The present disclosure relates generally to perforation devices for downhole tubing and more particularly to perforation devices that utilize a gas supply structure to provide a gas stream to a barrel of the perforation device.
Perforation devices may be utilized to form one or more perforations within downhole tubing extending within a wellbore that extends within a subterranean formation. Such perforations may permit and/or facilitate fluid communication between the subterranean formation and a downhole conduit that is defined by the downhole tubing. One way in which perforations historically have been formed is by utilizing shape charge perforation devices. Such shape charge perforation devices include a plurality of shape charges, which must be spaced-apart along a length of the shape charge perforation device. As such, increasing a number of shape charges in the shape charge perforation device requires that the length of the shape charge perforation device be increased.
In certain applications, it may be desirable to form a greater number of perforations than readily may be accommodated by the shape charge perforation device. As an example, a length of the shape charge perforation device required to permit the shape charge perforation device to include a desired number of shaped charges may be prohibitively long. As a more specific example, and when forming perforations in wellbores that include horizontal regions, the length of the shape charge perforation device may preclude motion of the shape charge perforation device through and/or past a heel of the wellbore, thereby precluding formation of perforations within the horizontal region of the wellbore. Thus, there exists a need for improved perforation devices and methods of utilizing the improved perforation devices.
Perforation devices including gas supply structures and methods of utilizing the same. The perforation devices are configured to be positioned within a downhole conduit of downhole tubing and to form a plurality of perforations in the downhole tubing. The perforation devices include a magazine, a barrel, an action, and the gas supply structure.
The magazine is configured to contain a plurality of cartridges. The barrel extends between a breech and a muzzle. The breech is configured to receive a selected cartridge of the plurality of cartridges. The selected cartridge includes a selected projectile. The muzzle is configured, upon firing of the selected cartridge, to permit the selected projectile to exit the barrel at a muzzle velocity and with a muzzle trajectory. The action is configured to transfer the selected cartridge from the magazine to the breech of the barrel and to fire the selected cartridge.
The gas supply structure is configured to provide a gas stream to the barrel and includes a surface gas source and a gas supply conduit extending between the surface gas source and the barrel. The surface gas source is positioned within a surface region. The gas supply conduit is configured to convey the gas stream from the surface gas source to the barrel.
The methods include methods of perforating downhole tubing that extends within a wellbore that extends within a subterranean formation. The methods include positioning a perforation device within a downhole conduit that is defined by the downhole tubing. The methods also include providing a gas stream to a barrel of the perforation device with a gas supply structure that includes a surface gas source. The providing the gas stream includes conveying the gas stream from the surface gas source to the barrel via a gas supply conduit. The methods further include sequentially transferring a selected cartridge of a plurality of cartridges from a magazine of the perforation device to a breech of a barrel of the perforation device, firing the selected cartridge to accelerate a selected projectile of the selected cartridge from a muzzle of the barrel at a muzzle velocity and with a muzzle trajectory, and penetrating the downhole tubing with the selected projectile to form a perforation in the downhole tubing.
As illustrated in
Perforation device 100 may be positioned within downhole conduit 62. This may include positioning the perforation device within vertical region 56 and/or within horizontal region 58 and may include flowing the perforation device from surface region 20 and/or from a wellhead 70 into the downhole conduit, such as in a conveyance fluid 48. When perforation device 100 is positioned within horizontal region 58, the perforation device may be conveyed through heel 52 to reach the horizontal region.
Perforation device 100 also includes and/or is in fluid communication with a gas supply structure 90 that is configured to provide a gas stream 96 to perforation device 100 and/or to a barrel 130 of the perforation device. Gas supply structure 90 includes a surface gas source 92 that is positioned within surface region 20. In some embodiments, the gas supply structure may be provided downhole in proximity to the perforation device, such that the device may be conveyed via wireline or slickline. Gas supply structure 90 also includes a gas supply conduit 94 that extends between the surface gas source and perforation device 100 and/or barrel 130 thereof. Gas supply conduit 94 is configured to convey gas stream 96 from the surface gas source to the perforation device and/or to the barrel.
