This application claims the benefit under 35 USC §119 of the filing date of International Application Serial No. PCT/US11/50401 filed 2 Sep. 2011, International Application Serial No. PCT/US11/46955 filed 8 Aug. 2011, International Patent Application Serial No. PCT/US11/34690 filed 29 Apr. 2011, and International Patent Application Serial No. PCT/US10/61104 filed 17 Dec. 2010. The entire disclosures of these prior applications are incorporated herein by this reference.
The present disclosure relates generally to equipment utilized and operations performed in conjunction with a subterranean well and, in an embodiment described herein, more particularly provides for mitigating shock produced by well perforating.
Shock absorbers have been used in the past to absorb shock produced by detonation of perforating guns in wells. Unfortunately, prior shock absorbers have enjoyed only very limited success. In part, the present inventors have postulated that this is due at least in part to the prior shock absorbers being incapable of reacting sufficiently quickly to allow some angular displacement of one perforating string component relative to another during a shock event, thereby reflecting rather than coupling the shock.
In carrying out the principles of this disclosure, a shock de-coupler is provided which brings improvements to the art of mitigating shock produced by perforating strings. One example is described below in which a bending shock de-coupler is, at least initially, relatively compliant. Another example is described below in which the shock de-coupler permits relatively unrestricted bending of the perforating string due to a perforating event, but bending compliance can be decreased substantially in response to the bending exceeding a limit.
In one aspect, a bending shock de-coupler for use with a perforating string is provided to the art by this disclosure. In one example, the de-coupler can include perforating string connectors at opposite ends of the de-coupler. A bending compliance of the de-coupler substantially increases between the connectors.
In another aspect, a well system is described below. In one example, the well system can include a perforating string including at least one perforating gun and multiple bending shock de-couplers, each of the de-couplers having a bending compliance, and at least two of the bending compliances being different from each other.
In yet another aspect, the disclosure below describes a perforating string. In one example, the perforating string can include a bending shock de-coupler interconnected longitudinally between two components of the perforating string. A bending compliance of the bending shock de-coupler substantially decreases in response to angular displacement of one of the components a predetermined amount relative to the other component.
These and other features, advantages and benefits will become apparent to one of ordinary skill in the art upon careful consideration of the detailed description of representative embodiments of the disclosure hereinbelow and the accompanying drawings, in which similar elements are indicated in the various figures using the same reference numbers.
Representatively illustrated in
The perforating string 12 is sealed and secured in the casing 16 by a packer 26. The packer 26 seals off an annulus 28 formed radially between the tubular string 12 and the wellbore 14.
A firing head 30 is used to initiate firing or detonation of the perforating guns 20 (e.g., in response to a mechanical, hydraulic, electrical, optical or other type of signal, passage of time, etc.), when it is desired to form the perforations 22. Although the firing head 30 is depicted in
In the example of
One of the shock de-couplers 32 is interconnected between two of the perforating guns 20. In this position, a shock de-coupler can mitigate the transmission of bending shock between perforating guns, and thereby prevent the accumulation of shock effects along a perforating string.
Another one of the shock de-couplers 32 is interconnected between the packer 26 and the perforating guns 20. In this position, a shock de-coupler can mitigate the transmission of bending shock from perforating guns to a packer, which could otherwise unset or damage the packer, cause damage to the tubular string between the packer and the perforating guns, etc. This shock de-coupler 32 is depicted in
Yet another of the shock de-couplers 32 is interconnected above the packer 26. In this position, a shock de-coupler can mitigate the transmission of bending shock from the perforating string 12 to a tubular string 34 (such as a production or injection tubing string, a work string, etc.) above the packer 26.
At this point, it should be noted that the well system 10 of
For example, it is not necessary for the wellbore 14 to be vertical, for there to be two of the perforating guns 20, or for the firing head 30 to be positioned between the perforating guns and the packer 26, etc. Instead, the well system 10 configuration of
The bending shock de-couplers 32 are referred to as “de-couplers,” since they function to prevent, or at least mitigate, coupling of bending shock between components connected to opposite ends of the de-couplers. In the example of
To prevent coupling of bending shock between components, it is desirable to allow the components to bend (angularly deflect about the x and/or y axes, if z is the longitudinal axis) relative to one another, while remaining longitudinally connected. In this manner, bending shock is reflected, rather than transmitted through the shock de-couplers 32.
In examples of the shock de-couplers 32 described more fully below, the shock de-couplers can mitigate the coupling of bending shock between components. By permitting relatively high compliance bending of the components relative to one another, the shock de-couplers 32 mitigate the coupling of bending shock between the components. The bending compliance can be substantially decreased, however, when a predetermined angular displacement has been reached.
Referring additionally now to
In this example, perforating string connectors 36, 38 are provided at opposite ends of the shock de-coupler 32, thereby allowing the shock de-coupler to be conveniently interconnected between various components of the perforating string 12. The perforating string connectors 36, 38 can include threads, elastomer or non-elastomer seals, metal-to-metal seals, and/or any other feature suitable for use in connecting components of a perforating string.
