The present invention relates to assessment of behavioral functioning. More specifically, the invention relates to a method and system for detecting cognitive and psychological functioning, and any associated limitations.
Methodologies have been developed to determine changes in cognitive efficiency of individuals, including the ability to think and reason. This includes attention, memory and retrieval of information, verbal and spatial processing, speed of processing, reasoning, and judgment. Cognitive assessment is the process of systematically testing a person, analyzing test scores and related data in order to assist healthcare professionals in making judgments about an individual's ability to perform various mental activities involved in the processing, acquisition, retention, conceptualization, and organization of sensory, perceptual, verbal, spatial, and psychomotor information.
Psychological assessment is the process of assessing the extent of impairment to a particular domain of functioning which may have been subject to cognitive impairment due to injury, illness, and/or functional disturbance such as it found in mental illness, sleep impairment, worry, brain injury, neurologic disease, etc. Traditionally, such assessments are conducted by a neuropsychologist trained to evaluate brain function by testing memory, concentration and other abilities, such as language, attention, and spatial skills.
This invention comprises a method, system, and article for performance degradation and health assessment(s).
In one aspect, an apparatus is provided for performance degradation and health assessment. The apparatus includes a processor in communication with memory and a visual display. A testing module is provided in communication with the memory. The testing module includes a test battery, and more specifically, the testing module supports a simple reaction test, a cognitive test, and a second simple reaction time test. A sensor is provided in communication with the testing module. Data measured by the sensor may be communicated to the processor. Both the simple reaction time test and the choice reaction time test create output data and indicate a basis for performance impairment. Output data from the simple reaction time test and from the choice reaction time tests is stored in the memory, and are independently accessible from the memory.
Other features and advantages of this invention will become apparent from the following detailed description of the presently preferred embodiment of the invention, taken in conjunction with the accompanying drawings.
The drawings referenced herein form a part of the specification. Features shown in the drawings are meant as illustrative of only some embodiments of the invention, and not of all embodiments of the invention unless otherwise explicitly indicated.
It will be readily understood that the components, as generally described and illustrated in the Figures herein, may be arranged and designed in a wide variety of configurations. Thus, the following detailed description of the embodiments of the apparatus, system, and method, as presented in the Figures, is not intended to limit the scope of the invention, as claimed, but is merely representative of selected embodiments.
The functional unit described in this specification with elements labeled as managers. A manager may be implemented in programmable hardware devices such as field programmable gate arrays, programmable array logic, programmable logic devices, or the like. The manager may also be implemented in software for execution by various types of processors. An identified manager of executable code may, for instance, comprise one or more physical or logical blocks of computer instructions which may, for instance, be organized as an object, procedure, function, or other construct. Nevertheless, the executables of an identified manager need not be physically located together, but may comprise disparate instructions stored in different locations which, when joined logically together, comprise the manager and achieve the stated purpose of the manager.
Indeed, a manager of executable code could be a single instruction, or many instructions, and may even be distributed over several different code segments, among different applications, and across several memory devices. Similarly, operational data may be identified and illustrated herein within the manager, and may be embodied in any suitable form and organized within any suitable type of data structure. The operational data may be collected as a single data set, or may be distributed over different locations including over different storage devices, and may exist, at least partially, as electronic signals on a system or network.
Reference throughout this specification to “a select embodiment,” “one embodiment,” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment. Thus, appearances of the phrases “a select embodiment,” “in one embodiment,” or “in an embodiment” in various places throughout this specification are not necessarily referring to the same embodiment.
Furthermore, the described features, structures, or characteristics may be combined in any suitable manner in one or more embodiments. In the following description, numerous specific details are provided, such as examples of recovery manager, authentication module, etc., to provide a thorough understanding of embodiments. One skilled in the relevant art will recognize, however, that the invention can be practiced without one or more of the specific details, or with other methods, components, materials, etc. In other instances, well-known structures, materials, or operations are not shown or described in detail to avoid obscuring aspects of the invention.
The illustrated embodiments will be best understood by reference to the drawings, wherein like parts are designated by like numerals throughout. The following description is intended only by way of example, and simply illustrates certain selected embodiments of devices, systems, and processes that are consistent with the invention as claimed herein.
