Perforating gun assemblies are used in many oilfield or gas well completions. In particular, the assemblies are used to generate holes in steel casing pipe/tubing and/or cement lining in a wellbore to gain access to the oil and/or gas deposit formation. In order to maximize extraction of the oil/gas deposits, various perforating gun systems are employed. These assemblies are usually elongated and frequently cylindrical, and include a detonating cord arranged within the interior of the assembly and connected to shaped charge perforators (or shaped charges) disposed therein.
The type of perforating gun assembly employed may depend on various factors, such as the conditions in the formation or restrictions in the wellbore. For instance, a hollow-carrier perforating gun system having a tube for carrying the shaped charges may be selected to help protect the shaped charges from wellbore fluids and pressure (the wellbore environment). An alternative perforating gun system often used is an exposed or encapsulated perforating gun system. This system may allow for the delivery of larger sized shaped charges than those of the same outer diameter sized hollow-carrier gun system. The exposed perforating gun system typically includes a carrier strip upon which shaped charges are mounted. Because these shaped charges are not contained within a hollow tube, as those of a hollow-carrier perforating gun system, the shaped charges are individually capsuled.
Typically, shaped charges are configured to focus ballistic energy onto a target to initiate production flow. Shaped charge design selection is also used to predict/simulate the flow of the oil and/or gas from the formation. The configuration of shaped charges may include conical or round aspects having an initiation point formed in a metal case, which contains an explosive material, with or without a liner therein, and that produces a perforating jet upon initiation. It should be recognized that the case or housing of the shaped charge is distinguished from the casing of the wellbore, which is placed in the wellbore after the drilling process and may be cemented in place in order to stabilize the borehole and isolate formation intervals prior to perforating the surrounding formations.
Current perforating gun systems are mechanically connected via tandem sub assemblies. For wireline conveyance and selective perforating, the perforating gun is also electrically connected to an adjacent perforating gun by a bulkhead, which is included in the tandem sub. The bulkhead typically provides pressure isolation and includes an electric feedthrough pin. Each perforating gun may include multiple wires, such as feed-through or grounding wires as well as a detonating cord, which typically run parallel to each other through the length of the perforating gun. The feed-through wire is typically configured to electrically connect a perforating gun to an adjacent perforating gun, and the detonating cord is typically configured to initiate shaped charges disposed in each perforating gun. Further description of such perforating guns may be found in commonly-assigned U.S. Pat. Nos. 9,605,937, 9,581,422, 9,494,021, and 9,702,680, each of which are incorporated herein by reference in their entireties. Other perforating gun systems may utilize charge tubes/charge cartridges as a reduction option for the feed-through wire or separate electronic switches in the gun (sometimes externally connected to the detonator) that allows you to switch between different gun assemblies. Such perforating guns are described in U.S. Pat. Nos. 8,689,868, 8,884,778, 9,080,433, and 9,689,223. The use of multiple wires often requires additional assembly steps and time, which may result in increased assembly costs.
In view of the disadvantages associated with currently available perforating gun assemblies there is a need for a device that reduces assembly steps and time and improves safety and reliability of perforating gun assemblies. There is a further need for a perforating gun having simplified wiring, which may reduce human error in assembling perforating gun systems. Further, this results in a need for a detonating cord that relays/transfers electrical signals along a length of a perforating gun, without requiring additional wires, and without the need to isolate conductive elements.
According to an aspect, the present embodiments may be associated with a detonating cord for using in a perforating gun. The detonating cord includes an explosive layer and an electrically non-conductive layer. An insulating layer extends along a length of the detonating cord, between the explosive layer and the electrically conductive layer. The electrically conductive layer may include a plurality of conductive threads and is configured to relay/transfer a communication signal along the length of the detonating cord. In an embodiment, a jacket/outer jacket layer extends around the electrically conductive layer of the detonating cord. The conductive detonating cord may further include a plurality of non-conductive threads spun/wrapped around the explosive layer. The jacket may help protect any of the inner layers (such as the explosive, electrically conductive and insulating layers) from damage due to friction by external forces.
Additional embodiments of the disclosure may be associated with a perforating gun. The perforating gun includes a detonating cord configured substantially as described hereinabove, and is energetically and electrically coupled to a detonator. The detonating cord includes an explosive layer, an electrically conductive layer and an insulating layer in between the explosive layer and the electrically conductive layer. The detonator further includes a plurality of non-conductive threads around the explosive layer, and a jacket that covers the electrically conductive layer. The non-conductive threads adds strength and flexibility to the detonating cord, while the jacket helps to protect the layers of the detonating cord from damage due to friction by external forces. According to an aspect, the detonating cord spans the length of the perforating gun and connects to at least one shaped charge positioned in the perforating gun. The detonating cord is configured to relay/transfer a communication signal along a length of the detonating cord, and to propagate a detonating explosive stimulus along its length and to the shaped charge.
Further embodiments of the disclosure are associated with a method of electrically connecting a plurality of perforating guns that each include the aforementioned detonating cord. The perforating guns may be connected in series, with the detonating cord of a first perforating gun in electrical communication with the detonating cord of a second perforating gun. This arrangement reduces the number of wires within each perforating gun, while facilitating the connection to adjacent perforating guns via a bulkhead connection or a booster kit with electric contact function.
A more particular description will be rendered by reference to specific embodiments thereof that are illustrated in the appended drawings. Understanding that these drawings depict only typical embodiments thereof and are not therefore to be considered to be limiting of its scope, exemplary embodiments will be described and explained with additional specificity and detail through the use of the accompanying drawings in which:
Various features, aspects, and advantages of the embodiments will become more apparent from the following detailed description, along with the accompanying figures in which like numerals represent like components throughout the figures and text. The various described features are not necessarily drawn to scale, but are drawn to emphasize specific features relevant to some embodiments.
The headings used herein are for organizational purposes only and are not meant to limit the scope of the description or the claims. To facilitate understanding, reference numerals have been used, where possible, to designate like elements common to the figures.
Reference will now be made in detail to various embodiments. Each example is provided by way of explanation and is not meant as a limitation and does not constitute a definition of all possible embodiments.
For purposes of illustrating features of the embodiments, reference be made to various figures.
Embodiments of the disclosure may be associated with a detonating cord/electrically conductive detonating cord 10. The detonating cord 10 may be a flexible structure that allows the detonating cord 10 to be bent or wrapped around structures. According to an aspect, the detonating cord 10 may include a protective structure or sheath 16 that prevents the flow of an extraneous or stray electric current through the explosive layer 14 within the detonating cord 10.
According to an aspect, and as illustrated in
The detonating cord 10 further includes an electrically conductive layer 12. The electrically conductive layer 12 is configured to relay/transfer a communication signal along the length L of the detonating cord 10. The communication signal may be a telemetry signal. According to an aspect, the communication signal includes at least one of a signal to, check and count for detonators in a perforating gun string assembly, address and switch to certain detonators, charge capacitors and to send a signal to initiate a detonator communicably connected to the detonating cord 10. The integration of the electrically conductive layer 12 in the detonating cord 10 helps to omit the electric feed-through wires presently being used.
According to an aspect, the electrically conductive layer 12 extends around the explosive layer 14 in a spaced apart configuration. As will be described in further detail hereinbelow, an insulating layer 18 may be sandwiched between the explosive layer 12 and the electrically conductive layer 12. The electrically conductive layer 14 of the detonating cord 10 may include a plurality of electrically conductive threads/fibers spun or wrapped around the insulating layer 18, or an electrically conductive sheath/pre-formed electrically conductive sheath 13 in a covering relationship with the insulating layer 18. According to an aspect, the electrically conductive sheath 13 comprises layers of electrically conductive woven threads/fibers that are pre-formed into a desired shape that allows the electrically conductive sheath to be easily and efficiently placed or arranged over the insulating layer 18. The layers of electrically conductive woven threads may be configured in a type of crisscross or overlapping pattern in order to minimize the effective distance the electrical signal must travel when it traverses through the detonating cord 10. This arrangement of the threads helps to reduce the electrical resistance (Ohm/ft or Ohm/m) of the detonating cord 10. The electrically conductive threads and the electrically conductive woven threads may include metal fibers or may be coated with a metal, each metal fiber or metal coating having a defined resistance value (Ohm/ft or Ohm/m). It is contemplated that longer gun strings (i.e., more perforating guns in a single string) may be formed using perforating guns that including the electrically conductive detonating cord 10.
The detonating cord 10 may include a layer of material along its external surface to impart additional strength and protection to the structure of the detonating cord 10.
