This invention relates to an apparatus and method for rowing by generating stored energy in stretchable, retracting members and using that stored energy to pull oars back to a neutral position.
Over the years, a variety of designs have been created that attempt to maximize the efficiency of moving an oar-powered boat through water. However, in comparison to these previous designs, the invention described herein eliminates both the high cost maintenance and the complicated mechanical arrangements associated with other systems, which add to the weight to the boat and complexity to the system. While other systems use push-pull mechanisms or complex gearing, this invention uses stretchable, retracting members such as springs or elastic cords to store energy and release it to aid a rower's stroke. Furthermore, other front-facing systems have oar configurations which create many problems including restricting the motion of the oars. Finally, systems which use a rack-and-pinion type of gear drive require excessive maintenance and frequent replacement, which can be very costly.
Other inventions have also recognized the benefit of utilizing springs. However, those inventions are easily distinguishable from the present invention. For example, U.S. Pat. No. 88,013 (“the '013 patent”) discloses a boat-oar that will necessarily “feather” as it is thrown or pushed out of the water, and the boat is propelled in the same direction faced by the oarsmen. The '013 patent utilized a spring attached to the oar to aid the oarsman in raising the oar from the water, but specifically stated that the spring must not be attached to the end of the oar, but rather should be attached roughly one-third of the distance toward the handle.
As used herein, stretchable, retracting members include any devices such as springs or elastic materials (such as elastic cords or bungee cords) or any other devices that can be repeatedly stretched and will return to approximately their unstretched length. The invention is not intended to be limited to any particular stretchable, retracting members and is intended to be used with any stretchable, retracting members known to those of ordinary skill in the art. It is preferable to use no more than ten stretchable, retracting members on each of the port and starboard sides of the boat.
As used herein, the “forward power stroke” refers to the rower's pushing of the oar handles from the “neutral” position away from his body when the rower is facing the boat's bow and causing the oar blade to move through the water toward the boat's rear or stern, propelling the boat through the water forward in the direction of the bow.
As used herein, the “reverse power stroke” refers to the rower's pulling of the oar handles from the “neutral” position toward his body when the rower is facing the boat's bow and causing the oar blade to move through the water toward the boat's front or bow, propelling the boat through the water in reverse in the direction of the stern.
As used herein, the “return stroke” refers to the movement of the oar assisted by the stretchable retracting member toward the neutral position. The return stroke is caused by the release of stored energy from the stretchable, retracting member. Once the rower has completed a forward power stroke or a reverse power stroke and raised the oar blade out of the water, the stretchable, retracting members release stored energy generated by the forward power stroke or reverse power stroke, pulling the oar back to the “neutral” position.
As used herein, “oar lock” refers to a device used to hold an oar in place and as a fulcrum in rowing. The oar lock can be attached to the top edge of the side of the boat, or “gunwale”, or in a preferred embodiment, is attached to outriggers which can rotate into the boat for storage.
The present invention overcomes the drawbacks of existing forward facing rowing apparati and methods by decreasing the need for the rower to utilize both a push and a pull stroke in propelling a boat through the water.
Instead, the “Forward Nile Oar” apparatus and rowing method of the present invention use stretchable, retracting members such as springs or elastic cords (with the ability to store energy) anchored to the boat and to the oars in order to bring the oars back to the “neutral” position once the rower has finished a forward power stroke or reverse power stroke. In the “neutral” position, the forces of the stretchable, retracting members are essentially balanced.
This allows the rower to face forward in his boat, and use his force to push the handles of his oars away from his body, guiding the oar handles along oar range of motion control devices. These actions cause the boat to be propelled forward through the water. The rower then allows the stretchable, retracting members to pull the oars back toward the center or “neutral” position. The rower is similarly able to face forward in his boat and use the present invention to move his boat in reverse by using his force to pull the handles of the oars toward his body, guiding the oar handles along oar range of motion control devices. These actions cause the boat to be propelled through the water in the reverse direction. The rower then allows the stretchable, retracting members to pull the oars back toward the center or “neutral” position.