Behavioral test methodologies have been developed to determine changes in psychological and cognitive functioning of individuals. A behavioral assessment is a process of systematically testing a person, analyzing test scores and related data in order to assist healthcare professionals making judgments about an individual's diagnosis, treatment, and level of function in daily living. The behavioral assessment can also include measurements of problem-solving abilities (or cognitive efficiency) such as speed and accuracy. Through the cognitive tests, the tool assesses neuro-cognitive function as related to neurologic injury, neurologic disease, and other stressors. Through the psychological tests, the tool assesses symptoms of depression, post-traumatic stress, insomnia, anger, and post-concussive syndrome.
The module (100) shown in
Many such batteries from the library of tests can be configured in order to accommodate the needs of the healthcare professional. A clinician or trained personnel may employ a configured module to provide screening of the subject in the environment in which they operate or received an injury, or else in a specialized medical clinic. The output from the assessments and their associated batteries of tests can provide an output with an indicator to assist the healthcare professional in their initial assessment of the subject's level of functioning in a variety of neuro-cognitive and/or psychological domains. For example, in one configuration, the output may include indicia in the form of a color coded chart, with green indicating the subject is in a normal range, yellow indicating there is a possibility of an impairment that may need further analysis, and red suggesting the possibility of impairment that may require a further assessment and possibly treatment of the tested person.
Cognitive assessment includes one or more of the following tests: Simple Reaction Time, Procedural Reaction Time, Spatial Processing, Code Substitution, Go-NoGo, Memory Search, and Match to Sample.
The following is a description of the cognitive tests:
The subject memorizes a set of five letters, after which letters on the screen appear one at a time. The subject determines if the letter on the screen is a member of the memory set of five letters.
The following is a description of select psychological assessments:
In one embodiment, the assessment is not individualized. More specifically, a selection of questions pertaining to each of the specified categories may be mixed together. An advantage of combining different categories of questions into a single assessment provides a combined picture of different categories of potential concerns pertaining to the subject participant.
As shown above, there are various cognitive and psychological tests. Different combinations of tests may be administered depending upon the scenarios. The following description(s) pertain to examples of such scenarios. A first line of care includes a first battery of tests, also referred to herein as rapid tests. The following tests are administered in the first battery: Simple Reaction Time, and Choice Reaction Time Tests. The tests in this first battery are cognitive efficiency reaction time tests. The first line of care is intended to be administered in the field proximal to the time of injury (typically within 24 hours of suspected concussion), and includes both of the described tests. Results of the test (as described below) are indicative of the immediate care required, e.g. supports the healthcare provided in assessing if a further assessment or treatment may be required.
A second line of care includes a second battery of test in the form of a combination of cognitive and psychological tests, also referred to herein as brief tests. The following tests are administered in the second battery: Simple Reaction Time, Procedural Reaction Time, Spatial Processing, Code Substitution, Go-NoGo, PHQ-9, PC-PTSD, and ISI. The second line of care can be administered at least 24 hours following after a suspected concussion, or at any time due to any suspected impairment of functioning, such as disturbed mood, exhaustion, pain, etc. The first and second line batteries described above are intended for screening purposes in order to suggest the need for further evaluation by a specialized healthcare professional. These first two test batteries can be utilized by provider-extenders (medics, corpsman, psych techs, medical assistants, nurses, etc.) under the guidance of a licensed healthcare professional.
A third line of care includes a third battery of tests, including a more in depth combination of cognitive and behavioral tests, also referred to herein as standard tests. The following tests are administered in the third battery: Simple Reaction Time, Procedural Reaction Time, Spatial Processing, Code Substitution, Go-NoGo, Memory Search, Match to Sample, PHQ-9, DSI, PSQI, and PCL-M. The third battery of tests is intended to be administered at least forty-eight hours or more after a suspected concussion or at any time due to suspected impairment from any cause (lingering effects from an earlier concussion, mood disturbance such as posttraumatic distress or depression, or exhaustion due to cumulative stress or insomnia). This battery includes each of the described tests. Whereas the first two batteries can be delivered in any environment, such as where the injury occurred by a provider-extender, this third battery is intended to be delivered in a traditional healthcare setting by a more senior healthcare professional, typically a licensed healthcare provider. It is intended to assist the healthcare professional to more specifically determine the extent of impairment and the specific causes of the impairment so that a diagnosis and recommendation for treatment can be more accurately made by that healthcare professional. Other configurations are available as well, including a Clinic Version that includes several functional tests, and can select Neuro-Cognitive tests only, Psychological tests only or each test separately, as needed by the healthcare provider. For example, in one embodiment, the participant cannot select among the tests to be administered in each battery, and must attend to each of the tests therein.
Each battery of tests may generate a composite score by calculating an average of the normalized throughput scores for each test in the test battery.