As illustrated in dashed lines, gas supply structure 90 also may include a check valve 146 and/or a regulator 147. Check valve 146, when present, may be configured to permit fluid flow from surface gas source 92 to and/or toward barrel 130 but to prevent and/or restrict fluid flow from barrel 130 to and/or toward surface gas source 92 (e.g., backflow). Check valve 146 may be positioned in any suitable operative position, such as on gas supply conduit 94, at and/or near barrel 130.
Regulator 147 may be configured to selectively regulate a pressure and/or a flow rate of gas stream 96 that is provided to barrel 130. Additionally or alternatively, regulator 147 may be configured to selectively initiate and/or cease flow of gas stream 96, such as during periods of time during which perforation device 100 is not being utilized. Regulator 147, when present, may be positioned within any suitable portion of gas supply structure 90. As an example, regulator 147 may be positioned within and/or proximal surface gas source 92. As another example, regulator 147 may form a portion of and/or may be directly attached to perforation device 100. Examples of regulator 147 be or include any suitable pressure regulator, differential pressure regulator, diaphragm pressure regulator, valve, flow regulator, and/or other fluid flow control device.
Gas supply conduit 94 may be at least partially, and optionally completely, defined by an umbilical 80 that may extend between wellhead 70 and perforation device 100. Umbilical 80 may be utilized to position the perforation device within the downhole conduit and/or may be utilized to resist motion of the perforation device in a downhole direction 44.
Perforation device 100 may include an uphole end 102 and a downhole end 104. Perforation device 100 may define an elongate perforation device axis 106, which may extend between the uphole end and the downhole end. Uphole end 102 may face in an uphole direction 46, while downhole end 104 may face in downhole direction 44. Elongate perforation device axis 106 may extend along, may extend parallel to, and/or may extend at least substantially parallel to a tubing axis 66 of downhole tubing 60.
Perforation device 100 of
As illustrated in
During operation of perforation devices 100, and as discussed in more detail herein with reference to methods 200 of
In addition, gas supply structure 90 may provide gas stream 96 to barrel 130. When perforation device 100 is positioned within downhole conduit 62, supply of gas stream 96 to barrel 130 may restrict and/or block flow of a wellbore fluid 68, which may extend within downhole conduit 62, into barrel 130. Stated another way, supply of the gas stream to the barrel may maintain a gaseous environment within barrel 130 and/or between breech 132 and muzzle 134 of the barrel. Such a configuration may increase the muzzle velocity of projectiles fired from barrel 130 relative to a muzzle velocity that would be obtainable if a liquid wellbore fluid was allowed to flow into the barrel from the downhole conduit.
Subsequent to receipt of the selected cartridge within the breech of the barrel, action 170 may fire the selected cartridge. Firing the selected cartridge may accelerate a selected projectile 121 of the selected cartridge through barrel 130, as illustrated in
It is within the scope of the present disclosure that gas supply structure 90 may provide gas stream 96 to barrel 130 in any suitable manner. As an example, the gas supply structure may provide the gas stream to the breech of the barrel. As another example, the barrel may include a gas injection port 139, and the gas supply structure may provide the gas stream to the gas injection port. A gaseous media may be desired within the barrel to provide a low viscosity media for enhanced acceleration of the projectile through the barrel, versus a liquid filled barrel.
In some embodiments, surface gas source 92 may include and/or be any suitable gas source that is positioned within surface region 20. Such a surface gas source may provide the gas stream to the barrel via gas supply conduit 94 that may be defined by umbilical 80. Examples of the gas supply conduit includes coiled tubing and jointed tubing or pipe, such as drill pipe.
