Embodiments of invention relate to hearing aids. More specifically embodiments of the invention relate to protective caps for improving the resistance of hearings to exposure from cerumen and other biological contaminants.
Since many hearing aid devices are adapted to be fit into the ear canal, a brief description of the anatomy of the ear canal will now be presented for purposes of illustration. While, the shape and structure, or morphology, of the ear canal can vary from person to person, certain characteristics are common to all individuals. Referring now to
A cross-sectional view of the typical ear canal 10 (
Hair 5 and debris 4 in the ear canal are primarily present in the cartilaginous region 11. Physiologic debris includes cerumen (earwax), sweat, decayed hair, and oils produced by the various glands underneath the skin in the cartilaginous region. Non-physiologic debris consists primarily of environmental particles that enter the ear canal. Canal debris is naturally extruded to the outside of the ear by the process of lateral epithelial cell migration (see e.g., Ballachanda, The Human ear Canal, Singular Publishing, 1995, pp. 195). There is no cerumen production or hair in the bony part of the ear canal.
The ear canal 10 terminates medially with the tympanic membrane 18. Laterally and external to the ear canal is the concha cavity 2 and the auricle 3, both also cartilaginous. The junction between the concha cavity 2 and the cartilaginous part 11 of the ear canal at the aperture 17 is also defined by a characteristic bend 12 known as the first bend of the ear canal.
First generation hearing devices were primarily of the Behind-The-Ear (BTE) type. However, they have been largely replaced by In-The-Canal (ITC) hearing devices are of which there are three types. In-The-Ear (ITE) devices rest primarily in the concha of the ear and have the disadvantages of being fairly conspicuous to a bystander and relatively bulky to wear. Smaller In-The-Canal (ITC) devices fit partially in the concha and partially in the ear canal and are less visible but still leave a substantial portion of the hearing device exposed. Recently, Completely-In-The-Canal (CIC) hearing devices have come into greater use. These devices fit deep within the ear canal and can be essentially hidden from view from the outside.
In addition to the obvious cosmetic advantages, CIC hearing devices provide, they also have several performance advantages that larger, externally mounted devices do not offer. Placing the hearing device deep within the ear canal and proximate to the tympanic membrane (ear drum) improves the frequency response of the device, reduces distortion due to jaw extrusion, reduces the occurrence of the occlusion effect and improves overall sound fidelity.
However despite their advantages, many CIC hearing devices have performance and reliability issues relating to occlusion effects and the exposure of their components to moisture, cerumen, perspiration and other contaminants entering the ear canal (e.g. soap, pool water, etc.). Attempts have been made to use filters to protect components such as the sound ports of the microphone. However over time, the filters can become clogged with cerumen, and other contamination. Other attempts have been made to seal the entire hearing aid to prevent in the influx of mixture and cerumen; however, such seals can be difficult to both reliably form and test as wells as reducing acoustic conductance to the hearing aid microphone. Also many seals can fail over time due to the high humidity environment in the ear canal resulting in liquid water or vapor entering and becoming trapped inside the hearing aid and then condensing. Accordingly, there is a need for improved moisture and cerumen protection methodologies for CIC hearing aid components.
Embodiments of the invention provide systems and assemblies for improving the long term reliability for extended wear hearing aids including completely in the canal (CIC) hearing aids. More particularly, various embodiments provide systems and assemblies for improving the resistance of various components on CIC and other hearing aid devices to condensation, cerumen and other contaminants when the hearing aid is worn deep in the ear canal on a long term basis.
One embodiment provides a protective cap assembly for improving the resistance of a hearing aid, such as a CIC hearing aid to contaminants and condensation. The assembly comprises a perforated cap configured to be mounted over the lateral end of the hearing aid to protect the hearing aid from contaminants and condensation. The hearing aid can typically include a microphone assembly, a battery assembly and a receiver. In preferred embodiments, the cap will be mounted over the microphone assembly, but can also cover the battery assembly and even a portion of the receiver assembly. At a least a portion of the cap can include a protective coating such as a hydrophobic coating, an oleophobic coating. In one embodiment, the protective coating covers the entire cap. The cap also includes a plurality of perforations or channels. The placement and size of the perforations are configured to provide splash protection for an interior of the cap while providing sufficient aeration and drainage to reduce a relative humidity of the cap interior (e.g., by evaporation and/or drainage) when the hearing aid is positioned in a ear canal of a user. The perforations also operate as sound conduction channels for conducting sound to an interior of the cap. The perforations have a minimum size wherein a single perforation provides sufficient acoustic transmittance to the microphone or other hearing aid component such that a hearing aid performance parameter is not substantially adversely affected. Such parameters can include the output, volume, gain or frequency response of the hearing aid. In a preferred embodiment, the cap is configured to provide sufficient acoustic transmittance to a microphone positioned at least partially within the cap interior wherein the microphone is oriented in a medial direction of the ear canal.
