Perforations are sometimes formed in a medium to facilitate removal of portions of the medium or for other purposes. Existing devices for perforating a medium may be expensive and may be difficult to adjust. In addition, such devices also may be noisy, difficult to use, and space consuming.
Perforator components 32 and 34 comprise individual components configured to cooperate with one another to form one or more perforations in media 22. Perforator component 32 includes rotatable member 48, blades 50A, 50B (collectively referred to as blades 50) and anvils 52A, 52B (collectively referred to as anvils 52). In some embodiments, each of blades 50A, 50B may comprise a set of discrete blades, knives, or pins arranged in a substantially linear fashion to cut small holes or otherwise weaken the media 22 along a line perpendicular to the directions indicated by arrows 72. Each of the anvils 52A, 52B may comprise a structure having holes that are sized and arranged to permit corresponding ones of the blades, knives, or pins of the blades 50A, 50B to at least partially engage the holes to perforate the media 22. Perforator component 34 is similar to perforator component 32 and includes rotatable member 58, blades 60A, 60B (collectively referred to as blades 60) and anvils 62A, 62B (collectively referred to as anvils 62). Rotatable members 48 and 58 comprise structures configured for rotation about axes 54 and 64, respectively, which extend generally parallel to one another. Rotatable member 48 supports blades 50 and anvils 52. Rotatable member 58 supports blades 60 and anvils 62. In the particular example illustrated, rotatable members 48 and 58 comprise elongate cylindrical members. In other embodiments, rotatable members 48 and 58 may have other configurations. For example, in other embodiments, support members 48 and 58 may have polygonal cross-sectional shapes.
Blades 50 and blades 60 comprise structures configured to cooperate with anvils 62 and 52, respectively, to form one or more perforations in media 22. In the particular embodiment illustrated, blades 50 engage face 24 while anvils 62 engage face 26 of sheet 22 during perforating. Blades 60 engage face 26 while anvils 52 engage face 24 of media 22 during perforating.
Blades 50 and blades 60 may comprise series of elongate structures providing multiple axially spaced points configured to form a line of apertures or indentations in media 22 (i.e., a perforation). Blades 50 and blades 60 are configured in some embodiments to at least partially pierce or perforate media 22.
Anvils 52 and anvils 62 generally comprise structures coupled to rotatable members 48 and 58, respectively, configured to cooperate with blades 60 and blades 50, respectively, to form perforations in media 22. Anvils 52 and anvils 62 generally comprise structures that are resiliently compressible or resiliently compliant such that blades 60 and blades 50 may depress and pierce media 22 against and into anvils 52 and anvils 62 respectively. In one embodiment, anvils 52 and anvils 62 each include a series of holes to receive portions of blades 50, 60, respectively. In other embodiments, anvils 52 and anvils 62 may be formed from resilient materials and may have configurations other than that shown.
As further shown by
In the particular example illustrated, rotatable members 48 and 58 each have a diameter of about 22 millimeters, each of blades 50 and 60 project from rotatable members 48 and 58 by a distance of about 1.7 millimeters and each of anvils 52 and 62 project from members 48 and 58 by a distance of about 1.7 millimeters. Axes 54 and 64 are spaced from one another by a distance of about 25.4 millimeters (1 inch). As a result, media path 44 may extend in a plane between perforator components 32 and 34 and perpendicular to axes 54 and 64 while accommodating media 22 having a thickness of up to about 3.4 millimeters. In other embodiments, the dimensions of rotatable member 48 and 58 as well as angular spacings between blades 50, 60 and anvils 52, 62, respectively, may be varied depending upon the thickness of media 22 to be accommodated while still permitting media 22 to pass between perforator components 32 and 34 relative to perforator components 32 and 34 without being perforated.
In the particular example shown in
Torque source 36 comprises a device configured to supply torque to perforator components 32 and 34. In one embodiment, torque source 36 comprises a motor. Torque source 36 is operably coupled to perforator components 32 and 34 by transmission 68 which may comprise a series of gears, a belt and pulley arrangement, a chain and sprocket arrangement, a toothed pinion and toothed belt arrangement and the like. In one embodiment, transmission 68 is configured such that torque source 36 synchronously drives or rotates perforator components 32 and 34. In other embodiments, torque source 36 and transmission 68 may be configured to independently rotate perforator components 32 and 34. In one embodiment, torque source 36 may comprise independent motors or other sources of torque for independently driving components 32 and 34.
