, May 2007.
Popek, Gerald J., “Encryption and Secure Computer Networks,” Computing Surveys, vol. 11, No. 4, pp. 1-26, Dec. 1979.
Lee, Patrick P. C. et al., “On the Detection of Signaling DoS Attacks on 3G Wireless Networks,” IEEE INFOCOM 2007—26th IEEE International Conference on Computer Communications processings, May 6-12, 2007, pp. 1289-1297.
Spatscheck et al., “Optimizing TCP Forwarder Performance”, IEEE/ACM Transactions on Networking, vol. 8, No. 2, Apr. 2000, pp. 146-157.
Dainotti, Albert et al., “Early Classification of Network Traffic through Multi-Classification,” Apr. 27, 2011, Springer Verlag, Traffic Monitoring and Analysis, Proceedings of the Third International Workshop, TMA 2011. pp. 122-135. Retrieved from INSPEC. Accession No. 12232145.
Liebergeld, Steffen et al., “Cellpot: A Concept for Next Generation Cellular Network Honeypots,” Internet Society, Feb. 23, 2014, pp. 1-6.
Thanasegaran et al., “Simultaneous Analysis of Time and Space for Conflict Detection in Time-Based Firewall Policies,” Jul. 2010, IEEE 10th International Conference on Computer and Information Technology, pp. 1015-1021.
Kaufman, Charlie et al., “DoS Protection for UDP-Based Protocols,” CCS 2003, Oct. 27-31, 2003, pp. 2-7.
Castelluccia, Claude et al., “Improving Secure Server Performance by Re-balancing SSL/TLS Handshakes,” ASIACCS 2006, Mar. 21-24, 2006, pp. 26-34.
“Network- vs. Host-based Intrusion Detection, a Guide to Intrusion Detection Technology”, Oct. 2, 1998, Internet Security Systems [online], Retreived from the Internet: <URL:http://documents.iss.net/whitepapers/nvh-ids.pdf>, 10 pages.
Hunt, Guerney D. H. et al., “Network Dispatcher: a connection router for scalable Internet services”, 1998, Proceedings of the 7th International World Wide Web Conference (WWW7), Retreived from the Internet: <URL:http://www.unizh.ch/home/mazzo/reports/www7conf/fullpapers/1899/com1899.htm>, 14 pages.