Gas stream 96 may include and/or be any suitable gas stream that may be provided to barrel 130. As examples, gas stream 96 may include one or more of a nitrogen gas stream, a carbon dioxide gas stream, an inert gas stream, a gaseous hydrocarbon stream, and/or an air stream. In other embodiments, the gas source may be conveyed from the surface and generated at a downhole location, including but not limited to, in proximity to or directly within the barrel, such as via a chemical reaction, including in some embodiments, a burning or reaction product, such as by an explosive or cartridge charge.
In addition to the more schematic examples of
The angle of incidence may be measured between the muzzle trajectory and a direction that is normal to an inner surface of the downhole tubing at a point where the modified trajectory intersects the inner surface of the downhole tubing. Examples of the angle of incidence includes angles of less than a ricochet angle, or less than a threshold ricochet angle, between the selected projectile and the downhole tubing. As used herein, the phrase “ricochet angle” may refer to an angle that is measured relative to a surface normal direction of a surface. When a projectile contacts the surface at an angle of incidence that is less than the ricochet angle, the projectile will penetrate the surface and/or will not ricochet from the surface. In contrast, when the projectile contacts the surface at an angle of incidence that is greater than the ricochet angle, the projectile will bounce off, or ricochet from, the surface. Additional examples of the angle of incidence include angles of at most 45 degrees, at most 40 degrees, at most 35 degrees, at most 30 degrees, at most 25 degrees, at most 20 degrees, at most 15 degrees, at most 10 degrees, at most 5 degrees, at most 2.5 degrees, at most 1 degree, and/or at least substantially zero degrees. The angle of incidence may be at least substantially equal to zero degrees in the illustration of
In addition to the more schematic examples of
As discussed, perforation device 100 may include and/or be an elongate perforation device that has, or defines, elongate perforation device axis 106. In addition, and as illustrated in
As discussed, modified trajectory 142 differs from muzzle trajectory 136. As an example, modified trajectory 142 and muzzle trajectory 136 may define a modification angle 144 therebetween. Examples of the modification angle include modification angles of at least 45 degrees, at least 50 degrees, at least 55 degrees, at least 60 degrees, at least 65 degrees, at least 70 degrees, at least 75 degrees, at least 80 degrees, at least 85 degrees, at least 90 degrees, at most 135 degrees, at most 130 degrees, at most 125 degrees, at most 120 degrees, at most 115 degrees, at most 110 degrees, at most 105 degrees, at most 100 degrees, at most 95 degrees, and/or at most 90 degrees.
As also discussed, modified trajectory 142 directs selected projectile 121 into contact with downhole tubing 60. Stated another way, modified trajectory 142 and downhole tubing 60 may define an angle of incidence therebetween. The angle of incidence may be measured between the modified trajectory and a direction that is normal to an inner surface of the downhole tubing at a point where the modified trajectory intersects the inner surface of the downhole tubing. Examples of the angle of incidence are disclosed herein.
Trajectory-altering structure 140 may include and/or be any suitable structure that may be adapted, configured, and/or shaped to modify the trajectory of selected projectile 121 from muzzle trajectory 136 to modified trajectory 142. In addition, trajectory-altering structure 140 may be incorporated into perforation device 100 in any suitable manner. As an example, trajectory-altering structure 140 may be operatively attached to barrel 130, and this operative attachment may include direct or indirect attachment between the trajectory-altering structure and the barrel.
As another example, trajectory-altering structure 140 and barrel 130 may define a unitary structure. As a more specific example, trajectory-altering structure 140 and barrel 130 may be formed and/or defined from a continuous length of material. The continuous length of material may include both a straight, or linear, region that defines barrel 130 and a curved, or bent, region that defines trajectory-altering structure 140. Under these conditions, muzzle 134 may be defined as a location, within the continuous length of material, in which the continuous length of material transitions from the straight region to the curved region.
As yet another example, trajectory-altering structure 140 and barrel 130 may be spaced-apart from one another and/or may define a gap therebetween. Under these conditions, trajectory-altering structure 140 and barrel 130 both may be operatively attached to perforation device 100 and thus may be indirectly attached to one another via one or more other components of perforation device 100.