As further shown by
Controller 42 comprises a processing unit configured to generate control signals directing the operation of media feed 30 and torque source 36. For purposes of this disclosure, the term “processing unit” shall mean a conventionally known or future developed processor that executes sequences of instructions contained in a memory. Execution of the sequences of instructions causes the processor to perform steps such as generating control signals. The instructions may be loaded in a random access memory (RAM) for execution by the processing unit from a read only memory (ROM), a mass storage device, or some other persistent storage. In other embodiments, hard wired circuitry may be used in place of or in combination with software instructions to implement the functions described. Controller 42 is not limited to any specific combination of hardware circuitry and software, nor to any particular source for the instructions executed by the processing unit.
Although
In the particular example shown, the blades 50 are consecutively coupled to rotatable member 48 and anvils 52 are consecutively coupled to rotatable member 48. Likewise, blades 60 are consecutively coupled to rotatable member 58 and anvils 62 are consecutively coupled to rotatable member 58. In other words, blades 50 are coupled to rotatable member 48 without intervening or intermediate anvils. Blades 60 are coupled to a rotatable member 58 without intervening or intermediate anvils. Anvils 52 are coupled to rotatable member 48 without intermediate or intervening blades. Likewise, anvils 62 are coupled to rotatable member 58 without intermediate or intervening blades. Blades 60 are configured to interact with anvils 52 while blades 50 are configured to interact with anvils 62. This arrangement of blades 50, blades 60, anvils 52 and anvils 62 enables system 20 to selectively form consecutive perforations 76 along media 22, consecutive perforations 80 along media 22 or to consecutively form perforations 76 and 80 in any order. Because system 20 may consecutively form perforations 76, may consecutively form perforations 80 or may consecutively form perforations 76 and 80 in any order and because system 20 is configured to move media 22 between and relative to perforator components 32 and 34 to consecutively control the spacing or distance between perforations 76 and/or 80, system 20 may form a variety of perforate patterns in media 22 to facilitate a variety of tearing patterns.
Torque source 136 is similar to torque source 36 except that torque source 136 is configured to supply torque to media feed 130 in lieu of media feed 30. Torque source 136 may comprise one or more individual sources of torque, such as motors, which are operably coupled to media feed 130 by transmission 70 (described above). In one embodiment, torque source 136 may comprise a first motor configured to supply torque to media feed 130 and a second distinct motor, such as a stepper motor, configured to supply torque to perforator components 32 and 34.
Controller 142 is similar to controller 42 except that controller 142 is configured to generate additional control signals directing the operation of imaging component 129. In particular, controller 142 comprises one or more processing units configured to generate control signals directing the operation of torque source 136 which drives media feed 130 and perforator components 32, 34. Controller 142 further generates control signals based upon input image data directing the operation of imaging component 129.
With the incorporation of perforator system 120, imaging system 117 is configured to form an image upon media 22 while also perforating media 22 for subsequent tearing. Housing 123 of imaging system 117 generally comprises a structure configured to support and enclose each of the components of imaging system 117. As a result, imaging system 117 is a generally self-contained unit. The exact configuration of housing 123 may vary depending upon such factors as the other components of imaging system 117.
Media input 125 comprises that portion of imaging system 117 configured to facilitate input of media 22. In the particular embodiment illustrated, media input 125 is configured to facilitate input of a stack of sheets of media 22. In one embodiment, media input 125 may include a tray aligning the sheets of media 22. In other embodiments, media input 125 may comprise other structures.
Media output 127 comprises that portion of imaging system 117 at which sheets of media 22 are discharged. In one embodiment, media output 127 may comprise an opening in housing 123 through which sheets are discharged. In another embodiment, media output 127 may comprise a storage bin or other structure configured to store sheets of media 22 upon which images have been formed and/or have been perforated by perforator system 120.
