The present invention relates to a perforated substrate processing method and also to a liquid ejection head manufacturing method utilizing the perforated substrate processing method.
Japanese Patent Application Laid-Open No. H09-011478 describes an inkjet recording head manufacturing method including at least (1) a step of forming through holes for supplying ink through a substrate having ink ejection energy generating elements formed thereon and (2) a step of forming a protective film layer on each of the walls of the through holes. Japanese Patent Application Laid-Open No. H09-011478 also describes that the protective film layers are made to operate also as protective film layer on the ink ejection energy generating elements.
When a method of gasifying liquid by heating the liquid and utilizing the volume expansion attributable to the liquid gasification is employed as a liquid (ink) ejection method, heater elements, which are a sort of electrothermal transducers, are more often than not employed as ink ejection energy generating elements.
If the protective film layer (ink-resistant film) is left to remain on the heater elements, the efficiency of propagating thermal energy to the liquid to be ejected can fall to in turn increase the energy loss. Therefore, the protective film layer that is left on the heater elements is preferably removed in order to raise the thermal efficiency of the heater elements.
A method as described below may be used to secure the protective film layer on the areas that require it (e.g., on the inner walls of the through holes) and at the same time remove the protective film layer only from the areas that do not require it (e.g., areas on the heater elements). First, protective film layer is formed on predetermined areas of the substrate having through holes formed through it. Then, a photoresist layer is formed on the substrate to cover (and close) the through holes and the photoresist layer is subjected to a patterning operation to produce a resist pattern (that operates as etching mask). Finally, (the etching object, which is the unnecessary part of) the protective film layer is subjected to an etching process, using the resist pattern as etching mask, to etch the protective film layer.
However, when an etching mask is produced by using photoresist to cover the through holes and there exist one or more through holes that have a size larger than the specified size or that are formed at positions displaced from the specified positions, there can arise instances where the etching mask for covering the through holes cannot completely cover those through holes. Then, the insides of those through holes that should not be etched will be etched by the etching solution or the etching gas that is being employed, in the subsequent etching process.
What is worse, the etching solution or the etching gas can sometimes get to the rear surface of the substrate by way of those non-standardized through holes to undesirably etch the insides of the through holes formed to show a desired size at desired positions. Thus, the etching in the inside of a single non-standardized through hole can adversely affect some or all of the remaining through holes or the etching of a single chip can adversely affect some or all of the remaining chips to consequently lower the production yield of wafers.
In an aspect of the present invention, there is provided a perforated substrate processing method having a step of etching an etching object on a perforated substrate, the substrate having a first surface, a second surface located opposite to the first surface, and a plurality of through holes running through the substrate from the first surface to the second surface, wherein the etching object is arranged on the first surface of the perforated substrate at least around the through holes without closing the through holes, the method including: a step of preparing the perforated substrate; a step of forming a coating layer containing a resin material on the first surface of the perforated substrate; a closing step of allowing part of the resin material to drop into each of the plurality of through holes and so as to close each of the through holes at least partly with the dropped resin material; a patterning step of leaving the coating layer on each of the through holes as mask while removing at least part of the coating layer covering the etching object to expose the etching object; and a step of etching the exposed etching object under a condition where each of the through holes is closed at least partly with the resin material.
In another aspect of the present invention, there is provided a method of manufacturing a liquid ejection head having an element substrate including energy generating elements for ejecting liquid and liquid supply ports for supplying liquid, flow paths respectively communicating with the corresponding liquid supply ports and a nozzle layer including ejection orifices respectively communicating with the corresponding flow paths to eject liquid, the method including: a step of forming a plurality of liquid supply ports on a substrate having a first surface, a second surface located opposite to the first surface, and energy generating elements arranged on the first surface, the liquid supply ports running through the substrate from the first surface to the second surface; a step of forming a protective film covering the first surface, the second surface and an inner wall surface of each of the liquid supply ports; a step of etching at least parts covering the energy generating elements of the protective film; and a step of forming the flow paths, each communicating with at least one of the liquid supply ports, and the nozzle layer having the ejection orifices communicating respectively with the corresponding flow paths, on the first surface, wherein the step of etching the protective film is executed by utilizing the above-defined perforated substrate processing method.