An example of trajectory-altering structure 140 includes a bent tubular 150, examples of which are illustrated schematically in
Bent tubular 150 may define an average structure transverse cross-sectional area and barrel 130 may define an average barrel transverse cross-sectional area. To facilitate modification of the selected projectile's trajectory from muzzle trajectory 136 to modified trajectory 142, the average barrel transverse cross-sectional area may be less than a threshold fraction of the average structure transverse cross-sectional area. Examples of the threshold fraction include threshold fractions of 90%, 80%, 70%, 60%, 50%, 40%, 30%, 20%, and/or 10%.
It is within the scope of the present disclosure that bent tubular 150 may be formed and/or defined by any suitable material and/or materials. As examples, bent tubular 150 may be formed and/or defined by one or more of a non-galling material, a ceramic material, a ceramic clad material, a material that is distinct from a material that defines barrel 130, the material that defines barrel 130, and/or a corrosion-resistant material. Such materials may be stable and/or non-reactive within subterranean formation 40 and/or may facilitate modification of the trajectory of the selected projectile without, or with less than a threshold amount of, damage to the selected projectile and/or to the trajectory-altering structure.
Another example of trajectory-altering structure 140 includes a ricochet-inducing structure 160, examples of which are illustrated schematically in
Returning more generally to
As illustrated schematically in dash-dot lines in
It is within the scope of the present disclosure that the plurality of cartridges 120 may include any suitable number of cartridges. As examples, the plurality of cartridges may include at least 50, at least 100, at least 200, at least 300, at least 400, at least 500, at most 1000, at most 800, and/or at most 600 cartridges. Inclusion of such a large number of cartridges 120 within magazine 110 may permit a corresponding number of perforations 64 to be formed within downhole tubing 60 without a need to remove perforation device 100 from downhole conduit 62 and/or without a need to reload magazine 110. It also is within the scope of the present disclosure that perforation device 100 may include a plurality of magazines 110. Under these conditions, each magazine 110 in the plurality of magazines 110 may include any suitable number of cartridges 120, examples of which are disclosed herein.
As illustrated in
As an example, projectile direction 189 of the selected cartridge while the selected cartridge is within the magazine, which is indicated at 180, may be parallel, or at least substantially parallel, to the projectile direction of the selected cartridge while the selected cartridge is within the breech of the barrel, which is indicated at 184. Stated another way, the projectile direction of the selected cartridge, while the selected cartridge is contained within the magazine, may be parallel, or at least substantially parallel, to muzzle trajectory 136.
As another example, projectile direction 189 may be perpendicular, or at least substantially perpendicular, to muzzle trajectory 136 while the selected projectile is contained within magazine 110 and/or prior to the selected cartridge being transferred from the magazine to the breech of the barrel, as indicated at 180. Under these conditions, perforation device 100 may include a cartridge rotating structure 172. Cartridge rotating structure 172 may form a portion of magazine 110, may form a portion of action 170, and/or may be a distinct structure of perforation device 100. When present, cartridge rotating structure 172 may be configured to receive selected cartridge 120 and to rotate the selected cartridge such that projectile direction 189 is parallel, or at least substantially parallel, to muzzle trajectory 136. The selected projectile then may be transferred to breech 132 of barrel 130, as indicated at 184.
Barrel 130 may include any suitable structure that may define breech 132 and muzzle 134, that may extend between the breech and the muzzle, and/or that may be configured to permit the selected projectile to exit the muzzle at the muzzle velocity and/or with the muzzle trajectory. In addition, a single, or only one, barrel 130 may be configured to receive and to fire each cartridge 120 in the plurality of cartridges. Stated another way, barrel 130 may be configured to sequentially receive each cartridge in the plurality of cartridges, to fire each cartridge in the plurality of cartridges, and/or to permit each projectile of each cartridge in the plurality of cartridges to exit the barrel via muzzle 134.
