This relates generally to multi-modal gestures detected at an artificial-reality headset, including but not limited to techniques for performing one or more operations in a user interface based on one or more input tiers of multi-modal gestures.
Users of artificial reality have a limited capacity to remember input gestures performed at one or more devices owned by the user. For example, they can remember a few gestures without much difficulty and can learn a few additional gestures without difficulty. However, beyond a certain number of gestures, it is difficult for a user to learn them and remember them. Accordingly, there is a need to simplify user interface interaction options for a user but still allow them to perform a diverse number of operations at the user interface.
As such, there is a need to address one or more of the above-identified challenges. A brief summary of solutions to the issues noted above are described below.
The methods, systems, and devices described herein allow users wearing an augmented-reality headset coupled to another device to engage in multi-modal gestures when multi-modal gestures are enabled at both devices. Creating a multi-tiered input gesture hierarchy allows the user to learn fewer gestures that can perform multiple operations depending on which part of the hierarchy they are in. For example, the user can perform a first gesture while multi-modal gestures are enabled which performs a first operation in a user interface. Then the user can perform that same first gesture while multi-modal gestures are disabled which performs a different operation at the head-wearable device not associated with the user interface (e.g., an audio control gesture such as changing the volume). In this example, the user only needs to know one input gesture but can perform multiple operations depending on whether multi-modal operations are available. Additional examples are provided below.
One method of controlling one or more user interface (UI) elements via gestures performed at one or more input devices is described below. The method includes, an artificial-reality headset worn by a user at a first point in time while multi-modal gestures are available via at least two input devices associated with the artificial-reality headset. The method further includes, in response to detecting a first input via a first input device of the at least two input devices, performing a first action at the artificial-reality headset. The method further includes, in response to detecting a second input via a second input device of the at least two input devices, performing a second action within a user interface presented via the artificial-reality headset. The method also includes, at a second point in time after the first point in time, multi-modal gestures are no longer available via the at least two input devices associated with the artificial-reality headset. The method further includes, in response to detecting the first input via the first input device of the at least two input devices, performing the second action within the user interface presented via the artificial-reality headset.
The features and advantages described in the specification are not necessarily all inclusive and, in particular, certain additional features and advantages will be apparent to one of ordinary skill in the art in view of the drawings, specification, and claims. Moreover, it should be noted that the language used in the specification has been principally selected for readability and instructional purposes.
Having summarized the above example aspects, a brief description of the drawings will now be presented.
For a better understanding of the various described embodiments, reference should be made to the Detailed Description below, in conjunction with the following drawings in which like reference numerals refer to corresponding parts throughout the figures.
In accordance with common practice, the various features illustrated in the drawings may not be drawn to scale. Accordingly, the dimensions of the various features may be arbitrarily expanded or reduced for clarity. In addition, some of the drawings may not depict all of the components of a given system, method, or device. Finally, like reference numerals may be used to denote like features throughout the specification and figures.
Numerous details are described herein to provide a thorough understanding of the example embodiments illustrated in the accompanying drawings. However, some embodiments may be practiced without many of the specific details, and the scope of the claims is only limited by those features and aspects specifically recited in the claims. Furthermore, well-known processes, components, and materials have not necessarily been described in exhaustive detail so as to avoid obscuring pertinent aspects of the embodiments described herein.
Embodiments of this disclosure can include or be implemented in conjunction with various types or embodiments of artificial-reality systems. Artificial-reality (AR), as described herein, is any superimposed functionality and or sensory-detectable presentation provided by an artificial-reality system within a user's physical surroundings. Such artificial-realities can include and/or represent virtual reality (VR), augmented reality, mixed artificial-reality (MAR), or some combination and/or variation one of these. For example, a user can perform a swiping in-air hand gesture to cause a song to be skipped by a song-providing API providing playback at, for example, a home speaker. An AR environment, as described herein, includes, but is not limited to, VR environments (including non-immersive, semi-immersive, and fully immersive VR environments); augmented-reality environments (including marker-based augmented-reality environments, markerless augmented-reality environments, location-based augmented-reality environments, and projection-based augmented-reality environments); hybrid reality; and other types of mixed-reality environments.
Artificial-reality content can include completely generated content or generated content combined with captured (e.g., real-world) content. The artificial-reality content can include video, audio, haptic events, or some combination thereof, any of which can be presented in a single channel or in multiple channels (such as stereo video that produces a three-dimensional effect to a viewer). Additionally, in some embodiments, artificial reality can also be associated with applications, products, accessories, services, or some combination thereof, which are used, for example, to create content in an artificial reality and/or are otherwise used in (e.g., to perform activities in) an artificial reality.
A hand gesture, as described herein, can include an in-air gesture, a surface-contact gesture, and or other gestures that can be detected and determined based on movements of a single hand (e.g., a one-handed gesture performed with a user's hand that is detected by one or more sensors 823A of a wearable device (e.g., electromyography (EMG) and/or inertial measurement units (IMU) s of a wrist-wearable device) and/or detected via image data captured by an imaging device of a wearable device (e.g., a camera of a head-wearable device)) or a combination of the user's hands. In-air means, in some embodiments, that the user hand does not contact a surface, object, or portion of an electronic device (e.g., a head-wearable device or other communicatively coupled device, such as the wrist-wearable device), in other words the gesture is performed in open air in 3D space and without contacting a surface, an object, or an electronic device. Surface-contact gestures (contacts at a surface, object, body part of the user, or electronic device) more generally are also contemplated in which a contact (or an intention to contact) is detected at a surface (e.g., a single or double finger tap on a table, on a user's hand or another finger, on the user's leg, a couch, a steering wheel, etc.). The different hand gestures disclosed herein can be detected using image data and/or sensor data (e.g., neuromuscular signals sensed by one or more biopotential sensors (e.g., EMG sensors) or other types of data from other sensors, such as proximity sensors, time-of-flight (ToF) sensors, sensors of an inertial measurement unit, etc.) detected by a wearable device worn by the user and/or other electronic devices in the user's possession (e.g., smartphones, laptops, imaging devices, intermediary devices, and/or other devices described herein).
Multi-modal gestures are available when at least two electronic devices are communicatively coupled. For example, in
Returning to
In some embodiments, the head-wearable device 120 detects one or more input gestures via touch-input surfaces (e.g., input detected by one or more capacitive sensors 828), buttons 834 coupled to the frame 804 of the head-wearable device 120, and/or through input gesture recognition using one or more cameras 839A-839D communicatively coupled with the head-wearable device 120. The wrist-wearable device 110 detects one or more input gestures via hand gestured detected by one or more biopotential sensors (e.g., EMG sensors 765;
In some embodiments, the first portion 120a of the head-wearable device 120 is a temple arm 805 (e.g., the right or left temple arms 805;
As described below in reference to
The above examples are non-limiting; the skilled artisan will appreciate upon reading the descriptions that biopotential-based gestures can include contact between any two phalanges of the users or not contact between phalanges of the user's hand (e.g., a hand wave, wrist rotation, finger pointing, etc.). As described below in reference to
Each gesture is associated with a respective command. For example, the first input gesture is associated with a command for targeting a UI element while the user is navigating the swiping gestures similar to a directional swipe pad (e.g., as shown in
While the examples provided above in reference to
The method 400 includes, at a first point in time while multi-modal gestures are available via at least two input devices associated with the artificial-reality headset (404), i) in (406) response to detecting a first input via a first input device (e.g., a touch-input surface including one or more capacitive sensors 828;
The method also includes, at a second point in time after the first point in time while multi-modal gestures are no longer available via the at least two input devices associated with the artificial-reality headset (410), in response to detecting the first input via the first input device of the at least two input devices, performing (412) the second action within the user interface presented via the artificial-reality headset. For example, in
The second method 500 further includes determining (508) if the user input performed at a first input device is associated with the artificial-reality headset. The second method 500 includes, in accordance with a determination that the user input is performed at a first input device associated with the artificial-reality headset (“yes” at operation 508), perform (510) a first action at the artificial-reality headset and return to operation 502. For example, as shown in
Alternatively, the second method 500 includes, in accordance with a determination that the user input is not performed at a first input device associated with the artificial-reality headset (“no” at operation 508), determining (516) whether the user input was performed at a second, wearable, input device associated with the artificial-reality headset. For example, biopotential sensors (e.g., EMG sensors 765;
Returning to operation (516), the second method 500 includes, in accordance with a determination that the user input was not performed at a second, wearable, input device associated with the artificial-reality headset (“no” at operation 516), determining (520) whether the user input was performed at a third input device, distinct from the first and second input devices, associated with the artificial-reality headset. The second method 500 includes, in accordance with a determination that the user input was performed at a third input device, distinct from the first and second input devices, associated with the artificial-reality headset (“yes” at operation 520), performing (522) a third action within the user interface presented at the artificial-reality headset and/or at the artificial-reality headset and return to operation 502. In some embodiments, a third device (e.g., such as a smart phone or other communicatively coupled device) detects a user input such as pressing a button at the device causing an action such as volume adjustment at the head-wearable device 120. Alternatively, the second method 500 further includes, in accordance with a determination that the user input was not performed at a third input device, distinct from the first and second input devices, associated with the artificial-reality headset (“no” at operation 520), returning to operation 502.
Returning to operation (504), the second method 500 includes, in accordance with a determination that at least two input devices are not associated with the artificial-reality headset (“no” at operation 504), then the second method 500 further includes detecting (512) a user input is performed at a first input device associated with the artificial-reality headset. For example,
The second method 500 further includes determining (514) whether the user input is associated with an action at the artificial-reality headset. The second method 500 includes, in accordance with a determination that the user input is associated with an action at the artificial-reality headset (“yes” at operation 514), performing (510) a first action at the artificial-reality headset and returning to operation 502.