Further features of the present invention will become apparent from the following description of exemplary embodiments with reference to the attached drawings.
In an aspect of the present invention, the object of the invention is to provide a perforated substrate processing method that can suppress the adverse effect of an operation of etching the etching object on a perforated substrate having a plurality of through holes that is attributable to a single through hole and affects the remaining through holes. In another aspect of the present invention, the object of the invention is to provide a liquid ejection head manufacturing method that can improve the production yield of wafers by utilizing the above perforated substrate processing method.
According to the present invention, the etching operation of the perforated substrate processing method is conducted under a condition where the resin material is buried (filled) in the inside of each of the through holes. Then, as a result, the occurrence of the problem that the through holes are etched at the insides thereof by the etching solution or the etching gas being used for the perforated substrate processing method is suppressed at the time of preparing a perforated substrate by the existence of the resin material buried in the insides of the through holes even in an instance where some of the through holes are displaced from their proper positions and/or some of the through holes show an increased planar size. Furthermore, the occurrence of the problem that the etching solution or the etching gas flows around and gets to the rear surface of the substrate is suppressed. Thus, consequently, the occurrence of the problem that any adverse effect attributable to a single through hole affects the through holes located around and adjacent to the former through hole is also suppressed and hence the occurrence of the problem that the adverse effect of a single chip affects the chips located around and adjacent to the former chip is suppressed to make it possible to improve the production yield of wafers.
Now, the present invention will be described in greater detail by referring to the attached drawings. Note, however, the following description by no means limits the scope of the present invention and is provided only to satisfactorily explain the present invention to those who have ordinary knowledge relating to the technical field of the present invention. Also note that
<Perforated Substrate>
As seen from
The plurality of through holes 2 (2a, 2b) run through the substrate 1 from the first surface 1a to the second surface 1b of the substrate 1 (typically in a direction perpendicular to the surfaces of the substrate) and hence are open both at the first surface 1a and the second surface 1b. There are no particular limitations to the profile of the through holes. In other words, the profile of the through holes may appropriately be determined depending on the application thereof (e.g., the application of the liquid supply ports, the application of the vias or the like). For example, the hole diameter of each of the through holes at the first surface may be equal to the hole diameter of the through hole at the second surface as shown in
Still alternatively, the through holes may show a profile as illustrated in
Furthermore, the plurality of through holes 2 may have a same profile or respective profiles that are different from each other. Note that, the present invention is particularly advantageous when some of the through holes have profiles that differ from their intended profiles. Namely, the present invention is particularly advantageous when the through holes are formed at positions that are displaced from the respective proper positions and/or when the through holes have sizes that differ from their intended size. The present invention may also be advantageous of overcoming any unintended adverse effect of the patterning operation that is to be conducted prior to the etching operation (e.g., partial misalignment of the patterning position).
To illustrate the advantages of the present invention,
The etching object 3a (see
It is only necessary for the etching object 3a to exist around the through holes on the first surface and there are no particular limitations to the distance separating each of the through holes from the etching object. However, since the present invention is highly advantageous when the through holes are displaced from their intended positions and/or when the through holes have sizes greater than their intended size, the present invention will be highly effective when the etching object is produced at a position where it is reliably affected by such displacements and/or such size differences.
The perforated substrate 10 shown in
<Perforated Substrate Processing Method>
A perforated substrate processing method according to the present invention includes the following steps:
A perforated substrate processing method according to the present invention as defined above may additionally include the following steps:
Note that the above-described perforated substrate preparing step may include the following steps:
Now, each of the above listed steps will be described in detail below.