Each subtest response may be “cleaned” to eliminate erroneous responses from the performed test. In one embodiment, erroneous responses may include wrong responses. In another embodiment, erroneous responses may include anomalies such as too fast responses, e.g. faster than 150 milliseconds or, for a single reaction time test, too slow responses, e.g. slower than 650 milliseconds. Following step (744), a mean and median of the resulting cleaned correct responses is calculated (748). In one embodiment, a median correct reaction time is calculated. Following step (748), each test is evaluated to determine if the test is erroneous (752). In one embodiment, erroneous tests are those tests administered with more than thirty percent of trials missing. In another embodiment, erroneous tests are those tests with an average percent correct less than sixty-six percent, as the responses may be approaching chance. A positive response to the determination at step (752) is followed by eliminating the subtest responses and the test from the test battery (756). Following step (756), it is determined if all of the tests have been administered for the test battery (772). A negative response to the determination at step (772) is followed by an increment of the counting variable (780) and a return to step (732). However, a positive response to the determination at step (772), which indicates a completion of all of the tests in the battery, is followed by calculating the composite score for the test battery (776), as described below. A negative response to the determination at step (752) is followed by calculating additional metrics for the test.
A mean correct score and percent correct will be calculated for each test for use in calculating the throughput. A z-score is calculated for each subtest response using the test mean (760). A z-Mean_Correct is derived from the z-score as the mean of the z-scores for the subtest responses (764). A z-score for the throughput (“zTP”) is calculated for each test (768). In one embodiment, the zTP is calculated by dividing the percent correct for a test by the z-Mean_Correct for a test and multiplying the resulting quotient by 60,000. This calculation yields a standardized score for each test in a test battery equivalent to the number of correct answers in a minute.
Following step (768), it is determined if all of the tests have been administered for the test battery (772). A negative response to the determination at step (772) is followed by an increment of the counting variable (780) and a return to step (732). However, a positive response to the determination at step (772) is followed by generating the composite score for the test battery (776). In one embodiment the composite score equals the average zTP for the test battery. Specifically, the sum of the zTPs for each test in a test battery is divided by the number of tests in the test battery. To that end, responses from different tests using different standards of measure in a test battery have been normalized to generate a metric for the test battery, as a whole. The composite score may be stored in memory, or in one embodiment may be graphically displayed on an associated visual display.
To begin testing, the total number of calibration tests to be performed in a test sample is identified (820), and the first test in the test sample is initialized (824). The transmitter transmits the signal, and a start-time for the transmitted signal is recorded. (828). In one embodiment, the start-time is recorded by a time management application. In one embodiment, the recording of the start-time takes place simultaneous or near simultaneous with the start of the signal. The transmission may be a sonic signal, that is, relating to sound waves, such as a sound at a set or variable frequency, or a light signal, such as a reflection of the testing module in a transmitter surface. The testing module may decide whether the testing module is testing for a sonic signal delay or a light signal delay. The signal is received by a receiver, and an end-time for the received signal is recorded (832). In one embodiment, the end-time is recorded by a time management application. In one embodiment, the recording of the end-time takes place simultaneous or near simultaneous with the receipt of the signal. In one embodiment, the receiver is a sonic signal receiver application, such as a microphone. In another embodiment, the receiver is a light capture application, such as a camera. In one embodiment, the receiver is an application on the testing module.
A difference between the start-time and end-times of the signal is calculated for the test to assess a signal delay associated with the calculated difference (836). In one embodiment, for a sonic signal, the difference is calculated and the speed of sound is subtracted from the difference. In another embodiment, for a light signal, the difference is calculated and the speed of light is subtracted from the difference. Accordingly, for each test, the start-time and end-times are captured and any associated signal delay is recorded. In one embodiment, the signal delay is the absolute value of the start-time and end-time. To calculate the latency associated with the testing module, the signal delay is adjusted to account for outside influences (840). In one embodiment, the signal delay is adjusted to account for signal noise. For example, one or more signal parameters are adjusted to account for signal noise, such as ambient signal noise, and the adjustment may include a modification of the signal wavelength for a sound or light signal.
The signal delay is employed to assess testing module latency. Following step (840), it is determined if all of the calibration tests have been completed (844). A negative response to the determination at step (844) is followed by an increment of the counting variable (848) and a return to step (828). However, a positive response to the determination at step (844) is followed by calculating an average delay for the test sample (852). In one embodiment, the average delay calculation considers variation in the test results, specifically, the time distribution. Once the average delay for the testing module is calculated, the composite score for the test battery executed on the testing module is modified to reflect any testing module latency (856). Accordingly, the illustrated process may be used to maintain accuracy of the composite score.