Preferably, the cap is cylindrically shaped but other shapes can also be used such a semicircular or thimble shape. Also, the cap is preferably sized (e.g. diameter, shape, etc) such that the cap does not make substantially contact with, or conform to the shape of an ear canal. Accordingly, in one embodiment the cap can have a slight oval profile to match that of the concha but smaller in size. The cap can also be configured in size and shape to act as receptacle for one or more components of the hearing aid including the microphone assembly, integrated circuit assemblies as well as the battery assembly. Alternatively, the cap can be configured to seal against the battery assembly or a battery membrane barrier or sealing grommet.
In various embodiments, the perforations or channels can be configured to perform several functions including one or more of ventilation, drainage and sound conduction. Such functions can be achieved by the configuration of the size, number of and placements of the perforations. For example, in many embodiments, the size, number and placement of the perforations can be configured to provide sufficient aeration or ventilation (e.g., for evaporation) to minimize condensation within the cap interior due to moisture build up from perspiration, ingress of liquid water or exposure to high humidity ambient conditions. In such embodiments, the perforations are also desirably configured to provide sufficient aeration to at least partially equilibrate the relative humidity of the cap interior with a lower external ambient humidity. In these and related embodiments, such aeration can be achieved by placing the perforations on both the end and side portions or walls of the cap. This placement can be done in a selectable pattern and/or density of perforations.
The perforations can also be configured (e.g. size and placement, etc) to have the cap act as a drain for the outward flow of any water or other liquids that enter the cap or that are produced by perspiration or condensation. The splash guard function of the cap can also be enhanced through the use of a hydrophobic coating which serves to repel any water contacting the cap. In various embodiments, the placement of the perforations can made in a selectable pattern and/or density to optimize both the aeration function of the cap as well as its splash guard function. This combination of functions can also be enhanced through the shape and placement of the perforations. For example, in one embodiment, the perforations can have an inwardly increasing taper configured to reduce the influx of water but without compromising ventilation and/or acoustic conductance. Also, the perforations on the top of the cap can have smaller diameters and/or be fewer in number than those on the sides of the cap. In other embodiments, the perforations can also be configured (e.g. size and placement, etc) to have the cap function as a contaminant guard to inhibit migration of contaminants such as cerumen and skin into the interior of the cap.
In many embodiments, the cap can include one or more fixtures for inserting and/or removing the hearing aid. The insertion fixture can comprise an insertion tab attached to the top portion of the cap. The removal fixture can comprise one or more wires loops attached to one or both of the top or side portions of the cap. In a preferred embodiment, the removal fixture is a three pronged wire loop attached to the top portion of the cap. The cap can be attached to the hearing aid by screws or other joining means, adhesives, heating sealing, ultrasonic welding or other joining method known in the art. In embodiment having a removal fixture, the cap is attached to the hearing aid with sufficient mechanical strength (e.g., pull strength) such that when a removal tool engages the removal fixture the entire hearing aid is pulled out of the ear. The side of the cap an also include one or more grooves, ridges or other raised portions or fittings used for aligning, fitting or locking the cap in place with other components of the hearing aid.
In other embodiments, the cap can include one or more peelabe or otherwise removable layers attached to selectable portions of the cap. Preferably the layer covers at least the perforated portions of the cap. The removable layer is configured to function as an in situ cerumen removal system wherein, when the layer is peeled away any adhered cerumen is removed along with the layer, including cerumen or other contaminants that are blocking the perforations. Also a fresh region of the cap is revealed. Preferably, each peelable layer includes an attached removal loop, such as a suture or other fixture that allows in situ pealing of the layer by a user or medical worker using a removal tool having one or more hooks or other grasping means known in the art. Various aspects of removal tools are described in U.S. patent application Ser. No. ______, filed Feb. 7, 2005 (Attorney Docket No. 022176-001910US). The peelable layer and the adhesive on layer are configured to allow the layer to be peeled without tearing of the layer, that is the adhesive is a releasable adhesive known in the art and the layer has sufficient mechanical strength to overcome the adhesive (e.g. peal) forces of the adhesive without tearing of the layer. The peal forces area also desirably configured such that they do not result in removal or significant movement of the hearing aid. The peelable layer is configured to have sufficient mechanical strength so as to be able to pull away any cerumen that is blocking the perforations without tearing of the peelable layer. The cap can include multiple peelabe layers such that multiple cerumen removing peals can be done over a period of extended wear of the hearing aid in the ear canal. Peals can be done at set time intervals (e.g. monthly) or whenever the user notices a perceptible degradation in performance of the hearing aid (e.g. decreased volume, etc.). In this way, the user can wear the hearing aid for extended periods of time without degradation in performance due to cerumen or other contaminant build up and without having to undergo the inconvenience of removing the hearing aid for purposes of cleaning.
