The present invention relates to liquid dispensers generally, and more particularly to a re-fillable liquid spray dispenser having a mechanism for re-filling the dispenser without risk of liquid spillage, as well as an efficient mechanism for venting air as the dispenser is re-filled with liquid.
Manual liquid dispensers of various sorts have been widely implemented in a variety of applications. One type of liquid dispenser is a manually operated pump that is arranged to dispense a liquid in a fine mist. Such liquid dispensers are commonly referred to as “atomizers”, in that the liquid is dispensed in very small liquid droplets. A common application for such liquid spray dispensers is in the dispensing of fragrance.
Liquid spray dispensers typically utilize a reciprocating pump that is manually operated by an external force applied against a restorative spring force of an expansion spring, with the application and removal of the external force being sufficient to generate pressure changes in the liquid chamber of the dispenser to alternately cause liquid dispensation and intake of liquid for the next pumping cycle. Liquid forced under pressure through a spray nozzle generates a dispersed mist of very small liquid droplets. Typically, liquid spray dispensers of this type comprise a pump mechanism which contains a liquid chamber, and a piston that is manually reciprocated in the pump mechanism. The piston is mounted for reciprocating movement in the liquid chamber, such that movement of the pump against a spring force causes the piston to move in the liquid chamber to thereby exert a compression force on the liquid in the chamber. Such force causes the liquid to move through a liquid passage to the spray outlet. Release of the external downward force to the pump permits the spring to expand under its restorative force, and to thereby return the pumping mechanism to its extended position. This movement of the pump mechanism causes the piston to move in the liquid chamber in a manner which expands the interior volume of the chamber. The negative pressure created by such movement draws liquid into the liquid chamber. Valve assemblies are typically employed in controlling the flow of liquid into the liquid chamber as its interior volume is increased by the movement of the pump mechanism.
In some cases, it has been found beneficial to be able to re-fill the liquid chamber in liquid spray dispensers. The ability to re-fill the liquid chamber permits re-use of the dispenser. Not only does re-use of the dispenser promote conservation of the materials employed in manufacturing the dispenser, but also permits the manufacture of more expensive dispensers, both in form and function. One particular example is a reusable fragrance atomizer having an overall size that is suitable for storage in a pocket or small purse. While such small dimensions are useful for portability, the fragrance capacity is compromised. Thus, it may be beneficial to be able to re-fill the liquid chamber in such portable dispenser.
A number of approaches have been implemented for re-filling a liquid chamber in a liquid spray dispenser. One approach is to merely open the liquid chamber and pour in the replacement liquid with the use of a funnel. This technique, however, is time-consuming and can result in spillage of the refilling liquid. Another approach is a liquid inlet valve incorporated with the liquid spray dispenser for injecting replacement liquid into the liquid chamber. The liquid inlet valve is configured for engagement with a dispensing nozzle of a large liquid reservoir. While various designs for inlet valve systems to liquid spray dispensers have been implemented, conventional designs do not establish quality liquid seals, thereby resulting in liquid leakage and/or are difficult or expensive to manufacture.
It is therefore an object of the present invention to provide a re-fillable liquid spray dispenser that is easy to operate, reliably seals the liquid chamber, and which improves manufacturability.
By means of the present invention, re-filling of a liquid spray dispenser may be consistently performed without liquid leakage. The dispenser of the present invention utilizes a valve body with a resilient sealing gasket that is adapted to sealingly engage a dispensing nozzle from a liquid reservoir. The valve body retains a liquid seal throughout the injection liquid process through a multiple-seal arrangement. Moreover, the valve body is synchronously movable with a venting rod to open and close a vent gasket in the liquid chamber with the opening and closing of the liquid inlet valve. In this manner, the air vent valve is open only when the liquid inlet valve is open.