As illustrated in
According to an aspect, electric pulses, varying or alternating current or constant/direct current may be induced into or retrieved from the electrically conductive layer 12/electrically conductive sheath 13 of the detonating cord 10.
The contacts 20 are configured to input a communication signal at a first end/contact portion of the detonating cord 10 and output the communication signal at a second end/contact portion of the detonating cord 10. In order to facilitate the communication of the communication signal, the contacts 20 may at least partially be embedded into the detonating cord 10. The contacts 20 may be coupled to or otherwise secured to the detonating cord 10. According to an aspect, the contacts 20 are crimped onto the detonating cord 10, in such a way that the contacts 20 pierce through the protective outer jacket 16 of the detonating cord 10 to engage the electrically conductive layer 12 or the conductive sheath 13.
While the arrangements of the layers of the detonating cord 10 have been illustrated in
Further embodiments of the disclosure are associated with a perforating gun 30/adjacent perforating guns 130, as illustrated in
As illustrated in
The detonating cord 10 electrically connects the top connector 32 to the bottom connector 34, which in return connects to an adjacent perforating gun 130 (
The perforating gun 30/adjacent perforating gun 130 may include one or more contacts 20, configured substantially as described hereinabove and illustrated in
The perforating gun 30 may further include a tandem seal adapter 38 configured for housing a bulkhead assembly 40. The bulkhead assembly 40 may include a first end/first electrical contact end 42 and a second end/second electrical contact end 44. According to an aspect, the first end 42 is electrically connected to the bottom connector 34 of the perforating gun 30, and the second end 44 is electrically connected to a top connector 132 of an adjacent (or downstream) perforating gun 130. According to an aspect, a communication signal is communicated through the bulkhead assembly of the tandem seal adapter 38 to the adjacent perforating gun 130, via at least the detonating cord 10 including the electrically conductive layer 12.
According to an aspect, the detonator 31 is one of an RF-safe electronic detonator, a resistorized/electric detonator, or a detonator using a fire set, an EFI, an EBW, a semiconductor bridge and/or an igniter. The detonator 31 may include a line-in portion, and a line-out portion and a grounding contact. The line-in portion of the detonator 31 may be connected to the second end 44 of the bulkhead assembly 40, which may be electrically connected to the top connector 132 of the adjacent perforating gun 130. The line-out portion of the detonator 31 may connect to the first end 42 of an adjacent bulkhead assembly 140 that is electrically connected to a bottom connector 134 of the adjacent perforating gun 130. According to an aspect, the adjacent perforating gun 130 may be a bottommost perforating gun, and the communication signal may be an electric signal that is relayed/transferred to the bottommost perforating gun from the top perforating gun 30.
The present disclosure, in various embodiments, configurations and aspects, includes components, methods, processes, systems and/or apparatus substantially developed as depicted and described herein, including various embodiments, sub-combinations, and subsets thereof. Those of skill in the art will understand how to make and use the present disclosure after understanding the present disclosure. The present disclosure, in various embodiments, configurations and aspects, includes providing devices and processes in the absence of items not depicted and/or described herein or in various embodiments, configurations, or aspects hereof, including in the absence of such items as may have been used in previous devices or processes, e.g., for improving performance, achieving ease and/or reducing cost of implementation.
The phrases “at least one”, “one or more”, and “and/or” are open-ended expressions that are both conjunctive and disjunctive in operation. For example, each of the expressions “at least one of A, B and C”, “at least one of A, B, or C”, “one or more of A, B, and C”, “one or more of A, B, or C” and “A, B, and/or C” means A alone, B alone, C alone, A and B together, A and C together, B and C together, or A, B and C together.
In this specification and the claims that follow, reference will be made to a number of terms that have the following meanings. The terms “a” (or “an”) and “the” refer to one or more of that entity, thereby including plural referents unless the context clearly dictates otherwise. As such, the terms “a” (or “an”), “one or more” and “at least one” can be used interchangeably herein. Furthermore, references to “one embodiment”, “some embodiments”, “an embodiment” and the like are not intended to be interpreted as excluding the existence of additional embodiments that also incorporate the recited features. Approximating language, as used herein throughout the specification and claims, may be applied to modify any quantitative representation that could permissibly vary without resulting in a change in the basic function to which it is related. Accordingly, a value modified by a term such as “about” is not to be limited to the precise value specified. In some instances, the approximating language may correspond to the precision of an instrument for measuring the value. Terms such as “first,” “second,” “upper,” “lower” etc. are used to identify one element from another, and unless otherwise specified are not meant to refer to a particular order or number of elements.
As used herein, the terms “may” and “may be” indicate a possibility of an occurrence within a set of circumstances; a possession of a specified property, characteristic or function; and/or qualify another verb by expressing one or more of an ability, capability, or possibility associated with the qualified verb. Accordingly, usage of “may” and “may be” indicates that a modified term is apparently appropriate, capable, or suitable for an indicated capacity, function, or usage, while taking into account that in some circumstances the modified term may sometimes not be appropriate, capable, or suitable. For example, in some circumstances an event or capacity can be expected, while in other circumstances the event or capacity cannot occur—this distinction is captured by the terms “may” and “may be.”
As used in the claims, the word “comprises” and its grammatical variants logically also subtend and include phrases of varying and differing extent such as for example, but not limited thereto, “consisting essentially of” and “consisting of.” Where necessary, ranges have been supplied, and those ranges are inclusive of all sub-ranges therebetween. It is to be expected that variations in these ranges will suggest themselves to a practitioner having ordinary skill in the art and, where not already dedicated to the public, the appended claims should cover those variations.
The foregoing discussion of the present disclosure has been presented for purposes of illustration and description. The foregoing is not intended to limit the present disclosure to the form or forms disclosed herein. In the foregoing Detailed Description for example, various features of the present disclosure are grouped together in one or more embodiments, configurations, or aspects for the purpose of streamlining the disclosure. The features of the embodiments, configurations, or aspects of the present disclosure may be combined in alternate embodiments, configurations, or aspects other than those discussed above. This method of disclosure is not to be interpreted as reflecting an intention that the present disclosure requires more features than are expressly recited in each claim. Rather, as the following claims reflect, the claimed features lie in less than all features of a single foregoing disclosed embodiment, configuration, or aspect. Thus, the following claims are hereby incorporated into this Detailed Description, with each claim standing on its own as a separate embodiment of the present disclosure.
Advances in science and technology may make equivalents and substitutions possible that are not now contemplated by reason of the imprecision of language; these variations should be covered by the appended claims. This written description uses examples to disclose the method, machine and computer-readable medium, including the best mode, and also to enable any person of ordinary skill in the art to practice these, including making and using any devices or systems and performing any incorporated methods. The patentable scope thereof is defined by the claims, and may include other examples that occur to those of ordinary skill in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal language of the claims.