Alternatively, the second method 500 includes, in accordance with a determination that the user input is not associated with an action at the artificial-reality headset (“no” at operation 514), performing (518) a second action within a user interface presented at the artificial-reality headset and returning to operation 502. For example,
The devices described above are further detailed below, including systems, wrist-wearable devices, headset devices, and smart textile-based garments. Specific operations described above may occur as a result of specific hardware, such hardware is described in further detail below. The devices described below are not limiting and features on these devices can be removed or additional features can be added to these devices. The different devices can include one or more analogous hardware components. For brevity, analogous devices and components are described below. Any differences in the devices and components are described below in their respective sections.
As described herein, a processor (e.g., a central processing unit (CPU) or microcontroller unit (MCU)), is an electronic component that is responsible for executing instructions and controlling the operation of an electronic device (e.g., a wrist-wearable device 700, a head-wearable device, an HIPD 900, a smart textile-based garment, or other computer system). There are various types of processors that may be used interchangeably or specifically required by embodiments described herein. For example, a processor may be (i) a general processor designed to perform a wide range of tasks, such as running software applications, managing operating systems, and performing arithmetic and logical operations; (ii) a microcontroller designed for specific tasks such as controlling electronic devices, sensors, and motors; (iii) a graphics processing unit (GPU) designed to accelerate the creation and rendering of images, videos, and animations (e.g., virtual-reality animations, such as three-dimensional modeling); (iv) a field-programmable gate array (FPGA) that can be programmed and reconfigured after manufacturing and/or customized to perform specific tasks, such as signal processing, cryptography, and machine learning; (v) a digital signal processor (DSP) designed to perform mathematical operations on signals such as audio, video, and radio waves. One of skill in the art will understand that one or more processors of one or more electronic devices may be used in various embodiments described herein.
As described herein, controllers are electronic components that manage and coordinate the operation of other components within an electronic device (e.g., controlling inputs, processing data, and/or generating outputs). Examples of controllers can include (i) microcontrollers, including small, low-power controllers that are commonly used in embedded systems and Internet of Things (IoT) devices; (ii) programmable logic controllers (PLCs) that may be configured to be used in industrial automation systems to control and monitor manufacturing processes; (iii) system-on-a-chip (SoC) controllers that integrate multiple components such as processors, memory, I/O interfaces, and other peripherals into a single chip; and/or DSPs. As described herein, a graphics module is a component or software module that is designed to handle graphical operations and/or processes, and can include a hardware module and/or a software module.
As described herein, memory refers to electronic components in a computer or electronic device that store data and instructions for the processor to access and manipulate. The devices described herein can include volatile and non-volatile memory. Examples of memory can include (i) random access memory (RAM), such as DRAM, SRAM, DDR RAM or other random access solid state memory devices, configured to store data and instructions temporarily; (ii) read-only memory (ROM) configured to store data and instructions permanently (e.g., one or more portions of system firmware and/or boot loaders); (iii) flash memory, magnetic disk storage devices, optical disk storage devices, other non-volatile solid state storage devices, which can be configured to store data in electronic devices (e.g., universal serial bus (USB) drives, memory cards, and/or solid-state drives (SSDs)); and (iv) cache memory configured to temporarily store frequently accessed data and instructions. Memory, as described herein, can include structured data (e.g., SQL databases, MongoDB databases, GraphQL data, or JSON data). Other examples of memory can include: (i) profile data, including user account data, user settings, and/or other user data stored by the user; (ii) sensor data detected and/or otherwise obtained by one or more sensors; (iii) media content data including stored image data, audio data, documents, and the like; (iv) application data, which can include data collected and/or otherwise obtained and stored during use of an application; and/or any other types of data described herein.
As described herein, a power system of an electronic device is configured to convert incoming electrical power into a form that can be used to operate the device. A power system can include various components, including (i) a power source, which can be an alternating current (AC) adapter or a direct current (DC) adapter power supply; (ii) a charger input that can be configured to use a wired and/or wireless connection (which may be part of a peripheral interface, such as a USB, micro-USB interface, near-field magnetic coupling, magnetic inductive and magnetic resonance charging, and/or radio frequency (RF) charging); (iii) a power-management integrated circuit, configured to distribute power to various components of the device and ensure that the device operates within safe limits (e.g., regulating voltage, controlling current flow, and/or managing heat dissipation); and/or (iv) a battery configured to store power to provide usable power to components of one or more electronic devices.
As described herein, peripheral interfaces are electronic components (e.g., of electronic devices) that allow electronic devices to communicate with other devices or peripherals and can provide a means for input and output of data and signals. Examples of peripheral interfaces can include (i) USB and/or micro-USB interfaces configured for connecting devices to an electronic device; (ii) Bluetooth interfaces configured to allow devices to communicate with each other, including Bluetooth low energy (BLE); (iii) near-field communication (NFC) interfaces configured to be short-range wireless interfaces for operations such as access control; (iv) POGO pins, which may be small, spring-loaded pins configured to provide a charging interface; (v) wireless charging interfaces; (vi) global-position system (GPS) interfaces; (vii) Wi-Fi interfaces for providing a connection between a device and a wireless network; and (viii) sensor interfaces.
As described herein, sensors are electronic components (e.g., in and/or otherwise in electronic communication with electronic devices, such as wearable devices) configured to detect physical and environmental changes and generate electrical signals. Examples of sensors can include (i) imaging sensors for collecting imaging data (e.g., including one or more cameras disposed on a respective electronic device); (ii) biopotential-signal sensors; (iii) inertial measurement unit (e.g., IMUs) for detecting, for example, angular rate, force, magnetic field, and/or changes in acceleration; (iv) heart rate sensors for measuring a user's heart rate; (v) SpO2 sensors for measuring blood oxygen saturation and/or other biometric data of a user; (vi) capacitive sensors for detecting changes in potential at a portion of a user's body (e.g., a sensor-skin interface) and/or the proximity of other devices or objects; and (vii) light sensors (e.g., ToF sensors, infrared light sensors, or visible light sensors), and/or sensors for sensing data from the user or the user's environment. As described herein biopotential-signal-sensing components are devices used to measure electrical activity within the body (e.g., biopotential-signal sensors). Some types of biopotential-signal sensors include: (i) electroencephalography (EEG) sensors configured to measure electrical activity in the brain to diagnose neurological disorders; (ii) electrocardiogramar EKG) sensors configured to measure electrical activity of the heart to diagnose heart problems; (iii) electromyography (EMG) sensors configured to measure the electrical activity of muscles and diagnose neuromuscular disorders; (iv) electrooculography (EOG) sensors configured to measure the electrical activity of eye muscles to detect eye movement and diagnose eye disorders.
As described herein, an application stored in memory of an electronic device (e.g., software) includes instructions stored in the memory. Examples of such applications include (i) games; (ii) word processors; (iii) messaging applications; (iv) media-streaming applications; (v) financial applications; (vi) calendars; (vii) clocks; (viii) web browsers; (ix) social media applications, (x) camera applications, (xi) web-based applications; (xii) health applications; (xiii) artificial-reality (AR) applications, and/or any other applications that can be stored in memory. The applications can operate in conjunction with data and/or one or more components of a device or communicatively coupled devices to perform one or more operations and/or functions.
As described herein, communication interface modules can include hardware and/or software capable of data communications using any of a variety of custom or standard wireless protocols (e.g., IEEE 802.15.4, Wi-Fi, ZigBee, 6LoWPAN, Thread, Z-Wave, Bluetooth Smart, ISA100.11a, WirelessHART, or MiWi), custom or standard wired protocols (e.g., Ethernet or HomePlug), and/or any other suitable communication protocol, including communication protocols not yet developed as of the filing date of this document. A communication interface is a mechanism that enables different systems or devices to exchange information and data with each other, including hardware, software, or a combination of both hardware and software. For example, a communication interface can refer to a physical connector and/or port on a device that enables communication with other devices (e.g., USB, Ethernet, HDMI, or Bluetooth). In some embodiments, a communication interface can refer to a software layer that enables different software programs to communicate with each other (e.g., application programming interfaces (APIs) and protocols such as HTTP and TCP/IP).
As described herein, a graphics module is a component or software module that is designed to handle graphical operations and/or processes, and can include a hardware module and/or a software module.
As described herein, non-transitory computer-readable storage media are physical devices or storage medium that can be used to store electronic data in a non-transitory form (e.g., such that the data is stored permanently until it is intentionally deleted or modified).
The wrist-wearable device 700 and its constituent components are described below in reference to
Turning to
The user 602 can use any of the wrist-wearable device 700, the AR device 800, and/or the HIPD 900 to provide user inputs. For example, the user 602 can perform one or more hand gestures that are detected by the wrist-wearable device 700 (e.g., using one or more EMG sensors and/or IMUs, described below in reference to
The wrist-wearable device 700, the AR device 800, and/or the HIPD 900 can operate alone or in conjunction to allow the user 602 to interact with the AR environment. In some embodiments, the HIPD 900 is configured to operate as a central hub or control center for the wrist-wearable device 700, the AR device 800, and/or another communicatively coupled device. For example, the user 602 can provide an input to interact with the AR environment at any of the wrist-wearable device 700, the AR device 800, and/or the HIPD 900, and the HIPD 900 can identify one or more back-end and front-end tasks to cause the performance of the requested interaction and distribute instructions to cause the performance of the one or more back-end and front-end tasks at the wrist-wearable device 700, the AR device 800, and/or the HIPD 900. In some embodiments, a back-end task is a background-processing task that is not perceptible by the user (e.g., rendering content, decompression, or compression), and a front-end task is a user-facing task that is perceptible to the user (e.g., presenting information to the user or providing feedback to the user). As described below in reference to
In the example shown by the first AR system 600a, the HIPD 900 identifies one or more back-end tasks and front-end tasks associated with a user request to initiate an AR video call with one or more other users (represented by the avatar 604 and the digital representation of the contact 606) and distributes instructions to cause the performance of the one or more back-end tasks and front-end tasks. In particular, the HIPD 900 performs back-end tasks for processing and/or rendering image data (and other data) associated with the AR video call and provides operational data associated with the performed back-end tasks to the AR device 800 such that the AR device 800 performs front-end tasks for presenting the AR video call (e.g., presenting the avatar 604 and the digital representation of the contact 606).
