1. The Field of the Invention
Exemplary embodiments of the invention relate to the field of energy absorption. More particularly, the invention relates to apparatus and systems for absorbing and dissipating seismic energy.
2. The Relevant Technology
Building codes are set in place so that buildings, whether residential or commercial structures, are designed and constructed to have in place a minimum set of standards designed to allow the building to withstand tension and compression cycles. Such cycles may come about from any of a variety of different sources. For instance, such tension and compression cycles may be induced by earthquakes, winds, and other natural and/or man-made phenomena. For example, when an earthquake or similar event occurs, energy from the earthquake is transferred to the structure, causing the structure to oscillate, thereby also causing the structure and its support members to undergo a number of tensile and compressive cycles. Hopefully, in such an energy-inducing event (i.e. if the building codes are met, and the energy-inducing event is of a size less than the maximum for which the building codes were designed), the structure can withstand the tensile and compressive cycles without buckling or excessive deformation.
To meet these building codes, a frame-based structure can be designed and constructed with stiff cross-members which act as braces to withstand any compressive and tensile cycles occurring as a result of linear displacement. Typically, building code standards do not, however, require structures to exhibit high-energy dissipating characteristics that would allow for multiple cycles of non-linear displacement. Thus, a large earthquake, which may cause the structure to undergo non-linear displacement, may cause significant damage to the buildings despite compliance with the building codes. In particular, such structures are vulnerable to deformation and buckling in the event of a large earthquake or similar energy-inducing event which causes non-linear displacement and/or stress cycles above and beyond the minimum stresses that compliance with the building codes should withstand. Moreover, such problems are magnified in structures which have multiple stories as inter-story drift can be created which causes the stories to shift relative to each other.
To prevent or reduce the damage in the event of a major seismic event, structural dampers may be used which absorb high amounts of energy generated by the seismic event so as to reduce the displacement of the structure. In some cases, this damage is mitigated by limiting the structure to linear displacement where the stiff-cross members and bracing structures are less subject to deformation and buckling.
Exemplary structural dampers that can be used in this manner include various fluid-based and visco-elastic dampers. Each of these types of dampers are useful in that their components absorb the energy applied by a seismic event and thereby reduce structural displacement. Nevertheless, such damping structures are also very specialized and expensive. As a result, such devices are typically limited to high-cost applications which require high-performance capabilities.
Accordingly, what are desired are apparatus and systems which provide a low-cost structural damper which can absorb significant amounts of energy to reduce displacement and damage to a structure. It is also desired to provide structural damping apparatus and systems which can be implemented in connection with new construction or which can be efficiently installed to retrofit and rehabilitate existing structures.
Exemplary embodiments of the invention relate to a seismic damper which, when fixed to a structure, can absorb significant amounts of energy through deformation, thereby reducing the overall displacement and damage to a structure. A seismic damper of the system can include a single plate which is attached to two or more cross-members of a support structure. The single plate can include fuse areas configured to deform as a structure experiences seismic accelerations, and which can accumulate such deformation through multiple cycles. In embodiments in which a single plate damper is used, the damper can be simply and efficiently fabricated at low cost, thereby also allowing the damper to be cost efficiently replaced after excessive deformation or to be cost effectively installed in retrofit applications.
According to one embodiment of the present invention, a seismic damper is constructed to include a substantially flat plate. The substantially flat plate can also include a plurality of nodes along each side of the flat plate, and a plurality of tabs at each corner of the plurality of tabs, such that the tabs intersect at the nodes. The nodes can further be defined as the portions of the flat plate situated between an aperture within the flat plate and each of a plurality of cut-outs formed along each which has one or more apertures formed in the flat plate and one or more cut-outs formed along an outer edge of each side of the flat plate. Such a flat plate can be of any suitable shape and can be, for example, substantially square, having a thickness substantially less than the length of each of the four sides of the square.
The aperture and/or cut-outs can also have any suitable shape or size. For instance, an aperture may be circular or generally diamond-shaped. The cut-outs may be, for example, shaped to correspond to a portion of a circle and can thus be semi-circular in some cases. Furthermore, the aperture may be substantially centered in the flat plate and the cut-outs can be substantially centered along a respective edge of the flat plate. In other cases, the aperture and/or cut-outs may not be centered in such a manner.