This application is a continuation patent application of U.S. application Ser. No. 17/076,099 filed Oct. 21, 2020, which is a continuation patent application of U.S. application Ser. No. 16/503,839 filed Jul. 5, 2019, which is a divisional patent application of U.S. application Ser. No. 16/152,933 filed Oct. 5, 2018, now U.S. Pat. No. 10,386,168, which claims the benefit of U.S. Provisional Application No. 62/683,083 filed Jun. 11, 2018, each of which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2216359 | Spencer | Oct 1940 | A |
2228873 | Hardt et al. | Jan 1941 | A |
2358466 | Miller | Sep 1944 | A |
2418486 | Smylie | Apr 1947 | A |
2439394 | Lanzalotti et al. | Apr 1948 | A |
2598651 | Spencer | May 1952 | A |
2889775 | Owen | Jun 1959 | A |
2906339 | Griffin | Sep 1959 | A |
2982210 | Andrew et al. | May 1961 | A |
3013491 | Poulter | Dec 1961 | A |
3125024 | Hicks et al. | Mar 1964 | A |
3158680 | Lovitt et al. | Nov 1964 | A |
3170400 | Nelson | Feb 1965 | A |
3246707 | Bell | Apr 1966 | A |
3357355 | Roush | Dec 1967 | A |
3374735 | Moore | Mar 1968 | A |
3504723 | Cushman et al. | Apr 1970 | A |
3565188 | Hakala | Feb 1971 | A |
3731626 | Grayson | May 1973 | A |
3859921 | Stephenson | Jan 1975 | A |
3892455 | Sotolongo | Jul 1975 | A |
4007790 | Henning | Feb 1977 | A |
4007796 | Boop | Feb 1977 | A |
4024817 | Calder, Jr. | May 1977 | A |
4058061 | Mansur, Jr. et al. | Nov 1977 | A |
4080902 | Goddard | Mar 1978 | A |
4100978 | Boop | Jul 1978 | A |
4107453 | Erixon | Aug 1978 | A |
4132171 | Pawlak et al. | Jan 1979 | A |
4140188 | Vann | Feb 1979 | A |
4182216 | DeCaro | Jan 1980 | A |
4191265 | Bosse-Platiere | Mar 1980 | A |
4220087 | Posson | Sep 1980 | A |
4266613 | Boop | May 1981 | A |
4290486 | Regalbuto | Sep 1981 | A |
4312273 | Camp | Jan 1982 | A |
4346954 | Appling | Aug 1982 | A |
4411491 | Larkin et al. | Oct 1983 | A |
4455941 | Walker et al. | Jun 1984 | A |
4491185 | McClure | Jan 1985 | A |
4496008 | Pottier et al. | Jan 1985 | A |
4523650 | Sehnert et al. | Jun 1985 | A |
4534423 | Regalbuto | Aug 1985 | A |
4574892 | Grigar et al. | Mar 1986 | A |
4598775 | Vann et al. | Jul 1986 | A |
4609057 | Walker et al. | Sep 1986 | A |
4621396 | Walker et al. | Nov 1986 | A |
4640370 | Wetzel | Feb 1987 | A |
4650009 | McClure et al. | Mar 1987 | A |
4657089 | Stout | Apr 1987 | A |
4660910 | Sharp et al. | Apr 1987 | A |
4744424 | Lendermon et al. | May 1988 | A |
4747201 | Donovan et al. | May 1988 | A |
4753170 | Regalbuto et al. | Jun 1988 | A |
4762067 | Barker et al. | Aug 1988 | A |
4776393 | Forehand et al. | Oct 1988 | A |
4790383 | Savage et al. | Dec 1988 | A |
4800815 | Appledorn et al. | Jan 1989 | A |
4850438 | Regalbuto | Jul 1989 | A |
4889183 | Sommers et al. | Dec 1989 | A |
4998478 | Beck | Mar 1991 | A |
5001981 | Shaw | Mar 1991 | A |
5010821 | Blain | Apr 1991 | A |
5027708 | Gonzalez et al. | Jul 1991 | A |
5052489 | Carisella et al. | Oct 1991 | A |
5060573 | Montgomery et al. | Oct 1991 | A |
5083929 | Dalton | Jan 1992 | A |
5088413 | Huber | Feb 1992 | A |
5105742 | Sumner | Apr 1992 | A |
5159145 | Carisella et al. | Oct 1992 | A |
5159146 | Carisella et al. | Oct 1992 | A |
5223664 | Rogers | Jun 1993 | A |
5322019 | Hyland | Jun 1994 | A |
5347929 | Lerche et al. | Sep 1994 | A |
5392851 | Arend | Feb 1995 | A |
5392860 | Ross | Feb 1995 | A |
5436791 | Turano et al. | Jul 1995 | A |
5529509 | Hayes et al. | Jun 1996 | A |
5540154 | Wilcox | Jul 1996 | A |
5558531 | Ikeda et al. | Sep 1996 | A |
5603384 | Bethel et al. | Feb 1997 | A |
5648635 | Lussier et al. | Jul 1997 | A |
5703319 | Fritz et al. | Dec 1997 | A |
5759056 | Costello et al. | Jun 1998 | A |
5765962 | Cornell et al. | Jun 1998 | A |
5769661 | Nealis | Jun 1998 | A |
5775426 | Snider et al. | Jul 1998 | A |
5785130 | Wesson et al. | Jul 1998 | A |
5816343 | Markel et al. | Oct 1998 | A |
5837924 | Austin | Nov 1998 | A |
5837925 | Nice | Nov 1998 | A |
5992289 | George et al. | Nov 1999 | A |
6006833 | Burleson et al. | Dec 1999 | A |
6012525 | Burleson et al. | Jan 2000 | A |
6085659 | Beukes et al. | Jul 2000 | A |
6112666 | Murray et al. | Sep 2000 | A |
6297447 | Burnett et al. | Oct 2001 | B1 |
6298915 | George | Oct 2001 | B1 |
6305287 | Capers et al. | Oct 2001 | B1 |
6354374 | Edwards et al. | Mar 2002 | B1 |
6386108 | Brooks et al. | May 2002 | B1 |
6408758 | Duguet | Jun 2002 | B1 |
6412415 | Kothari et al. | Jul 2002 | B1 |
6418853 | Duguet et al. | Jul 2002 | B1 |
6439121 | Gillingham | Aug 2002 | B1 |
6467415 | Menzel et al. | Oct 2002 | B2 |
6487973 | Gilbert, Jr. et al. | Dec 2002 | B1 |
6497285 | Walker | Dec 2002 | B2 |
6508176 | Badger et al. | Jan 2003 | B1 |
6651747 | Chen et al. | Nov 2003 | B2 |
6739265 | Badger et al. | May 2004 | B1 |
6742602 | Trotechaud | Jun 2004 | B2 |
6752083 | Lerche et al. | Jun 2004 | B1 |
6772868 | Warner | Aug 2004 | B2 |
6843317 | Mackenzie | Jan 2005 | B2 |
6851471 | Barlow et al. | Feb 2005 | B2 |
6976857 | Shukla et al. | Dec 2005 | B1 |
7107908 | Forman et al. | Sep 2006 | B2 |
7182611 | Borden et al. | Feb 2007 | B2 |
7193527 | Hall | Mar 2007 | B2 |
7237626 | Gurjar et al. | Jul 2007 | B2 |
7278491 | Scott | Oct 2007 | B2 |
7306038 | Challacombe | Dec 2007 | B2 |
7347278 | Lerche et al. | Mar 2008 | B2 |
7347279 | Li et al. | Mar 2008 | B2 |
7350448 | Bell et al. | Apr 2008 | B2 |
7357083 | Takahara et al. | Apr 2008 | B2 |
7404725 | Hall et al. | Jul 2008 | B2 |
7441601 | George et al. | Oct 2008 | B2 |
7481662 | Rehrig | Jan 2009 | B1 |
7553078 | Hanzawa et al. | Jun 2009 | B2 |
7565927 | Gerez et al. | Jul 2009 | B2 |
7568429 | Hummel et al. | Aug 2009 | B2 |
7640857 | Kneisl | Jan 2010 | B2 |
7661366 | Fuller et al. | Feb 2010 | B2 |
7661474 | Campbell et al. | Feb 2010 | B2 |
7726396 | Briquet et al. | Jun 2010 | B2 |
7735578 | Loehr et al. | Jun 2010 | B2 |
7748447 | Moore | Jul 2010 | B2 |
7752971 | Loehr | Jul 2010 | B2 |
7762172 | Li et al. | Jul 2010 | B2 |
7762351 | Vidal | Jul 2010 | B2 |
7778006 | Stewart et al. | Aug 2010 | B2 |
7810430 | Chan et al. | Oct 2010 | B2 |
7823508 | Anderson et al. | Nov 2010 | B2 |
7908970 | Jakaboski et al. | Mar 2011 | B1 |
7929270 | Hummel et al. | Apr 2011 | B2 |
7952035 | Falk et al. | May 2011 | B2 |
7980874 | Finke et al. | Jul 2011 | B2 |
8066083 | Hales et al. | Nov 2011 | B2 |
8069789 | Hummel et al. | Dec 2011 | B2 |
8074737 | Hill et al. | Dec 2011 | B2 |
8079296 | Barton et al. | Dec 2011 | B2 |
8091477 | Brooks et al. | Jan 2012 | B2 |
8127846 | Hill et al. | Mar 2012 | B2 |
8157022 | Bertoja et al. | Apr 2012 | B2 |
8181718 | Burleson et al. | May 2012 | B2 |
8182212 | Parcell | May 2012 | B2 |
8186259 | Burleson et al. | May 2012 | B2 |
8230788 | Brooks et al. | Jul 2012 | B2 |
8256337 | Hill et al. | Sep 2012 | B2 |
8297345 | Emerson | Oct 2012 | B2 |
8327746 | Behrmann et al. | Dec 2012 | B2 |
8388374 | Grek et al. | Mar 2013 | B2 |