Imaging component 129 comprises a component configured to form an image upon media 22. In one embodiment, imaging component 129 comprises a fluid dispensing device configured to dispense imaging fluid such as fixing agents and inks upon media 22. In one exemplar embodiment, imaging component 129 comprises an inkjet print head. In another embodiment, imaging component 129 comprises a device configured to deposit toner upon media 22. For example, in one embodiment, imaging component 129 might comprise photo sensitive surface configured to be electrostaticly charged so as to form an electrostatic image and to electrostaticly transfer toner to media 22. In still other embodiments, imaging component 129 may comprise other devices configured to interact with media 22 so as to form an image upon media 22.
In operation, controller 142 generates control signals which are transmitted to torque source 136 which drives media feed 130 to pick a sheet of media 22 and to transfer the sheet of media 22 to a position relative to imaging component 129. Controller 142 generates additional control signals directing imaging component 129 to form an image upon media 22 based upon input image data. Thereafter, controller 142 generates control signals directing torque source 136 to drive media feed 130 to move media 22 relative to perforator components 32 and 34. Controller 142 also generates control signals directing torque source 136 to drive perforator components 32 and 34 via transmission 68 to selectively form perforations 76 and 80 (shown in
As shown in phantom in
Input opening 288 comprises an opening within housing 284 configured to receive media 22 from imaging system 217. Output opening 290 comprises an opening in housing 284 configured to permit removal or discharge of perforated or unperforated media 22 from perforator system 220. In one embodiment, output opening 290 may comprise an opening configured to receive a tray or storage bin. In other embodiments, output opening 290 may comprise an opening through which media 22 is discharged by media feed 30.
Communications interface 292 comprises a port within housing 284 configured to facilitate communication with controller 242 of imaging system 217. In one embodiment, interface 292 may comprise a connector for connecting an optical or electrical communication cable or wire to perforator system 220. In another embodiment, interface 292 may comprise a plug configured to releasably mate with a corresponding plug associated with imaging system 217. In other embodiments in which communication is performed wirelessly, communications interface 292 may comprise a transceiver configured to receive such signals from imaging system 217.
Imaging system 217 is similar to imaging system 117 except that imaging system 217 omits those components of perforator system 120. Imaging 217 includes housing 223, connectors 225, media input 125, media output 227, imaging component 129, media feed 230, actuator 236 and controller 242. Housing 223 comprises one or more structures configured to enclose and support those components of imaging system 217. Connectors 225 comprise structures coupled to housing 223 configured to cooperate with connectors 286 of perforator system 220 releasably mount or attach perforator system 220 to housing 223 and imaging system 217. In one embodiment in which connectors 286 of perforator system 220 comprise openings or detents, connectors 225 may comprise resilient hooks or prongs configured to be received within such openings of connectors 286. In other embodiments, connector 225 may comprise other mechanisms configured to releasably connect imaging system 217 and perforator system 220.
Media input 125 is described above with respect to imaging system 117 and generally comprises a structure configured to input media 22 to imaging system 217. Media output 227 comprises an opening within housing 223 configured to facilitate passage of media 22 from imaging system 217 to perforator system 220. Although media output 227 is illustrated as an opening in housing 223, output 227 alternatively may comprise an opening formed by removing or moving a door, panel or other structure of housing 223.
Imaging component 129 is described above with respect to imaging system 117 and is configured to form an image upon media 22. Media feed 230 is similar to media feed 130 except that media feed 230 is configured to move and transport media 22 from media input 125, relative to imaging component 129 and to media output 227. Media feed 230 is further configured to move media 22 through media input 288 of perforator system 220 until the media is engaged by media feed 30 of perforator system 220. Media feed 230 may comprise a drum, a series of rollers, a series of belts, a shuttle tray and combinations thereof.
Actuator 236 comprises a source of power for media feed 230. In one embodiment, actuator 236 may comprise a torque source for providing torque to media feed 230. In another embodiment, actuator 236 may comprise a source of linear motion such as cylinder-piston assembly, solenoid and the like configured to drive media feed 230. As shown by
Controller 242 comprises a processing unit configured to generate control signals directing the operation of actuator 236 of imaging system 217. Controller 242 is further configured to generate control signals directing the operation of torque source 36 of perforator system 220. Control signals generated by controller 242 are communicated to torque source 36 of perforator system 220 by communications interface 294.