Barrel 130 may have and/or define a barrel length, which may be measured between breech 132 and muzzle 134. The barrel length may be selected to provide a desired, or a target, muzzle velocity for the selected projectile upon exiting the muzzle of the barrel. Barrel 130 also may be a rifled barrel, which may increase muzzle velocity and/or penetration of projectiles 121 that may be fired therethrough.
Barrel 130 may be formed and/or defined from any suitable material and/or materials. As examples, barrel 130 may be formed from one or more of a corrosion-resistant material, steel, and stainless steel.
As illustrated in
As illustrated in dashed lines in
It is within the scope of the present disclosure that perforation device 100 may have and/or define any suitable length, which may be measured along elongate perforation device axis 106, and/or maximum transverse cross-sectional dimension, which may be measured perpendicular to the elongate perforation device axis. Examples of the length of perforation device 100 include lengths of at least 25 centimeters, at least 50 centimeters, at least 75 centimeters, at least 100 centimeters, at least 150 centimeters, at least 200 centimeters, at least 250 centimeters, at least 300 centimeters, at least 400 centimeters, at least 500 centimeters, at most 1000 centimeters, at most 750 centimeters, at most 500 centimeters, and/or at most 250 centimeters. Examples of the maximum transverse cross-sectional extent include extents of less than 20 centimeters, less than 18 centimeters, less than 16 centimeters, less than 14 centimeters, less than 12 centimeters, less than 10 centimeters, less than 8 centimeters, less than 6 centimeters, and/or less than 4 centimeters.
Action 170 may include any suitable structure that may be adapted, configured, designed, and/or constructed to transfer cartridges 120 from magazine 110 to breech 132 of barrel 130 and/or to fire cartridges 120. As an example, action 170 may include one or more conventional structures of conventional firearm actions. As a more specific example, action 170 may include a bolt 174. Bolt 174, when present, may be configured to selectively and sequentially urge cartridges 120, or the selected cartridge 120, from magazine 110 and toward and/or into breech 132 of barrel 130.
As another more specific example, action 170 and/or bolt 174 thereof may include a lock mechanism 176. Lock mechanism 176, when present, may be configured to selectively and sequentially lock cartridges 120, or the selected cartridge 120, within breech 132. Lock mechanism 176 also may be referred to herein as a securing mechanism and/or as a retention mechanism that may be configured to secure and/or retain cartridges 120 within breech 132.
As yet another more specific example, action 170 may include a firing mechanism 178. Firing mechanism 178, when present, may be configured to selectively and sequentially fire cartridges 120, or the selected cartridge 120, subsequent to cartridges 120 being positioned within breech 132 and/or locked within breech 132. Examples of firing mechanism 178 and/or of components thereof include a firing pin, a hammer, and/or a trigger assembly.
As another more specific example, action 170 may include an extractor 179. Extractor 179, when present, may be configured to selectively and sequentially extract cartridges 120, or casings 122 of cartridges 120, from breech 132. As an example, and as illustrated in
As discussed, action 170 may be configured to selectively fire cartridges 120, and it is within the scope of the present disclosure that the action may fire the cartridges responsive to and/or based upon any suitable criteria. As an example, action 170 may be configured to fire cartridges 120, or to fire a given cartridge 120, responsive to receipt of a firing signal. Examples of the firing signal include an electronic firing signal, a mechanical firing signal, a wireless firing signal, a predetermined pressure pulse sequence within the wellbore fluid, and/or a predetermined mechanical force sequence applied to the perforation device by umbilical 80.
Cartridges 120 may include any suitable structure that may be contained within magazine 110, that may include projectiles 121, and/or that may be selectively fired by action 170. This may include conventional cartridges 120 that may be fired from conventional firearms (i.e., a firearm cartridge) and/or specialized cartridges 120 that may be specially designed and/or constructed to be utilized within perforation devices 100.
Igniter 127 may include any suitable structure and/or composition that may be utilized to ignite propellant 126. Examples of igniter 127 include any suitable primer, or conventional primer, electronic ignition structure, and/or chemical ignition structure.