In one embodiment, the re-fillable liquid spray dispenser of the present invention includes a vessel defining a main chamber and a pump apparatus having a liquid chamber and an air passage venting the main chamber. The pump apparatus defines a central axis that defines mutually perpendicular axial and radial directions. The spray dispenser further includes a piston rod having a hollow interior defining a liquid passage and a piston positioned at the liquid chamber and being axially movable in the pump apparatus by the piston rod to pump liquid from the liquid chamber into the liquid passage, and to draw liquid from the main chamber into the liquid chamber through a first check valve in the pump apparatus. A vent gasket is secured to the pump apparatus, and has a flange portion resiliently contactable with the pump apparatus to releasably seal the air passage. A valve body sealingly engages within an opening of the vessel, and has a first portion with an inlet passage permitting liquid flow through the valve body into the main chamber, and a second portion adapted to receive a discharge nozzle from a liquid reservoir. The valve body is biased into a first position to close the inlet passage. A venting rod is movable by the valve body to disengage the flange portion of the vent gasket from the pump apparatus to open the air passage.
With reference now to the drawing figures, and first to
In some embodiments, a discharge nozzle 3 may be employed in fluidly coupling reservoir 1 to dispenser 10. Discharge nozzle 3 may therefore constitute an adaptor that is sealingly securable to discharge 2 of reservoir 1, and to dispenser 10, as will be described in greater detail hereinbelow. While a variety of configurations for discharge nozzle 3 are contemplated by the present invention, an example arrangement is illustrated in
A detailed cross-sectional view of an embodiment of liquid spray dispenser 10 is illustrated in
To vessel 14 is secured a pump apparatus 20, which is shown in isolation in
Attachment member 26 may be secured about cylinder 22, with an annular ridge 40 of cylinder 22 being received in an annular channel 42 of attachment member 26. Cylinder 22 may assume a variety of configurations, but may include a radially-stepped outer diameter to accommodate the operation of the components of pump apparatus 20 described herein. Cylinder 20 includes an inlet 44 which may accommodate a dipper tube 46 for intake of liquid 8 from main chamber 16. Cylinder 22 may also form a lower seat 48 upon which a ball 50 may operably engage to establish a first check valve 52 of pump apparatus 20.
A piston rod 54 may include a hollow interior defining a liquid passage 56 for communicating liquid between liquid chamber 24 and spray nozzle 18. Piston rod 54 may be reciprocally actuated along axial direction 31 by a manual pumping force axially applied to cap 58. The axial pumping force applied to piston rod 54 acts initially against piston 64, and secondarily against the restorative forces of an upper spring 60 and a lower spring 62 to depress piston 64 into liquid chamber 24 to thereby increase pressure within liquid chamber 24. Release of the pumping force at cap 58 permits the restorative forces of upper and lower springs 60, 62 to push piston 64 axially out from liquid chamber 24 to thereby decrease the fluid pressure in liquid chamber 24. Piston 64 is therefore positioned at liquid chamber 24, and is axially movable along axial direction 31 in pump apparatus 20 by piston rod 54 to pump liquid 8 from liquid chamber 24 into liquid passage 56, and to draw liquid 8 from main chamber 16 into liquid chamber 24 through first check valve 52.
A downward pumping stroke of pump apparatus 20 is illustrated in
A second part of the pumping cycle is illustrated in
A vent gasket 72 is secured to pump apparatus 20, and includes a flange portion 74 that is resiliently contactable with pump apparatus 20 to releasably seal closed air passage 28. In the illustrated embodiment, stem portion 76 of vent gasket 72 is secured between inner brace portion 36 of attachment member 26 and an outer surface 25 of cylinder 22. Stem portion 76 may be friction fit between inner brace portion 36 and cylinder 22. Flange portion 74 of vent gasket 72 may be resiliently contactable with an inner surface 35 of outer brace portion 34, such that flange portion 74 resiliently seals against outer brace portion 34 to releasably close air passage 28 between outer and inner brace portions 34, 36 of attachment member 26. Vent gasket 72 may be fabricated from any desirable resilient material such as various plastics, rubbers, and the like. In one embodiment, vent gasket 72 is silicone.