(Perforated Substrate Preparing Step)
Firstly, as shown in
Subsequently, as shown in
Note that there are no particular limitations to the method of forming the film 3 and an appropriate method may be selected depending on the required throwing power and the material of the film to be used. A film having a uniform film thickness can be formed on the desired area of the substrate typically by means of a thermal CVD (chemical vapor deposition) technique, an ALD (atomic layer deposition) technique or the like. Alternatively, a film (such as an SiO2 film) can also be formed on the desired area by dipping the substrate in a liquid material of SOG (spin on glass) or the like and subsequently baking the substrate.
With the perforated substrate processing method of the present invention, it is sufficient that an etching object 3a is arranged at least around of each of the through holes on the first surface of the substrate without closing the plurality of through holes 2. In other words, a film as described above may or may not be formed on other parts of the substrate. Thus, a perforated substrate 10 as shown in
(Coating Layer Forming Step)
Next, as shown in
Now, a lamination technique will be described below as an example. With a lamination technique, the resin material to be used is firstly turned into dry film and the dry film is laid on the first surface as laminate. In this way, a coating layer 4 that contains the resin material can be formed on the first surface.
While the thickness of the coating layer 4 can appropriately be determined depending on the quantity of the resin material for the filling operation and other factors in the filling step, which will be described hereinafter, the thickness of the coating layer 4 is preferably not less than 5 μm from the viewpoint of the cohesive power of the resist to be used and not more than 100 μm from the viewpoint of the performance of the pattern operation to be conducted by means of exposure and development.
Note that the resin material to be used at the time of forming the coating layer 4 may, if necessary, contain one or more additive agents (which may typically include a solvent and/or a photosensitive substance) in addition to resin (or rubber), which is the essential component of the resin material.
While the resin (or rubber) component to be used for the resin material may appropriately be selected, a material that shows a high degree of fluidity in the closing step, which will be described hereinafter, is preferably adopted for use. Note that, when forming the coating layer 4, the degree of fluidity of the resin material in the closing step can be raised by making the resin material contain (typically a small quantity of) solvent that can dissolve the resin component in addition to the resin component.
Besides, resin (or rubber) having a glass transition point (Tg) that can raise the fluidity of the resin material by heat is preferably employed as the resin (or rubber) component to be used for the resin material.
Additionally, resin (or rubber) selected from novolac resins, acrylic resins and cyclized rubbers can suitably be employed as the resin (or rubber) component to be used for the resin material because such resin (or rubber) can easily be removed in a later step.
When a novolac resin is employed as the resin component, propylene glycol monomethyl ether acetate (PGMEA) can advantageously be used as the solvent to be contained in the resin material for the purpose of raising the degree of fluidity. When, on the other hand, an acrylic resin is employed as the resin component, cyclohexanone can advantageously be used as the solvent. Finally, when a cyclized rubber is employed as the resin component, xylene can advantageously be used as the solvent.
Also note that many novolac resins have a glass transition point within the temperature zone between about 60° C. and about 100° C., although the glass transition point of resin is also affected by the molecular weight of resin. Any of such novolac resins may appropriately and advantageously be selected for use also from the viewpoint of easy handling.
The resin material may or may not be photosensitive. When a (typically positive-type) photosensitive resin material is employed, for example, naphthoquinonediazide (NQD) can be used as the photosensitive substance to be contained in the resin material. The content ratio of the resin component of the resin material, that of the solvent, that of the photosensitive substance and so on can appropriately be determined. In other words, there are no particular limitations to the content ratios of those components.
(Closing Step)
Subsequently, as shown in
If, however, the amount of the resin material that drops into each of the through holes is greater than the amount of the resin material necessary for entirely filling the through hole and hence the resin material flows out onto the second surface 10b through the through hole, the resin material flown out onto the second surface 10b may disadvantageously affect the various operations of handling the surfaces of the substrate that come thereafter such as an operation of chucking the second surface 10b. For this reason, for the perforated substrate processing method according to the present invention, it is required to control the operation of allowing the resin material to drop into (and fill) at least part of the inside of each through hole so as to prevent the dropped resin material from flowing onto the second surface 10b of the perforated substrate.