According to another embodiment of the present invention, a perforated flat plate is used to form a seismic damper for use in substantially eliminating non-linear displacement in an attached support structure. The flat plate has a regular geometric shape and includes a central aperture formed in and extending through the flat plate. At least one cut-out is also formed and centered along each side of the regular geometrically shaped flat plate, and each cut-out has a curved shape that is either a semi-circle or an arc. A tab is further formed at each corner of the flat plate and each tab intersects two adjacent tabs at a node, thereby forming an equal number of tabs and nodes. Each tab may further be adapted so that it can be connected to a member of a diagonal brace system. For instance, each tabs may connect to a member of the diagonal brace structure such that when the corresponding member of the diagonal brace structure undergoes tension or compression, the connected tab undergoes a corresponding tension or compression.
Such a seismic damper may also include a fuse area centered on each node. In some cases, the nodes also concentrate forces applied to the perforated flat plate at the fuse areas. The fuse areas may have any suitable shape and, in some cases, are substantially hourglass shaped. In the same, or other cases, the fuse area may also have a length of any suitable size, including a length which is less than that of an adjacent cut-out.
While the plate and aperture can have any suitable shape, in some cases both are regular geometric shapes. For example, both can have about the same geometric shape, as in a case in which the plate is square and the aperture is substantially square or diamond-shaped. In other cases, the flat plate and aperture have different regular geometric shapes, such as when the flat plate is square and the aperture is substantially circular.
In another embodiment, a seismically damped structural system is disclosed which includes multiple cross-members intersecting at a particular location. A single plate seismic damper can also be attached to each cross-member at the particular location. Such a single plate seismic damper can have any suitable configuration. For instance, the seismic damper can include a flat plate that has one or more apertures formed therein, and one or more cut-outs formed therein. The aperture may be formed inside the flat plate and extend through the thickness of the plate. The cut-outs may also extend through the thickness of the plate, but may be formed in an edge of each side of the flat plate. In this manner, the aperture and cut-outs can define a plurality of tabs at each corner of the flat plate, and a node between each adjacent tab. The nodes may also have a width which varies substantially across the length of the node and can be configured such that when a force is applied to the cross-members and transferred to the flat plate, the transferred force is substantially concentrated at the nodes.
In some cases, the particular location at which the seismic damper is attached is substantially centered on the plurality of cross-members. Additionally, the nodes may further include a fuse area such that when the force is transferred to the flat plate, the concentration of the force is substantially contained within the fuse area. The fuse area may be rectangular, square, hourglass shaped, or may have any other suitable shape or configuration. Irrespective of its shape, the fuse area can be adapted to non-elastically deform when sufficient force is applied. In such a case, the non-elastic deformation of the fuse area may absorb forces applied to the cross-members and substantially limits the cross-members to linear displacement.
Non-elastic deformation may occur, for example, when there are large seismic events. Further, the single plate damper may be replaceable and selectively removable so that it can be replaced after deformation occurring in one or more seismic events.
These and other objects and features of the present invention will become more fully apparent from the following description and appended claims, or may be learned by the practice of the invention as set forth hereinafter.
To further clarify the above and other advantages and features of the present invention, a more particular description of the invention will be rendered by reference to specific embodiments thereof which are illustrated in the appended drawings. It is appreciated that these drawings depict only typical embodiments of the invention and are therefore not to be considered limiting of its scope, nor are the drawings necessarily drawn to scale. The invention will be described and explained with additional specificity and detail through the use of the accompanying drawings in which:
Exemplary embodiments of the invention relate to a seismic damper which, when fixed to a structure, can absorb significant amounts of energy through deformation, thereby reducing the overall displacement and damage to a structure. A seismic damper of the system can include a single plate which includes fuse areas configured to deform as a structure experiences seismic accelerations, and which can accumulate such deformation through multiple cycles. In embodiments in which a single plate damper is used, the damper can be simply and efficiently fabricated at low cost, thereby also allowing the damper to be cost efficiently replaced after excessive deformation.