An elongated mandrel 40 extends upwardly (as viewed in
The projections 42 are complementarily received in longitudinally elongated slots 46 formed through a sidewall of a generally tubular housing 48 extending downwardly (as viewed in
The cooperative engagement between the projections 42 and the slots 46 permits some relative displacement between the connectors 36, 38 along a longitudinal axis 54, but prevents any significant relative rotation between the connectors about the longitudinal axis. Thus, torque can be transmitted from one connector to the other, but relative displacement between the connectors 36, 38 is permitted in both opposite longitudinal directions, due to a biasing device 52 being formed in the housing.
In this example, the biasing device 52 comprises a helically formed portion of the housing 48 between the connectors 36, 38. In other examples, separate springs or other types of biasing devices may be used, and it is not necessary for the biasing device 52 to be used at all, in keeping with the scope of this disclosure.
Biasing device 52 operates to maintain the connector 36 in a certain position relative to the other connector 38. In this example, any biasing device (such as a compressed gas chamber and piston, etc.) which can function to substantially maintain the connector 36 at a predetermined position relative to the connector 38, while allowing at least a limited extent of rapid relative longitudinal displacement between the connectors due to a shock event may be used.
Note that the predetermined position could be “centered” as depicted in
Energy absorbers 64 are preferably provided at opposite longitudinal ends of the slots 46. The energy absorbers 64 preferably prevent excessive relative displacement between the connectors 36, 38 by substantially decreasing the effective longitudinal compliance of the shock de-coupler 32 when the connector 36 has displaced a certain distance relative to the connector 38.
Examples of suitable energy absorbers include resilient materials, such as elastomers, and non-resilient materials, such as readily deformable metals (e.g., brass rings, crushable tubes, etc.), non-elastomers (e.g., plastics, foamed materials, etc.) and other types of materials. Preferably, the energy absorbers 64 efficiently convert kinetic energy to heat, mechanical strain and/or plastic deformation. However, it should be clearly understood that any type of energy absorber may be used, while remaining within the scope of this disclosure.
If the shock de-coupler 32 of
It may also be desirable to provide one or more pressure barriers 68 between the connectors 36, 38. For example, the pressure barriers 68 may operate to isolate the interiors of perforating guns 20 and/or firing head 30 from well fluids and pressures.
In the example of
Note that it is not necessary for a detonation train to extend through a shock de-coupler in keeping with the principles of this disclosure. For example, in the well system 10 as depicted in
The mandrel 40 includes a reduced diameter portion 44 which causes the mandrel to have a substantially increased bending compliance. The housing 48 also has a substantially increased bending compliance, due to the biasing device 52 being helically cut through the housing.
Thus, it will be appreciated that the connector 36 can be rotated (angularly deflected) relative to the other connector 38 about an axis perpendicular to the longitudinal axis 54, with relatively high bending compliance. For this reason, bending shock in one component attached to one of the connectors 36, 38 will be mainly reflected in that component, rather than being transmitted through the de-coupler 32 to another component attached to the other connector.
Referring additionally now to
The axial compliance of the
In one feature of another shock de-coupler 32 configuration representatively illustrated in
Each of the stiffeners 56 includes enlarged opposite ends 58, which are received in recesses 60 positioned on opposite longitudinal sides of the reduced diameter portion 44. When the ends 58 are installed in the recesses 60, the stiffeners 56 longitudinally straddle the reduced diameter portion 44.
The recesses 60 are longitudinally wider than the ends 58 of the stiffeners 56, so the ends can displace longitudinally a limited amount relative to the recesses (in either or both longitudinal directions). Therefore, only a limited amount of angular displacement of the connector 36 relative to the connector 38 is permitted, without a stiffener 56 being placed in compression or tension by the angular displacement (due to the ends 58 engaging the recesses 60), thereby decreasing the bending compliance of the de-coupler 32.
The stiffeners 56 may be made of an appropriate material and/or be appropriately configured (e.g., having a certain length, cross-section, etc.) to reduce the bending compliance of the de-coupler 32 as desired. The stiffeners 56 may be constructed so that they decrease the bending compliance of the de-coupler 32, for example, to prevent excessive bending of the perforating string 12. In addition, the stiffeners 56 can impart additional tensile strength to the de-coupler 32 as might be needed, for example, in jarring operations, etc.
Referring additionally now to
When the de-coupler 32 of
The de-coupler 32 can be configured, so that it has a desired bending compliance and/or a desired bending compliance curve. For example, the diameter 44 of the mandrel 40 could be increased to decrease bending compliance, and vice versa. As another example, the stiffness of the housing 48 in other configurations could be decreased to increase bending compliance, and vice versa. Cross-sectional areas, wall thicknesses, material properties, etc., of elements such as the mandrel 40 and housing 48 can be varied to produce corresponding variations in bending compliance.