In some embodiments, the HIPD 900 can operate as a focal or anchor point for causing the presentation of information. This allows the user 602 to be generally aware of where information is presented. For example, as shown in the first AR system 600a, the avatar 604 and the digital representation of the contact 606 are presented above the HIPD 900. In particular, the HIPD 900 and the AR device 800 operate in conjunction to determine a location for presenting the avatar 604 and the digital representation of the contact 606. In some embodiments, information can be presented within a predetermined distance from the HIPD 900 (e.g., within five meters). For example, as shown in the first AR system 600a, virtual object 608 is presented on the desk some distance from the HIPD 900. Similar to the above example, the HIPD 900 and the AR device 800 can operate in conjunction to determine a location for presenting the virtual object 608. Alternatively, in some embodiments, presentation of information is not bound by the HIPD 900. More specifically, the avatar 604, the digital representation of the contact 606, and the virtual object 608 do not have to be presented within a predetermined distance of the HIPD 900.
User inputs provided at the wrist-wearable device 700, the AR device 800, and/or the HIPD 900 are coordinated such that the user can use any device to initiate, continue, and/or complete an operation. For example, the user 602 can provide a user input to the AR device 800 to cause the AR device 800 to present the virtual object 608 and, while the virtual object 608 is presented by the AR device 800, the user 602 can provide one or more hand gestures via the wrist-wearable device 700 to interact and/or manipulate the virtual object 608.
In some embodiments, the user 602 initiates, via a user input, an application on the wrist-wearable device 700, the AR device 800, and/or the HIPD 900 that causes the application to initiate on at least one device. For example, in the second AR system 600b, the user 602 performs a hand gesture associated with a command for initiating a messaging application (represented by messaging user interface 612), the wrist-wearable device 700 detects the hand gesture, and, based on a determination that the user 602 is wearing AR device 800, causes the AR device 800 to present a messaging user interface 612 of the messaging application. The AR device 800 can present the messaging user interface 612 to the user 602 via its display (e.g., as shown by user 602's field of view 610). In some embodiments, the application is initiated and can be run on the device (e.g., the wrist-wearable device 700, the AR device 800, and/or the HIPD 900) that detects the user input to initiate the application, and the device provides another device operational data to cause the presentation of the messaging application. For example, the wrist-wearable device 700 can detect the user input to initiate a messaging application, initiate and run the messaging application, and provide operational data to the AR device 800 and/or the HIPD 900 to cause presentation of the messaging application. Alternatively, the application can be initiated and run at a device other than the device that detected the user input. For example, the wrist-wearable device 700 can detect the hand gesture associated with initiating the messaging application and cause the HIPD 900 to run the messaging application and coordinate the presentation of the messaging application.
Further, the user 602 can provide a user input provided at the wrist-wearable device 700, the AR device 800, and/or the HIPD 900 to continue and/or complete an operation initiated at another device. For example, after initiating the messaging application via the wrist-wearable device 700 and while the AR device 800 presents the messaging user interface 612, the user 602 can provide an input at the HIPD 900 to prepare a response (e.g., shown by the swipe gesture performed on the HIPD 900). The user 602's gestures performed on the HIPD 900 can be provided and/or displayed on another device. For example, the user 602's swipe gestures performed on the HIPD 900 are displayed on a virtual keyboard of the messaging user interface 612 displayed by the AR device 800.
In some embodiments, the wrist-wearable device 700, the AR device 800, the HIPD 900, and/or other communicatively coupled devices can present one or more notifications to the user 602. The notification can be an indication of a new message, an incoming call, an application update, a status update, etc. The user 602 can select the notification via the wrist-wearable device 700, the AR device 800, or the HIPD 900 and cause presentation of an application or operation associated with the notification on at least one device. For example, the user 602 can receive a notification that a message was received at the wrist-wearable device 700, the AR device 800, the HIPD 900, and/or other communicatively coupled device and provide a user input at the wrist-wearable device 700, the AR device 800, and/or the HIPD 900 to review the notification, and the device detecting the user input can cause an application associated with the notification to be initiated and/or presented at the wrist-wearable device 700, the AR device 800, and/or the HIPD 900.
While the above example describes coordinated inputs used to interact with a messaging application, the skilled artisan will appreciate upon reading the descriptions that user inputs can be coordinated to interact with any number of applications including, but not limited to, gaming applications, social media applications, camera applications, web-based applications, financial applications, etc. For example, the AR device 800 can present to the user 602 game application data and the HIPD 900 can use a controller to provide inputs to the game. Similarly, the user 602 can use the wrist-wearable device 700 to initiate a camera of the AR device 800, and the user can use the wrist-wearable device 700, the AR device 800, and/or the HIPD 900 to manipulate the image capture (e.g., zoom in or out or apply filters) and capture image data.
Turning to
In some embodiments, the user 602 can provide a user input via the wrist-wearable device 700, the VR device 810, and/or the HIPD 900 that causes an action in a corresponding AR environment. For example, the user 602 in the third AR system 600c (shown in
In
While the wrist-wearable device 700, the VR device 810, and/or the HIPD 900 are described as detecting user inputs, in some embodiments, user inputs are detected at a single device (with the single device being responsible for distributing signals to the other devices for performing the user input). For example, the HIPD 900 can operate an application for generating the first AR game environment 620 and provide the VR device 810 with corresponding data for causing the presentation of the first AR game environment 620, as well as detect the 602's movements (while holding the HIPD 900) to cause the performance of corresponding actions within the first AR game environment 620. Additionally or alternatively, in some embodiments, operational data (e.g., sensor data, image data, application data, device data, and/or other data) of one or more devices is provide to a single device (e.g., the HIPD 900) to process the operational data and cause respective devices to perform an action associated with processed operational data.
Having discussed example AR systems, devices for interacting with such AR systems, and other computing systems more generally, devices and components will now be discussed in greater detail below. Some definitions of devices and components that can be included in some or all of the example devices discussed below are defined here for ease of reference. A skilled artisan will appreciate that certain types of the components described below may be more suitable for a particular set of devices and less suitable for a different set of devices. But subsequent references to the components defined here should be considered to be encompassed by the definitions provided.
In some embodiments discussed below, example devices and systems, including electronic devices and systems, will be discussed. Such example devices and systems are not intended to be limiting, and one of skill in the art will understand that alternative devices and systems to the example devices and systems described herein may be used to perform the operations and construct the systems and devices that are described herein.
As described herein, an electronic device is a device that uses electrical energy to perform a specific function. It can be any physical object that contains electronic components such as transistors, resistors, capacitors, diodes, and integrated circuits. Examples of electronic devices include smartphones, laptops, digital cameras, televisions, gaming consoles, and music players, as well as the example electronic devices discussed herein. As described herein, an intermediary electronic device is a device that sits between two other electronic devices and/or a subset of components of one or more electronic devices, which facilitates communication, and/or data processing, and/or data transfer between the respective electronic devices and/or electronic components.
As will be described in more detail below, operations executed by the wrist-wearable device 700 can include (i) presenting content to a user (e.g., displaying visual content via a display 705); (ii) detecting (e.g., sensing) user input (e.g., sensing a touch on peripheral button 723 and/or at a touch screen of the display 705, a hand gesture detected by sensors (e.g., biopotential sensors)); (iii) sensing biometric data via one or more sensors 713 (e.g., neuromuscular signals, heart rate, temperature, or sleep); messaging (e.g., text, speech, or video); image capture via one or more imaging devices or cameras 725; wireless communications (e.g., cellular, near field, Wi-Fi, or personal area network); location determination; financial transactions; providing haptic feedback; alarms; notifications; biometric authentication; health monitoring; and/or sleep monitoring.
The above-example functions can be executed independently in the watch body 720, independently in the wearable band 710, and/or via an electronic communication between the watch body 720 and the wearable band 710. In some embodiments, functions can be executed on the wrist-wearable device 700 while an AR environment is being presented (e.g., via one of the AR systems 600a to 600d). As the skilled artisan will appreciate upon reading the descriptions provided herein, the novel wearable devices described herein can be used with other types of AR environments.
The wearable band 710 can be configured to be worn by a user such that an inner (or inside) surface of the wearable structure 711 of the wearable band 710 is in contact with the user's skin. When worn by a user, sensors 713 contact the user's skin. The sensors 713 can sense biometric data such as a user's heart rate, saturated oxygen level, temperature, sweat level, neuromuscular-signal sensors, or a combination thereof. The sensors 713 can also sense data about a user's environment, including a user's motion, altitude, location, orientation, gait, acceleration, position, or a combination thereof. In some embodiments, the sensors 713 are configured to track a position and/or motion of the wearable band 710. The one or more sensors 713 can include any of the sensors defined above and/or discussed below with respect to
The one or more sensors 713 can be distributed on an inside and/or an outside surface of the wearable band 710. In some embodiments, the one or more sensors 713 are uniformly spaced along the wearable band 710. Alternatively, in some embodiments, the one or more sensors 713 are positioned at distinct points along the wearable band 710. As shown in
The wearable band 710 can include any suitable number of sensors 713. In some embodiments, the amount, and arrangements of sensors 713 depend on the particular application for which the wearable band 710 is used. For instance, a wearable band 710 configured as an armband, wristband, or chest-band may include a plurality of sensors 713 with a different number of sensors 713 and different arrangement for each use case, such as medical use cases, compared to gaming or general day-to-day use cases.
In accordance with some embodiments, the wearable band 710 further includes an electrical ground electrode and a shielding electrode. The electrical ground and shielding electrodes, like the sensors 713, can be distributed on the inside surface of the wearable band 710 such that they contact a portion of the user's skin. For example, the electrical ground and shielding electrodes can be at an inside surface of coupling mechanism 716 or an inside surface of a wearable structure 711. The electrical ground and shielding electrodes can be formed and/or use the same components as the sensors 713. In some embodiments, the wearable band 710 includes more than one electrical ground electrode and more than one shielding electrode.