Reference will now be made to the drawings to describe various aspects of exemplary embodiments of the invention. It is understood that the drawings are diagrammatic and schematic representations of such exemplary embodiments, and are not limiting of the present invention. Accordingly, while the drawings illustrate an example scale of certain embodiments of the present invention, the drawings are not necessarily drawn to scale for all embodiments. No inference should therefore be drawn from the drawings as to the required dimensions of any invention or element, unless such dimension is recited in the appended claims. In the following description, numerous specific details are set forth in order to provide a thorough understanding of the present invention. It will be obvious, however, to one of ordinary skill in the art that the present invention may be practiced without these specific details.
As illustrated in
In some embodiments, plate 12a can be configured to focus forces, such as tensile, compressive and/or shear forces, which can act on seismic damper 10a. For example, plate 12a may be constructed so as to concentrate any such forces primarily within specific, predetermined portions of plate 12a. Any suitable manner of focusing the forces to the specific, predetermined portions of plate 12a may be implemented. For example, and as illustrated in
As best illustrated in
Aperture 14a can be formed in plate 12a in any suitable manner, and no particular method for forming aperture 14a is to be considered limiting of the present invention. For example, plate 12a may be formed of a metal such as iron or steel. In such an exemplary embodiment, aperture 14a may be formed by machining plate 12a (e.g., drilling, milling, reaming, punching, cutting, slotting, broaching, grinding, etc.) or otherwise carving out aperture 14a in plate 12a. In other embodiments, however, aperture 14a may be formed substantially simultaneously with plate 12a such as by, for example, forming plate 12a with aperture 14a during a casting (e.g., die casting, sand casting, investment casting, etc.) or molding process.
To further allow seismic energy to be focused within seismic damper 10a, seismic damper 10a can include, in some example embodiments, one or more additional cut-outs that remove additional material from plate 12a. For example, in the illustrated embodiment of
Cut-outs 16a may be adapted to have any of a variety of different shapes and configurations. In the illustrated embodiment, for example, cut-outs 16a have a substantially constant curvature, thereby forming an arc along each of the four sides of plate 12a. In other embodiments, however, exemplary cut-outs may have only straight edges and sharp corners, or may have other configurations. For example, exemplary cut-outs may take the form of any portion of a circle, triangle, square, rectangle, trapezoid, rhombus, hexagon, or virtually any other simple, complex, regular, irregular, symmetrical, or non-symmetrical geometric shape. Cut-outs 16a may also, by way of example and not limitation, be centered along the sides of plate 12a, although this feature is not necessary. For example, in alternative embodiments, a cut-out may be formed at a corner of a plate forming a seismic damper and/or multiple cut-outs may be formed on one or more side of such a plate.
Cut-outs 16a may also have any of a variety of sizes. For example, while the embodiment illustrated in
As noted above, the four cut-outs 16a are, in the illustrated embodiment, each substantially centered along a respective side of square plate 12a, thereby forming four tabs 20a, which are, in the illustrated embodiment, separated by the dashed lines. In this manner, each of tabs 20a may be aligned with, and include, a corner of plate 12a. Additionally, as best illustrated in
Nodes 18a can be fuse points situated between, and connecting each of tabs 20a. Furthermore, in some cases, such as where plate 12a necks down at or near nodes 18a, nodes 18a can focus seismic energy which acts on seismic damper 10a and/or an associated support or bracing structure attached to seismic damper 10a.
For example, with reference now to
As a seismic or other event causes the support system to move laterally, brace system 105 can move laterally to a position such as that illustrated in
As brace system 105 moves laterally to the position of brace system 105′, cross-members 130 can be placed in tension and/or compression. For instance, in brace system 105′, the bracing cross-members 130′ can be stretched and placed in tension as brace system 105′ moves laterally in one direction, thereby elongating brace members 130′. In contrast, bracing cross-members 130″ can be placed under compression, thereby reducing the length of brace members 130′ from their equilibrium length in brace system 105. It will also be appreciated in view of the disclosure herein that a force which causes brace system 105 to move to position 105′ may also oscillate. In such a manner, brace system 105 may move laterally in each direction (illustrated as left and right in
As brace members 130 undergo tension and/or compression, seismic damper 110 can also be stressed in a tensile and/or compressive manner. For example, in the illustrated embodiment, a tab 120′ of seismic damper 110′ which is connected to a support member 130′ under tension may also be subjected to tensile forces. In a similar manner, if a tab 120″ of seismic damper 110′ is connected to a support member 130″ under compression, the corresponding tabs 120″ may also be placed under compression.