This feature can be used to “tune” the compliance of the overall perforating string 12, so that shock effects on the perforating string are mitigated. Suitable methods of accomplishing this result are described in International Application serial nos. PCT/US10/61104 (filed 17 Dec. 2010), PCT/US11/34690 (filed 30 Apr. 2011), and PCT/US11/46955 (filed 8 Aug. 2011). The entire disclosures of these prior applications are incorporated herein by this reference.
Referring additionally now to
The flexible conduit 80 can be similar to an armored cable (e.g., of the type used for wireline operations, etc.), but having a passage 82 therein for accommodating the detonation train 66 (e.g., so that the detonating cord 70 can extend through the conduit). Preferably, the conduit 80 has sufficient strength to limit axial displacement of the connectors 36, 38 away from each other (e.g., so that such axial displacement is controlled, so that an impact force may be delivered in jarring operations, etc.). To provide additional tensile strength (if needed), and/or to decrease bending compliance upon reaching a certain angular deflection (if desired), the stiffeners 56 and recesses 60 of the
Note that the conduit 80 and housing 48 in the
In other examples, the housing 48 may not be used in conjunction with the conduit 80. For example, the conduit 80 could be used in place of the reduced diameter 44 in the configuration of
The examples of the bending shock de-coupler 32 described above demonstrate that a wide variety of different configurations are possible, while remaining within the scope of this disclosure. Accordingly, the principles of this disclosure are not limited in any manner to the details of the bending shock de-coupler 32 examples described above or depicted in the drawings.
It may now be fully appreciated that this disclosure provides several advancements to the art of mitigating shock effects in subterranean wells. Various examples of shock de-couplers 32 described above can effectively prevent or at least reduce coupling of bending shock between components of a perforating string 12, instead reflecting the bending shock. In some examples, an axial compliance of the de-coupler 32 can also be increased, so that coupling of axial shock between components of the perforating string 12 can also be mitigated.
In one aspect, the above disclosure provides to the art a bending shock de-coupler 32 for use with a perforating string 12. In one example, the de-coupler 32 comprises perforating string connectors 36, 38 at opposite ends of the de-coupler 32. A bending compliance of the de-coupler 32 is substantially increased between the connectors 36, 38.
Torque may be transmitted between the connectors 36, 38.
The bending compliance can be increased by reduction of cross-sectional area between the connectors 36 (e.g., by reducing the cross-sectional area of the mandrel 40 and/or housing 48), by reduction of a diameter 44 of a mandrel 40 extending longitudinally between the connectors 36, 38, by reduction of wall thickness (e.g., in the mandrel 40 and/or housing 48), and/or by reduction of material stiffness between the connectors 36, 38.
In one example, the bending compliance substantially decreases in response to angular displacement of one of the connectors 36 a predetermined amount relative to the other connector 38.
Also described above is a well system 10. In one example, the well system 10 can include a perforating string 12 having at least one perforating gun 20 and multiple bending shock de-couplers 32, each of the de-couplers 32 having a bending compliance, and at least two of the bending compliances optionally being different from each other. The different bending compliances may be due to the “tuning” of the perforating string 12 compliance, as described above, although such tuning would not necessarily require that bending compliances of the shock de-couplers 32 be different.
Each of the de-couplers 32 may include perforating string connectors 36, 38 at opposite ends of the de-coupler 32. The corresponding bending compliance of at least one of the de-couplers 32 can substantially decrease in response to angular displacement of one of the connectors 36 a predetermined amount relative to the other connector 38.
A bending compliance of each de-coupler 32 can be substantially increased between the connectors 36, 38. For example, a bending compliance of a middle portion of a de-coupler 32 could be greater than a bending compliance at the connectors 36, 38.
At least one of the de-couplers 32 may be interconnected between perforating guns 20, between a perforating gun 20 and a firing head 30, between a perforating gun 20 and a packer 26, and/or between a firing head 30 and a packer 26. A packer 26 is interconnected between at least one of the de-couplers 32 and a perforating gun 20.
The de-couplers 32 can mitigate transmission of bending shock through the perforating string 12.
In one example described above, a perforating string 12 can include a bending shock de-coupler 32 interconnected longitudinally between two components 12a,b of the perforating string 12. A bending compliance of the bending shock de-coupler 32 can substantially decrease in response to angular displacement of one of the components 12a a predetermined amount relative to the other component 12b.
The bending compliance of the de-coupler 32 may be increased between connectors 36, 38 which connect the de-coupler 32 to the components 12a,b of the perforating string 12. In one example, torque can be transmitted between the perforating string components 12a,b.
It is to be understood that the various embodiments of this disclosure described herein may be utilized in various orientations, such as inclined, inverted, horizontal, vertical, etc., and in various configurations, without departing from the principles of this disclosure. The embodiments are described merely as examples of useful applications of the principles of the disclosure, which is not limited to any specific details of these embodiments.
In the above description of the representative examples, directional terms (such as “above,” “below,” “upper,” “lower,” etc.) are used for convenience in referring to the accompanying drawings. However, it should be clearly understood that the scope of this disclosure is not limited to any particular directions described herein.