8395878 | Stewart et al. | Mar 2013 | B2 |
8449308 | Smith | May 2013 | B2 |
8451137 | Bonavides et al. | May 2013 | B2 |
8661978 | Backhus et al. | Mar 2014 | B2 |
8689868 | Lerche et al. | Apr 2014 | B2 |
8695506 | Lanclos | Apr 2014 | B2 |
8863665 | DeVries et al. | Oct 2014 | B2 |
8869887 | Deere et al. | Oct 2014 | B2 |
8875787 | Tassaroli | Nov 2014 | B2 |
8881816 | Glenn et al. | Nov 2014 | B2 |
8881836 | Ingram | Nov 2014 | B2 |
8884778 | Lerche et al. | Nov 2014 | B2 |
8904935 | Brown et al. | Dec 2014 | B1 |
8960093 | Preiss et al. | Feb 2015 | B2 |
8985023 | Mason | Mar 2015 | B2 |
8997852 | Lee et al. | Apr 2015 | B1 |
9080433 | Lanclos et al. | Jul 2015 | B2 |
9133695 | Xu | Sep 2015 | B2 |
9145764 | Burton et al. | Sep 2015 | B2 |
9175553 | McCann et al. | Nov 2015 | B2 |
9181790 | Mace et al. | Nov 2015 | B2 |
9194219 | Hardesty et al. | Nov 2015 | B1 |
9270051 | Christiansen et al. | Feb 2016 | B1 |
9284819 | Tolman et al. | Mar 2016 | B2 |
9382783 | Langford et al. | Jul 2016 | B2 |
9441465 | Tassaroli | Sep 2016 | B2 |
9466916 | Li et al. | Oct 2016 | B2 |
9476289 | Wells | Oct 2016 | B2 |
9494021 | Parks et al. | Nov 2016 | B2 |
9523271 | Bonavides et al. | Dec 2016 | B2 |
9574416 | Wright et al. | Feb 2017 | B2 |
9581422 | Preiss et al. | Feb 2017 | B2 |
9598942 | Wells et al. | Mar 2017 | B2 |
9605937 | Fitschberger et al. | Mar 2017 | B2 |
9677363 | Schacherer et al. | Jun 2017 | B2 |
9689223 | Schacherer et al. | Jun 2017 | B2 |
9702680 | Parks et al. | Jul 2017 | B2 |
9784549 | Eitschberger | Oct 2017 | B2 |
9822618 | Eitschberger | Nov 2017 | B2 |
9903192 | Entchev et al. | Feb 2018 | B2 |
9926750 | Ringgenberg | Mar 2018 | B2 |
9926755 | Van Petegem et al. | Mar 2018 | B2 |
10000994 | Sites | Jun 2018 | B1 |
10066921 | Eitschberger | Sep 2018 | B2 |
10077641 | Rogman et al. | Sep 2018 | B2 |
10138713 | Tolman et al. | Nov 2018 | B2 |
10151152 | Wight et al. | Dec 2018 | B2 |
10151180 | Robey et al. | Dec 2018 | B2 |
10188990 | Burmeister et al. | Jan 2019 | B2 |
10190398 | Goodman et al. | Jan 2019 | B2 |
10273788 | Bradley et al. | Apr 2019 | B2 |
10309199 | Eitschberger | Jun 2019 | B2 |
10337270 | Carisella et al. | Jul 2019 | B2 |
10352136 | Goyeneche | Jul 2019 | B2 |
10352144 | Entchev et al. | Jul 2019 | B2 |
10386168 | Preiss | Aug 2019 | B1 |
10429161 | Parks et al. | Oct 2019 | B2 |
10472938 | Parks et al. | Nov 2019 | B2 |
10669822 | Eitschberger | Jun 2020 | B2 |
20020020320 | Lebaudy et al. | Feb 2002 | A1 |
20020062991 | Farrant et al. | May 2002 | A1 |
20030000411 | Cernocky et al. | Jan 2003 | A1 |
20030001753 | Cernocky et al. | Jan 2003 | A1 |
20040141279 | Amano et al. | Jul 2004 | A1 |
20050178282 | Brooks et al. | Aug 2005 | A1 |
20050183610 | Barton et al. | Aug 2005 | A1 |
20050186823 | Ring et al. | Aug 2005 | A1 |
20050194146 | Barker et al. | Sep 2005 | A1 |
20050229805 | Myers, Jr. et al. | Oct 2005 | A1 |
20050257710 | Monetti et al. | Nov 2005 | A1 |
20060013282 | Hanzawa et al. | Jan 2006 | A1 |
20070084336 | Neves | Apr 2007 | A1 |
20070125540 | Gerez et al. | Jun 2007 | A1 |
20070158071 | Mooney, Jr. et al. | Jul 2007 | A1 |
20080047456 | Li et al. | Feb 2008 | A1 |
20080047716 | McKee et al. | Feb 2008 | A1 |
20080073081 | Frazier et al. | Mar 2008 | A1 |
20080110612 | Prinz et al. | May 2008 | A1 |
20080121095 | Han et al. | May 2008 | A1 |
20080134922 | Grattan et al. | Jun 2008 | A1 |
20080149338 | Goodman et al. | Jun 2008 | A1 |
20080173204 | Anderson et al. | Jul 2008 | A1 |
20080264639 | Parrott et al. | Oct 2008 | A1 |
20090050322 | Hill et al. | Feb 2009 | A1 |
20090159283 | Fuller | Jun 2009 | A1 |
20090272519 | Green et al. | Nov 2009 | A1 |
20090272529 | Crawford | Nov 2009 | A1 |
20090301723 | Gray | Dec 2009 | A1 |
20100000789 | Barton et al. | Jan 2010 | A1 |
20100089643 | Vidal | Apr 2010 | A1 |
20100096131 | Hill et al. | Apr 2010 | A1 |
20100163224 | Strickland | Jul 2010 | A1 |
20100230104 | Nölke et al. | Sep 2010 | A1 |
20110024116 | McCann et al. | Feb 2011 | A1 |
20110042069 | Bailey et al. | Feb 2011 | A1 |
20120085538 | Guerrero et al. | Apr 2012 | A1 |
20120094553 | Fujiwara et al. | Apr 2012 | A1 |
20120160491 | Goodman et al. | Jun 2012 | A1 |
20120199031 | Lanclos | Aug 2012 | A1 |
20120199352 | Lanclos et al. | Aug 2012 | A1 |
20120241169 | Hales et al. | Sep 2012 | A1 |
20120242135 | Thomson et al. | Sep 2012 | A1 |
20120247769 | Schacherer et al. | Oct 2012 | A1 |
20120247771 | Black et al. | Oct 2012 | A1 |
20120298361 | Sampson | Nov 2012 | A1 |
20130008639 | Tassaroli et al. | Jan 2013 | A1 |
20130062055 | Tolman et al. | Mar 2013 | A1 |
20130118342 | Tassaroli | May 2013 | A1 |
20130199843 | Ross | Aug 2013 | A1 |
20130248174 | Dale et al. | Sep 2013 | A1 |
20140033939 | Priess et al. | Feb 2014 | A1 |
20140131035 | Entchev et al. | May 2014 | A1 |
20150176386 | Castillo et al. | Jun 2015 | A1 |
20150226044 | Ursi et al. | Aug 2015 | A1 |
20150330192 | Rogman et al. | Nov 2015 | A1 |
20150376991 | Mcnelis et al. | Dec 2015 | A1 |
20160040520 | Tolman et al. | Feb 2016 | A1 |
20160061572 | Eitschberger et al. | Mar 2016 | A1 |
20160069163 | Tolman et al. | Mar 2016 | A1 |
20160084048 | Harrigan et al. | Mar 2016 | A1 |
20160168961 | Parks et al. | Jun 2016 | A1 |
20160273902 | Eitschberger | Sep 2016 | A1 |
20160356132 | Burmeister et al. | Dec 2016 | A1 |
20170030693 | Preiss et al. | Feb 2017 | A1 |
20170052011 | Parks et al. | Feb 2017 | A1 |
20170058649 | Geerts et al. | Mar 2017 | A1 |
20170074078 | Eitschberger | Mar 2017 | A1 |
20170145798 | Robey et al. | May 2017 | A1 |
20170167233 | Sampson et al. | Jun 2017 | A1 |
20170199015 | Collins et al. | Jul 2017 | A1 |
20170211363 | Bradley | Jul 2017 | A1 |
20170241244 | Barker et al. | Aug 2017 | A1 |
20170268860 | Eitschberger | Sep 2017 | A1 |
20170276465 | Parks et al. | Sep 2017 | A1 |
20170314372 | Tolman et al. | Nov 2017 | A1 |
20170314373 | Bradley et al. | Nov 2017 | A9 |
20180030334 | Collier et al. | Feb 2018 | A1 |
20180038208 | Fitschberger et al. | Feb 2018 | A1 |
20180135398 | Entchev et al. | May 2018 | A1 |
20180202789 | Parks et al. | Jul 2018 | A1 |
20180202790 | Parks et al. | Jul 2018 | A1 |
20180209250 | Daly et al. | Jul 2018 | A1 |
20180209251 | Robey et al. | Jul 2018 | A1 |
20180274342 | Sites | Sep 2018 | A1 |
20180299239 | Eitschberger et al. | Oct 2018 | A1 |
20180306010 | Von Kaenel et al. | Oct 2018 | A1 |
20180318770 | Eitschberger et al. | Nov 2018 | A1 |
20190040722 | Yang et al. | Feb 2019 | A1 |
20190048693 | Henke et al. | Feb 2019 | A1 |
20190049225 | Eitschberger | Feb 2019 | A1 |
20190085685 | McBride | Mar 2019 | A1 |
20190162055 | Collins et al. | May 2019 | A1 |
20190162056 | Sansing | May 2019 | A1 |
20190195054 | Bradley et al. | Jun 2019 | A1 |
20190211655 | Bradley et al. | Jul 2019 | A1 |
20190219375 | Parks et al. | Jul 2019 | A1 |
20190234188 | Goyeneche | Aug 2019 | A1 |