As each tab 120 can be placed in compression or tension, as dictated by the associated support member to which it is attached, at a particular instant of time, one or more of tabs 120 (e.g., tabs 120′) can be in tension while one or more other of tabs 120 (e.g., tabs 120″) can be in compression. As a result, seismic damper 110 can be placed under both compressive and tensile stresses at any particular instant. Further, as noted above, as brace system 105 to which seismic damper 10a is attached oscillates, these compressive and tensile stresses can switch directions and magnitudes. Thus, while braces 130′ and tabs 120′, and braces 130″ and tabs 120′, are illustrated as being under tension and compression, respectively, when brace system 105 sways in the opposite direction, the tensile and compressive nature of such stresses can be reversed.
A seismic event may induce displacement within a structure such as seismic damping brace system 100. In small seismic events, the displacement may be largely linear, whereas a large seismic event can induce non-linear displacement within a structure and/or within seismic damping brace system 100. Such non-linear displacement can cause significant damage, however, if passed on to brace system 105. Accordingly, to reduce, and possibly eliminate, the non-linear movement of brace system 105, tensile and compressive stresses, and their associated shear stresses, may be concentrated in seismic plate 112, rather than in brace system 105, including cross-members 130. In particular, and as described herein, a seismic damper such as seismic damper 110, may include a plurality of nodes which have a reduced and possibly necked area which acts as fuse points between a plurality of tabs. As the shear, compressive, and/or tensile forces act on the plate, these forces can then be focused at the nodes, which may substantially confine non-linear strains therein, thereby allowing an attached structure, such as brace system 105 to move linearly. Thus, nodes within plate 112 can absorb significant amounts of energy to reduce the lateral displacement of brace system 105.
Moreover, as the seismic forces or other forces cause brace system 105 to move back-and-forth, diagonal cross-members 130 may experience a pattern of extension along one diagonal and contraction along the other. A similar pattern is transferred to seismic damper 110 where tabs 120 experience patterns of expansion and contraction. When seismic damper 110 is loaded beyond its elastic capacity, seismic damper 110 begins to deform in a non-elastic manner, thereby absorbing energy. This energy and deformation can also be focused on nodes within plate 112 which have, in one example, a reduced area.
In particular, as tensile and shear forces act on nodes such as nodes 18a in
Returning briefly to
In light of the disclosure herein, it will be appreciated that seismic damper 10a can, accordingly, accumulate deformation to allow the damper to perform through multiple cycles. Multiple cycles may occur, for example, in a single, major seismic event and/or in multiple major or minor seismic events. Following such an event or series of events, seismic damper 10a can be replaced.
Moreover, because seismic damper 10 can, in some example embodiments, comprise a single flat plate 12a having one or more apertures 14a and/or cut-outs 16a formed therein, seismic damper 10a can be easily fabricated and installed. For instance, flat plate 12a can be formed of a suitable metal, alloy, polymer, ceramic, composite, or other material. For example, flat plate 12a may be formed of a solid or hollow plate of steel. Such a plate can thus be manufactured at low cost, thereby allowing seismic damper 10a to be installed on any class of braced building to provide high-performance structural damping. Moreover, as tabs 20a can be connected to support braces, seismic damper 10a can be installed on new construction, and/or can be used to retrofit and rehabilitate existing construction, or can replace an existing seismic damper which has experienced excessive nodal deformations.
Although
For example, in other embodiments, a brace system may have braces which are not equally offset at ninety degree angles as is illustrated in
Accordingly, it will be appreciated that the dimensions and configuration of a seismic damper according to aspects of the present invention can be varied as necessary for any particular structural brace system, and for energy absorption to be provided according to a variety of different considerations. For instance, in some embodiments, seismic damper 10a may be about twenty inches by twenty inches. Moreover, in additional exemplary embodiments, central aperture 14a may be about twelve inches in diameter, cut-outs 16a have lengths of about twelve inches, and/or cut-outs 16a having a depth of about three inches. Moreover, plate 12a can have a thickness between one-half and five inches. It will be appreciated, however, that these dimensions are exemplary only and that in other embodiments, plate 12a, aperture 14a and cut-outs 16a may have other dimensions, sizes, shapes, or configurations.