Of course, a person skilled in the art would, upon a careful consideration of the above description of representative embodiments of the disclosure, readily appreciate that many modifications, additions, substitutions, deletions, and other changes may be made to the specific embodiments, and such changes are contemplated by the principles of this disclosure. Accordingly, the foregoing detailed description is to be clearly understood as being given by way of illustration and example only, the spirit and scope of the invention being limited solely by the appended claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
PCT/US2010/061104 | Dec 2010 | WO | international |
PCT/US2011/034690 | Apr 2011 | WO | international |
PCT/US2011/046955 | Aug 2011 | WO | international |
PCT/US2011/050401 | Sep 2011 | WO | international |
Number | Name | Date | Kind |
---|---|---|---|
2833213 | Udry | May 1958 | A |
2980017 | Castel | Apr 1961 | A |
3057296 | Silverman | Oct 1962 | A |
3128825 | Blagg | Apr 1964 | A |
3143321 | McGehee et al. | Aug 1964 | A |
3208378 | Boop | Sep 1965 | A |
3216751 | Der Mott | Nov 1965 | A |
3394612 | Bogosoff et al. | Jul 1968 | A |
3414071 | Alberts | Dec 1968 | A |
3653468 | Marshall | Apr 1972 | A |
3687074 | Andrews et al. | Aug 1972 | A |
3779591 | Rands | Dec 1973 | A |
3923105 | Lands, Jr. | Dec 1975 | A |
3923106 | Bosse-Platiere | Dec 1975 | A |
3923107 | Dillard | Dec 1975 | A |
3971926 | Gau et al. | Jul 1976 | A |
4269063 | Escaron et al. | May 1981 | A |
4319526 | DerMott | Mar 1982 | A |
4346795 | Herbert | Aug 1982 | A |
4409824 | Salama et al. | Oct 1983 | A |
4410051 | Daniel et al. | Oct 1983 | A |
4419933 | Kirby et al. | Dec 1983 | A |
4480690 | Vann | Nov 1984 | A |
4575026 | Brittain et al. | Mar 1986 | A |
4598776 | Stout | Jul 1986 | A |
4612992 | Vann et al. | Sep 1986 | A |
4619333 | George | Oct 1986 | A |
4637478 | George | Jan 1987 | A |
4679669 | Kalb et al. | Jul 1987 | A |
4693317 | Edwards et al. | Sep 1987 | A |
4764231 | Slawinski et al. | Aug 1988 | A |
4817710 | Edwards et al. | Apr 1989 | A |
4830120 | Stout | May 1989 | A |
4842059 | Tomek | Jun 1989 | A |
4901802 | George et al. | Feb 1990 | A |
4913053 | McPhee | Apr 1990 | A |
4971153 | Rowe et al. | Nov 1990 | A |
5027708 | Gonzalez et al. | Jul 1991 | A |
5044437 | Wittrisch | Sep 1991 | A |
5078210 | George | Jan 1992 | A |
5088557 | Ricles et al. | Feb 1992 | A |
5092167 | Finley et al. | Mar 1992 | A |
5103912 | Flint | Apr 1992 | A |
5107927 | Whiteley et al. | Apr 1992 | A |
5109355 | Yuno | Apr 1992 | A |
5117911 | Navarette et al. | Jun 1992 | A |
5131470 | Miszewski et al. | Jul 1992 | A |
5133419 | Barrington | Jul 1992 | A |
5161616 | Colla | Nov 1992 | A |
5188191 | Tomek | Feb 1993 | A |
5216197 | Huber et al. | Jun 1993 | A |
5287924 | Burleson et al. | Feb 1994 | A |
5343963 | Bouldin et al. | Sep 1994 | A |
5351791 | Rosenzweig | Oct 1994 | A |
5366013 | Edwards et al. | Nov 1994 | A |
5421780 | Vukovic | Jun 1995 | A |
5529127 | Burleson et al. | Jun 1996 | A |
5547148 | Del Monte et al. | Aug 1996 | A |
5598894 | Burleson et al. | Feb 1997 | A |
5603379 | Henke et al. | Feb 1997 | A |
5662166 | Shammai | Sep 1997 | A |
5774420 | Heysse et al. | Jun 1998 | A |
5813480 | Zaleski, Jr. et al. | Sep 1998 | A |
5823266 | Burleson et al. | Oct 1998 | A |
5826654 | Adnan et al. | Oct 1998 | A |
5957209 | Burleson et al. | Sep 1999 | A |
5964294 | Edwards et al. | Oct 1999 | A |
5992523 | Burleson et al. | Nov 1999 | A |
6012015 | Tubel | Jan 2000 | A |
6021377 | Dubinsky et al. | Feb 2000 | A |
6068394 | Dublin, Jr. | May 2000 | A |
6078867 | Plumb et al. | Jun 2000 | A |
6098716 | Hromas et al. | Aug 2000 | A |
6135252 | Knotts | Oct 2000 | A |
6173779 | Smith | Jan 2001 | B1 |
6216533 | Woloson et al. | Apr 2001 | B1 |
6230101 | Wallis | May 2001 | B1 |