Communications interface 294 comprises a device configured to facilitate transfer of control signals from controller 242 of imaging system 217 to perforator system 220. In one embodiment, communication interface 294 may comprise a connector configured to be connected to an optical or electrical wire or cable which is itself connected to perforator system 220. In another embodiment, interface 294 may comprise a plug configured to mate with interface 292 of perforator system 220 for the transmission of control signals. In still another embodiment, interface 294 may comprise a transceiver for communicating and/or receiving wireless signals between imagining system 217 and perforator system 220.
In operation, controller 242 generates control signals based upon received or input image data. Such control signals are transmitted to actuator 236 and imaging component 129 to form an image upon media 22. Once an image has been formed upon the media, controller 242 generates additional control signals directing actuator 236 to drive media feed 230 to move the image containing sheet of media 22 along media path 243 and out media output 227 and into engagement with media feed 30 of perforator system 220. Based upon perforate data designating a pattern of perforations to be formed by perforator system 220, controller 242 communicates control signals to torque source 36 via communication interfaces 294 and 292. Such control signals from controller 242 direct torque source 36 to appropriately position perforator components 32 and 34 with respect to media 22 in either the open state (shown in
Media feed 330 is configured to transport or move media 22 along media feed path 344 from media input 388 to media output 390. In particular, media feed 330 is configured to move media 22 relative to perforator components 32 and 34 while perforator components 32 and 34 are substantially stationary. In the particular example illustrated, media feed 30 is configured to move media 22 in a generally linear plane between perforator components 32 and 34 substantially perpendicular to the axes about which perforator components 32 and 34 rotate. In other embodiments, media feed 330 may be configured to move media 22 between perforator components 32 and 34 in other fashions. In the particular example illustrated, media feed 330 comprises an upstream pair of rollers 400, 402 and a downstream pair of rollers 404, 406. In other embodiments, media feed 330 may comprise other structures to engage and move media along media path 344.
Housing 384 comprises one or more structures configured to enclose and support media feed 330, perforator components 32, 34, torque source 36, communications interface 392 and torque interface 393. In one embodiment, housing 384 is configured to be releasably attached to imaging system 317. The exact configuration of housing 384 may vary depending upon the configuration of the components it houses as well as its mounting relationship to imaging system 317.
Media input 388 comprises an opening in housing 384 configured to be aligned with an output opening on imaging system 317 such that media 22 may be moved into media path 344 within housing 384 and into engagement with media feed 330. Media output 390 comprises an opening in housing 384 configured for the discharge of perforated media 22. In the particular example shown, media output 390 additionally includes a tray in which discharge media may be stored.
Sensor 391 comprises a sensing device configured to sense positioning of media along media path 344. In one embodiment, sensor 391 may be configured to sense a leading or a trailing edge of media. In another embodiment, sensor 391 may be configured to sense other portions of media. Controller 242 drives torque source 36 based upon signals received from sensor 391. Although sensor 391 is depicted as being located between perforator component 32 and roller 400, sensor 391 may alternatively be located at other positions. For example, sensor 391 may alternatively be located between perforator component 32 and roller 404, between roller 400 and perforator component 34, between perforator component 34 and roller 406 or at other locations.
Communications interface 392 is similar to communications interface 292 of perforator system 220 (shown in
Torque interface 393 comprises a mechanism configured to facilitate the transfer of power or torque from imaging system 317 to media feed 330 when perforator system 320 is mounted or otherwise connected to imaging system 317. In the particular embodiment illustrated, torque interface 393 facilitates the transfer of torque to each of rollers 400, 404 which are rotatably driven opposite to idler rollers 402 and 406, respectively. In one embodiment, torque interface 393 may comprise a gear configured to mesh with an opposite corresponding gear of imaging system 317. In other embodiments, other means for transmitting torque from imaging system 317 to perforator system 320 may be utilized.