Now turning to
In particular,
As illustrated in
In some embodiments, plate 12b can be configured to focus forces (e.g., tensile, compressive, and/or shear forces) which may act on seismic damper 10b so as to substantially concentrate the forces within specific, predetermined portions of plate 12b. To focus any such forces, portions of plate 12b can be removed, such that a lesser area is provided within plate 12b for being acted upon by the associated forces. For example, in the illustrated embodiment, seismic damper 10b includes an aperture 14b which is formed in plate 12b of seismic damper 10b. By having aperture 14b formed in seismic damper 10b, material is removed from plate 12b such that as a force is applied to seismic damper 10b, the forces are distributed over the un-removed portion of plate 12b which has not been removed. In other words, by removing the material to form aperture 14b, a force applied to seismic damper 10b is distributed over a smaller area.
Moreover, adjacent aperture 14b plate 12b may include a plurality of nodes 18b at which forces are focused. As discussed herein, nodes 18b can act as fuse points between various tabs 20b which can be placed under different forces. As different forces act on tabs 20b, forces can further be focused at nodes 18b.
In the embodiment illustrated in
To further allow seismic energy to be focused within seismic damper 10b, seismic damper 10b can include, in some example embodiments, one or more additional cut-outs which remove additional material from plate 12b. For example, in the illustrated embodiment of
Cut-outs 16b may also have any of a variety of different sizes. For example, semi-circular cut-outs 16b can have a length along the side of plate 12b which is about half the distance across aperture 14b (i.e., from point-to-point in aperture 14b). It will be appreciated in light of the disclosure herein, however, that such an arrangement is exemplary only. For example, in other embodiments, cut-outs 16b may have lengths and/or diameters which are more or less than half the distance across aperture 14b, or which is about the same size as, or larger than, the distance across aperture 14b within plate 12b.
In the illustrated embodiment, cut-outs 16b are each substantially centered along a respective side of square plate 12b, thereby forming four tabs 20b, which are, in the illustrated embodiment, separated by the dashed lines. In this manner, each of tabs 20b can be aligned with, and include, a corner of plate 12b. Additionally, cut-outs 16b can form continuous arches on the sides of plate 12b, which cause plate 12b to neck down towards aperture 14b. For example, as illustrated in
As described previously with respect to tabs 120 in
As illustrated in
In the embodiment illustrated in
For example,
In the illustrated embodiment, flat plate 12c may include one or more apertures 14c and/or cut-outs 16c, 17c. In the illustrated embodiment, for instance, an oval aperture 14c is formed in flat plate 12c and substantially centered therein. As disclosed herein, aperture 14c can also include any other shape, such as a circle or rectangle, and/or may optionally be off-center relative to rectangular plate 12c. Furthermore, as illustrated in
By varying the size and/or shape of cut-outs 16c, 17c, it will also be appreciated that the size and/or shape of nodes 18c, 19c, as well as the fuse areas associated therewith, can also be different. For example, nodes 18c may have more distance between cut-outs 16c and aperture 14c, while nodes 19c may have a relatively shorter distance between cut-outs 17c and aperture 14c. However, the length of nodes 19c may also be corresponding larger than the length of nodes 18c, although this is exemplary only. In other embodiments, the distance between cut-outs 16c, 17c and aperture 14c may be about the same.
As further illustrated, seismic damper 10c can also include a tab 20c in each corner of rectangular plate 12c. The tab 20c can be defined by the cut-outs 16c, 17c and aperture 14c, and the tabs 20c can intersect at a line centered in nodes 18c, 19c. Further, in the illustrated embodiment, it can be seen that while each tab 20c may optionally have about the same shape or mirrored shape of the other tabs 20c, it is not necessary that tabs 20c by symmetrical. For instance, the length of tab 20c to cut-outs 16c, 17c may vary, thereby forming asymmetrical tabs 20c.