The sensors 713 can be formed as part of the wearable structure 711 of the wearable band 710. In some embodiments, the sensors 713 are flush or substantially flush with the wearable structure 711 such that they do not extend beyond the surface of the wearable structure 711. While flush with the wearable structure 711, the sensors 713 are still configured to contact the user's skin (e.g., via a skin-contacting surface). Alternatively, in some embodiments, the sensors 713 extend beyond the wearable structure 711 a predetermined distance (e.g., 0.1 mm to 2 mm) to make contact and depress into the user's skin. In some embodiments, the sensors 713 are coupled to an actuator (not shown) configured to adjust an extension height (e.g., a distance from the surface of the wearable structure 711) of the sensors 713 such that the sensors 713 make contact and depress into the user's skin. In some embodiments, the actuators adjust the extension height between 0.01 mm to 1.2 mm. This allows the user to customize the positioning of the sensors 713 to improve the overall comfort of the wearable band 710 when worn while still allowing the sensors 713 to contact the user's skin. In some embodiments, the sensors 713 are indistinguishable from the wearable structure 711 when worn by the user.
The wearable structure 711 can be formed of an elastic material, elastomers, etc., configured to be stretched and fitted to be worn by the user. In some embodiments, the wearable structure 711 is a textile or woven fabric. As described above, the sensors 713 can be formed as part of a wearable structure 711. For example, the sensors 713 can be molded into the wearable structure 711 or be integrated into a woven fabric (e.g., the sensors 713 can be sewn into the fabric and mimic the pliability of fabric (e.g., the sensors 713 can be constructed from a series of woven strands of fabric)).
The wearable structure 711 can include flexible electronic connectors that interconnect the sensors 713, the electronic circuitry, and/or other electronic components (described below in reference to
As described above, the wearable band 710 is configured to be worn by a user. In particular, the wearable band 710 can be shaped or otherwise manipulated to be worn by a user. For example, the wearable band 710 can be shaped to have a substantially circular shape such that it can be configured to be worn on the user's lower arm or wrist. Alternatively, the wearable band 710 can be shaped to be worn on another body part of the user, such as the user's upper arm (e.g., around a bicep), forearm, chest, legs, etc. The wearable band 710 can include a retaining mechanism 712 (e.g., a buckle or a hook and loop fastener) for securing the wearable band 710 to the user's wrist or other body part. While the wearable band 710 is worn by the user, the sensors 713 sense data (referred to as sensor data) from the user's skin. In particular, the sensors 713 of the wearable band 710 obtain (e.g., sense and record) neuromuscular signals.
The sensed data (e.g., sensed neuromuscular signals) can be used to detect and/or determine the user's intention to perform certain motor actions. In particular, the sensors 713 sense and record neuromuscular signals from the user as the user performs muscular activations (e.g., movements or gestures). The detected and/or determined motor action (e.g., phalange (or digits) movements, wrist movements, hand movements, and/or other muscle intentions) can be used to determine control commands or control information (instructions to perform certain commands after the data is sensed) for causing a computing device to perform one or more input commands. For example, the sensed neuromuscular signals can be used to control certain user interfaces displayed on the display 705 of the wrist-wearable device 700 and/or can be transmitted to a device responsible for rendering an AR environment (e.g., a head-mounted display) to perform an action in an associated AR environment, such as to control the motion of a virtual device displayed to the user. The muscular activations performed by the user can include static gestures, such as placing the user's hand palm down on a table; dynamic gestures, such as grasping a physical or virtual object; and covert gestures that are imperceptible to another person, such as slightly tensing a joint by co-contracting opposing muscles or using sub-muscular activations. The muscular activations performed by the user can include symbolic gestures (e.g., gestures mapped to other gestures, interactions, or commands, for example, based on a gesture vocabulary that specifies the mapping of gestures to commands).
The sensor data sensed by the sensors 713 can be used to provide a user with an enhanced interaction with a physical object (e.g., devices communicatively coupled with the wearable band 710) and/or a virtual object in an AR application generated by an AR system (e.g., user interface objects presented on the display 705 or another computing device (e.g., a smartphone)).
In some embodiments, the wearable band 710 includes one or more haptic devices 746 (
The wearable band 710 can also include a coupling mechanism 716 (e.g., a cradle or a shape of the coupling mechanism can correspond to the shape of the watch body 720 of the wrist-wearable device 700) for detachably coupling a capsule (e.g., a computing unit) or watch body 720 (via a coupling surface of the watch body 720) to the wearable band 710. In particular, the coupling mechanism 716 can be configured to receive a coupling surface proximate to the bottom side of the watch body 720 (e.g., a side opposite to a front side of the watch body 720 where the display 705 is located), such that a user can push the watch body 720 downward into the coupling mechanism 716 to attach the watch body 720 to the coupling mechanism 716. In some embodiments, the coupling mechanism 716 can be configured to receive a top side of the watch body 720 (e.g., a side proximate to the front side of the watch body 720 where the display 705 is located) that is pushed upward into the cradle, as opposed to being pushed downward into the coupling mechanism 716. In some embodiments, the coupling mechanism 716 is an integrated component of the wearable band 710 such that the wearable band 710 and the coupling mechanism 716 are a single unitary structure. In some embodiments, the coupling mechanism 716 is a type of frame or shell that allows the watch body 720 coupling surface to be retained within or on the wearable band 710 coupling mechanism 716 (e.g., a cradle, a tracker band, a support base, or a clasp).
The coupling mechanism 716 can allow for the watch body 720 to be detachably coupled to the wearable band 710 through a friction fit, a magnetic coupling, a rotation-based connector, a shear-pin coupler, a retention spring, one or more magnets, a clip, a pin shaft, a hook-and-loop fastener, or a combination thereof. A user can perform any type of motion to couple the watch body 720 to the wearable band 710 and to decouple the watch body 720 from the wearable band 710. For example, a user can twist, slide, turn, push, pull, or rotate the watch body 720 relative to the wearable band 710, or a combination thereof, to attach the watch body 720 to the wearable band 710 and to detach the watch body 720 from the wearable band 710. Alternatively, as discussed below, in some embodiments, the watch body 720 can be decoupled from the wearable band 710 by actuation of the release mechanism 729.
The wearable band 710 can be coupled with a watch body 720 to increase the functionality of the wearable band 710 (e.g., converting the wearable band 710 into a wrist-wearable device 700, adding an additional computing unit and/or battery to increase computational resources and/or a battery life of the wearable band 710, or adding additional sensors to improve sensed data). As described above, the wearable band 710 (and the coupling mechanism 716) is configured to operate independently (e.g., execute functions independently) from watch body 720. For example, the coupling mechanism 716 can include one or more sensors 713 that contact a user's skin when the wearable band 710 is worn by the user and provide sensor data for determining control commands.
A user can detach the watch body 720 (or capsule) from the wearable band 710 in order to reduce the encumbrance of the wrist-wearable device 700 to the user. For embodiments in which the watch body 720 is removable, the watch body 720 can be referred to as a removable structure, such that in these embodiments the wrist-wearable device 700 includes a wearable portion (e.g., the wearable band 710) and a removable structure (the watch body 720).
Turning to the watch body 720, the watch body 720 can have a substantially rectangular or circular shape. The watch body 720 is configured to be worn by the user on their wrist or on another body part. More specifically, the watch body 720 is sized to be easily carried by the user, attached on a portion of the user's clothing, and/or coupled to the wearable band 710 (forming the wrist-wearable device 700). As described above, the watch body 720 can have a shape corresponding to the coupling mechanism 716 of the wearable band 710. In some embodiments, the watch body 720 includes a single release mechanism 729 or multiple release mechanisms (e.g., two release mechanisms 729 positioned on opposing sides of the watch body 720, such as spring-loaded buttons) for decoupling the watch body 720 and the wearable band 710. The release mechanism 729 can include, without limitation, a button, a knob, a plunger, a handle, a lever, a fastener, a clasp, a dial, a latch, or a combination thereof.
A user can actuate the release mechanism 729 by pushing, turning, lifting, depressing, shifting, or performing other actions on the release mechanism 729. Actuation of the release mechanism 729 can release (e.g., decouple) the watch body 720 from the coupling mechanism 716 of the wearable band 710, allowing the user to use the watch body 720 independently from wearable band 710 and vice versa. For example, decoupling the watch body 720 from the wearable band 710 can allow the user to capture images using rear-facing camera 725b. Although the coupling mechanism 716 is shown positioned at a corner of watch body 720, the release mechanism 729 can be positioned anywhere on watch body 720 that is convenient for the user to actuate. In addition, in some embodiments, the wearable band 710 can also include a respective release mechanism for decoupling the watch body 720 from the coupling mechanism 716. In some embodiments, the release mechanism 729 is optional and the watch body 720 can be decoupled from the coupling mechanism 716, as described above (e.g., via twisting or rotating).
The watch body 720 can include one or more peripheral buttons 723 and 727 for performing various operations at the watch body 720. For example, the peripheral buttons 723 and 727 can be used to turn on or wake (e.g., transition from a sleep state to an active state) the display 705, unlock the watch body 720, increase or decrease volume, increase, or decrease brightness, interact with one or more applications, interact with one or more user interfaces. Additionally, or alternatively, in some embodiments, the display 705 operates as a touch screen and allows the user to provide one or more inputs for interacting with the watch body 720.
In some embodiments, the watch body 720 includes one or more sensors 721. The sensors 721 of the watch body 720 can be the same or distinct from the sensors 713 of the wearable band 710. The sensors 721 of the watch body 720 can be distributed on an inside and/or an outside surface of the watch body 720. In some embodiments, the sensors 721 are configured to contact a user's skin when the watch body 720 is worn by the user. For example, the sensors 721 can be placed on the bottom side of the watch body 720 and the coupling mechanism 716 can be a cradle with an opening that allows the bottom side of the watch body 720 to directly contact the user's skin. Alternatively, in some embodiments, the watch body 720 does not include sensors that are configured to contact the user's skin (e.g., including sensors internal and/or external to the watch body 720 that are configured to sense data of the watch body 720 and the watch body 720's surrounding environment). In some embodiments, the sensors 713 are configured to track a position and/or motion of the watch body 720.