Each of the battery of tests produces a report to convey output from the battery of tests that was administered to a participant. For each battery there may be three compilations of data reported, including a basic report, a full report, and a raw data file. The basic report is employed to convey a timely assessment of functioning for the provider to use in determining fitness for continued activity or referral for more in-depth assessment and potential treatment. In one embodiment, the basis report includes a color coded scale with marker to indicate the assessment results in the scale.
A second report generated by the module is known as a Full Report, and it provides information for a health service provider at various levels of detail so that the provider can drill down to the level that is most beneficial to them. This includes general and separate summaries of cognitive and behavioral measures (useful for most clinicians) all the way down to individual responses (useful for specialists and researchers). In one embodiment, the provider can access data such as reaction time and accuracy for a cognitive test, or the summary score for the Post Traumatic Stress Disorders Checklist (PCL-M).
Each of the battery of tests described herein may be applied to different environments to aid in the assessment of injury and or fitness for activity. In one embodiment, the screening battery of tests may be employed in a military operational environment for screening of potential injury assessment of a soldier's functioning in the line of duty. In another embodiment, the screening battery of tests may be employed in a commercial environment, such as athletics and associated injury to athletes. In still other embodiments, the more in-depth battery of tests can be used for the military in a war zone at an Aid Station, or in a traditional clinical setting by advanced healthcare providers.
With respect to application of the module in different settings, e.g. commercial or military, an assessment kit may be configured that includes a sensor (1110) in communication with the module (120). In one embodiment, the sensor may also be applied in a military environment. Similarly, in one embodiment, the sensor functions as an input device.
As indicated above with respect to the kit, the module may be applied in various environments, including military and athletics. With respect to the athletic environment, it may be warranted to assess the participant for initial signs of a concussion or other head related injury. In one embodiment, the module is configured to provide a standardize assessment of concussion (SAC) which measures: Orientation (month, date, day of week, year, time), Immediate Memory, Neurologic Screening, Loss of consciousness, Amnesia, Strength, Sensation, Coordination, Concentration, Exertional Maneuvers, and Delayed Recall. One embodiment includes the military equivalent version of the SAC called the Military Acute Concussion Evaluation (MACE). The module employed herein delivers the SAC and MACE digitally. In addition, one embodiment includes the use of the sensor to quantify the balance score, such as the Balance Error Scoring System (BESS). Specifically, the module measure and automatically calculates using the sensors to measure balance during administration of the BESS to quantify balance. The SAC and the BESS are generally administered as part of the SCAT2-Sport Concussion Assessment Tool 2. The use of the SCAT-2 has value in helping sports medicine professional in the diagnosis and management of conditions in athletes on the sport sideline, particularly in identifying concussions. In one embodiment, the SCAT-2 may also be applied to military personnel in the field. The SCAT-2 is designed for rapid concussion evaluation on the sidelines. The SCAT-2 includes the SAC, a brief neurocognitive test battery that assesses attention and memory function, but the SCAT-2 is not intended to replace comprehensive neurocognitive testing or used as a stand-alone tool for the ongoing management of sports concussions. It is also important to remember that symptoms may not appear until several hours after injury. Accordingly, the SCAT-2 may be a test that is employed as a preliminary assessment, followed by one of the three batteries of tests configured with the module.
Cognitive and/or psychological testing may take place between a participant and a module, with the module having the functionality to support administration of the testing together with data acquisition and evaluation.
A functional unit (1250) is provided in communication with memory (1226); the functional unit (1250) support neuro-cognitive and/or behavioral assessment. As shown, the functional unit (1250) is provided with a test manager (1252), an output manager (1254), and an assessment manager (1256). The test manager functions to administer a test battery, with the test battery including neuro-cognitive and/or behavioral test batteries. The output manager (1254), which is in communication with the test manager (1252), functions to receive output data pertaining to a compilation of reaction time data of the neuro-cognitive test presented on the visual display (1230). The assessment manager (1256), which is in communication with the output manager (1254), functions to analyze the output data as received from the output manager (1254) and to evaluate the basis for cognitive impairment. In addition, the assessment manager (1256) compares output data. The assessment manager (1256) may include, but is not limited to, current output data to one or more prior output data, or current output data to a sample population. In one embodiment, the output data from each of the tests is independently accessible from the memory (1226). Output data from the tests are presented in some form of a display, including a visual display, an auditory display, or a haptic display. In one embodiment, the assessment manager (1256) evaluates a behavioral profile associated with the behavioral test batteries to yield a score. Accordingly, the test manager (1252), output manager (1254), and assessment manager (1256) function to support administration and evaluation of neuro-cognitive and behavioral testing.