Now turning to
As also illustrated, in the example embodiment, flat plate 12d also can have an optional aperture 14d formed therein. In this embodiment, aperture 14d also has a generally triangular configuration and is aligned with the triangular configuration of flat plate 12d, although this is also exemplary and can be varied in any manner described herein. Three tabs 20d can also thusly be formed at or near each corner of flat plate 12c and can join at or near nodes 18d. As with the nodes in the other seismic dampers herein, nodes 18d may be locations within flat plate 12d at which stresses are concentrated to deform flat plate 12d. As flat plate 12d may be attached to a structural member which is subjected to seismic of other events, the concentration of stresses in nodes 18d can thus largely confine non-linear displacement and non-elastic deformation to flat plate 12d, and allow the attached structural member to undergo substantially only linear displacement.
Seismic damper 10d can be useful for a number of different applications. One application, for instance, is in connection with a structural member which has three joining cross-members. In such a system, each tab 20d can be connected to a respective cross-member and absorb the tensile, compressive, and/or shear forces applied thereto.
In view of the disclosure herein, it should be appreciated that a seismic damper can be constructed according to the present invention to attach to structural members and diagonal cross-members of virtually any size, shape, or configuration. For instance,
Flat plate 10e can thus also include one or more optional apertures 14e of any suitable shape. For instance, aperture can be substantially circular, triangular, square, or elliptical, or may be substantially hexagonal as illustrated. Furthermore, although the illustrated embodiment illustrates substantially straight edges on flat plate 12e and aperture 14e, it will be appreciated that either or both of flat plate 12e and aperture 14e may have rounded or curved edges as may be desirable to, for example, reduce stress concentrations at discrete locations.
As further illustrated, seismic damper 10e can also include a plurality of cut-outs 16e centered along one or all of the edges of flat plate 12e. In this embodiment, cut-outs 16e form a portion of a trapezoid, and further define, in connection with aperture 14e, six tabs 20e and six nodes 18e, which are centered at the intersection of tabs 20e, thereby providing a generally wagon-wheel shape to seismic damper 10e. In the illustrated embodiment, and in contrast to some other embodiments disclosed herein, it can be seen that nodes 18e can have a generally constant width across a substantial length of node 18e, although this is exemplary only. In other embodiments, such as those others disclosed herein, a node can neck down and have a width that varies across substantially its entire length.
Accordingly, in view of the various embodiments disclosed herein, it will be appreciated that a seismic damper according to aspects of the present invention can include any of a variety of configurations, features, shapes, and sizes. Accordingly, the features and configurations illustrated and described herein are not limited to use with any particular sized, shaped or constructed seismic damper. Rather, each feature should be seen as being applicable for use with any other non-exclusive feature described herein.
The present invention may be embodied in other specific forms without departing from its spirit or essential characteristics. The described embodiments are to be considered in all respects only as illustrative and not restrictive. The scope of the invention is, therefore, indicated by the appended claims rather than by the foregoing description. All changes which come within the meaning and range of equivalency of the claims are to be embraced within their scope.
The present applications claims the benefit of, and priority to, U.S. Provisional Application Ser. No. 60/863,561, filed on Oct. 30, 2006, and entitled “Perforated Plate Seismic Damper”, which application is expressly incorporated herein by this reference.
Number | Name | Date | Kind |
---|---|---|---|
4027389 | Atchisson | Jun 1977 | A |
4373649 | Ninomiya | Feb 1983 | A |
4480731 | Izeki et al. | Nov 1984 | A |
4502219 | Hibben | Mar 1985 | A |
4606125 | Jensen | Aug 1986 | A |
4765628 | Jensen | Aug 1988 | A |
4805359 | Miyake et al. | Feb 1989 | A |
4807362 | Prentice | Feb 1989 | A |
5161655 | Shimoda | Nov 1992 | A |
5509238 | Scalfati | Apr 1996 | A |
6243998 | MacKarvich | Jun 2001 | B1 |
6389761 | McKinnon | May 2002 | B1 |
6651395 | Capra | Nov 2003 | B2 |
D510009 | Lee | Sep 2005 | S |
D557330 | Parikh et al. | Dec 2007 | S |
20050155483 | Anderson | Jul 2005 | A1 |
20060150538 | Thomas | Jul 2006 | A1 |
20080022610 | Gjelsvik et al. | Jan 2008 | A1 |
Number | Date | Country | |
---|---|---|---|
20080134592 A1 | Jun 2008 | US |
Number | Date | Country | |
---|---|---|---|
60863561 | Oct 2006 | US |