Propellant 126 may include any suitable structure and/or composition that may be ignited by igniter 127 and/or that may accelerate projectile 121 subsequent to being ignited by igniter 127. Examples of propellant 126 include a charge of powder, a charge of gunpowder, and/or a charge of smokeless powder.
Casing 122 may include any suitable structure that may contain propellant 126 and/or that may operatively interconnect, may be operatively attached to, and/or may include projectile 121 and igniter 127. Examples of casing 122 include a metallic casing, a brass casing, a steel casing, a biodegradable casing, and/or a casing that is configured to corrode within the wellbore and/or within the wellbore fluid.
Projectile 121 may include any suitable structure that may be accelerated from barrel 130, such as via ignition of propellant 126. This may include any suitable conventional projectile that may be configured to be utilized in a conventional firearm and/or any suitable specialized projectile that may be specially configured to be utilized within perforation devices 100. Examples of projectile 121 include a metallic projectile, an armor-piercing projectile, an explosive projectile, a bi-metallic projectile, a tank-penetrating projectile, and/or a sabot-encased projectile.
Positioning the perforation device at 210 may include positioning the perforation device within the downhole conduit. This may include flowing the perforation device from a surface region and/or in a downhole direction within the downhole conduit. The flowing may include flowing the magazine and the barrel of the perforation device as a unit, or as an assembly, within the downhole conduit. Stated another way, at least the magazine and the barrel may be operatively linked to one another and/or may be configured to move as a unit, or as an assembly, within the downhole conduit.
Examples of the perforation device are disclosed herein with reference to perforation device 100 of
Transferring the selected cartridge from the magazine to the breech of the barrel at 220 may include selectively transferring the selected cartridge, or a plurality of cartridges contained within the magazine, in any suitable manner. As an example, the transferring at 220 may include transferring the selected cartridge with, via, and/or utilizing an action of the perforation device. Examples of the action are disclosed herein with reference to action 170 of
Providing the gas stream to the barrel at 230 may include providing any suitable gas stream to the barrel in any suitable manner. As an example, the providing at 230 may include providing the gas stream with, via, and/or utilizing a gas supply structure that may include a gas source. The gas source may include and/or be a surface gas source. Under these conditions, the providing at 230 also may include conveying the gas stream from the surface gas source to the barrel with, via, and/or utilizing a gas supply conduit, such as coiled tubing. The providing at 230 further may include restricting entry of wellbore fluid into the barrel, flowing the gas stream through the barrel, and/or pressurizing the barrel with the gas stream. This may include pressurizing the barrel to a stream pressure that is greater than an ambient pressure surrounding the perforation device within the downhole conduit. Examples of the gas supply structure are disclosed herein with reference to gas supply structure 90 of
Locking the selected cartridge within the breech of the barrel at 240 may include selectively locking, securing, and/or retaining the selected cartridge within the breech of the barrel, such as with a lock mechanism of the perforation device and/or of the action. The locking at 240 may be performed subsequent to the transferring at 220 and prior to the firing at 250.
Firing the selected cartridge at 250 may include selectively firing the selected cartridge to accelerate the selected projectile of the selected cartridge from a muzzle of the barrel at a muzzle velocity and with a muzzle trajectory. The firing at 250 may be accomplished in any suitable manner. As an example, and as discussed herein with reference to
Altering the muzzle trajectory of the selected projectile at 260 may include altering the muzzle trajectory of the selected projectile with, via, and/or utilizing a trajectory-altering structure. This may include altering the muzzle trajectory such that, upon exiting the trajectory-altering structure, the selected projectile has a modified trajectory that differs from the muzzle trajectory. Examples of the muzzle trajectory, the modified trajectory, and/or of modification angles between the muzzle trajectory and the modified trajectory are disclosed herein with reference to muzzle trajectory 136, modified trajectory 142, and modification angle 144, respectively, of
The altering at 260 may include altering with any suitable trajectory-altering structure. This may include altering with a bent tubular trajectory-altering structure, such as by conveying the selected projectile through the bent tubular. Additionally or alternatively, the altering at 260 also may include altering with a ricochet-inducing structure, such as by ricocheting the selected projectile off the ricochet-inducing structure and/or off a ricochet-inducing surface of the ricochet-inducing structure. The altering at 260 may be performed subsequent to the positioning at 210, subsequent to the transferring at 220, subsequent to the providing at 230, subsequent to the locking at 240, subsequent to the firing at 250, responsive to the firing at 250, prior to the penetrating at 270, and/or prior to the removing at 280.