Imaging system 317 comprises a system configured to form an image upon media 22. Imaging system 317 is further configured to be removably attached or mounted to perforator system 320, to move media into perforator system 320, to supply torque to media feed 330 and to control operation of torque source 36 of perforator system 320 to selectively perforate media. Imaging system 317 is similar to imaging system 217 (shown and described with respect to
In operation, controller 242 generates control signals directing actuator 236 to drive media feed 230 so as to pick a sheet of media 22 and to transfer the sheet of media 22 along media path 243 relative to imaging component 129. Controller 242 further generates control signals based upon image data directing imaging component 129 to form an image upon the picked sheet of media 22. Thereafter, controller 242 generates control signals directing actuator 236 to drive media feed 230 to further move the sheet of media 22 along media feed path 243 out media output 227 and into media input 388 of perforator system 320 until the sheet of media 22 is engaged by rollers 400 and 402 of media feed 330. Controller 242 generates control signals directing actuator 236 to supply torque to rollers 400 and 404 via a transmission 370, torque interface 395, torque interface 393 and transmission 397. Controller 242 generates control signals which are transmitted to torque source 36 of perforator system 320 via communication interfaces 292 and 392 directing torque source 36 to selectively rotate perforator components 32 and 34 to appropriately position perforator components 32 and 34 in either the open state (shown) or either of the two perforating states (shown in
Media guides 486 (shown in
Media input 488 (shown in
Communication interface 492 (schematically shown in
Torque interface 493 comprises a structure configured to transmit or facilitate the transfer of torque from a printer, such as imaging system 317 shown and described with respect to
Transmission 497 comprises a mechanism configured to transmit torque received via torque interface 493 to media feed 530. In the particular embodiment illustrated, transmission 497 includes pulleys 538, 539, 541, 543, 545 and belts or o-rings 547, 549, 551 and 553. Pulley 538 is operably coupled to torque interface 493, is operably coupled to an input portion of media feed 530, and is operably connected to pulley 539 by o-ring 547. Pulley 539 is rotatably supported by structure 487 and is operably coupled to pulley 541 by o-ring 549. Pulley 541 is rotatably supported by structure 487 and is operably coupled to pulley 543 by o-ring 551. Pulley 543 is rotatably supported by structure 487 and is operably coupled to pulley 545 by o-ring 553. Pulley 545 is connected to an output portion of media feed 530. Torque received via torque interface 493 rotatably drives the input portion of media feed 530. At the same time, torque is transmitted over perforator components 532 and 534 to rotatably drive an output portion of media feed 530. Although transmission 497 is illustrated as extending over perforator components 532 and 534 for space savings, transmission 497 may alternatively extend beneath or along an axial end of perforator components 532, 534. Although transmission 497 is illustrated as including pulleys and o-rings, transmission 497 may alternatively include a series of gears, one or more chain and sprocket arrangements, one or more toothed pinion and toothed belt arrangements and the like.
Media feed 530 comprises a mechanism configured to move media, such as sheets of media, between perforator components 532 and 534 while perforator components 532 and 534 remain substantially stationary and in an open state as shown in
Nip rollers 559 are configured to be rotatably driven with the rotation of shaft 557. Nip rollers 559 oppose idler rollers 561. Nip rollers 559 and idler rollers 561 cooperate to engage opposite sides of a media on an input side of perforator components 532 and 534 to drive media with respect to perforator components 532, 534.
Shaft 563 is a shaft rotatably supported by a bearing block 537 associated with media guide 486. Shaft 563 is coupled to pulley 545. Shaft 563 extends along an output side of perforator components 532 and 534 and is coupled to pulley 545 so as to rotate with rotation of pulley 545. Shaft 563 is further coupled to nip rollers 565 such that nip rollers 565 rotate upon the rotation of shaft 563. Nip rollers 565 comprise cylindrical members opposing idler rollers 567. Nip rollers 565 and idler rollers 567 cooperate to engage opposite sides of a media to move media with respect to perforator components 532 and 534.
Perforator components 532 and 534 are similar to perforator components 32 and 34 (described with respect to
The blades 650 include discrete knives 651, which may also be referred to as blades or pins. The discrete knives 651 are arranged in substantially linear fashion along a longitudinal direction of the surface of the rotatable member 648. The anvils 652 include apertures 653 that are also arranged such that the knives 651 may at least partially enter the apertures 653 as the knives 651 and apertures 653 move into opposing positions to pierce media.
As shown by
As further shown by
According to one exemplary embodiment, blades 650, 660 are formed from a relatively rigid material such as steel. Anvils 652, 662 are formed from a resiliently compressible material having a shore A durometer of between about 40 and 60. In one embodiment, anvils 652, 662 include blade engaging portions formed from a material such as polyurethane. In other embodiments. Anvils 652, 662 may be formed from other materials such as neoprene or Buna-N rubber. Although the entirety of each of anvils 652, 662 is illustrated as being formed from a single material or a blend of materials, in other embodiments, anvil 652, 662 may be formed from multiple portions of materials co-molded or otherwise secured to one another.