The watch body 720 and the wearable band 710 can share data using a wired communication method (e.g., a Universal Asynchronous Receiver/Transmitter (UART) or a USB transceiver) and/or a wireless communication method (e.g., near-field communication or Bluetooth). For example, the watch body 720 and the wearable band 710 can share data sensed by the sensors 713 and 721, as well as application- and device-specific information (e.g., active and/or available applications), output devices (e.g., display or speakers), and/or input devices (e.g., touch screens, microphones, or imaging sensors).
In some embodiments, the watch body 720 can include, without limitation, a front-facing camera 725a and/or a rear-facing camera 725b, sensors 721 (e.g., a biometric sensor, an IMU sensor, a heart rate sensor, a saturated oxygen sensor, a neuromuscular-signal sensor, an altimeter sensor, a temperature sensor, a bioimpedance sensor, a pedometer sensor, an optical sensor (e.g.,
As described above, the watch body 720 and the wearable band 710, when coupled, can form the wrist-wearable device 700. When coupled, the watch body 720 and wearable band 710 operate as a single device to execute functions (e.g., operations, detections, or communications) described herein. In some embodiments, each device is provided with particular instructions for performing the one or more operations of the wrist-wearable device 700. For example, in accordance with a determination that the watch body 720 does not include neuromuscular-signal sensors, the wearable band 710 can include alternative instructions for performing associated instructions (e.g., providing sensed neuromuscular-signal data to the watch body 720 via a different electronic device). Operations of the wrist-wearable device 700 can be performed by the watch body 720 alone or in conjunction with the wearable band 710 (e.g., via respective processors and/or hardware components) and vice versa. In some embodiments, operations of the wrist-wearable device 700, the watch body 720, and/or the wearable band 710 can be performed in conjunction with one or more processors and/or hardware components of another communicatively coupled device (e.g.,
As described below with reference to the block diagram of
The watch body 720 and/or the wearable band 710 can include one or more components shown in watch body computing system 760. In some embodiments, a single integrated circuit includes all or a substantial portion of the components of the watch body computing system 760 that are included in a single integrated circuit. Alternatively, in some embodiments, components of the watch body computing system 760 are included in a plurality of integrated circuits that are communicatively coupled. In some embodiments, the watch body computing system 760 is configured to couple (e.g., via a wired or wireless connection) with the wearable band computing system 730, which allows the computing systems to share components, distribute tasks, and/or perform other operations described herein (individually or as a single device).
The watch body computing system 760 can include one or more processors 779, a controller 777, a peripherals interface 761, a power system 795, and memory (e.g., a memory 780), each of which are defined above and described in more detail below.
The power system 795 can include a charger input 796, a power-management integrated circuit (PMIC) 797, and a battery 798, each of which are defined above. In some embodiments, a watch body 720 and a wearable band 710 can have respective charger inputs (e.g., charger inputs 796 and 757), respective batteries (e.g., batteries 798 and 759), and can share power with each other (e.g., the watch body 720 can power and/or charge the wearable band 710 and vice versa). Although watch body 720 and/or the wearable band 710 can include respective charger inputs, a single charger input can charge both devices when coupled. The watch body 720 and the wearable band 710 can receive a charge using a variety of techniques. In some embodiments, the watch body 720 and the wearable band 710 can use a wired charging assembly (e.g., power cords) to receive the charge. Alternatively, or in addition, the watch body 720 and/or the wearable band 710 can be configured for wireless charging. For example, a portable charging device can be designed to mate with a portion of watch body 720 and/or wearable band 710 and wirelessly deliver usable power to a battery of watch body 720 and/or wearable band 710. The watch body 720 and the wearable band 710 can have independent power systems (e.g., power system 795 and 756) to enable each to operate independently. The watch body 720 and wearable band 710 can also share power (e.g., one can charge the other) via respective PMICs (e.g., PMICs 797 and 758) that can share power over power and ground conductors and/or over wireless charging antennas.
In some embodiments, the peripherals interface 761 can include one or more sensors 721, many of which listed below are defined above. The sensors 721 can include one or more coupling sensors 762 for detecting when the watch body 720 is coupled with another electronic device (e.g., a wearable band 710). The sensors 721 can include imaging sensors 763 (one or more of the cameras 725 and/or separate imaging sensors 763 (e.g., thermal-imaging sensors)). In some embodiments, the sensors 721 include one or more SpO2 sensors 764. In some embodiments, the sensors 721 include one or more biopotential-signal sensors (e.g., EMG sensors 765, which may be disposed on a user-facing portion of the watch body 720 and/or the wearable band 710). In some embodiments, the sensors 721 include one or more capacitive sensors 766. In some embodiments, the sensors 721 include one or more heart rate sensors 767. In some embodiments, the sensors 721 include one or more IMUs 768. In some embodiments, one or more IMUs 768 can be configured to detect movement of a user's hand or other location that the watch body 720 is placed or held.
In some embodiments, the peripherals interface 761 includes an NFC component 769, a GPS component 770, a long-term evolution (LTE) component 771, and/or a Wi-Fi and/or Bluetooth communication component 772. In some embodiments, the peripherals interface 761 includes one or more buttons 773 (e.g., the peripheral buttons 723 and 727 in
The watch body 720 can include at least one display 705 for displaying visual representations of information or data to the user, including user-interface elements and/or three-dimensional (3D) virtual objects. The display can also include a touch screen for inputting user inputs, such as touch gestures, swipe gestures, and the like. The watch body 720 can include at least one speaker 774 and at least one microphone 775 for providing audio signals to the user and receiving audio input from the user. The user can provide user inputs through the microphone 775 and can also receive audio output from the speaker 774 as part of a haptic event provided by the haptic controller 778. The watch body 720 can include at least one camera 725, including a front-facing camera 725a and a rear-facing camera 725b. The cameras 725 can include ultra-wide-angle cameras, wide-angle cameras, fish-eye cameras, spherical cameras, telephoto cameras, depth-sensing cameras, or other types of cameras.
The watch body computing system 760 can include one or more haptic controllers 778 and associated componentry (e.g., haptic devices 776) for providing haptic events at the watch body 720 (e.g., a vibrating sensation or audio output in response to an event at the watch body 720). The haptic controllers 778 can communicate with one or more haptic devices 776, such as electroacoustic devices, including a speaker of the one or more speakers 774 and/or other audio components and/or electromechanical devices that convert energy into linear motion such as a motor, solenoid, electroactive polymer, piezoelectric actuator, electrostatic actuator, or other tactile output generating component (e.g., a component that converts electrical signals into tactile outputs on the device). The haptic controller 778 can provide haptic events to respective haptic actuators that are capable of being sensed by a user of the watch body 720. In some embodiments, the one or more haptic controllers 778 can receive input signals from an application of the applications 782.
In some embodiments, the computer system 730 and/or the computer system 760 can include memory 780, which can be controlled by a memory controller of the one or more controllers 777 and/or one or more processors 779. In some embodiments, software components stored in the memory 780 include one or more applications 782 configured to perform operations at the watch body 720. In some embodiments, the one or more applications 782 include games, word processors, messaging applications, calling applications, web browsers, social media applications, media streaming applications, financial applications, calendars, clocks, etc. In some embodiments, software components stored in the memory 780 include one or more communication interface modules 783 as defined above. In some embodiments, software components stored in the memory 780 include one or more graphics modules 784 for rendering, encoding, and/or decoding audio and/or visual data; and one or more data management modules 785 for collecting, organizing, and/or providing access to the data 787 stored in memory 780. In some embodiments, software components stored in the memory 780 include a multi-modal gesture (MMG) processing module 786A, which is configured to perform the features described above in reference to
In some embodiments, software components stored in the memory 780 can include one or more operating systems 781 (e.g., a Linux-based operating system, an Android operating system, etc.). The memory 780 can also include data 787. The data 787 can include profile data 788A, sensor data 789A, media content data 790, application data 791, and MMG data 792A, which stores data related to the performance of the features described above in reference to
It should be appreciated that the watch body computing system 760 is an example of a computing system within the watch body 720, and that the watch body 720 can have more or fewer components than shown in the watch body computing system 760, combine two or more components, and/or have a different configuration and/or arrangement of the components. The various components shown in watch body computing system 760 are implemented in hardware, software, firmware, or a combination thereof, including one or more signal processing and/or application-specific integrated circuits.
Turning to the wearable band computing system 730, one or more components that can be included in the wearable band 710 are shown. The wearable band computing system 730 can include more or fewer components than shown in the watch body computing system 760, combine two or more components, and/or have a different configuration and/or arrangement of some or all of the components. In some embodiments, all, or a substantial portion of the components of the wearable band computing system 730 are included in a single integrated circuit. Alternatively, in some embodiments, components of the wearable band computing system 730 are included in a plurality of integrated circuits that are communicatively coupled. As described above, in some embodiments, the wearable band computing system 730 is configured to couple (e.g., via a wired or wireless connection) with the watch body computing system 760, which allows the computing systems to share components, distribute tasks, and/or perform other operations described herein (individually or as a single device).
The wearable band computing system 730, similar to the watch body computing system 760, can include one or more processors 749, one or more controllers 747 (including one or more haptics controller 748), a peripherals interface 731 that can include one or more sensors 713 and other peripheral devices, power source (e.g., a power system 756), and memory (e.g., a memory 750) that includes an operating system (e.g., an operating system 751), data (e.g., data 754 including profile data 788B, sensor data 789B, MMG data 792B, etc.), and one or more modules (e.g., a communications interface module 752, a data management module 753, a MMG processing module 786B, etc.).