While there are no particular limitations to the technique of allowing part of the resin material for forming the coating layer to drop into each of the through holes so long as the technique is suitable for improving the degree of fluidity of the resin material to be used when dropping the resin material, for example, a technique of heating the resin material for forming the coating layer may advantageously be employed. When a heating technique is employed, the resin material for forming the coating layer 4 can be softened to raise the degree of fluidity thereof by heating the resin material. Then, it is possible to allow the resin material to automatically drop into each of the through holes by utilizing the capillary phenomenon.
Furthermore, if the resin material to be used has a glass transition point, the fluidity of the resin material can be raised with ease by heating the resin material of the coating layer to a temperature higher than the glass transition point of the resin material. Then, the closing step can be executed very easily.
The glass transition point of the resin material is preferably not lower than 40° C. from the viewpoint of handling. When the resin material is a photosensitive resin material, the temperature of the glass transition point can vary before and after the exposure to light of the resin material. Thus, more specifically, the glass transition point of the resin material is preferably not lower than 40° C. before the exposure to light of the resin material.
The temperature to which the resin material is to be heated is preferably not higher than the temperature level at which the photosensitivity of the resin material is lost and the operation of peeling (removing) the coating layer is obstructed in the coating layer removing step that comes later. If the resin material is an NQD type (including NQD) novolac resin material, the temperature to which the resin material is to be heated is preferably not higher than 130° C.
While the amount of the resin material that is filled in each of the through holes to form a closed portion 4a there (the amount of the resin material to be filled in the closed portion 4a to be formed) can appropriately be selected depending on the planar size of the through hole and the depth of the through hole, it is preferably within the following range. For example, when the (intended) hole diameter of each of the through holes is not less than 10 μm and not more than 100 μm and the (intended) depth of each of the through holes is 200 μm, the resin material is preferably filled in each of the through holes by not less than 10 μm and not more than 180 μm. In other words, each of the through holes is preferably filled with the resin material to a depth that is not less than 5% and not more than 90% of the depth of the through hole. The depth of each of the through holes refers to the length of the through hole in the vertical direction in
When the inner wall surface of each of the through holes 21 has a step 21c as described above by referring to
(Patterning Step)
Subsequently, at least part of the coating layer 4b covering the etching object 3a is removed, while the coating layer showing a predetermined profile is left on each of the through holes 21 so as to be used as mask 4c, so as to expose the etching object under a condition where each of the through holes is closed by the resin material as shown in
Note that the coating layer left on each of the through holes can be made to show a (predetermined) appropriate profile. In other words, there are no particular limitations to the profile of the coating layer left on each of the through holes. With a specific patterning technique, when the resin material has photosensitivity, a pattern as described above can be formed by subjecting the resin material to an exposure process and a development process. When, on the other hand, the resin material does not have any photosensitivity, a pattern as described above can be formed by means of an etching operation (e.g., a dry etching operation), using resist for patterning the part of the coating layer covering the etching object.
Now, an instance where the resin material has photosensitivity and an instance where the resin material does not have any photosensitivity will be separately described in detail below.