In the particular embodiment illustrated in
In the particular embodiment illustrated, axes 654 and 664 about which rotatable members 648 and 658 rotate are spaced from one another by about 25.4 millimeters (one inch). The outer surface of rotatable members 648 and 658 are spaced from one another by at least about 3.4 millimeters. As a result, when in an open position, perforator components 632 and 634 may accommodate movement of media between components 632 and 634 by media feed 530 of up to a thickness of about 3.4 millimeters while components 632 and 634 are stationary (not rotating). In other embodiments, components 632 and 634 may be spaced from one another by other distances.
Drive gears 655 and 665 are coupled to rotatable members 648 and 658, respectively. Drive gears 655 and 665 mesh with one another so as to synchronize rotation of components 532 and 534. In other embodiments, rotation of components 532 and 534 may be synchronized by other mechanisms such as chain and sprocket arrangements, belt and pulley arrangements or other similar mechanical arrangements. In other embodiments, components 532 and 534 may be rotatably driven by separate torque sources at the same speed.
Drive shaft 656 is coupled to rotatable member 648 and is in operable engagement with torque source 536. Torque source 536 comprises a mechanism to supply torque to perforator component 532 which results in perforator component 534 also being rotated. In the particular embodiment illustrated, torque source 536 comprises a motor operably coupled to drive shaft 656, which comprises a follower gear, by worm gear 692 connected to an output shaft of motor 690. In one particular embodiment, torque source 536 comprises a stepper motor configured to selectively drive perforator components 532 and 534 in either of opposite directions. In other embodiments, drive shaft 656 may have other configurations and torque source 536 may be operably coupled to shaft 656 by other mechanisms such as a belt and pulley arrangement, a chain and sprocket arrangement, a series of gears, or the like.
Sensor 591 comprises a sensing device configured to detect the presence of media. In the particular embodiment illustrated, sensor 591 comprises a reflective sensor supported by media guide 486 (shown in
Sensor 595 comprises a sensing device configured to sense position of perforator component 532 from which may be determined the positioning of perforator component 534. In embodiments where perforator components 532 and 534 are not synchronized with one another, system 420 may include an additional sensor for detecting the position of perforator component 534. In the particular example shown, sensor 595 comprises an interference sensor comprising an encoder wheel 694 having slots 696 and homing slot 697, and optical sensor 698. Slots 696 permit light from a transmitter portion of sensor 698 to be received by a light sensitive portion of sensor 698 as perforator component 532 is rotatably driven by torque source 536. Homing slot 697 facilitates counting of the number of rotations of wheel 694 by optical sensor 698. In response to rotation of wheel 694, optical sensor 698 generates and transmits signals to the controller of the associated printer (not shown) via interface 492. In other embodiments, sensor 595 may comprise other sensing devices.
In operation, a controller of an associated printer, such as controller 242 of imaging system 317 (shown and described with respect to
As shown by
Although rotatable members 748 and 758 are illustrated as having four sides, perforator components 732 and 734 may alternatively have a greater or fewer number of such sides. Although rotatable members 748 and 758 are illustrated as being substantially identical to one another, in other embodiments rotatable members 748 and 758 may have different configurations as compared to one another.
As further shown by
In the particular example shown, each of rotatable members 748 and 758 include elongate hollow interior portions 771 between axes 754, 764 and faces or sides 763. Hollow interior portions 771 may reduce the weight and power to rotatably drive perforator components 732 and 734 while reducing the material of rotatable members 748 and 758. In the particular example shown, rotatable members 748 and 758 have extruded cross sections, reducing manufacturing costs of rotatable members 748 and 758. In one embodiment, members 748 and 758 are extruded from lightweight metal such as aluminum. In other embodiments, rotatable member 748 and 758 may be formed from other materials and may have other configurations.