As identified above, the test manager (1252), output manager (1254), and assessment manager (1256), hereinafter referred to as tools, function as elements to support administration and evaluation of neuro-cognitive and behavioral testing, The tools (1252), (1254), and (1256), are shown residing in memory (1226) local to the testing module (1210). However, the tools (1252), (1254), and (1256) may reside as hardware tools external to memory (1226), or they may be implemented as a combination of hardware and software. Similarly, in one embodiment, the tools (1252), (1254), and (1256) may be combined into a single functional item that incorporates the functionality of the separate items. Accordingly, the managers may be implemented as software tools, hardware tools, or a combination of software and hardware tools.
Referring to
Comparison of the first and second simple reaction time tests based on the sequential order in which the tests are administered produces a unique data signature when compiling the result data. In one embodiment, the data received from the comparison of the first and second simple reaction time tests yields a significant brain vital sign of cognitive efficiency. The sequential administration of the tests as shown and described in
Comparison of the first and second simple reaction time test data is a comparison of data for a specific subject, e.g. patient. More specifically, the patient's second simple reaction time test data is compared to their test data for the first simple reaction time test. This measurement and subsequent comparison is employed to determine if there is a statistical difference in the test results, and if the comparison data shows a statistical value of a worsening cognitive condition, then it warrants a concern of an atypical data output. In one embodiment, following step (1516), it is determined if the comparison of the first and second reaction time test data shows a decrease, also referred to as a degrading cognitive condition (1516). A positive response to the determination at step (1516) is followed by communicating the cognitive degradation with an external engineering platform (1518) or in one embodiment, communicating the cognitive degradation to a healthcare professional. In one embodiment, the external engineering platform may include a software or hardware patient platform. A negative response to the determination at step (1516) concludes the evaluation of the administered simple reaction time tests.
Referring to
As shown in
The unique signature obtained from the sequential test administration shown and described in
Referring to
The cognitive metering device shown and described in
Referring to
The cognitive assessment device described herein may be configured with test batteries that are preconfigured for specific assessments. In one embodiment, the assessment device may operate in a dynamic. More specifically, the assessment device may be configured with hardware for administering the assessment(s).
Referring to
As described above, the cognitive assessment device is portable and employed in various environments responsive to different activating factors. It is understood and recognized that the assessment device may be placed in a low power state when the device is not active, e.g. not in the process of conducting an assessment. In one embodiment, the assessment device may be transformed to transition from the low power state to an active state based on an external device.
Referring to
When the data collected by the passive external sensor attains a value that exceeds a threshold, the portable cognitive assessment device is activated (2006). More specifically, the operating state of the portable assessment device is transformed from the low power state to an active mode. In one embodiment, the passive external sensor, and more specifically, the data from this sensor, controls activation of the assessment device. In one embodiment, the passive external sensor communicates with the assessment device through a wireless communication protocol, such as Bluetooth. The passive external sensor may include, but is not limited to, a helmet sensor, a sensor attached to a bracelet, and other forms of passive sensors. Following the activation, the assessment device, reads the data received from the remote external sensor (2022). An initial test battery is selected based on the received sensor data (2024). In one embodiment, the sensor data controls the test selection. In another embodiment, a profile of a signal received by the assessment device from the passive sensor will dictate the test selection. As described above, test data is received and analyzed. In one embodiment, real-time results of the data received from the test battery can be determinative of selection of one or more additional assessments. The combination of the passive sensor in communication with the assessment device enables the assessment device to operate in a low power state until such time as the data collected form the sensor warrants an assessment. Accordingly, the passive sensor functions as an external hardware tool that transforms the operating state of the assessment device, and more specifically, transforms the state from a low power state to an interactive mode for assessment.
As will be appreciated by one skilled in the art, aspects of the present invention may be embodied as a system, method or computer program product. Accordingly, aspects of the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment (including firmware, resident software, micro-code, etc.) or an embodiment combining software and hardware aspects that may all generally be referred to herein as a “circuit,” “module” or “system.” Furthermore, aspects of the present invention may take the form of a computer program product embodied in one or more computer readable medium(s) having computer readable program code embodied thereon.