Another embodiment provides a self-ventilated CIC hearing aid device for operation in the bony portion of the ear canal. The device comprises a microphone assembly including a microphone, a receiver assembly configured to supply acoustic signals received from the microphone assembly to a tympanic membrane of a wearer and a battery assembly for powering the device and a cap assembly. The battery assembly being electrically coupled to at least one of the microphone assembly or the receive assembly. The cap assembly includes a cap configured to be mounted over at least a portion of the hearing aid. The cap includes a protective coating and a plurality of perforations. The placement and size of the perforations are configured to provide splash protection for an interior of the cap while providing sufficient and drainage to reduce a relative humidity of the cap interior when the hearing aid is positioned in a ear canal of a user. The perforations have a minimum size wherein a single perforation provides sufficient acoustic transmittance to a hearing aid component such that a hearing aid performance parameter is not substantially adversely affected.
Various embodiments of the invention provide system and assemblies for improving the resistance of various components on CIC and other hearing aids to condensation, cerumen and other contaminants when the hearing aid is worn deep in the ear canal on a long term basis. Specific embodiments provide a perforated cap assembly for a hearing aid that protects hearing aid components from water, cerumen and other contaminants while providing ventilation and drainage to reduce internal moisture and humidity as well as providing adequate acoustic transmission to the hearing aid microphone.
Referring now to
Referring now to
The cap can have a variety of shapes including, but not limited to, cylindrical, semi-spherical and thimble shaped. In a preferred embodiment, the cap is substantially cylindrically shaped and includes a top portion 92 and a side wall portion 93 and interior or cavity portion 95. Side wall portion 93 defines an open medial portion or opening 94 to cavity portion 95. Opening 94 serves as a conduit for mounting the cap over various portions and/or components of hearing aid 20. The thickness of 90T of side 93 and/or top 92 can be in the range of about 0.001 to about 0.010 inches. Preferably thickness 90T is less than about 0.010 inches and more preferably less than about 0.050 inches. In many embodiments, the cap include one or more perforations 91 which can be configured to perform one or more functions including, without limitation, serving as channels for: i) ventilation for moisture reduction, ii) oxygen supply to the battery; and iii) acoustic conduction to microphone as is discussed herein. Perforations 91 can be positioned in various locations throughout the cap but are preferentially positioned in patterns on the top and sides of the cap. In embodiments in which the cap is seated in a sealing retainer 100, at least a portion of perforations 91 are preferentially placed on the cap so as not be obstructed by the sealing retainer. Also, as is described herein, all or portions of cap 90 can include a protective coating 90c, such as a hydrophobic coating.
In many embodiments, the cap interior 95 has a sufficient volume and shape to serve as a receptacle for various components of hearing aid 20 including, but not limited to, microphone assembly 30 and associated integrated circuit assemblies, battery assembly 40, battery barrier or 60, battery manifold 70, receiver assembly 25 and electrical harnesses or connections 75 for one or more hearing aid components (See
In various embodiments, the cap is sized to fit within the ear canal of a user. The dimension of the cap, such as length, can be adapted for different sized ear canals to provide a custom fit for a given user. Preferably, the cap is sized (e.g. diameter, length and shape, etc.) such that the cap does not make substantially contact with, or conform to the shape of ear canal 10. Accordingly, in one embodiment, the cap has a diameter 90D and cross section profile 90P which is smaller than that of the concha 2 of the user. Also, the cap can have a slight oval profile 90P to match that of the concha but smaller in size. The diameter and profile 90D and 90P can be based on the average diameter of the concha or can be determined by individual measurements of concha of a given user.