6283214 | Guinot et al. | Sep 2001 | B1 |
6308809 | Reid et al. | Oct 2001 | B1 |
6371541 | Pedersen | Apr 2002 | B1 |
6394241 | Desjardins et al. | May 2002 | B1 |
6397752 | Yang et al. | Jun 2002 | B1 |
6408953 | Goldman et al. | Jun 2002 | B1 |
6412415 | Kothari et al. | Jul 2002 | B1 |
6412614 | Lagrange et al. | Jul 2002 | B1 |
6450022 | Brewer | Sep 2002 | B1 |
6454012 | Reid | Sep 2002 | B1 |
6457570 | Reid et al. | Oct 2002 | B2 |
6484801 | Brewer et al. | Nov 2002 | B2 |
6543538 | Tolman et al. | Apr 2003 | B2 |
6550322 | Sweetland et al. | Apr 2003 | B2 |
6595290 | George et al. | Jul 2003 | B2 |
6672405 | Tolman et al. | Jan 2004 | B2 |
6674432 | Kennon et al. | Jan 2004 | B2 |
6679323 | Vargervik et al. | Jan 2004 | B2 |
6679327 | Sloan et al. | Jan 2004 | B2 |
6684949 | Gabler et al. | Feb 2004 | B1 |
6684954 | George | Feb 2004 | B2 |
6708761 | George et al. | Mar 2004 | B2 |
6810370 | Watts, III | Oct 2004 | B1 |
6826483 | Anderson | Nov 2004 | B1 |
6832159 | Smits et al. | Dec 2004 | B2 |
6842725 | Sarda | Jan 2005 | B1 |
6868920 | Hoteit et al. | Mar 2005 | B2 |
7000699 | Yang et al. | Feb 2006 | B2 |
7006959 | Huh et al. | Feb 2006 | B1 |
7044219 | Mason et al. | May 2006 | B2 |
7114564 | Parrott et al. | Oct 2006 | B2 |
7121340 | Grove et al. | Oct 2006 | B2 |
7139689 | Huang | Nov 2006 | B2 |
7147088 | Reid et al. | Dec 2006 | B2 |
7165612 | McLaughlin | Jan 2007 | B2 |
7178608 | Mayes et al. | Feb 2007 | B2 |
7195066 | Sukup et al. | Mar 2007 | B2 |
7234517 | Streich et al. | Jun 2007 | B2 |
7246659 | Fripp et al. | Jul 2007 | B2 |
7260508 | Lim et al. | Aug 2007 | B2 |
7278480 | Longfield et al. | Oct 2007 | B2 |
7387160 | O'Shaughnessy et al. | Jun 2008 | B2 |
7387162 | Mooney, Jr. et al. | Jun 2008 | B2 |
7503403 | Jogi et al. | Mar 2009 | B2 |
7509245 | Siebrits et al. | Mar 2009 | B2 |
7533722 | George et al. | May 2009 | B2 |
7600568 | Ross et al. | Oct 2009 | B2 |
7603264 | Zamora et al. | Oct 2009 | B2 |
7640986 | Behrmann et al. | Jan 2010 | B2 |
7721650 | Barton et al. | May 2010 | B2 |
7721820 | Hill et al. | May 2010 | B2 |
7762331 | Goodman et al. | Jul 2010 | B2 |
7770662 | Harvey et al. | Aug 2010 | B2 |
8126646 | Grove et al. | Feb 2012 | B2 |
8136608 | Goodman | Mar 2012 | B2 |
20020121134 | Sweetland et al. | Sep 2002 | A1 |
20030062169 | Marshall | Apr 2003 | A1 |
20030089497 | George et al. | May 2003 | A1 |
20030150646 | Brooks et al. | Aug 2003 | A1 |
20040045351 | Skinner | Mar 2004 | A1 |
20040104029 | Martin | Jun 2004 | A1 |
20040140090 | Mason et al. | Jul 2004 | A1 |
20060070734 | Zillinger et al. | Apr 2006 | A1 |
20060118297 | Finci et al. | Jun 2006 | A1 |
20060243453 | McKee | Nov 2006 | A1 |
20070101808 | Irani et al. | May 2007 | A1 |
20070193740 | Quint | Aug 2007 | A1 |
20070214990 | Barkley et al. | Sep 2007 | A1 |
20080041597 | Fisher et al. | Feb 2008 | A1 |
20080149338 | Goodman et al. | Jun 2008 | A1 |
20080202325 | Bertoja et al. | Aug 2008 | A1 |
20080216554 | McKee | Sep 2008 | A1 |
20080245255 | Barton et al. | Oct 2008 | A1 |
20080262810 | Moran et al. | Oct 2008 | A1 |
20080314582 | Belani et al. | Dec 2008 | A1 |
20090013775 | Bogath et al. | Jan 2009 | A1 |
20090071645 | Kenison et al. | Mar 2009 | A1 |
20090084535 | Bertoja et al. | Apr 2009 | A1 |
20090151589 | Henderson et al. | Jun 2009 | A1 |
20090159284 | Goodman | Jun 2009 | A1 |
20090223400 | Hill et al. | Sep 2009 | A1 |
20090241658 | Irani et al. | Oct 2009 | A1 |
20090272529 | Crawford | Nov 2009 | A1 |
20100000789 | Barton et al. | Jan 2010 | A1 |
20100037793 | Lee et al. | Feb 2010 | A1 |
20100085210 | Bonavides et al. | Apr 2010 | A1 |
20100132939 | Rodgers | Jun 2010 | A1 |
20100133004 | Burleson et al. | Jun 2010 | A1 |
20100147519 | Goodman | Jun 2010 | A1 |
20100230105 | Vaynshteyn | Sep 2010 | A1 |