Blades 750 and blades 760 are substantially similar to one another. As shown by
In one particular embodiment, blades 750, 760 are formed from a relatively rigid material such as steel. In other embodiments, blades 750, 760 may be formed from other materials. Although blades 750, 760 are illustrated as being formed as single unitary bodies, blades 750, 760 may alternatively include multiple components or multiple materials molded, fastened, adhered or otherwise secured to one another. For example, in another embodiment, base 777 may be formed from a first material while that portion of blades 750, 760 providing tip 779 may be formed from another material or be provided by another member secured to base 777. Although channels 767 and blades 750, 760 are illustrated as having generally triangular cross-sectional shapes, channels 767 and blades 750, 760 may have other configurations.
Anvils 752, 762 are substantially similar to one another. Each of anvils 752 and 762 is configured to be slideably received and radially contained within channel 769 of rotatable members 748 and 758, respectively. In the particular example illustrated, each of anvils 752, 762 includes an axially extending base portion 781, an elastomeric or resiliently compressible blade engaging portion 783 and an elongate cavity 785. Base portion 781 is configured to be slideably positioned within channel 769 while radially retained in its associated anvil 752, 762 within channel 769. In the particular example illustrated, channel 769 includes a narrowing neck portion 787 forming an opening 789. Base portion 781 is radially captured within channel 769 below neck 787 with blade engaging portion 783 projecting through opening 789 beyond neck portion 787. As shown by
Blade engaging portions 783 of anvils 752, 762 comprise relatively soft, compressible surfaces against which tip 779 of blades 750, 760 depress media 22 during perforating as shown in
Cavity 785 axially extends along a bottom side of anvils 752, 762 generally opposite to blade engaging portion 783. In the particular example shown, cavity 785 comprise concave surfaces axially extending along anvils 752, 762. Cavity 785 facilitates resilient deformation of blade engaging portions 783 when being engaged by blades 750, 760. As shown by
As an example configuration, the tips 779 of the blade 750A may be offset relative to the tips 779 of the blade 766A by about one-half of the pitch distance P between the tips of the blade 750A. Thus, in this embodiment, when the two rollers 732, 734 rotate, blades 750A and 760A mesh together to permit some of the perforations to come from the blade 750A and the other of the perforations to come from the blade 760A. In some embodiments, the blades 750A and 760A do not contact each other during perforating of the media 22.
Although the present disclosure has been described with reference to example embodiments, workers skilled in the art will recognize that changes may be made in form and detail without departing from the spirit and scope of the claimed subject matter. For example, although different example embodiments may have been described as including one or more features providing one or more benefits, it is contemplated that the described features may be interchanged with one another or alternatively be combined with one another in the described example embodiments or in other alternative embodiments. Because the technology of the present disclosure is relatively complex, not all changes in the technology are foreseeable. The present disclosure described with reference to the example embodiments and set forth in the following claims is manifestly intended to be as broad as possible. For example, unless specifically otherwise noted, the claims reciting a single particular element also encompass a plurality of such particular elements.
Number | Name | Date | Kind |
---|---|---|---|
1015580 | Nichols | Jan 1912 | A |
2328109 | Thompson | Aug 1943 | A |
3124349 | Huffman | Mar 1964 | A |
3314340 | Bishop | Apr 1967 | A |
3771399 | Aterianus | Nov 1973 | A |
3795163 | Armstrong et al. | Mar 1974 | A |
3954034 | Broderick | May 1976 | A |
3980291 | Loase | Sep 1976 | A |
4682767 | Littleton | Jul 1987 | A |
4765604 | Trogan | Aug 1988 | A |
5000729 | Yamauchi | Mar 1991 | A |
5365819 | Maida et al. | Nov 1994 | A |
5429579 | Nishihara | Jul 1995 | A |
5460844 | Gaylor | Oct 1995 | A |
5641551 | Simpson et al. | Jun 1997 | A |
5758560 | Fiscus | Jun 1998 | A |
5993369 | Sekita et al. | Nov 1999 | A |
6009781 | McNeil | Jan 2000 | A |
6024685 | Kirsch | Feb 2000 | A |
6209291 | Delen et al. | Apr 2001 | B1 |
6627026 | Andersson et al. | Sep 2003 | B2 |
6901647 | Foster et al. | Jun 2005 | B2 |
6941849 | Bausela et al. | Sep 2005 | B1 |
20030132549 | Mlinar et al. | Jul 2003 | A1 |
20040063559 | Ochsenbauer | Apr 2004 | A1 |
Number | Date | Country | |
---|---|---|---|
20070000364 A1 | Jan 2007 | US |