20190242222 | Eitschberger | Aug 2019 | A1 |
20190257181 | Langford et al. | Aug 2019 | A1 |
20190284889 | LaGrange et al. | Sep 2019 | A1 |
20190292887 | Austin et al. | Sep 2019 | A1 |
20190309606 | Loehken et al. | Oct 2019 | A1 |
20190316449 | Schultz et al. | Oct 2019 | A1 |
20190330961 | Knight et al. | Oct 2019 | A1 |
20190338612 | Holodnak et al. | Nov 2019 | A1 |
20190353013 | Sokolove et al. | Nov 2019 | A1 |
20200024934 | Eitschberger et al. | Jan 2020 | A1 |
20200024935 | Eitschberger et al. | Jan 2020 | A1 |
20200032626 | Parks et al. | Jan 2020 | A1 |
20200063537 | Langford et al. | Feb 2020 | A1 |
20200399995 | Preiss et al. | Dec 2020 | A1 |
20210048283 | Preiss et al. | Feb 2021 | A1 |
Number | Date | Country |
---|---|---|
2821506 | Jan 2015 | CA |
2824838 | Feb 2015 | CA |
2941648 | Sep 2015 | CA |
3021913 | Feb 2018 | CA |
85107897 | Sep 1986 | CN |
201209435 | Mar 2009 | CN |
101397890 | Apr 2009 | CN |
101435829 | May 2009 | CN |
101454635 | Jun 2009 | CN |
201620848 | Nov 2010 | CN |
103485750 | Jan 2014 | CN |
208870580 | May 2019 | CN |
209195374 | Aug 2019 | CN |
110424930 | Nov 2019 | CN |
209908471 | Jan 2020 | CN |
102007007498 | Oct 2015 | DE |
0385614 | Sep 1990 | EP |
0180520 | May 1991 | EP |
0482969 | Aug 1996 | EP |
2531450 | Feb 2017 | GB |
2548101 | Sep 2017 | GB |
2091567 | Sep 1997 | RU |
2295694 | Mar 2007 | RU |
93521 | Apr 2010 | RU |
100552 | Dec 2010 | RU |
2434122 | Nov 2011 | RU |
2633904 | Oct 2017 | RU |
2000020821 | Apr 2000 | WO |
0159401 | Aug 2001 | WO |
2001059401 | Aug 2001 | WO |
2009091422 | Jul 2009 | WO |
2012006357 | Jan 2012 | WO |
2012006357 | Apr 2012 | WO |
2014007843 | Jan 2014 | WO |
2014193397 | Dec 2014 | WO |
2015006869 | Jan 2015 | WO |
2015028204 | Mar 2015 | WO |
2015196095 | Dec 2015 | WO |
2018009223 | Jan 2018 | WO |
2019117861 | Jun 2019 | WO |
2019148009 | Aug 2019 | WO |
2019204137 | Oct 2019 | WO |
2020002383 | Jan 2020 | WO |
Entry |
---|
United States Patent and Trademark Office; Non-Final Office Action for U.S. Appl. No. 15/612,953; issued Feb. 14, 2018; 10 pages. |
United States Patent and Trademark Office; Non-Final Office Action for U.S. Appl. No. 16/056,944; issued Mar. 18, 2019; 12 pages. |
United States Patent and Trademark Office; Non-Final Office Action for U.S. Appl. No. 16/156,339; issued Dec. 13, 2018; 8 pages. |
United States Patent and Trademark Office; Non-Final Office Action for U.S. Appl. No. 16/542,890; issued Nov. 4, 2019; 16 pages. |
United States Patent and Trademark Office; Non-Final Office Action for U.S. Appl. No. 15/920,812; dated Feb. 3, 2021; 7 pages. |
United States Patent and Trademark Office; Non-Final Office Action for U.S. Appl. No. 17/007,574; dated Jan. 29, 2021; 11 pages. |
United States Patent and Trademark Office; Non-Final Office Action for U.S. Appl. No. 17/076,099; dated Jan. 11, 2022; 6 pages. |
United States Patent and Trademark Office; Notice of Allowance for U.S. Appl. No. 29/733,080, filed Oct. 20, 2020; 9 pages. |
United States Patent and Trademark Office; Notice of Allowance for U.S. Appl. No. 15/920,812, mailed Aug. 18, 2020; 5 pages. |
United States Patent and Trademark Office; Notice of Allowance for U.S. Appl. No. 16/387,696; issued on Jan. 29, 2020; 7 pages. |
United States Patent and Trademark Office; Notice of Allowance for U.S. Appl. No. 14/904,788; dated Jul. 6, 2016; 8 pages. |
United States Patent and Trademark Office; Notice of Allowance for U.S. Appl. No. 16/423,789; dated Jul. 23, 2020 7 pages. |
United States Patent and Trademark Office; Notice of Allowance for U.S. Appl. No. 16/503,839; Mailed on Oct. 8, 2020; 15 pages. |
United States Patent and Trademark Office; Notice of Allowance for U.S. Appl. No. 16/585,790, dated Aug. 5, 2020; 15 pages. |
United States Patent and Trademark Office; Notice of Allowance for U.S. Appl. No. 16/809,729; dated Jan. 26, 2021; 9 pages. |
United States Patent and Trademark Office; Office Action of U.S. Appl. No. 16/540,484, dated Aug. 20, 2020, 10 pgs. |
United States Patent and Trademark Office; Supplemental Notice of Allowability for U.S. Appl. No. 14/904,788; dated Jul. 21, 2016; 2 pages. |
United States Patent Trial and Appeal Board; Decision Denying Institution of Post-Grant Review; PGR No. 2020-00072; dated Jan. 19, 2021; 38 pages. |
Vigor USA; “Sniper Addressable System”; promotional brochure; Sep. 2019. |
Vigor, Perforating Gun Accessories, China Vigor Drilling Oil Tools and Equipment Co., Ltd., Sep. 14, 2018, 4 pgs., http://www.vigordrilling.com/completion-tools/perforating-gun-accessories.html. |
Wade et al., Field Tests Indicate New Perforating Devices Improve Efficiency in Casing Completion Operations, SPE 381, pp. 1069-1073, Oct. 1962, 5 pgs. |
Amit Govil, Selective Perforation: A Game Changer in Perforating Technology—Case Study, presented at the 2012 European and West African Perforating Symposium, Schlumberger, Nov. 7-9. 2012, 14 pgs. |
Argentine Patent Office; Boletin De Patentes No. 1130 for AR Application No. 20190101563; dated Jan. 21, 2021; 1 page. |
Austin Powder Company; A-140 F & Block, Detonator & Block Assembly; Jan. 5, 2017; 2 pgs.; https://www.austinpowder.com/wp-content/uploads/2019/01/OilStar_A140Fbk-2.pdf. |
Baker Hughes, Long Gun Deployment Systems IPS-12-28; 2012 International Perforating Symposium; Apr. 26-27, 2011; 11 pages. |
Baumann et al.; Perforating Innovations—Shooting Holes in Performance Models; Oilfield Review, Autumn 2014, vol. 26, Issue No. 3 pp. 14-31; 18 pages. |
Brazilian Patent and Trademark Office; Search Report for BR Application No. BR112015033010-0; mailed May 5, 2020; (4 pages). |
Burndy, Bulkhead Ground Connector, Mechanical Summary Sheet, The Grounding Superstore, Jul. 15, 2014, 1 page, https://www.burndy.com/docs/default-source/cutsheets/bulkhead-connect. |
C&J Energy Services; Gamechanger Perforating System Description; 2018; 1 pages. |
C&J Energy Services; Gamechanger Perforating System Press Release; 2018; 4 pages. |
Canadian Intellectual Property Office, Office Action for CA App. No. 2923860 dated Jul. 14, 2017, 3 pages. |
Canadian Intellectual Property Office, Office Action for CA App. No. 2923860 dated Nov. 25, 2016, 3 pages. |
Canadian Intellectual Property Office; Notice of Allowance for CA Appl. No. 2,821,506; mailed Jul. 31, 2019; 1 page. |
Canadian Intellectual Property Office; Office Action for CA Appl. No. 2,821,506; mailed Mar. 21, 2019; 4 pages. |
Cao et al., Study on energy output efficiency of mild detonating fuse in cylindertube structure, Dec. 17, 2015, 11 pgs., https://www.sciencedirect.com/science/article/pii/S0264127515309345. |
Core Lab, ZERO180™ Gun SystemAssembly and Arming Procedures—MAN-Z180-000 (RO7), Dec. 4, 2019, 33 pgs., https://www.corelab.com/owen/CMS/docs/Manuals/gunsys/zero180/MAN-Z180-000.pdf. |
Djresource, Replacing Signal and Ground Wire, May 1, 2007, 2 pages, http://www.djresource.eu/Topics/story/110/Technics-SL-Replacing-Signal-and-Ground-Wire/. |