Penetrating downhole tubing with the selected projectile at 270 may include penetrating the downhole tubing to form and/or define a perforation within the downhole tubing. The perforation may provide fluid communication between the downhole conduit and the subterranean formation. The penetrating at 270 may be performed subsequent to the positioning at 210, subsequent to the transferring at 220, subsequent to the providing at 230, subsequent to the locking at 240, subsequent to the firing at 250, responsive to the firing at 250, subsequent to the altering at 260, and/or prior to the removing at 280.
Removing the selected casing from the breech of the barrel at 280 may include spatially separating the selected casing and the barrel. This may include removing to permit and/or facilitate the repeating at 290. The removing at 280 may be performed subsequent to the positioning at 210, subsequent to the transferring at 220, subsequent to the providing at 230, subsequent to the locking at 240, subsequent to the firing at 250, and/or responsive to the firing at 250.
Repeating at least a portion of the methods at 290 may include repeating any suitable portion of methods 200 in any suitable order. As an example, the perforation may be a first perforation, and the repeating at 290 may include repeating to form and/or define a second, or a subsequent, perforation within the downhole tubing. This may include repeating at least the positioning at 210, the transferring at 220, providing at 230, the firing at 250, and the penetrating at 270 a plurality of times to form a plurality of perforations within the downhole tubing. The repeating the positioning at 210 may include moving the perforation device along the length of the downhole conduit to position the perforation device at a plurality of spaced-apart locations within the downhole conduit, thereby facilitating formation of the plurality of perforations at the plurality of spaced-apart locations. The repeating at 290 further may include selectively rotating at least a portion of the perforation device to define a desired angular perforation distribution within the downhole tubing and/or with the plurality of perforations.
In the present disclosure, several of the illustrative, non-exclusive examples have been discussed and/or presented in the context of flow diagrams, or flow charts, in which the methods are shown and described as a series of blocks, or steps. Unless specifically set forth in the accompanying description, it is within the scope of the present disclosure that the order of the blocks may vary from the illustrated order in the flow diagram, including with two or more of the blocks (or steps) occurring in a different order and/or concurrently.
As used herein, the term “and/or” placed between a first entity and a second entity means one of (1) the first entity, (2) the second entity, and (3) the first entity and the second entity. Multiple entities listed with “and/or” should be construed in the same manner, i.e., “one or more” of the entities so conjoined. Other entities may optionally be present other than the entities specifically identified by the “and/or” clause, whether related or unrelated to those entities specifically identified. Thus, as a non-limiting example, a reference to “A and/or B,” when used in conjunction with open-ended language such as “comprising” may refer, in one embodiment, to A only (optionally including entities other than B); in another embodiment, to B only (optionally including entities other than A); in yet another embodiment, to both A and B (optionally including other entities). These entities may refer to elements, actions, structures, steps, operations, values, and the like.