The cap can be fabricated from a variety of polymers known in the art including but not limited to one or more biocompatible polymers known in the art such as acrylics, polyesters, polyethylenes, PMMA, polyetherimides, glycol modified polyethylene terephthalate (PETG) and the like. In a preferred embodiment, the cap is fabricated from a PEEK (polyether-ether ketone). This material can be configured to be machined as well as sterilized by gamma radiation, E-beam and ethylene oxide methods without discoloration. The cap can be fabricated using one or more polymer processing and/or machining methods known in the art including without limitation, injection molding, thermal forming, milling, die cutting or drill cut and the like. The perforations can be formed using injection molding of the entire cap or can be drilled or laser cut using methods known in the art. Also, the cap can be attached to hearing aid 20 using one or more joining means known in the art, including, but not limited to, adhesives, heating sealing, heat staking, ultrasonic welding, interference fitting, screws, pins or other joining method known in the art. In a preferred embodiment, the cap is adhered to battery assembly 40 using a biocompatible adhesive known in the art.
As discussed herein, in many embodiments, cap 90 includes one or more perforations 91 also known as channels 91. In various embodiments, the perforations or channels can be configured to perform several functions including one or more of ventilation, (for both moisture reduction and oxygen supply to the battery), drainage, splash protection and sound conduction. Such functions can be achieved by the configuration of the size, number and placements of perforations 91. For example, in many embodiments, the size, number and placement of the perforations can be configured to provide sufficient aeration or ventilation to: i) provide sufficient oxygen to supply the requirements of a metal air battery, such as a zinc-air battery, in powering the hearing aid; and ii) minimize condensation within the cap interior due to moisture build up from perspiration, ingress of liquid water or exposure to high humidity ambient conditions. In such embodiments, the perforations are also desirably configured to provide sufficient aeration to at least partially equilibrate the relative humidity of the cap interior with a lower external ambient humidity. In these and related embodiments, such aeration can be achieved by placing the perforations on both the top 92 and side portions 93 of the cap. In a preferred embodiment for a self-ventilated cap, the cap includes 50 perforations positioned on the top and sides of the cap. In use, such embodiments provide the cap and hearing aid with a self-ventilating capability to reduce moisture and condensation and improve long term reliability and battery life.
The perforations can also be configured (e.g. size and placement, etc) to have the cap acts as a drain 96 for the outward flow of any water or other liquids that enters the cap or that is produced by condensation. In such embodiments, it is desirable to position the perforations on both the top and sides of the cap. The drainage function of the cap together, with its self ventilation ability serves to further enhance the ability of the cap to reduce moisture build up in the cap interior and so protect hearing aid components that may damaged from moisture. The perforations can also be configured (e.g. size and placement, etc) to have the cap function as a splash guard 97 to prevent the direct splashing of water (with or without surfactants during showering, swimming etc.) against hearing device components. The splash guard function of the cap can also be enhanced through the use of a hydrophobic coating which serves to repel any water contacting the cap. In other embodiments, the perforations can be configured to have the cap function as a contaminant guard or filter 98 to filter out or otherwise inhibit the migration of contaminants such as cerumen, skin and hair into the interior of the cap. Such contaminants, can interfere in the functioning of various hearing aid components (e.g. the microphone), thereby potentially damaging the device. In a preferred embodiment, filter 98 is a cerumen filter in which the cap is configured (e.g., perforation size and placement, etc. and application of a cerumenolytic and/or oleophobic coating) to prevent or reduce entry of cerumen into the microphone or the battery assembly.
In various embodiments, the placement of the perforations can made in a selectable pattern 99 and/or density. Such patterns can configured to optimize one or more functions of the cap for example, the ventilation or sound conductance functions. In these embodiments, the perforations are positioned on both the top 92 and sides 93 of the cap. Suitable patterns include placement of perforations in rows 99r on the sides and top of the cap. Other patterns of perforations can include, without limitation, circular, square, serpentine and combinations thereof. The number of rows can be in the range of 1 to 5. In an embodiment shown in
In many embodiments, perforations 91 are configured to operate as sound conduction channels 91s for conducting sound to the cap interior 95. In these embodiments, the perforations are configured to conduct sound from the ear canal 10 to a microphone assembly 30 positioned within the cap interior. In a specific embodiment, the perforations are configured to conduct sound to a microphone assembly positioned within the cap interior when the microphone is oriented in a medial direction of the ear canal. The pattern and number of perforations can also be configured to provide a multidirectional sound conduction system to minimize any directional artifacts and to provide redundancy should one or more of the perforations become fouled with cerumen or other contaminants.