The one or more sensors 713 can be analogous to sensors 721 of the computer system 760 in light of the definitions above. For example, sensors 713 can include one or more coupling sensors 732, one or more SpO2 sensors 734, one or more EMG sensors 735, one or more capacitive sensors 736, one or more heart rate sensors 737, and one or more IMU sensors 738.
The peripherals interface 731 can also include other components analogous to those included in the peripheral interface 761 of the computer system 760, including an NFC component 739, a GPS component 740, an LTE component 741, a Wi-Fi and/or Bluetooth communication component 742, and/or one or more haptic devices 776 as described above in reference to peripherals interface 761. In some embodiments, the peripherals interface 731 includes one or more buttons 743, a display 733, a speaker 744, a microphone 745, and a camera 755. In some embodiments, the peripherals interface 731 includes one or more indicators, such as an LED.
It should be appreciated that the wearable band computing system 730 is an example of a computing system within the wearable band 710, and that the wearable band 710 can have more or fewer components than shown in the wearable band computing system 730, combine two or more components, and/or have a different configuration and/or arrangement of the components. The various components shown in wearable band computing system 730 can be implemented in one or a combination of hardware, software, and firmware, including one or more signal processing and/or application-specific integrated circuits.
The wrist-wearable device 700 with respect to
The techniques described above can be used with any device for sensing neuromuscular signals, including the arm-wearable devices of
In some embodiments, a wrist-wearable device 700 can be used in conjunction with a head-wearable device described below (e.g., AR device 800 and VR device 810) and/or an HIPD 900, and the wrist-wearable device 700 can also be configured to be used to allow a user to control aspect of the artificial reality (e.g., by using EMG-based gestures to control user interface objects in the artificial reality and/or by allowing a user to interact with the touchscreen on the wrist-wearable device to also control aspects of the artificial reality). Having thus described example wrist-wearable device, attention will now be turned to example head-wearable devices, such AR device 800 and VR device 810.
In some embodiments, an AR system (e.g.,
The AR device 800 includes mechanical glasses components, including a frame 804 configured to hold one or more lenses (e.g., one or both lenses 806-1 and 806-2). One of ordinary skill in the art will appreciate that the AR device 800 can include additional mechanical components, such as hinges configured to allow portions of the frame 804 of the AR device 800 to be folded and unfolded, a bridge configured to span the gap between the lenses 806-1 and 806-2 and rest on the user's nose, nose pads configured to rest on the bridge of the nose and provide support for the AR device 800, earpieces configured to rest on the user's ears and provide additional support for the AR device 800, temple arms 805 configured to extend from the hinges to the earpieces of the AR device 800, and the like. One of ordinary skill in the art will further appreciate that some examples of the AR device 800 can include none of the mechanical components described herein. For example, smart contact lenses configured to present AR to users may not include any components of the AR device 800.
The lenses 806-1 and 806-2 can be individual displays or display devices (e.g., a waveguide for projected representations). The lenses 806-1 and 806-2 may act together or independently to present an image or series of images to a user. In some embodiments, the lenses 806-1 and 806-2 can operate in conjunction with one or more display projector assemblies 807A and 807B to present image data to a user. While the AR device 800 includes two displays, embodiments of this disclosure may be implemented in AR devices with a single near-eye display (NED) or more than two NEDs.
The AR device 800 includes electronic components, many of which will be described in more detail below with respect to
The VR device 810 can include a housing 890 storing one or more components of the VR device 810 and/or additional components of the VR device 810. The housing 890 can be a modular electronic device configured to couple with the VR device 810 (or an AR device 800) and supplement and/or extend the capabilities of the VR device 810 (or an AR device 800). For example, the housing 890 can include additional sensors, cameras, power sources, and processors (e.g., processor 848A-2) to improve and/or increase the functionality of the VR device 810. Examples of the different components included in the housing 890 are described below in reference to
Alternatively, or in addition, in some embodiments, the head-wearable device, such as the VR device 810 and/or the AR device 800, includes, or is communicatively coupled to, another external device (e.g., a paired device), such as an HIPD 9 (discussed below in reference to
In some situations, pairing external devices, such as an intermediary processing device (e.g., an HIPD device 900, an optional neckband, and/or a wearable accessory device) with the head-wearable devices (e.g., an AR device 800 and/or a VR device 810) enables the head-wearable devices to achieve a similar form factor of a pair of glasses while still providing sufficient battery and computational power for expanded capabilities. Some, or all, of the battery power, computational resources, and/or additional features of the head-wearable devices can be provided by a paired device or shared between a paired device and the head-wearable devices, thus reducing the weight, heat profile, and form factor of the head-wearable device overall while allowing the head-wearable device to retain its desired functionality. For example, the intermediary processing device (e.g., the HIPD 900) can allow components that would otherwise be included in a head-wearable device to be included in the intermediary processing device (and/or a wearable device or accessory device), thereby shifting a weight load from the user's head and neck to one or more other portions of the user's body. In some embodiments, the intermediary processing device has a larger surface area over which to diffuse and disperse heat to the ambient environment. Thus, the intermediary processing device can allow for greater battery and computational capacity than might otherwise have been possible on the head-wearable devices, standing alone. Because weight carried in the intermediary processing device can be less invasive to a user than weight carried in the head-wearable devices, a user may tolerate wearing a lighter eyewear device and carrying or wearing the paired device for greater lengths of time than the user would tolerate wearing a heavier eyewear device standing alone, thereby enabling an AR environment to be incorporated more fully into a user's day-to-day activities.
In some embodiments, the intermediary processing device is communicatively coupled with the head-wearable device and/or to other devices. The other devices may provide certain functions (e.g., tracking, localizing, depth mapping, processing, and/or storage) to the head-wearable device. In some embodiments, the intermediary processing device includes a controller and a power source. In some embodiments, sensors of the intermediary processing device are configured to sense additional data that can be shared with the head-wearable devices in an electronic format (analog or digital).
The controller of the intermediary processing device processes information generated by the sensors on the intermediary processing device and/or the head-wearable devices. The intermediary processing device, such as an HIPD 900, can process information generated by one or more of its sensors and/or information provided by other communicatively coupled devices. For example, a head-wearable device can include an IMU, and the intermediary processing device (a neckband and/or an HIPD 900) can compute all inertial and spatial calculations from the IMUs located on the head-wearable device. Additional examples of processing performed by a communicatively coupled device, such as the HIPD 900, are provided below in reference to
AR systems may include a variety of types of visual feedback mechanisms. For example, display devices in the AR devices 800 and/or the VR devices 810 may include one or more liquid-crystal displays (LCDs), light emitting diode (LED) displays, organic LED (OLED) displays, and/or any other suitable type of display screen. AR systems may include a single display screen for both eyes or may provide a display screen for each eye, which may allow for additional flexibility for varifocal adjustments or for correcting a refractive error associated with the user's vision. Some AR systems also include optical subsystems having one or more lenses (e.g., conventional concave or convex lenses, Fresnel lenses, or adjustable liquid lenses) through which a user may view a display screen. In addition to or instead of using display screens, some AR systems include one or more projection systems. For example, display devices in the AR device 800 and/or the VR device 810 may include micro-LED projectors that project light (e.g., using a waveguide) into display devices, such as clear combiner lenses that allow ambient light to pass through. The display devices may refract the projected light toward a user's pupil and may enable a user to simultaneously view both AR content and the real world. AR systems may also be configured with any other suitable type or form of image projection system. As noted, some AR systems may, instead of blending an artificial reality with actual reality, substantially replace one or more of a user's sensory perceptions of the real world with a virtual experience.
While the example head-wearable devices are respectively described herein as the AR device 800 and the VR device 810, either or both of the example head-wearable devices described herein can be configured to present fully immersive VR scenes presented in substantially all of a user's field of view, additionally or alternatively to, subtler augmented-reality scenes that are presented within a portion, less than all, of the user's field of view.
In some embodiments, the AR device 800 and/or the VR device 810 can include haptic feedback systems. The haptic feedback systems may provide various types of cutaneous feedback, including vibration, force, traction, shear, texture, and/or temperature. The haptic feedback systems may also provide various types of kinesthetic feedback, such as motion and compliance. The haptic feedback can be implemented using motors, piezoelectric actuators, fluidic systems, and/or a variety of other types of feedback mechanisms. The haptic feedback systems may be implemented independently of other AR devices, within other AR devices, and/or in conjunction with other AR devices (e.g., wrist-wearable devices that may be incorporated into headwear, gloves, body suits, handheld controllers, environmental devices (e.g., chairs or floormats), and/or any other type of device or system, such as a wrist-wearable device 700, an HIPD 900, smart textile-based garment), and/or other devices described herein.
In some embodiments, the computing system 820 and/or the optional housing 890 can include one or more peripheral interfaces 822A and 822B, one or more power systems 842A and 842B (including charger input 843, PMIC 844, and battery 845), one or more controllers 846A and 846B (including one or more haptic controllers 847), one or more processors 848A and 848B (as defined above, including any of the examples provided), and memory 850A and 850B, which can all be in electronic communication with each other. For example, the one or more processors 848A and/or 848B can be configured to execute instructions stored in the memory 850A and/or 850B, which can cause a controller of the one or more controllers 846A and/or 846B to cause operations to be performed at one or more peripheral devices of the peripherals interfaces 822A and/or 822B. In some embodiments, each operation described can occur based on electrical power provided by the power system 842A and/or 842B.
In some embodiments, the peripherals interface 822A can include one or more devices configured to be part of the computing system 820, many of which have been defined above and/or described with respect to wrist-wearable devices shown in
In some embodiments, the peripherals interface can include one or more additional peripheral devices, including one or more NFC devices 830, one or more GPS devices 831, one or more LTE devices 832, one or more Wi-Fi and/or Bluetooth devices 833, one or more buttons 834 (e.g., including buttons that are slidable or otherwise adjustable), one or more displays 835A, one or more speakers 836A, one or more microphones 837A, one or more cameras 838A (e.g., including the first camera 839-1 through nth camera 839-n, which are analogous to the left camera 839A and/or the right camera 839B), one or more haptic devices 840, and/or any other types of peripheral devices defined above or described with respect to any other embodiments discussed herein.