The resin material may either be a negative type photosensitive resin material or a positive type photosensitive resin material. An instance where the resin material is a positive type photosensitive resin material will be described below. For the purpose of the present invention, it is important that each of the through holes maintains the condition of being filled with (closed by) the resin material after the patterning step is over as pointed out above. More specifically, after the patterning step, at least part of the resin material filled in the closed portion 4a needs to be left unremoved even in a through hole 2b as shown in
Note that the part of the coating layer that covers the etching object is removed in the patterning step and therefore, if the resin material is a positive type photosensitive resin material (resist), the coating layer will be exposed to light down to a depth greater than the thickness of the coating layer 4b arranged on the first surface. For this reason, during the exposure operation, the coating layer 4b is preferably exposed to light under a condition where the closed portions 4a are not exposed to light. More specifically, the exposure operation is preferably executed under a condition where the resin material filled in the closed portion of each of the through holes is at least partly left unremoved and hence the through hole is closed by the resin material that is left unremoved. Either of the specific techniques as described below can suitably be employed for this purpose. They include a technique of controlling the light to be used for the exposure operation so as not to get to the bottom of the resin material filled in the closed portion of each of the through holes (exposure adjusting technique) and a technique of selecting a shallow depth of focus that does not allow exposure lighting to get to the bottom of the resin material filled in the closed portion of each of the through holes as a requirement of exposure lighting to be satisfied (lighting condition adjusting technique). For example, when the resin material is a photosensitive resin material that contains naphthoquinonediazide, which is a light-sensing substance, it is possible to expose the coating layer to light with ease without allowing the closed portion 4a of each of the through holes 2 to sense light because the resin material absorbs light to a large extent.
In an instance where the resin material does not have any photosensitivity (and hence is a non-photosensitive resin material), resist is applied onto the coating layer 4 in a separate step and a photosensitive resin layer is formed there to produce a desired pattern. Then, a resist pattern is formed by subjecting the photosensitive resin layer to an exposure process and a development process. The patterning step can be executed by using the resist pattern and etching the coating layer 4b. Note that, the etching operation is executed to a depth greater than the thickness of the coating layer 4b arranged on the first surface in the patterning step in order to remove the part of the coating layer that covers the etching object. For this reason, the depth by which the coating layer 4b is to be etched is preferably smaller than the depth of the resin material filled in each of the through holes. With such an arrangement, then, it is possible to leave at least part of the resin material in the inside of each of the through holes unremoved with ease.
The etching technique to be used for the patterning step may typically be selected from dry etching techniques. Above all, reactive ion etching (ME) may particularly preferably be employed for the patterning step. With the use of RIE, the surface coating layer can easily be etched and additionally the closed portions 4a can be left unetched with ease because ME allows the pattern of the coating layer to be formed with ease in an excellent manner and ME is characterized in that the etching rate is reduced as the coating layer is etched deeper. The etching conditions can appropriately be determined depending on the resin material to be used. When a resin component is employed for the resin material, the coating layer can be etched with ease by using O2 gas
(Etching Step)
Substantially, the etching object (the film of the region where the resin material has been removed) 3a that has been exposed at the surface as a result of the preceding patterning step as shown in
To the contrary, according to the present invention, all the through holes 2 including the through hole 2b are closed by at least part of the resin material filled in the closed portions as shown in
Thus, according to the present invention, unlike the prior art processing methods, the adversely affected through hole, if any, is prevented from in turn adversely affecting any of the remaining through holes. The net result will be a remarkably improved production yield of wafers.
(Coating Layer Removing Step)
Finally, the coating layer (resin material) is removed as shown in
<Liquid Ejection Head>
A liquid ejection head that is obtained by a liquid ejection head manufacturing method according to the present invention, which will be described later can be mounted in a printer, a copying machine, a facsimile machine having a telecommunication feature, a word processor equipped with a printer or an industrial recording apparatus that is a composite machine produced by combining various processing units.
As shown in
(Element Substrate)
A silicon substrate may typically be employed for the element substrate 39 (reference symbol 30 in
Electrode pads (not shown) and wires (not shown) for connecting the energy generating elements and the electrode pads may be arranged on the substrate 30. The wires may be contained in an insulating layer (reference symbol 34 in
(Nozzle Layer)
The ejection orifices (liquid ejection orifices) 38b belong to the nozzle layer 38 and are provided to eject liquid. They may typically respectively be formed above the corresponding energy generating elements 33 as shown in
<How to Use Liquid Ejection Head>
To execute a recording operation on a recording medium such as a sheet of paper by using the liquid ejection head, the surface of the head bearing the ejection orifices (ejection orifices bearing surface) is placed to face the recording surface of the recording medium. Then, the liquid flown into the element substrate from the liquid supply ports and filled in the flow paths in the nozzle layer is ejected from the ejection orifices by the energy generated from the energy generating elements. Then, a printing (recording) operation takes place as the ejected liquid lands on the recording medium.