The perforations can have variety of shapes including, without limitation, circular, oval and rectangular. In preferred embodiments, a majority of the perforations can be circular shaped. Also, oval shaped perforations can be positioned used along a perimeter edge 92E of the cap top such that the perforation is positioned both on the top 92 and side 93 portion of the cap. In various embodiments using circular or oval shaped perforations, the perforations can be configured to have a minimum diameter 91D (or other dimension for different shapes, e.g. width), wherein even a single perforation 91 provides sufficient acoustic transmittance to the microphone, or other hearing aid component, such that a hearing aid performance parameter is not substantially adversely affected. Such parameters can include, without limitation, the output, volume, gain or frequency response of the hearing aid. The minimum diameter 91D of the perforations can range from about 0.01 to about 0.05 inches, with a preferred embodiment of 0.025 inches.
In various embodiments, the shape and placement of the perforations can be configured to enhance one more functions of the cap. For example, in one embodiment, the perforations can have an inwardly increasing taper configured to reduce the influx of water but without compromising ventilation and/or acoustic conductance. Also, the perforations on the top of the cap can have smaller diameters and/or be fewer in number than those on the sides of the cap. Also, the perforations can be sized and placed so as to not compromise the structural integrity of the cap. That is, the perforations can be placed such that they do not result in the cap significantly deforming or breaking due to compression of the canal from jaw movement (e.g. chewing) or even moderate impact to the head or jaw.
In many embodiments, the cap can include one or more fixtures for insertion and/or removal of the hearing aid. In an embodiment, an insertion fixture 101 can comprise an insertion tab attached to the top portion 93 of the cap as is shown in
In many embodiments, all or portions of cap 90 can include a protective coating 90c. Coating 90c can include one or both of a hydrophobic coating or an oleophobic coating known in the art. In a preferred embodiment, coating 90c is a flouro-polymer coating known in the art that is both hydrophobic and oleophobic. Use of a hydrophobic coating reduces the amount of liquid water that enters into the cap interior 95 through splashing, submersion or via capillary action. In particular embodiments, a hydrophobic coating can be configured to enhance the splash guard properties of the cap (described herein). Use of an oleophophic coating serves to reduce the buildup of cerumen on the cap and in particular, reduces the propensity of cerumen to adhere to the cap and block perforations 91. In use, protective coating 90c provides a means for improving the long term reliability of the hearing aid by several means including: i) reducing the amount of liquid water entering into the cap and contacting moisture sensitive hearing aid components; ii) reducing the amount of cerumen and other contaminants entering into cap; and iii) reducing the amount of cerumen and other contaminants from fouling the cap perforations. Coating 90c can be applied using dip coating, spray coating or vacuum deposition and the like or other coating methods known in the art. The thickness of both coating 90c can be in the range of about 1 to 30 microns, with specific embodiments of 10, 20 and 25 microns. In alternative embodiments, coating 90c can also include an enzyme, enzymatic composition or other cerumenolytic agent or cerumenolytic composition 90A known in the art which is configured to chemically degrade adhered cerumen C causing it slough off or otherwise detach from the surface 90s of the cap. The agent 90A can be incorporated into the coating 90c and can be configured to be eluted by coating 90c. In use, such an cerumenolytic coating provides the cap with a self cleaning surface. Suitable cerumen degrading enzymes or agents include, without limitation, docusate sodium, triethanolamine polypeptide, aluminum acetate or benzethonium chloride and combinations thereof. In one embodiment, the cerumenolytic agent can be chemically compounded with an eluting agent known in the art such that the cerumenolytic agent 90A elutes or diffuses from surface 90s of the cap at a desired rate and concentration for an extended period, for example, three to six months or even longer.
Referring now to
In most embodiments, each removable layer includes an attached removal loop 131 or other removal mean 130 that allows in situ removal of the layer by a user or medical worker using a removal tool 140 that has one or more hooks or other grasping means 150 for engaging loop 131. The removable layer together with the removal means 130 are configured to function as a in situ cerumen removal system 120 such that when the layer is removed (e.g., by peeling) adhered cerumen C and other contaminants are removed along with layer 110, including cerumen or other contaminants that are blocking the perforations 91. Also a fresh region of the cap is revealed. In use, such a system allows a user to clean their hearing aid without undergoing the inconvenience of removal the hearing aid from the ear canal.