The head-wearable devices can include a variety of types of visual feedback mechanisms (e.g., presentation devices). For example, display devices in the AR device 800 and/or the VR device 810 can include one or more liquid-crystal displays (LCDs), light emitting diode (LED) displays, organic LED (OLED) displays, micro-LEDs, and/or any other suitable types of display screens. The head-wearable devices can include a single display screen (e.g., configured to be seen by both eyes) and/or can provide separate display screens for each eye, which can allow for additional flexibility for varifocal adjustments and/or for correcting a refractive error associated with the user's vision. Some embodiments of the head-wearable devices also include optical subsystems having one or more lenses (e.g., conventional concave or convex lenses, Fresnel lenses, or adjustable liquid lenses) through which a user can view a display screen. For example, respective displays 835A can be coupled to each of the lenses 806-1 and 806-2 of the AR device 800. The displays 835A coupled to each of the lenses 806-1 and 806-2 can act together or independently to present an image or series of images to a user. In some embodiments, the AR device 800 and/or the VR device 810 includes a single display 835A (e.g., a near-eye display) or more than two displays 835A.
In some embodiments, a first set of one or more displays 835A can be used to present an augmented-reality environment, and a second set of one or more display devices 835A can be used to present a VR environment. In some embodiments, one or more waveguides are used in conjunction with presenting AR content to the user of the AR device 800 and/or the VR device 810 (e.g., as a means of delivering light from a display projector assembly and/or one or more displays 835A to the user's eyes). In some embodiments, one or more waveguides are fully or partially integrated into the AR device 800 and/or the VR device 810. Additionally, or alternatively, to display screens, some AR systems include one or more projection systems. For example, display devices in the AR device 800 and/or the VR device 810 can include micro-LED projectors that project light (e.g., using a waveguide) into display devices, such as clear combiner lenses that allow ambient light to pass through. The display devices can refract the projected light toward a user's pupil and can enable a user to simultaneously view both AR content and the real world. The head-wearable devices can also be configured with any other suitable type or form of image projection system. In some embodiments, one or more waveguides are provided, additionally or alternatively, to the one or more display(s) 835A.
In some embodiments of the head-wearable devices, ambient light and/or a real-world live view (e.g., a live feed of the surrounding environment that a user would normally see) can be passed through a display element of a respective head-wearable device presenting aspects of the AR system. In some embodiments, ambient light and/or the real-world live view can be passed through a portion, less than all, of an AR environment presented within a user's field of view (e.g., a portion of the AR environment co-located with a physical object in the user's real-world environment that is within a designated boundary (e.g., a guardian boundary) configured to be used by the user while they are interacting with the AR environment). For example, a visual user interface element (e.g., a notification user interface element) can be presented at the head-wearable devices, and an amount of ambient light and/or the real-world live view (e.g., 15%-50% of the ambient light and/or the real-world live view) can be passed through the user interface element, such that the user can distinguish at least a portion of the physical environment over which the user interface element is being displayed.
The head-wearable devices can include one or more external displays 835A for presenting information to users. For example, an external display 835A can be used to show a current battery level, network activity (e.g., connected, disconnected), current activity (e.g., playing a game, in a call, in a meeting, or watching a movie), and/or other relevant information. In some embodiments, the external displays 835A can be used to communicate with others. For example, a user of the head-wearable device can cause the external displays 835A to present a “do not disturb” notification. The external displays 835A can also be used by the user to share any information captured by the one or more components of the peripherals interface 822A and/or generated by the head-wearable device (e.g., during operation and/or performance of one or more applications).
The memory 850A can include instructions and/or data executable by one or more processors 848A (and/or processors 848B of the housing 890) and/or a memory controller of the one or more controllers 846A (and/or controller 846B of the housing 890). The memory 850A can include one or more operating systems 851, one or more applications 852, one or more communication interface modules 853A, one or more graphics modules 854A, one or more AR processing modules 855A, MMG processing module 856A for configured to process one or more input gestures performed by the user 105 detected by the one or more sensors 823A at the head-wearable device 120, and/or any other types of modules or components defined above or described with respect to any other embodiments discussed herein.
The data 860 stored in memory 850A can be used in conjunction with one or more of the applications and/or programs discussed above. The data 860 can include profile data 861, sensor data 862, media content data 863, AR application data 864, MMG data 865 representing the one or more input gestures performed by the user 105 detected at the head-wearable device 120 and/or another communicatively coupled device; and/or any other types of data defined above or described with respect to any other embodiments discussed herein.
In some embodiments, the controller 846A of the head-wearable devices processes information generated by the sensors 823A on the head-wearable devices and/or another component of the head-wearable devices and/or communicatively coupled with the head-wearable devices (e.g., components of the housing 890, such as components of peripherals interface 822B). For example, the controller 846A can process information from the acoustic sensors 825 and/or image sensors 826. For each detected sound, the controller 846A can perform a direction of arrival (DOA) estimation to estimate a direction from which the detected sound arrived at a head-wearable device. As one or more of the acoustic sensors 825 detect sounds, the controller 846A can populate an audio data set with the information (e.g., represented by sensor data 862).
In some embodiments, a physical electronic connector can convey information between the head-wearable devices and another electronic device, and/or between one or more processors 848A of the head-wearable devices and the controller 846A. The information can be in the form of optical data, electrical data, wireless data, or any other transmittable data form. Moving the processing of information generated by the head-wearable devices to an intermediary processing device can reduce weight and heat in the eyewear device, making it more comfortable and safer for a user. In some embodiments, an optional accessory device (e.g., an electronic neckband or an HIPD 900) is coupled to the head-wearable devices via one or more connectors. The connectors can be wired or wireless connectors and can include electrical and/or non-electrical (e.g., structural) components. In some embodiments, the head-wearable devices and the accessory device can operate independently without any wired or wireless connection between them.
The head-wearable devices can include various types of computer vision components and subsystems. For example, the AR device 800 and/or the VR device 810 can include one or more optical sensors such as two-dimensional (2D) or three-dimensional (3D) cameras, ToF depth sensors, single-beam or sweeping laser rangefinders, 3D LiDAR sensors, and/or any other suitable type or form of optical sensor. A head-wearable device can process data from one or more of these sensors to identify a location of a user and/or aspects of the user's real-world physical surroundings, including the locations of real-world objects within the real-world physical surroundings. In some embodiments, the methods described herein are used to map the real world, to provide a user with context about real-world surroundings, and/or to generate interactable virtual objects (which can be replicas or digital twins of real-world objects that can be interacted with an AR environment), among a variety of other functions. For example,
The optional housing 890 can include analogous components to those describe above with respect to the computing system 820. For example, the optional housing 890 can include a respective peripherals interface 822B, including more or fewer components to those described above with respect to the peripherals interface 822A. As described above, the components of the optional housing 890 can be used to augment and/or expand on the functionality of the head-wearable devices. For example, the optional housing 890 can include respective sensors 823B, speakers 836B, displays 835B, microphones 837B, cameras 838B, and/or other components to capture and/or present data. Similarly, the optional housing 890 can include one or more processors 848B, controllers 846B, and/or memory 850B (including respective communication interface modules 853B, one or more graphics modules 854B, one or more AR processing modules 855B, input gesture processing module 856A) that can be used individually and/or in conjunction with the components of the computing system 820.
The techniques described above in
The HIPD 900 can perform various functions independently and/or in conjunction with one or more wearable devices (e.g., wrist-wearable device 700, AR device 800, and/or VR device 810). The HIPD 900 is configured to increase and/or improve the functionality of communicatively coupled devices, such as the wearable devices. The HIPD 900 is configured to perform one or more functions or operations associated with interacting with user interfaces and applications of communicatively coupled devices, interacting with an AR environment, interacting with a VR environment, and/or operating as a human-machine interface controller, as well as functions and/or operations described above with reference to
While the HIPD 900 is communicatively coupled with a wearable device and/or other electronic device, the HIPD 900 is configured to perform one or more operations initiated at the wearable device and/or the other electronic device. In particular, one or more operations of the wearable device and/or the other electronic device can be offloaded to the HIPD 900 to be performed. The HIPD 900 performs one or more operations of the wearable device and/or the other electronic device and provides data corresponding to the completed operations to the wearable device and/or the other electronic device. For example, a user can initiate a video stream using the AR device 800 and back-end tasks associated with performing the video stream (e.g., video rendering) can be offloaded to the HIPD 900, which the HIPD 900 performs and provides corresponding data to the AR device 800 to perform remaining front-end tasks associated with the video stream (e.g., presenting the rendered video data via a display of the AR device 800). In this way, the HIPD 900, which has more computational resources and greater thermal headroom than a wearable device can perform computationally intensive tasks for the wearable device, improving performance of an operation performed by the wearable device.
The HIPD 900 includes a multi-touch input surface 902 on a first side (e.g., a front surface) that is configured to detect one or more user inputs. In particular, the multi-touch input surface 902 can detect single-tap inputs, multi-tap inputs, swipe gestures and/or inputs, force-based and/or pressure-based touch inputs, held taps, and the like. The multi-touch input surface 902 is configured to detect capacitive touch inputs and/or force (and/or pressure) touch inputs. The multi-touch input surface 902 includes a first touch-input surface 904 defined by a surface depression, and a second touch-input surface 906 defined by a substantially planar portion. The first touch-input surface 904 can be disposed adjacent to the second touch-input surface 906. In some embodiments, the first touch-input surface 904 and the second touch-input surface 906 can be different dimensions, shapes, and/or cover different portions of the multi-touch input surface 902. For example, the first touch-input surface 904 can be substantially circular and the second touch-input surface 906 is substantially rectangular. In some embodiments, the surface depression of the multi-touch input surface 902 is configured to guide user handling of the HIPD 900. In particular, the surface depression is configured such that the user holds the HIPD 900 upright when held in a single hand (e.g., such that the using imaging devices or cameras 914A and 914B are pointed toward a ceiling or the sky). Additionally, the surface depression is configured such that the user's thumb rests within the first touch-input surface 904.