Dynaenergetics Europe GmbH; Principal and Response Brief of Cross-Appellant for United States Court of Appeals case No. 2020-2163, -2191; dated Jan. 11, 2021; 95 pages. |
Dynaenergetics Europe; Plaintiffs' Pending Motion for Reconsideration for Civil Action No. 4:17-cv-03784; dated Jan. 21, 2021; 4 pages. |
Dynaenergetics GmbH & Co. KG, Patent Owner's Response to Hunting Titan's Petition for Inter Parties Review—Case IPR2018-00600, filed Dec. 6, 2018, 73 pages. |
Dynaenergetics GmbH & Co. KG; Patent Owner's Precedential Opinion Panel Request for Case IPR2018-00600; Sep. 18, 2019, 2 pg. |
Dynaenergetics, DYNAselect Electronic Detonator 0015 SFDE RDX 1.4B, Product Information, Dec. 16, 2011, 1 pg. |
Dynaenergetics, DYNAselect Electronic Detonator 0015 SFDE RDX 1.4S, Product Information, Dec. 16, 2011, 1 pg. |
Dynaenergetics, DYNAselect System, information downloaded from website, Jul. 3, 2013, 2 pages, http://www.dynaenergetics.com/. |
Dynaenergetics, Electronic Top Fire Detonator, Product Information Sheet, Jul. 30, 2013, 1 pg. |
Dynaenergetics, Gun Assembly, Product Summary Sheet, May 7, 2004, 1 page. |
Dynaenergetics, Selective Perforating Switch, information downloaded from website, Jul. 3, 2013, 2 pages, http://www.dynaenergetics.com/. |
Dynaenergetics, Through Wire Grounded Bulkhead (DynaTWG). May 25, 2016, 1 pg., https://www.dynaenergetics.com/uploads/files/5756f884e289a_U233%20DynaTWG%20Bulkhead.pdf. |
Dynaenergetics; DynaStage Solution—Factory Assembled Performance-Assured Perforating Systems; 6 pages. |
EP Patent Office—International Searching Authority, PCT Search Report and Written Opinion for PCT Application No. PCT/EP2014/065752, mailed May 4, 2015, 12 pgs. |
Eric H. Findlay, Jury Trial Demand in Civil Action No. 6:20-cv-00069-ADA, dated Apr. 22, 2020, 32 pages. |
European Patent Office; Invitation to Correct Deficiencies noted in the Written Opinion for European App. No. 15721178.0; issued Dec. 13, 2016; 2 pages. |
European Patent Office; Office Action for EP App. No. 15721178.0; issued Sep. 6, 2018; 5 pages. |
Federal Institute of Industrial Property; Decision of Granting for RU Appl. No. 2016104882/03(007851); May 17, 2018; 15 pages (English translation 4 pages). |
Federal Institute of Industrial Property; Decision on Granting a Patent for Invention Russian App. No 2016139136/03(062394); issued Nov. 8, 2018; 20 pages (Eng Translation 4 pages); Concise Statement of Relevance: Search Report at 17-18 of Russian-language document lists several ‘A’ references based on RU application claims. |
Federal Institute of Industrial Property; Decision on Granting for RU Application No. 2016109329/03; dated Oct. 21, 2019; 11 pages (English translation 4 pages). |
Federal Institute of Industrial Property; Decision on Granting for RU Application No. 2019137475/03; dated May 12, 2020; 15 pages (English translation 4 pages). |
Federal Institute of Industrial Property; Inquiry for RU App. No. 2016104882/03(007851); dated Feb. 1, 2018; 7 pages, English Translation 4 pages. |
Federal Institute of Industrial Property; Inquiry for RU App. No. 2016109329/03(014605); issued Jul. 10, 2019; 7 pages (Eng. Translation 5 pages). |
Federal Institute of Industrial Property; Inquiry for RU Application No. 2016110014/03(015803); issued Feb. 1, 2018; 6 pages (Eng. Translation 4 pages). |
GB Intellectual Property Office, Examination Report for GB App. No. GB1600085.3, mailed Mar. 9, 2016, 1 pg. |
GB Intellectual Property Office, Search Report for App. No. GB 1700625.5; dated Jul. 7, 2017; 5 pgs. |
GB Intellectual Property Office; Examination Report for GB Appl. No. 1717516.7; Apr. 13, 2018; 3 pages. |
GB Intellectual Property Office; Notification of Grant for GB Appl. No. 1717516.7; Oct. 9, 2018; 2 pages. |
GB Intellectual Property Office; Office Action for GB App. No. 1717516.7; dated Feb. 27, 2018; 6 pages. |
GB Intellectual Property Office; Search Report for GB. Appl. No. 1700625.5; mailed Dec. 21, 2017; 5 pages. |
GeoDynamics; “Vapr”; promotional brochure; Oct. 1, 2019. |
German Patent Office, Office Action for German Patent Application No. 10 2013 109 227.6, which is in the same family as PCT Application No. PCT/EP2014/065752, see p. 5 for references cited, May 22, 2014, 8 pgs. |
Gilliat et al.; New Select-Fire System: Improved Reliability and Safety in Select Fire Operations; 2012; 16 pgs. |
Horizontal Wireline Services, Presentation of a completion method of shale demonstrated through an example of Marcellus Shale, Pennsylvania, USA, Presented at 2012 International Perforating Symposium (Apr. 26-28, 2012), 17 pages. |
Hunting Energy Service, ControlFire RF Safe ControlFire® RF-Safe Manual, 33 pgs., Jul. 2016, http://www.hunting-intl.com/media/2667160/ControlFire%20RF_Assembly%20Gun%20Loading_Manual.pdf. |
State Intellectual Property Office, P.R. China; Notification to Grant Patent Right for CN App. No. 201480040456.9; Jun. 12, 2018; 2 pages (English translation 2 pages). |
State Intellectual Property Office, P.R. China; Second Office Action for CN App. No. 201480040456.9; Issued Nov. 29, 2017; 5 pages (English translation 1 page). |
State Intellectual Property Office, P.R. China; Second Office Action for CN App. No. 201480047092.7; Issued Jan. 4, 2018; 3 pages. |
SWM International Inc.; “Thunder Disposable Gun System”; promotional brochure; Oct. 2018; 5 pgs. |
Thilo Scharf; “DynaEnergetics exhibition and product briefing”; pp. 5-6; presented at 2014 Offshore Technology Conference; May 2014. |
Thilo Scharf; “DynaStage & BTM Introduction”; pp. 4-5, 9; presented at 2014 Offshore Technology Conference; May 2014. |
U.S. Patent Trial and Appeal Board, Institution of Inter Partes Review of U.S. Pat. No. 9,581,422, Case PR2018-00600, Aug. 21, 2018, 9 pages. |
United States District Court for the Southern District of Texas Houston Division, Case 4:19-cv-01611 for U.S. Pat. No. 9,581,422B2, Defendant's Answers, Counterclaims and Exhibits, dated May 28, 2019, 135 pgs. |
United States District Court for the Southern District of Texas Houston Division, Case 4:19-cv-01611 for U.S. Pat. No. 9,581,422B2, Plaintiff's Complaint and Exhibits, dated May 2, 2019, 26 pgs. |
United States District Court for the Southern District of Texas Houston Division, Case 4:19-cv-01611 for U.S. Pat. No. 9,581,422B2, Plaintiffs' Motion to Dismiss and Exhibits, dated Jun. 17, 2019, 63 pgs. |
United States District Court Southern District of Texas Houston and Galveston Divisions; Seventh Supplemental Order; Sep. 17, 2020; 3 pages. |
United States Patent and Trademark Office, Case IPR2018-00600 for U.S. Pat. No. 9,581,422 B2, Reply In Support of Patent Owner's Motion to Amend, dated Mar. 21, 2019, 15 pgs. |
United States Patent and Trademark Office, Case IPR2018-00600 for U.S. Pat. No. 9,581,422 B2, Decision of Precedential Opinion Panel, Granting Patent Owner's Request for Hearing and Granting Patent Owner's Motion to Amend, dated Jul. 6, 2020, 27 pgs. |