Any combination of one or more computer readable medium(s) may be utilized. The computer readable medium may be a computer readable signal medium or a computer readable storage medium. A computer readable storage medium may be, for example, but not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing. More specific examples (a non-exhaustive list) of the computer readable storage medium would include the following: an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or Flash memory), an optical fiber, a portable compact disc read-only memory (CD-ROM), an optical storage device, a magnetic storage device, or any suitable combination of the foregoing. In the context of this document, a computer readable storage medium may be any tangible medium that can contain, or store a program for use by or in connection with an instruction execution system, apparatus, or device.
A computer readable signal medium may include a propagated data signal with computer readable program code embodied therein, for example, in baseband or as part of a carrier wave. Such a propagated signal may take any of a variety of forms, including, but not limited to, electro-magnetic, optical, or any suitable combination thereof. A computer readable signal medium may be any computer readable medium that is not a computer readable storage medium and that can communicate, propagate, or transport a program for use by or in connection with an instruction execution system, apparatus, or device.
Program code embodied on a computer readable medium may be transmitted using any appropriate medium, including but not limited to wireless, wireline, optical fiber cable, RF, etc., or any suitable combination of the foregoing.
Computer program code for carrying out operations for aspects of the present invention may be written in any combination of one or more programming languages, including an object oriented programming language such as Java, Smalltalk, C++ or the like and conventional procedural programming languages, such as the “C” programming language or similar programming languages. The program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server. In the latter scenario, the remote computer may be connected to the user's computer through any type of network, including a local area network (LAN) or a wide area network (WAN), or the connection may be made to an external computer (for example, through the Internet using an Internet Service Provider).
Aspects of the present invention are described above with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems) and computer program products according to embodiments of the invention. It will be understood that each block of the flowchart illustrations and/or block diagrams, and combinations of blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer program instructions. These computer program instructions may be provided to a processor of a general purpose computer, special purpose computer, or other programmable data processing apparatus to produce a machine, such that the instructions, which execute via the processor of the computer or other programmable data processing apparatus, create means for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks.
These computer program instructions may also be stored in a computer readable medium that can direct a computer, other programmable data processing apparatus, or other devices to function in a particular manner, such that the instructions stored in the computer readable medium produce an article of manufacture including instructions which implement the function/act specified in the flowchart and/or block diagram block or blocks.
The computer program instructions may also be loaded onto a computer, other programmable data processing apparatus, or other devices to cause a series of operational steps to be performed on the computer, other programmable apparatus or other devices to produce a computer implemented process such that the instructions which execute on the computer or other programmable apparatus provide processes for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks.
The flowcharts and block diagrams in the Figures illustrate the architecture, functionality, and operation of possible implementations of systems, methods and computer program products according to various embodiments of the present invention. In this regard, each block in the flowcharts or block diagrams may represent a module, segment, or portion of code, which comprises one or more executable instructions for implementing the specified logical function(s). It should also be noted that, in some alternative implementations, the functions noted in the block may occur out of the order noted in the figures. For example, two blocks shown in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved. It will also be noted that each block of the block diagrams and/or flowchart illustration, and combinations of blocks in the block diagrams and/or flowchart illustration, can be implemented by special purpose hardware-based systems that perform the specified functions or acts, or combinations of special purpose hardware and computer instructions.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
The corresponding structures, materials, acts, and equivalents of all means or step plus function elements in the claims below are intended to include any structure, material, or act for performing the function in combination with other claimed elements as specifically claimed. The description of the present invention has been presented for purposes of illustration and description, but is not intended to be exhaustive or limited to the invention in the form disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art without departing from the scope and spirit of the invention. The embodiment was chosen and described in order to best explain the principles of the invention and the practical application, and to enable others of ordinary skill in the art to understand the invention for various embodiments with various modifications as are suited to the particular use contemplated. Accordingly, the enhanced assessment module supports cognitive and behavioral assessment of a participant subject in the field, and at the same time provides a unique employment of test and associated test batteries for the assessment.
It will be appreciated that, although specific embodiments of the invention have been described herein for purposes of illustration, various modifications may be made without departing from the spirit and scope of the invention. Accordingly, the scope of protection of this invention is limited only by the following claims and their equivalents.
This application is a non-provisional patent application claiming the benefit of the filing date of U.S. Provisional Patent Application Ser. No. 61/926,678 filed Jan. 13, 2014 and titled “Performance Assessment Tool” which is hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
61926678 | Jan 2014 | US |