In electronic devices, such as computer systems or other types of electronic devices, some operations involve multiplication of signals. Typically, such multiplication is performed using a microcontroller or other type of processor. However, under certain scenarios, using a processor to perform multiplications in electronic devices may not be efficient.
Some embodiments of the invention are described with respect to the following figures:
In accordance with some embodiments, instead of using a processor (e.g., a microcontroller, microprocessor, etc.) to perform multiplication of signals within an electronic device (e.g., a computer, personal digital assistant, mobile telephone, storage system, communications switch, etc.), a multiplier circuit that includes an analog-to-digital converter (ADC) is used instead for enhanced efficiency. The multiplier circuit, used to multiply at least a first signal with a second signal, includes the ADC and an inverting circuit. The ADC has a first input to receive the first signal and a second input to receive an output of the inverting circuit. The inverting circuit has an input to receive the second signal that is to be multiplied with the first signal. An output value produced by combination of the ADC and the inverting circuit is approximately a multiplication of the first signal and the second signal.
An ADC is a circuit to convert an analog signal to a digital signal. An “inverting circuit” refers to a circuit whose output decreases in a signal level (e.g., voltage amplitude level) in response to an increase in signal level at the input of the inverting circuit, and vice versa.
Using the multiplier circuit according to some embodiments to perform multiplication operations instead of a processor in an electronic device, more efficient usage of the processor can be achieved, since processor cycles do not have to be consumed to perform the multiplication operations. Moreover, the electronic device may have a power savings mode, in which the processor of the electronic device may be placed into a lower power state where the processor may not be available to perform most or all of the operations of the processor. In a conventional electronic device in which a processor is used to perform multiplications, if a multiplication has to be performed, then the processor that is in a lower power state may have to be awakened (or turned “on”) to allow the processor to perform the desired multiplication. This would result in increased and wasteful power consumption in the electronic device since the processor is being awakened just to perform the multiplication. If multiplication operations are regularly performed, then the processor would have to be regularly awakened to perform such multiplication operations.
The ADC 100 basically takes a ratio of the analog input signal Asignal to the reference voltage VADC
According to this relationship, the digital output signal Y is proportional to the analog input signal Asignal, which means that the digital output signal Y proportionately increases or decreases with the analog input signal Asignal.
On the other hand, the digital output signal Y has an inverse proportional relationship to the reference voltage VADC
In the example shown in
The input analog signal Asignal is connected to the inverting (−) inputs of the comparators 108, while respective nodes of the series of resistors 106 are connected to corresponding non-inverting (+) inputs of the comparators 108. The comparators 108 output respective output bits based on a comparison of Asignal to the respective voltage level received at the non-inverting input of the comparator 108. It is noted that other components of the ADC 100 are not shown—the components depicted are provided to illustrate the relationship between Asignal and VADC
In view of the fact that the ADC 100 effectively takes a ratio of the first input (102) to the second input (104), this characteristic can be used to form a multiplier circuit that uses the ADC 100. Such a multiplier circuit for multiplying input signals A and B is depicted as multiplier circuit 200 in
The inverting circuit 202 receives input signal B and applies an inverting operation on the signal to produce signal B′. The signal B′ output from the inverting circuit 202 is then provided to the reference voltage input 104 of the ADC 100. The ADC 100 takes a ratio of A to B′, which effectively is a multiplication of A and B.
In the embodiment of
The gain of the operational amplifier 204 shown in
The ADC 100 in
as explained above in connection with
According to this relationship, a change in the value of input signal A causes a proportional change in the output value Y. Moreover, the output value Y changes in proportion to
where ΔB represents a change in the input signal B. In one example, a 1% increase in A results in a 1% increase in the output Y, while a 1% increase in B results in a
decrease in the output Y.
The multiplier circuit 200 of
If R2 is selected to be equal to R1, then Y is basically an approximation of the scaled multiplication of just A and B.
The output value Y is considered an “approximation” of the multiplication of A and B because of the errors introduced due to possible variations of B. For small variations in B from a nominal value of B, the output value Y is a relatively accurate representation of the multiplication of A and B. However, for larger variations of B, an error is introduced such that the multiplication is less accurate (but still possibly usable for certain applications).
The table below illustrates the relationship of variations in B (ΔB)) to errors in the output value Y, according to one example (the table is provided for purposes of example, since relationships between ΔB and the error in Y are implementation-specific and can differ for different implementations):
If B varies by 0.1%, then the output Y has an error of approximately 0.0001%. If B varies by 1%, then the output Y has an error of approximately 0.01%. If B varies by 5%, then the output Y has an error of approximately 0.251%. If B varies by 10%, then the output Y has an error of approximately 1.01%. According to the example above, it can be seen that even with a 20% variation in B, the output error is still under 5%, which may be acceptable for certain applications.
The linear regulator 302 is a voltage regulator that operates in a linear region. The output voltage provided by the linear regulator 302 is fixed at a particular voltage based on the voltage level at the ADJ input of the linear regulator 304. Changes in voltage level at the ADJ input will cause a change to the output voltage level from the linear regulator 302.
In the arrangements shown in
The output value Y produced by the ADC 100 that is an approximate multiplication of A and B is scaled by a fixed scaling factor (FACTOR). In other words, the output (Y) of the multiplier circuit 300 is equal to A×B×FACTOR, where the value of FACTOR is dependent upon the values of R1, R2, and R3.
In an alternative implementation, an ADC may not include a reference voltage input 104 as is present in the ADC 100 of
In this embodiment, the ADC reference voltage (VADC reference) is generated internally in the ADC 100A. The ADC reference voltage (VADC reference) is produced by a circuit 600 that is tied to the VCC input 104A. In some implementations, the circuit 600 can be a conductive line that connects VADC reference to VCC. In another implementation, the circuit 600 may be a voltage divider circuit.
Since the internal ADC reference voltage (VADC reference) is proportional to VCC, the output Y of the ADC 100A is approximately a multiplication of A and B (and FACTOR), similar to the multiplier circuit 300 of
The multiplier circuit shown in
The multiplier circuit 200, 300, or 300A multiplies A and B to produce Y, which represents power (note that voltage multiplied by electrical current is equal to power). The output value Y (a digital value) is received by a controller 402, which includes a register 404 to store the output value Y. Multiple instances of the output value Y can be collected at different time points during a particular time interval. This allows the controller 402 to collect indications of power consumption over time in the particular time interval. The controller 402 can efficiently store such indications of power consumption, which can be later retrieved, such as by a power management system 406.
The power management system 406 is able to read the indications of power consumption collected in the register 404 to determine power consumption of the electronic device 400 over time. The power management system 406 can take actions based on what the power management system 406 observes in the register 404.
Although the power management system 406 is shown as being separate from the controller 402, note that the power management system 406 can be part of the controller 402 in an alternative embodiment.
Although
In the foregoing description, numerous details are set forth to provide an understanding of the present invention. However, it will be understood by those skilled in the art that the present invention may be practiced without these details. While the invention has been disclosed with respect to a limited number of embodiments, those skilled in the art will appreciate numerous modifications and variations therefrom. It is intended that the appended claims cover such modifications and variations as fall within the true spirit and scope of the invention.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US09/41980 | 4/28/2009 | WO | 00 | 8/23/2011 |