As used herein, the phrase “at least one,” in reference to a list of one or more entities should be understood to mean at least one entity selected from any one or more of the entities in the list of entities, but not necessarily including at least one of each and every entity specifically listed within the list of entities and not excluding any combinations of entities in the list of entities. This definition also allows that entities may optionally be present other than the entities specifically identified within the list of entities to which the phrase “at least one” refers, whether related or unrelated to those entities specifically identified. Thus, as a non-limiting example, “at least one of A and B” (or, equivalently, “at least one of A or B,” or, equivalently “at least one of A and/or B”) may refer, in one embodiment, to at least one, optionally including more than one, A, with no B present (and optionally including entities other than B); in another embodiment, to at least one, optionally including more than one, B, with no A present (and optionally including entities other than A); in yet another embodiment, to at least one, optionally including more than one, A, and at least one, optionally including more than one, B (and optionally including other entities). In other words, the phrases “at least one,” “one or more,” and “and/or” are open-ended expressions that are both conjunctive and disjunctive in operation. For example, each of the expressions “at least one of A, B, and C,” “at least one of A, B, or C,” “one or more of A, B, and C,” “one or more of A, B, or C,” and “A, B, and/or C” may mean A alone, B alone, C alone, A and B together, A and C together, B and C together, A, B, and C together, and optionally any of the above in combination with at least one other entity.
In the event that any patents, patent applications, or other references are incorporated by reference herein and (1) define a term in a manner that is inconsistent with and/or (2) are otherwise inconsistent with, either the non-incorporated portion of the present disclosure or any of the other incorporated references, the non-incorporated portion of the present disclosure shall control, and the term or incorporated disclosure therein shall only control with respect to the reference in which the term is defined and/or the incorporated disclosure was present originally.
As used herein the terms “adapted” and “configured” mean that the element, component, or other subject matter is designed and/or intended to perform a given function. Thus, the use of the terms “adapted” and “configured” should not be construed to mean that a given element, component, or other subject matter is simply “capable of” performing a given function but that the element, component, and/or other subject matter is specifically selected, created, implemented, utilized, programmed, and/or designed for the purpose of performing the function. It also is within the scope of the present disclosure that elements, components, and/or other recited subject matter that is recited as being adapted to perform a particular function may additionally or alternatively be described as being configured to perform that function, and vice versa.
As used herein, the phrase, “for example,” the phrase, “as an example,” and/or simply the term “example,” when used with reference to one or more components, features, details, structures, embodiments, and/or methods according to the present disclosure, are intended to convey that the described component, feature, detail, structure, embodiment, and/or method is an illustrative, non-exclusive example of components, features, details, structures, embodiments, and/or methods according to the present disclosure. Thus, the described component, feature, detail, structure, embodiment, and/or method is not intended to be limiting, required, or exclusive/exhaustive; and other components, features, details, structures, embodiments, and/or methods, including structurally and/or functionally similar and/or equivalent components, features, details, structures, embodiments, and/or methods, are also within the scope of the present disclosure.
The systems and methods disclosed herein are applicable to the well drilling and/or completion industries.
It is believed that the disclosure set forth above encompasses multiple distinct inventions with independent utility. While each of these inventions has been disclosed in its preferred form, the specific embodiments thereof as disclosed and illustrated herein are not to be considered in a limiting sense as numerous variations are possible. The subject matter of the inventions includes all novel and non-obvious combinations and subcombinations of the various elements, features, functions and/or properties disclosed herein. Similarly, where the claims recite “a” or “a first” element or the equivalent thereof, such claims should be understood to include incorporation of one or more such elements, neither requiring nor excluding two or more such elements.
It is believed that the following claims particularly point out certain combinations and subcombinations that are directed to one of the disclosed inventions and are novel and non-obvious. Inventions embodied in other combinations and subcombinations of features, functions, elements and/or properties may be claimed through amendment of the present claims or presentation of new claims in this or a related application. Such amended or new claims, whether they are directed to a different invention or directed to the same invention, whether different, broader, narrower, or equal in scope to the original claims, are also regarded as included within the subject matter of the inventions of the present disclosure.
This application claims the benefit of U.S. Provisional Application Ser. No. 62/608,219, filed Dec. 20, 2017, and is also related to and claims benefit of U.S. Provisional Application Ser. No. 62/589,800, filed Nov. 22, 2017, the disclosures of which are incorporated herein by reference in their entireties.
Number | Date | Country | |
---|---|---|---|
62608219 | Dec 2017 | US | |
62589800 | Nov 2017 | US |