United States Patent and Trademark Office, Case IPR2018-00600 for U.S. Pat. No. 9,581,422 B2, DynaEnergetics GmbH & Co. KG's Patent Owner Preliminary Response, dated May 22, 2018, 47 pgs. |
United States Patent and Trademark Office, Case IPR2018-00600 for U.S. Pat. No. 9,581,422 B2, Order Granting Precedential Opinion Panel, Paper No. 46, dated Nov. 7, 2019, 4 pgs. |
United States Patent and Trademark Office, Case IPR2018-00600 for U.S. Pat. No. 9,581,422 B2, Patent Owner's Motion to Amend, dated Dec. 6, 2018, 53 pgs. |
United States Patent and Trademark Office, Case IPR2018-00600 for U.S. Pat. No. 9,581,422 B2, Patent Owner's Opening Submission to Precedential Opinion Panel, dated Dec. 20, 2019, 21 pgs. |
United States Patent and Trademark Office, Case IPR2018-00600 for U.S. Pat. No. 9,581,422 B2, Patent Owner's Request for Hearing, dated Sep. 18, 2019, 19 pgs. |
United States Patent and Trademark Office, Case IPR2018-00600 for U.S. Pat. No. 9,581,422 B2, Patent Owner's Responsive Submission to Precedential Opinion Panel, dated Jan. 6, 2020, 16 pgs. |
United States Patent and Trademark Office, Case IPR2018-00600 for U.S. Pat. No. 9,581,422 B2, Patent Owner's Sur-reply, dated Mar. 21, 2019, 28 pgs. |
United States Patent and Trademark Office, Case IPR2018-00600 for U.S. Pat. No. 9,581,422 B2, Petitioner's Additional Briefing to the Precedential Opinion Panel, dated Dec. 20, 2019, 23 pgs. |
United States Patent and Trademark Office, Case IPR2018-00600 for U.S. Pat. No. 9,581,422 B2, Petitioner's Opposition to Patent Owner's Motion to Amend, dated Mar. 7, 2019, 30 pgs. |
United States Patent and Trademark Office, Case IPR2018-00600 for U.S. Pat. No. 9,581,422 B2, Petitioner's Reply Briefing to the Precedential Opinion Panel, dated Jan. 6, 2020, 17 pgs. |
United States Patent and Trademark Office, Case IPR2018-00600 for U.S. Pat. No. 9,581,422 B2, Petitioner's Reply in Inter Partes Review of U.S. Pat. No. 9,581,422, dated Mar. 7, 2019, 44 pgs. |
United States Patent and Trademark Office, Final Office Action of U.S. Appl. No. 16/359,540, dated Aug. 14, 2019, 9 pages. |
United States Patent and Trademark Office, Final Office Action of U.S. Appl. No. 16/455,816, dated Apr. 20, 2020, 21 pages. |
United States Patent and Trademark Office, Final Written Decision of Case IPR2018-00600 for U.S. Pat. No. 9,581,422 B2, Paper No. 42, dated Aug. 20, 2019, 31 pgs. |
United States Patent and Trademark Office, Non-Final Office Action of U.S. Appl. No. 16/451,440, dated Oct. 24, 2019, 22 pages. |
United States Patent and Trademark Office, Non-Final Office Action of U.S. Appl. No. 14/767,058, dated Jul. 15, 2016, 9 pages. |
United States Patent and Trademark Office, Non-Final Office Action of U.S. Appl. No. 15/117,228, dated May 31, 2018, 9 pages. |
United States Patent and Trademark Office, Non-Final Office Action of U.S. Appl. No. 15/617,344, dated Jan. 23, 2019, 5 pages. |
United States Patent and Trademark Office, Non-Final Office Action of U.S. Appl. No. 15/788,367, dated Oct. 22, 2018, 6 pages. |
United States Patent and Trademark Office, Non-Final Office Action of U.S. Appl. No. 15/920,800, dated Dec. 27, 2019, 6 pages. |
United States Patent and Trademark Office, Non-Final Office Action of U.S. Appl. No. 15/920,812, dated Dec. 27, 2019, 6 pages. |
United States Patent and Trademark Office, Non-Final Office Action of U.S. Appl. No. 15/920,812, dated May 27, 2020, 5 pages. |
United States Patent and Trademark Office, Non-Final Office Action of U.S. Appl. No. 16/026,431, dated Jul. 30, 2019, 10 pages. |
United States Patent and Trademark Office, Non-Final Office Action of U.S. Appl. No. 16/272,326, dated May 24, 2019, 17 pages. |
United States Patent and Trademark Office, Non-Final Office Action of U.S. Appl. No. 16/359,540, dated May 3, 2019, 11 pages. |
United States Patent and Trademark Office, Non-Final Office Action of U.S. Appl. No. 16/423,789, dated Feb. 18, 2020, 14 pages. |
United States Patent and Trademark Office, Non-Final Office Action of U.S. Appl. No. 16/455,816, dated Jan. 13, 2020, 14 pages. |
United States Patent and Trademark Office, Non-Final Office Action of U.S. Appl. No. 16/455,816, dated Jul. 2, 2020, 15 pages. |
United States Patent and Trademark Office, Notice of Allowance for U.S. Appl. No. 15/920,800, dated Jul. 7, 2020, 7 pages. |
United States Patent and Trademark Office, Notice of Allowance for U.S. Appl. No. 16/585,790, dated Jun. 19, 2020, 16 pages. |
United States Patent and Trademark Office, Office Action of U.S. Appl. No. 16/503,839, dated Jul. 14, 2020, 13 pgs. |
United States Patent and Trademark Office, Office Action of U.S. Appl. No. 16/511,495, dated Aug. 27, 2020, 20 pgs. |
United States Patent and Trademark Office, Office Action of U.S. Appl. No. 16/540,484, dated Oct. 4, 2019, 12 pgs. |
United States Patent and Trademark Office, Office Action of U.S. Appl. No. 16/585,790, dated Nov. 12, 2019, 9 pgs. |
United States Patent and Trademark Office, Office Action of U.S. Appl. No. 16/809,729, dated Jun. 19, 2020, 9 pgs. |
United States Patent and Trademark Office; Final Office Action of U.S. Appl. No. 16/540,484; dated Mar. 30, 2020; 12 pgs. |
United States Patent and Trademark Office; Non-Final Office Action for U.S. Appl. No. 15/068,786; issued Mar. 27, 2017; 9 pages. |
Hunting Energy Services Pte Ltd., “H-1 Perforating Gun System”; promotional brochure; Jun. 21, 2019. |
Hunting Titan Division, Marketing White Paper: H-1® Perforating Gun System, Jan. 2017, 5 pgs., http://www.hunting-intl.com/media/2674690/White%20Paper%20-%20H-1%20Perforating%20Gun%20Systems_January%202017.pdf. |
Hunting Titan Inc.; Petition for Post Grant Review of U.S. Pat. No. 10,429,161; dated Jun. 30, 2020; 109 pages. |
Hunting Titan Ltd,; Defendants' Answer and Counterclaims, Civil Action No. 4:19-cv-01611, consolidated to Civil Action No. 4:17-cv-03784; dated May 28, 2019; 21 pages. |
Hunting Titan, H-1® Perforating Gun System, 2016, 2 pgs., http://www.hunting-intl.com/titan. |
Hunting Titan, Wireline Top Fire Detonator Systems, Nov. 24, 2014, 2 pgs, http://www.hunting-intl.com/titan/perforating-guns-and-setting-tools/wireline-top-fire-detonator-systems. |
Industrial Property Office, Czech Republic; Office Action; CZ App. No. PV 2017-675; Dec. 17, 2018; 2 pages. |
Instituto Nacional De La Propiedad Industrial; Office Action for AR Appl. No. 20140102653; issued May 9, 2019 (1 page). |
Intellectual Property India, Office Action of IN Application No. 201647004496, dated Jun. 7, 2019, 6 pgs. |
International Bureau; International Preliminary Report on Patentability for PCT Application #PCT/EP2019/063214; dated Dec. 24, 2020; 9 pages. |
International Searching Authority, International Preliminary Report on Patentability for PCT App. No. PCT/EP2014/065752; Mar. 1, 2016, 10 pgs. |