20120085539 | Tonnessen et al. | Apr 2012 | A1 |
20120152519 | Rodgers et al. | Jun 2012 | A1 |
20120152542 | Le | Jun 2012 | A1 |
20120152614 | Rodgers et al. | Jun 2012 | A1 |
20120152615 | Rodgers et al. | Jun 2012 | A1 |
20120152616 | Rodgers et al. | Jun 2012 | A1 |
20120158388 | Rodgers et al. | Jun 2012 | A1 |
Number | Date | Country |
---|---|---|
2065557 | Jun 2009 | EP |
2406870 | Apr 2005 | GB |
2004076813 | Sep 2004 | WO |
2004099564 | Nov 2004 | WO |
2007056121 | May 2007 | WO |
Entry |
---|
Search Report issued Feb. 9, 2012 for International Application No. PCT/US11/50401, 5 pages. |
Written Opinion issued Feb. 9, 2012 for International Application No. PCT/US11/50401, 3 pages. |
Kenji Furui; “A Comprehensive Skin Factor Model for Well Completions Based on Finite Element Simulations”, informational paper, dated May 2004, 182 pages. |
Patent Application and Drawings, filed Dec. 17, 2010, serial No. PCT/US10/61104, 38 pages. |
Scott A. Ager; “IES Fast Speed Gauges”, informational presentation, dated Mar. 2, 2009, 38 pages. |
IES; “Battery Packing for High Shock”, article AN102, 4 pages. |
IES; “Accelerometer Wire Termination”, article AN106, 4 pages. |
John F. Schatz; “PulsFrac Validation: Owen/HTH Surface Block Test”, product information, dated 2004, 4 pages. |
John F. Schatz; “Casing Differential in PulsFrac Calculations”, product information, dated 2004, 2 pages. |
John F. Schatz; “The Role of Compressibility in PulsFrac Software”, informational paper, dated Aug. 22, 2007, 2 pages. |
Essca Group; “Erin Dynamic Flow Analysis Platform”, online article, dated 2009, 1 page. |
Halliburton; “Fast Gauge Recorder”, article 5-110, 2 pages. |
Halliburton; “Simulation Software for EquiFlow ICE Completions”, H07010, dated Sep. 2009, 2 pages. |
Halliburton; “AutoLatch Release Gun Connector”, Special Applications 6-7, 1 page. |
Halliburton; “Body Lock Ring”, Mechanical Downhole: Technology Transfer, dated Oct. 10, 2001, 4 pages. |
Starboard Innovations, LLC; “Downhole Mechanical Shock Absorber”, patent and prior art search results, Preliminary Report, dated Jul. 8, 2010, 22 pages. |
Carlos Baumann, Harvey Williams, and Schlumberger; “Perforating Wellbore Dynamics and Gunshock in Deepwater TCP Operations”, Product informational presentation, IPS-10-018, 28 pages. |
Schlumberger; “SXVA Explosively Initiated Vertical Shock Absorber”, product paper 06-WT-066, dated 2007, 1 page. |
International Search Report with Written Opinion issued Dec. 27, 2011 for PCT Patent Application No. PCT/US11/046955, 8 pages. |
International Search Report with Written Opinion issued Jul. 28, 2011 for International Application No. PCT/US10/61104, 8 pages. |
International Search Report with Written Opinion issued Nov. 22, 2011 for International Application No. PCT/US11/029412, 9 pages. |
International Search Report with Written Opinion issued Jul. 28, 2011 for International Application No. PCT/US10/061107, 9 pages. |
International Search Report with Written Opinion issued Oct. 27, 2011 for International Application No. PCT/US11/034690, 9 pages. |
Office Action issued Apr. 21, 2011 for U.S. Appl. No. 13/008,075, 9 pages. |
Office Action issued May 4, 2011 for U.S. Appl. No. 11/957,541, 9 pages. |
Patent Application, filed Dec. 17, 2010, serial No. PCT/US10/61104, 29 pages. |
Drawings, filed Dec. 17, 2010, serial No. PCT/US10/61104, 10 figures, 9 pages. |
Halliburton; “Simulation Software for EquiFlow ICD Completions”, H07010, dated Sep. 2009, 2 pages. |
Office Action issued Sep. 8, 2009, for U.S. Appl. No. 11/957,541, 10 pages. |
Office Action issued Feb. 2, 2010, for U.S. Appl. No. 11/957,541, 8 pages. |
Office Action issued Jul. 15, 2010, for U.S. Appl. No. 11/957,541, 6 pages. |
Office Action issued Nov. 22, 2010, for U.S. Appl. No. 11/957,541, 6 pages. |
Office Action issued May 4, 2011, for U.S. Appl. No. 11/957,541, 9 pages. |