<Liquid Ejection Head Manufacturing Method>
A liquid ejection head manufacturing method according to the present invention includes the following steps and utilizes a perforated substrate processing method according to the present invention as described above when etching the parts of the protective film as described below.
A liquid ejection head manufacturing method according to the present invention may additionally include the following steps.
Now, each of the above-listed steps will be described in detail below.
(Second Substrate Preparing Step)
To begin with, a second substrate (e.g., a silicon substrate) 31 having a first surface 31a, a second surface 31b and a plurality of energy generating elements (e.g., heater elements) 33 arranged on the first surface 31a is prepared (see
(Liquid Supply Ports Forming Step)
Then, a plurality of liquid supply ports 32 that run through the substrate (perpendicularly relative to the substrate surfaces) are formed as shown in
(Protective Film Forming Step)
Subsequently, a protective film (e.g., a TiO film) 35 covering the first surface 31a, the second surface 31b and the inner wall surface 32c of each of the liquid supply ports is formed as shown in
With a liquid ejection head manufacturing method according to the present invention, it is sufficient for the etching object to be arranged at least around each of the liquid supply ports on the first surface 31a without closing a plurality of liquid supply ports 32. In other words, the protective film may or may not be formed on the remaining area of the first surface 31a as pointed out above.
A perforated substrate 40 (to be used for a liquid ejection head) having a first surface 40a and a second surface 40b as well as a plurality of energy generating elements 33, a plurality of liquid supply ports 32 and an etching object can be obtained as a result of executing the above-described steps.
(Etching Step)
Subsequently, part of the protective film including at least the part thereof covering the energy generating elements is etched out by utilizing a perforated substrate processing method according to the present invention as described above. Now, the method will be described in detail hereinafter.
First, a coating layer 36 that covers the etching object (as indicated by reference symbol 35a in
Subsequently, the resin material of the coating layer 36 is partly allowed to flow down into each of the plurality of liquid supply ports 32 to close at least part of each of the liquid supply ports with the flowing down resin material as shown in
The description given earlier for a perforated substrate processing method according to the present invention is also applicable to the technique of allowing the resin material to flow down and fill each of the plurality of liquid supply ports 32 to produce a closed portion there and the profile of each of the liquid supply ports (through holes).
Subsequently, the part of the coating layer 36b that covers the etching object 35a is removed to expose the etching object, while the part of the coating layer laid on each of the liquid supply ports and having a predetermined profile is left unremoved as so many masks 36c so as to leave each of the liquid supply ports in a state of being closed by the resin material as shown in
Thereafter, the etching object (the protective film of the region where the resin material has been removed) 35a that has been exposed on the first surface of the perforated substrate in the patterning step is etched out by means of etching solution 37, which may typically be buffered hydrofluoric acid, as shown in
Then, the coating layer (resin material) is removed as shown in
(Nozzle Layer Forming Step)
Next, a nozzle layer 38 having flow paths 38a and ejection orifices 38b is formed as shown in
To begin with, a flow path pattern is formed on the element substrate 39 by means of a (e.g., positive type) photosensitive resin material. Subsequently, a coating layer is formed on the photosensitive resin layer. Then, an ejection orifice pattern is formed on the coating layer by means of resist and a dry etching operation is conducted along the pattern to produce ejection orifices in the coating layer. Thus, a nozzle layer having two layers (including an orifice plate having ejection orifices and a flow path wall member having flow paths) can thereafter be formed by eluting the photosensitive resin material for forming the flow path pattern.