An alternative embodiment of the present invention utilizes the same apparatus as an exercise machine out of the water. In this embodiment, the apparatus is stabilized by affixing the apparatus to the ground. The rower would move the oars as described herein, however the oars would move through the air as opposed to water as described elsewhere herein.
As described with reference to the accompanying figures, the present invention provides an apparatus and method for rowing that allows the rower to utilize either a forward power stroke or a reverse power stroke and the resulting return stroke returns the oars to the neutral position.
In a preferred embodiment, the invention is implemented with a boat and connected to the side thereof. It is envisioned that the apparatus and method of the present invention can be implemented with any boat a person of ordinary skill in the art would deem suitable and the scope of the present invention is not limited by the type of boat used.
The apparatus of the present invention is configured as follows with reference to
In a preferred embodiment, the assembly comprising the oar lock sockets 11 and outriggers 9 can rotate into the boat when not in use, thus increasing the portability and storability of the boat. A more detailed view of the oar lock assembly is shown in
The outrigger 9 is rotatably connected to an outrigger rotation shaft 13 around which the entire assembly can rotate into the boat 1. The outrigger rotation shaft 13 is connected to the inside of the boat (not shown) or in a more preferred embodiment, the gunwale 2. To store the outrigger assembly in the boat 1, a user first disconnects the oar lock 4 from the oar lock socket 11. The user then disconnects the outrigger support member 14 from the outrigger support anchor 12. The user can then rotate the entire assembly around the outrigger rotation shaft 13 into the boat 1.
A more detailed depiction of the associations between the oar lock 4, the oar lock socket 11, and the outrigger 9 is show in
The description that follows provides an example of the method a rower would use to operate the apparatus of the present invention. For illustration purposes, reference is made to
To operate the embodiment illustrated in
To move the boat in reverse (in the direction of the stern), the rower pulls the oar handle 5 toward his body (the reverse power stroke) with the oar blade 6 in the water. This causes the oar blade 6 to move toward the boat's bow. This reverse power stroke moves the boat in reverse (in the direction of the boat's stern). The reverse power stroke releases tension on the stretchable retracting member connected nearer to the boat's bow and increases tension on the stretchable retracting member attached nearer to the boat's stern. The rower then guides the oar handles down by using oar range of motion control devices 10 in a circular direction until the oar blades 6 are out of the water. The rower then, while still keeping his hand on the oar handle 7 in order to stabilize the oar 5, allows the stretchable retracting member connected to the boat's stern to release its tension, returning the oar 5 back to its neutral position. The rower then repeats this process to continue moving the boat in reverse.
In an embodiment, illustrated in
As shown in
In a preferred embodiment only applicable if the oar range of motion control device is a flexible member, the oar range of motion control device comprises a rope that passed through holes in the gunwale and is secured by “figure 8” knots as shown in
Using the forward power stroke, the oar handles 7 are pushed along the inside edge of the oar range-of-motion control devices 10 until they reach the forward edges of the oar range-of-motion control devices 10 nearest to the boat's bow. The oar handles 7 are then guided down by motion control devices 10 in a circular direction until the oar blades 6 are out of the water. The rower then allows the stretchable retracting members to pull the oars 5 back to a neutral position.
Using the reverse power stroke, the oar handles 7 are pulled along the inside edge of the oar range-of-motion control device 10 until they reaches the rear edges of the oar range-of-motion control devices 10 nearest to the boat's stern. The oar handles 7 are then guided down by motion control devices 10 in a circular direction until the oar blades 6 are out of the water. The rower then allows the stretchable retracting members to pull the oars 5 back to a neutral position.
Should the rower prefer, the rower can replace the stretchable, retracting members with members of a different resistance. For example, the rower might want increased resistance for sports or physical training exercises, and less resistance for leisurely rowing.