Office Action issued Apr. 21, 2011, for U.S. Appl. No. 13/008,075, 9 pages. |
J.A. Regalbuto et al; “Computer Codes for Oilwell-Perforator Design”, SPE 30182, dated Sep. 1997, 8 pages. |
Joseph Ansah et al; “Advances in Well Completion Design: A New 3D Finite-Element Wellbore Inflow Model for Optimizing Performance of Perforated Completions”, SPE 73760, Feb. 20-21, 2002, 11 pages. |
D.A. Cuthill et al; “A New Technique for Rapid Estimation of Fracture Closure Stress When Using Propellants”, SPE 78171, dated Oct. 20-23, 2002, 6 pages. |
J.F. Schatz et al; “High-Speed Pressure and Accelerometer Measurements Characterize Dynamic Behavior During Perforating Events in Deepwater Gulf of Mexico”, SPE 90042, dated Sep. 26-29, 2004, 15 pages. |
Liang-Biao Ouyang et al; “Case Studies for Improving Completion Design Through Comprehensive Well-Performance Modeling”, SPE 104078, dated Dec. 5-7, 2006, 11 pages. |
Liang-Biao Ouyang et al; “Uncertainty Assessment on Well-Performance Prediction for an Oil Producer Equipped With Selected Completions”, SPE 106966, dated Mar. 31-Apr. 3, 2007, 9 pages. |
B. Grove et al; “New Effective Stress Law for Predicting Perforation Depth at Downhole Conditions”, SPE 111778, dated Feb. 13-15, 2008, 10 pages. |
Office Action issued Oct. 1, 2012 for U.S. Appl. No. 13/325,726, 20 pages. |
International Search Report with Written Opinion issued Nov. 30, 2011 for PCT/US11/036686, 10 pages. |
Specification and drawing for U.S. Appl. No. 13/585,846, filed Aug. 25, 2012, 45 pages. |
International Search Report with Written Opinion issued Feb. 17, 2012 for PCT Patent Application No. PCT/US11/050392, 9 pages. |
International Search Report with Written Opinion issued Feb. 20, 2012 for PCT Patent Application No. PCT/US11/049882, 9 pages. |
Office Action issued Feb. 24, 2012 for U.S. Appl. No. 13/304,075, 15 pages. |
Office Action issued Apr. 10, 2012 for U.S. Appl. No. 13/325,726, 26 pages. |
Office Action issued Jun. 7, 2012 for U.S. Appl. No. 13/430,550, 21 pages. |
Office Action issued Jun. 29, 2012 for U.S. Appl. No. 13/325,866, 30 pages. |
Office Action issued Jul. 12, 2012 for U.S. Appl. No. 13/413,588, 42 pages. |
Office Action issued Jul. 26, 2012 for U.S. Appl. No. 13/325,726, 52 pages. |
Office Action issued Aug. 2, 2012 for U.S. Appl. No. 13/210,303, 35 pages. |
Office Action issued Sep. 6, 2012 for U.S. Appl. No. 13/495,035, 28 pages. |
J.F. Schatz et al; “High-Speed Downhole Memory Recorder and Software Used to Design and Confirm Perforating/Propellant Behavior and Formation Fracturing”, SPE 56434, dated Oct. 3-6, 1999, 9 pages. |
IES, Scott A. Ager; “IES Housing and High Shock Considerations”, informational presentation, 18 pages. |
IES, Scott A. Ager; Analog Recorder Test Example, informational letter, dated Sep. 1, 2010, 1 page. |
IES, Scott A. Ager; “Series 300 Gauge”, product information, dated Sep. 1, 2010, 1 page. |
IES, Scott A. Ager; “IES Introduction”, Company introduction presentation, 23 pages. |
Petroleum Experts; “IPM: Engineering Software Development”, product brochure, dated 2008, 27 pages. |
International Search Report with Written Opinion issued Oct. 27, 2011 for PCT Patent Application No. PCT/US11/034690, 9 pages. |
Kappa Engineering; “Petroleum Exploration and Product Software, Training and Consulting”, product informational paper on v4.12B, dated Jan. 2010, 48 pages. |
Qiankun Jin, Zheng Shigui, Gary Ding, Yianjun, Cui Binggui, Beijing Engeneering Software Technology Co. Ltd.; “3D Numerical Simulations of Penetration of Oil-Well Perforator into Concrete Targets”, Paper for the 7th International LS-DYNA Users Conference, 6 pages. |
Mario Dobrilovic, Zvonimir Ester, Trpimir Kujundzic; “Measurments of Shock Wave Force in Shock Tube with Indirect Methods”, Original scientific paper vol. 17, str. 55-60, dated 2005, 6 pages. |