(Dicing Step and Separating Step)
At the time of producing liquid ejection heads, normally, a plurality of chips is arranged in array on a single substrate. Therefore, the obtained substrate where the nozzle layer has been formed is cut by way of a dicing operation and an inspection is executed to separate the chip or chips having one or more problematic liquid supply ports 32b from the remaining chips. Then, liquid ejection heads can be obtained by using the chips having only problem-free liquid supply ports 32a. More specifically, as shown in
As described above, according to the present invention, as a result of burying a resin material into the inside of each of the through holes, the buried resin material is left in the inside of the through hole to close the through hole even when the through hole is displaced from its proper position or the through hole shows a too large planar size. For this reason, the etching solution or the etching gas that is being employed does not go around and get to the rear surface of the substrate and hence the occurrence of the problem that a problematic single chip adversely affects the chips located around and adjacent to the former one is suppressed to make it possible to remarkably improve the production yield of wafers.
Now, the present invention will be described in greater detail below by way of examples. Note, however, that the examples do not limit the scope of the present invention by any means.
Firstly, a second substrate 31 including a monocrystalline silicon substrate 30 was prepared (second substrate preparing step). Heater elements 33 for generating energy for driving liquid to fly had been formed on the first surface 31a of the second substrate and a wire (not shown) for flowing electricity had already been connected to each of the heater elements 33. Additionally, the wires were contained in an insulating layer 34 that was made of silicon oxide. They were formed by means of a multilayer wiring technique using photolithography. The thickness of the second substrate (the overall thickness including the thickness of the substrate 30 and the thickness of the insulating layer 34) was 625 μm.
Subsequently, a plurality of liquid supply ports 32 that ran through the second substrate 31 were formed by dry etching (liquid supply ports forming step). At this time, while the liquid supply ports 32a were made to show an intended size, the liquid supply port 32b showed a size greater than the intended size. The intended hole diameter of the liquid supply ports was 50 μm both at the first surface and at the second surface.
Thereafter, as shown in
Thereafter, as shown in
Then, as shown in
Subsequently, as shown in
Subsequently, as shown in
Thereafter, as shown in
Then, a nozzle layer having flow paths 38a and ejection orifices 38b as shown in
Thus, the above-described manufacturing method prevented the problematic liquid supply ports, if any, from adversely affecting the problem-free liquid supply ports by etching solution or the like eroding by way of the second surface of the perforated substrate and hence the manufacturing method can prevent any significant fall of production yield of wafers from taking place.
Note that, in this example, the protective film was left unremoved on the inner wall surfaces 32c of the liquid supply ports 32 and on the parts of the second surface 31b that minimally required the protective film. In other words, no protective film was left unremoved on any of the heater elements 33 so that heating operation was conducted efficiently from the heater elements to the liquid to be ejected to make it possible to reduce the electric power consumption.
A perforated substrate was prepared as in Example 1 except that the inner wall surfaces of the through holes were made to show a step 21c as shown in
Then, as shown in
Subsequently, a heating operation of heating the cyclized rubber of the coating layer 36 was conducted by placing the substrate on a hot plate that had been heated to 90° C. with the second surface 40b of the substrate facing downward, leaving the substrate there for 12 minutes. Then, as a result, part of the cyclized rubber was allowed to drop into each of the liquid supply ports down to the step (located at a position 150 μm deep from the first surface 40a) as shown in
Then, referring to
Thus, the above-described manufacturing method prevented the problematic liquid supply ports, if any, from adversely affecting the problem-free liquid supply ports by etching solution or the like eroding by way of the second surface of the perforated substrate and hence also prevented any significant fall of production yield of wafers from taking place.
The present invention can be used for processing methods that involve an etching operation to be conducted on perforated substrates of any types. More specifically, the present invention is applicable to liquid ejection heads to be mounted in various apparatus such as inkjet printers.
While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures and functions.
This application claims the benefit of Japanese Patent Application No. 2017-199510, filed Oct. 13, 2017, which is hereby incorporated by reference herein in its entirety.
Number | Date | Country | Kind |
---|---|---|---|
2017-199510 | Oct 2017 | JP | national |