In one embodiment, removal means 130 comprises one or more suture loops, 131 threaded through one of more perforations 91 or attached to layer 110 by an adhesive means. Loops 131 can be positioned at various locations on layer 110/cap 90. In one embodiment, they can be attached centrally on cap top 92, in another embodiment one or more loops can be positioned near the perimeter 92P of capntop 92 or alternatively, one or more loops can be attached to the cap sides 93.
In many embodiments wherein the removable layer 110 is a peelable layer, layer 110 is attached to cap 90 using a releasable adhesive 110a known in the art. Typically, adhesive 110a is pre-applied to layer 110 (e.g. similar to adhesive tape) but can also be applied to cap 90 as well or a combination of both. Peelable layer 110 and the adhesive 1110a are configured to allow the layer to be peeled without tearing of layer 110, that is the adhesive is a releasable adhesive known in the art and the layer has sufficient mechanical strength (e.g., tensile strength) to overcome the adhesive forces of the adhesive without tearing of the layer. The peelable layer is also configured to have sufficient mechanical strength so as to be able to pull away cerumen C that is adhered to the cap including cerumen protruding into perforations 91, without tearing of the peelable layer. The peel forces of layer 110 are also desirably configured such that they do not result in removal or significant movement of hearing aid 20 within the ear canal. Preferably, the peel strength of layer 110 is less about 0.04 lbs of force, more preferably less than about 0.03 lbs and still more preferably, less than about 0.02 lbs of force. In alternative embodiments, layer 110 can be attached to cap 90 by tabs (not shown) which are at least partially inserted into perforations 91. When a pull force is exerted on removal loop 131 (which is desirably centrally attached to layer 110/cap 90) it causes layer 110 to flex and pulls the tabs out, causing the entire layer to release with low force.
In various embodiments, the thickness 110T of a given peelable or other removable layer 110 can be in the range of 0.001″ to about 0.006″, with a specific embodiment of 0.003″. Preferably, removable layer 110 is fabricated from a material that has one or more of the following properties: water resistance, cerumen resistance, dimensional stability and is machinable. In one embodiment, layer 110 can comprise a rigid vinyl plastic known the art.
The cap can include multiple peelable or other removable layers 110 such that multiple cerumen removing peals can be done over a period of extended wear of the hearing aid in the ear canal. In various embodiments, cap 90 can include between 2 to 10 layers, with a specific embodiment of 3 layers. Peels or other removals can be done at set time intervals (e.g. monthly) or whenever the user notices a perceptible degradation in performance of the hearing aid (e.g. decreased volume, clarity sound recognition, etc.). In this way, the user can wear the hearing aid for extended periods of time without degradation in performance due to cerumen/contaminant build up and without having to undergo the inconvenience of removing the hearing aid for purposes of cleaning. In one embodiment, the hearing aid can be configured to detect degradations in performance due to cerumen fouling and provide an audible or other signal to alert the user when to do a removal (e.g. pealing) procedure.
The foregoing description of various embodiments of the invention has been presented for purposes of illustration and description. It is not intended to limit the invention to the precise forms disclosed. Many modifications, variations and refinements will be apparent to practitioners skilled in the art. For example embodiments of the protective cap can be configured to protect any miniature acoustic or electronic device assembly positioned within the body, or otherwise placed in any humid environment and/or particulate contaminating environment. Further, the teachings of the invention have broad application in the hearing aid device fields as well as other fields which will be recognized by practitioners skilled in the art.
Elements, characteristics, or acts from one embodiment can be readily recombined or substituted with one or more elements, characteristics or acts from other embodiments to form numerous additional embodiments within the scope of the invention. Hence, the scope of the present invention is not limited to the specifics of the exemplary embodiment, but is instead limited solely by the appended claims.
This application claims the benefit of priority of U.S. Provisional Patent Application Ser. No. 60/544,871 (Attorney Docket No. 022176-002200US), filed on Feb. 13, 2004, the full disclosure of which is incorporated herein by reference. The application is related to the following commonly-assigned applications: U.S. patent application Ser. No. ______, (Attorney Docket No. 022176-001810US), filed on Feb. 7, 2005; and U.S. patent application Ser. No. ______, (Attorney Docket No. 022176-001910US), filed on Feb. 7, 2005, the full disclosure of each being incorporated herein by reference. This application is also related to U.S. Provisional Patent Applications: Ser. No. ______ (Attorney Docket No. 022176-002800US), filed on ______; and Ser. No. ______, (Attorney Docket No. 022176-002900US), filed on ______, the full disclosure of each being incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60544871 | Feb 2004 | US |