IES, Scott A. Ager; “Model 64 and 74 Buildup”, product presentation, dated Oct. 17, 2006,57 pages. |
Specification and Drawings for U.S. Appl. No. 13/493,327, filed Jun. 11, 2012, 30 pages. |
“2010 International Perforating Symposium”, Agenda, dated May 6-7, 2010, 2 pages. |
Specification and drawing for U.S. Appl. No. 13/413,588, filed Mar. 6, 2012, 30 pages. |
International Search Report with Written Opinion issued Jul. 28, 2011 for International Application No. PCT/US10/61102, 8 pages. |
Specification and drawing for U.S. Appl. No. 13/377,148, filed Dec. 8, 2011, 47 pages. |
Office Action issued Jun. 13, 2012 for U.S. Appl. No. 13/377,148, 38 pages. |
Specification and drawing for U.S. Appl. No. 13/078,423, filed Apr. 1, 2011, 42 pages. |
Specification and drawing for US Patent Application No. PCT/US11/49882, filed Aug. 31, 2011, 26 pages. |
Offshore Technology Conference; “Predicting Pressure Behavior and Dynamic Shock Loads on Completion Hardware During Perforating”, OTC 21059, dated May 3-6, 2010, 11 pages. |
IES; “Series 200: High Shock, High Speed Pressure and Acceleration Gauge”, product brochure, 2 pages. |
Terje Rudshaug, et al.; “A toolbox for improved Reservoir Management”, NETool, Force AWTC Seminar, Apr. 21-22, 2004, 29 pages. |
Halliburton; “ShockPro Schockload Evaluation Service”, Perforating Solutions pp. 5-125 to 5-126, dated 2007, 2 pages. |
Halliburton; “ShockPro Schockload Evaluation Service”, H03888, dated Jul. 2007, 2 pages. |
Strain Gages; “Positioning Strain Gages to Monitor Bending, Axial, Shear, and Torsional Loads”, p. E-5 to E-6, dated 2012, 2 pages. |
B. Grove, et al.; “Explosion-Induced Damage to Oilwell Perforating Gun Carriers”, Structures Under Shock and Impact IX, vol. 87, ISSN 1743-3509, SU060171, dated 2006, 12 pages. |
WEM; “Well Evaluation Model”, product brochure, 2 pages. |
Endevco; “Problems in High-Shock Measurement”, MEGGITT brochure TP308, dated Jul. 2007, 9 pages. |
A. Blakeborough et al.; “Novel Load Cell for Measuring Axial Forca, Shear Force, and Bending Movement in large-scale Structural Experiments”, Informational paper, dated Mar. 23-Aug. 30, 2001, 8 pages. |
Weibing Li et al.; “The Effect of Annular Multi-Point Initiation on the Formation and Penetration of an Explosively Formed Penetrator”, Article in the International Journal of Impact Engineering, dated Aug. 27, 2009, 11 pages. |
Sergio Murilo et al.; “Optimization and Automation of Modeling of Flow Perforated Oil Wells”, Presentation for the Product Development Conference, dated 2004, 31 pages. |
Frederic Bruyere et al.; “New Practices to Enhance Perforating Results”, Oilfield Review, dated Autumn 2006, 18 pages. |
John F. Schatz; “Perf Breakdown, Fracturing, and Cleanup in PulsFrac”, informational brochure, dated May 2, 2007, 6 pages. |
M. A. Proett et al.; “Productivity Optimization of Oil Wells Using a New 3D Finite-Element Wellbore Inflow Model and Artificial Neutral Network”, conference paper, dated 2004, 17 pages. |
John F. Schatz; “PulsFrac Summary Technical Description”, informational brochure, dated 2003, 8 pages. |
IES, Scott A. Ager; “IES Recorder Buildup”, Company presentation, 59 pages. |
IES, Scott A. Ager; “IES Sensor Discussion”, 38 pages. |
IES; “Series 300: High Shock, High Speed Pressure Gauge”, product brochure, dated Feb. 1, 2012, 2 pages. |
Australian Examination Report issued Sep. 21, 2012 for AU Patent Application No. 2010365400, 3 pages. |
Office Action issued Oct. 23, 2012 for U.S. Appl. No. 13/325,866, 35 pages. |
Office Action issued Dec. 12, 2012 for U.S. Appl. No. 13/493,327, 75 pages. |
Office Action issued Dec. 14, 2012 for U.S. Appl. No. 13/495,035, 19 pages. |
Office Action issued Dec. 18, 2012 for U.S. Appl. No. 13/533,600, 48 pages. |
Number | Date | Country | |
---|---|---|---|
20120152616 A1 | Jun 2012 | US |