In some embodiments, the different touch-input surfaces include a plurality of touch-input zones. For example, the second touch-input surface 906 includes at least a first touch-input zone 908 within a second touch-input zone 906 and a third touch-input zone 910 within the first touch-input zone 908. In some embodiments, one or more of the touch-input zones are optional and/or user defined (e.g., a user can specific a touch-input zone based on their preferences). In some embodiments, each touch-input surface and/or touch-input zone is associated with a predetermined set of commands. For example, a user input detected within the first touch-input zone 908 causes the HIPD 900 to perform a first command and a user input detected within the second touch-input zone 906 causes the HIPD 900 to perform a second command, distinct from the first. In some embodiments, different touch-input surfaces and/or touch-input zones are configured to detect one or more types of user inputs. The different touch-input surfaces and/or touch-input zones can be configured to detect the same or distinct types of user inputs. For example, the first touch-input zone 908 can be configured to detect force touch inputs (e.g., a magnitude at which the user presses down) and capacitive touch inputs, and the second touch-input zone 906 can be configured to detect capacitive touch inputs.
The HIPD 900 includes one or more sensors 951 for sensing data used in the performance of one or more operations and/or functions. For example, the HIPD 900 can include an IMU that is used in conjunction with cameras 914A and 914B for 3-dimensional object manipulation (e.g., enlarging, moving, destroying, etc. an object) in an AR or VR environment. Non-limiting examples of the sensors 951 included in the HIPD 900 include a light sensor, a magnetometer, a depth sensor, a pressure sensor, and a force sensor. Additional examples of the sensors 951 are provided below in reference to
The HIPD 900 can include one or more light indicators 912 to provide one or more notifications to the user. In some embodiments, the light indicators are LEDs or other types of illumination devices. The light indicators 912 can operate as a privacy light to notify the user and/or others near the user that an imaging device and/or microphone are active. In some embodiments, a light indicator is positioned adjacent to one or more touch-input surfaces. For example, a light indicator can be positioned around the first touch-input surface 904. The light indicators can be illuminated in different colors and/or patterns to provide the user with one or more notifications and/or information about the device. For example, a light indicator positioned around the first touch-input surface 904 can flash when the user receives a notification (e.g., a message), change red when the HIPD 900 is out of power, operate as a progress bar (e.g., a light ring that is closed when a task is completed (e.g., 0% to 100%)), operates as a volume indicator, etc.).
In some embodiments, the HIPD 900 includes one or more additional sensors on another surface. For example, as shown
The side view 925 of the of the HIPD 900 shows the sensor set 920 and camera 914B. The sensor set 920 includes one or more cameras 922A and 922B, a depth projector 924, an ambient light sensor 928, and a depth receiver 930. In some embodiments, the sensor set 920 includes a light indicator 926. The light indicator 926 can operate as a privacy indicator to let the user and/or those around them know that a camera and/or microphone is active. The sensor set 920 is configured to capture a user's facial expression such that the user can puppet a custom avatar (e.g., showing emotions, such as smiles, laughter, etc., on the avatar or a digital representation of the user). The sensor set 920 can be configured as a side stereo red-green-blue (RGB) system, a rear indirect time-of-flight (iToF) system, or a rear stereo RGB system. As the skilled artisan will appreciate upon reading the descriptions provided herein, the novel HIPD 900 described herein can use different sensor set 920 configurations and/or sensor set 920 placement.
In some embodiments, the HIPD 900 includes one or more haptic devices 971 (
The HIPD 900 is configured to operate without a display. However, in optional embodiments, the HIPD 900 can include a display 968 (
As described above, the HIPD 900 can distribute and/or provide instructions for performing the one or more tasks at the HIPD 900 and/or a communicatively coupled device. For example, the HIPD 900 can identify one or more back-end tasks to be performed by the HIPD 900 and one or more front-end tasks to be performed by a communicatively coupled device. While the HIPD 900 is configured to offload and/or handoff tasks of a communicatively coupled device, the HIPD 900 can perform both back-end and front-end tasks (e.g., via one or more processors, such as CPU 977;
The HIPD computing system 940 can include a processor (e.g., a CPU 977, a GPU, and/or a CPU with integrated graphics), a controller 975, a peripherals interface 950 that includes one or more sensors 951 and other peripheral devices, a power source (e.g., a power system 995), and memory (e.g., a memory 978) that includes an operating system (e.g., an operating system 979), data (e.g., data 988), one or more applications (e.g., applications 980), and one or more modules (e.g., a communications interface module 981, a graphics module 982, a task and processing management module 983, an interoperability module 984, an AR processing module 985, a data management module 986, a MMG processing module 987, etc.). The MMG processing module 987 is configured to process one or more input gestures detected by a communicatively coupled device such as the head-wearable device 120 and/or the wrist-wearable device 110. After processing the input gesture at the MMG processing module 987 and in accordance with at determination that the input gesture corresponds with one or more operations, performing one or more operations at the head-wearable device 120 or the wrist-wearable device 110. The HIPD computing system 940 further includes a power system 995 that includes a charger input and output 996, a PMIC 997, and a battery 998, all of which are defined above.
In some embodiments, the peripherals interface 950 can include one or more sensors 951. The sensors 951 can include analogous sensors to those described above in reference to
Analogous to the peripherals described above in reference to
Similar to the watch body computing system 760 and the watch band computing system 730 described above in reference to
Memory 978 can include high-speed random-access memory and/or non-volatile memory, such as one or more magnetic disk storage devices, flash memory devices, or other non-volatile solid-state memory devices. Access to the memory 978 by other components of the HIPD 900, such as the one or more processors and the peripherals interface 950, can be controlled by a memory controller of the controllers 975.
In some embodiments, software components stored in the memory 978 include one or more operating systems 979, one or more applications 980, one or more communication interface modules 981, one or more graphics modules 982, one or more data management modules 985, which are analogous to the software components described above in reference to
In some embodiments, software components stored in the memory 978 include a task and processing management module 983 for identifying one or more front-end and back-end tasks associated with an operation performed by the user, performing one or more front-end and/or back-end tasks, and/or providing instructions to one or more communicatively coupled devices that cause performance of the one or more front-end and/or back-end tasks. In some embodiments, the task and processing management module 983 uses data 988 (e.g., device data 990) to distribute the one or more front-end and/or back-end tasks based on communicatively coupled devices' computing resources, available power, thermal headroom, ongoing operations, and/or other factors. For example, the task and processing management module 983 can cause the performance of one or more back-end tasks (of an operation performed at communicatively coupled AR device 800) at the HIPD 900 in accordance with a determination that the operation is utilizing a predetermined amount (e.g., at least 70%) of computing resources available at the AR device 800.
In some embodiments, software components stored in the memory 978 include an interoperability module 984 for exchanging and utilizing information received and/or provided to distinct communicatively coupled devices. The interoperability module 984 allows for different systems, devices, and/or applications to connect and communicate in a coordinated way without user input. In some embodiments, software components stored in the memory 978 include an AR module 985 that is configured to process signals based at least on sensor data for use in an AR and/or VR environment. For example, the AR processing module 985 can be used for 3D object manipulation, gesture recognition, facial and facial expression, recognition, etc.
The memory 978 can also include data 988, including structured data. In some embodiments, the data 988 can include profile data 989, device data 990 (including device data of one or more devices communicatively coupled with the HIPD 900, such as device type, hardware, software, configurations, etc.), sensor data 991, media content data 992, application data 993, and MMG data 994, which stores data related to the performance of the features described above in reference to
It should be appreciated that the HIPD computing system 940 is an example of a computing system within the HIPD 900, and that the HIPD 900 can have more or fewer components than shown in the HIPD computing system 940, combine two or more components, and/or have a different configuration and/or arrangement of the components. The various components shown in HIPD computing system 940 are implemented in hardware, software, firmware, or a combination thereof, including one or more signal processing and/or application-specific integrated circuits.
The techniques described above in
It will be understood that, although the terms “first,” “second,” etc., may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the claims. As used in the description of the embodiments and the appended claims, the singular forms “a,” “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will also be understood that the term “and/or” as used herein refers to and encompasses any and all possible combinations of one or more of the associated listed items. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
As used herein, the term “if” can be construed to mean “when” or “upon” or “in response to determining” or “in accordance with a determination” or “in response to detecting,” that a stated condition precedent is true, depending on the context. Similarly, the phrase “if it is determined [that a stated condition precedent is true]” or “if [a stated condition precedent is true]” or “when [a stated condition precedent is true]” can be construed to mean “upon determining” or “in response to determining” or “in accordance with a determination” or “upon detecting” or “in response to detecting” that the stated condition precedent is true, depending on the context.
The foregoing description, for purpose of explanation, has been described with reference to specific embodiments. However, the illustrative discussions above are not intended to be exhaustive or to limit the claims to the precise forms disclosed. Many modifications and variations are possible in view of the above teachings. The embodiments were chosen and described in order to best explain principles of operation and practical applications, to thereby enable others skilled in the art.
This application is a continuation of U.S. patent application Ser. No. 18/909,860, filed on Oct. 8, 2024, entitled “Multi-Modal Inputs for Wearable Devices, and Systems and Methods of Use Thereof,” which claims priority to U.S. Provisional Application No. 63/591,111, filed on Oct. 17, 2023, entitled “Multi-Modal Inputs for Wearable Devices, and Systems and Methods of Use thereof,” each of which is incorporated by reference herein in its entirety.
Number | Date | Country | |
---|---|---|---|
63591111 | Oct 2023 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 18909860 | Oct 2024 | US |
Child | 19096536 | US |