International Searching Authority, International Search Report and Written Opinion for PCT App. No. PCT/IB2019/000569; Oct. 9, 2019, 12 pages. |
International Searching Authority, International Search Report and Written Opinion of International App. No. PCT/EP2019/063214, which is in the same family as U.S. Appl. No. 16/503,839, mailed Jul. 29, 2019, 13 pages. |
International Searching Authority; International Preliminary Report on Patentability for PCT Appl. No. PCT/CA2014/050673; issued Jan. 19, 2016; 5 pages. |
International Searching Authority; International Search Report and Written Opinion for PCT App. No. PCT/CA2014/050673; mailed Oct. 9, 2014; 7 pages. |
International Searching Authority; International Search Report and Written Opinion for PCT App. No. PCT/EP2015/059381; Nov. 23, 2015; 14 pages. |
International Searching Authority; International Search Report and Written Opinion for PCT App. No. PCT/EP2019/069165; Oct. 22, 2019; 13 pages. |
International Searching Authority; International Search Report and Written Opinion for PCT App. No. PCT/US2015/018906; Jul. 10, 2015; 12 pages. |
Jet Research Center Inc., JRC Catalog, 2008, 36 pgs., https://www.jetresearch.com/content/dam/jrc/Documents/Books_Catalogs/06_Dets.pdf. |
Jet Research Center Inc., Red RF Safe Detonators Brochure, 2008, 2 pages, www.jetresearch.com. |
Jet Research Center, VELOCITY™ Perforating System Plug and Play Guns For Pumpdown Operation, Ivarado, Texas, Jul. 2019, 8 pgs., https://www.jetresearch.com/content/dam/jrc/Documents/Brochures/jrc-velocity-perforating-system.pdf. |
McBride Michael; Declaration for IPR2021-00082; dated Oct. 20, 2020; 3 pages. |
McNelis et al.; High-Performance Plug-and-Perf Completions in Unconventional Wells; Society of Petroleum Engineers Annual Technical Conference and Exhibition; Sep. 28, 2015. |
merriam-webster.com, Insulator Definition, https://www.merriam-webster.com/dictionary/insulator, Jan. 31, 2018, 4 pages. |
Nextier Oilfield Solutions Inc; Petition for Inter Partes Review No. IPR2021-00082; dated Oct. 21, 2020; 111 pages. |
Nexus Perforating LLC; Complaint and Demand for Jury Trial for Civil Case No. 4:20-cv-01539; dated Apr. 30, 2020; 11 pages. |
Nexus Perforating; Double Nexus Connect (Thunder Gun System) Description; Retrieved from the internet Jan. 27, 2021; 6 pages. |
Norwegian Industrial Property Office; Office Action and Search Report for NO App. 20160017; Jun. 15, 2017; 5 pages. |
Norwegian Industrial Property Office; Office Action and Search Report for NO App No. 20171759; Jan. 14, 2020; 6 pages. |
Norwegian Industrial Property Office; Office Action for NO Appl. No. 20/160,017; mailed Dec. 4, 2017; 2 pages. |
Norwegian Industrial Property Office; Opinion for NO Appl. No. 20171759; mailed Apr. 5, 2019; 1 page. |
OSO Perforating; “OsoLite”; promotional brochure; Jan. 2019. |
Owen Oil Tools & Pacific Scientific; RF-Safe Green Det, Side Block for Side Initiation, Jul. 26, 2017, 2 pgs. |
Owen Oil Tools, Expendable Perforating Guns, Jul. 2008, 7 pgs., https://www.corelab.com/owen/cms/docs/Canada/10A_erhsc-01.0-c.pdf. |
Owen Oil Tools, Recommended Practice for Oilfield Explosive Safety, Presented at 2011 MENAPS Middle East and North Africa Perforating Symposium, Nov. 28-30, 2011, 6 pages. |
Owens Oil Tools, E & B Select Fire Side Port Tandem Sub Assembly Man-30-XXX-0002-96, revised Dec. 2012, 9 pgs., https://www.corelab.com/owen/CMS/docs/Manuals/gunsys/MAN-30-XXX-0002-96-R00.pdf. |
Parrott, Robert; Declaration for IPR2021-00082; dated Oct. 20, 2020; 110 pages. |
PCT Search Report and Written Opinion, mailed May 4, 2015: See Search Report and Written opinion for PCT Application No. PCT/EP2014/065752, 12 pgs. |
Robert Parrott, Case IPR2018-00600 for U.S. Pat. No. 9,581,422 B2, Declaration regarding Patent Invalidity, dated Jun. 29, 2020, 146 pages. |
Schlumberger & Said Abubakr, Combining and Customizing Technologies for Perforating Horizontal Wells in Algeria, Presented at 2011 MENAPS, Nov. 28-30, 2011, 20 pages. |
Schlumberger, Perforating Services Catalog, 2008, 521 pages. |
SIPO, Search Report dated Mar. 29, 2017, in Chinese: See Search Report for CN App. No. 201480040456.9, 12 pgs. (English Translation 3 pgs.). |
Smithson, Anthony; Declaration Declaration for IPR2021-00082; dated Oct. 16, 2020; 2 pages. |
Smylie, Tom, New Safe and Secure Detonators for the Industry's consideration, presented at Explosives Safety & Security Conference, Marathon Oil Co, Houston; Feb. 23-24, 2005, 20 pages. |
State Intellectual Property Office People's Republic of China; First Office Action for Chinese App. No. 201811156092.7; issued Jun. 16, 2020; 6 pages (Eng Translation 8 pages). |
State Intellectual Property Office, P.R. China; First Office Action for Chinese App No. 201580011132.7; Issued Jun. 27, 2018; 5 pages (Eng. Translation 9 pages). |
State Intellectual Property Office, P.R. China; First Office Action for Chinese App. No. 201610153426. K; issued Mar. 20, 2019; 6 pages (Eng Translation 11 pages). |
State Intellectual Property Office, P.R. China; First Office Action for CN App. No. 201480047092.7; issued on Apr. 24, 2017. |
State Intellectual Property Office, P.R. China; First Office Action with full translation for CN App. No. 201480040456.9; issued Mar. 29, 2017; 12 pages (English translation 17 pages). |
State Intellectual Property Office, P.R. China; Notification to Grant Patent Right for Chinese App. No. 201580011132.7; issued Apr. 3, 2019; 2 pages (Eng. Translation 2 pages). |
INPI Argentina; Office Action for Application No. 20190101834; dated Aug. 22, 2022; 3 pages. |
Norwegian Industrial Property Office; Office Action for NO Application No. 20180507; dated Sep. 29, 2022; 2 pages. |
United States Patent and Trademark Office; Notice of Allowance for U.S. Appl. No. 16/809,729; dated Sep. 21, 2022; 7 pages. |
United States Patent and Trademark Office; Notice of Allowance for U.S. Appl. No. 17/007,574; dated Sep. 26, 2022; 8 pages. |
United States Patent and Trademark Office; Notice of Allowance for U.S. Appl. No. 17/352,728; dated Sep. 21, 2022; 8 pages. |
China National Intellectual Property Administration; First Office Action for CN Application No. 201980039397.6; dated Aug. 3, 2022; 12 pages. |
G&H Diversified Manufacturing, LP; Petitioner's Oral Argument Presentation for PGR No. PGR2021-00078; dated Jul. 26, 2022; 65 pages. |
United States Patent and Trademark Office; Non-Final Office Action for U.S. Appl. No. 17/221,219; dated Aug. 3, 2022; 8 pages. |
Number | Date | Country | |
---|---|---|---|
20220307808 A1 | Sep 2022 | US |
Number | Date | Country | |
---|---|---|---|
62683083 | Jun 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16152933 | Oct 2018 | US |
Child | 16503839 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17076099 | Oct 2020 | US |
Child | 17835014 | US | |
Parent | 16503839 | Jul 2019 | US |
Child | 17076099 | US |