A valve body 78 is sealingly engaged to vessel 14 in an opening 80 of vessel 14. In the illustrated embodiment, opening 80 may be disposed in base wall 14B. However, it is contemplated that opening 80 may be otherwise disposed in vessel 14. Valve body 78 includes a first portion 82 with an inlet passage 84 permitting liquid flow through valve body 78 into main chamber 16, and a second portion 86 adapted to receive discharge 2, such as discharge nozzle 3 from liquid reservoir 1. A valve body spring 88 has a restorative force which acts to urge valve body 78 axially outwardly along direction 31 into a first position 90 (
Opening 80 of vessel 14 defines a recess having a side wall 92, an end wall 94, and an annular flange 96, which, in combination, define an annular grove 98 annularly arranged about central axis 30. Valve body spring 88 may be positioned in annular groove 98 between end wall 94 and strut portion 79 of valve body 78 to urge valve body 78 downwardly toward first position 90. Valve body 78 is sealingly engaged to vessel 14 at annular flange 96 through first and second sealing rings 100, 102, which may comprise resilient o-rings secured to valve body 78 at retention grooves 104A, 104B. First and second sealing rings 100, 102 may be axially spaced across inlet passage 84, such that inlet passage 84 is disposed axially between first and second sealing rings 100, 102. In this manner, valve body 78 remains sealingly engaged with annular flange 96 of vessel 14 when valve body 78 is actuated into second position 91 through an upward force applied thereto by discharge nozzle 3 of reservoir 1. The two distinct sealing rings 100, 102 provide separate and distinct sealing locations for valve body 78 in sealing engagement with vessel 14 at annular flange 96. Therefore, in first position 90, valve body 78 may be sealingly engaged to annular flange 96 at both first and second sealing rings 100, 102, which resiliently contact both first portion 82 of valve body 78 and annular flange 96 of vessel 14. When valve body 78 is forced axially upward as a result of the liquid injection process described above with respect to
A resilient valve gasket 106 may be provided at an inner surface 81 of valve body 78 to provide for sealing engagement with nipple 7a of discharge nozzle 3 and/or discharge 2 of reservoir 1. Resilient valve gasket 106 is manufactured from a resilient material to establish a liquid-tight seal about nipple 7a and/or discharge 2 to prevent liquid leakage from the engagement between discharge 2/discharge nozzle 3 and valve body 78.
In one embodiment, resilient valve gasket 106 includes a tapered portion 108 that may be configured for sealing engagement with shoulder 7b of discharge nozzle 3. With reference back to
Filling or re-filling of liquid 8 into main chamber 16, as described above, relies upon a venting capability to remove an amount of air from main chamber 16 assuming a volume equivalent to the added liquid volume. The enclosed main chamber 16, in the absence of such a venting capability, would prevent liquid addition in the sealed manner described above. Thus, it is an important aspect of the present invention to provide a mechanism for temporarily venting main chamber 16 simultaneous with liquid transfer to main chamber 16.
To accomplish the venting of main chamber 16 described above, a venting rod 110 is movable by valve body 78 to disengage flange portion 74 of vent gasket 72 from pump apparatus 20 to thereby open air passage 28. As illustrated in
The opening and closing of air passage 28 by the releasable contact of venting rod 110 with flange portion 72 of vent gasket 72 is illustrated in
In some embodiments, an outer casing 120 may be provided for decorative and/or protective purposes. In one embodiment, outer casing 120 may be fabricated from a high-grade aluminum material.
An exploded component view of liquid spray dispenser 10 is illustrated in
The invention has been described herein in considerable detail in order to comply with the patent statutes, and to provide those skilled in the art with the information needed to apply the novel principles and to construct and use embodiments of the invention as required. However, it is to be understood that various modifications may be accomplished without departing from the scope of the invention itself.
This application claims priority to U.S. provisional patent application Ser. No. 61/563,302 filed on Nov. 23, 2011 and entitled “Perfume Atomizer,” the content of which being incorporated herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3181737 | Chaucer | May 1965 | A |
3559701 | Witterscheim | Feb 1971 | A |
3718165 | Grothoff | Feb 1973 | A |
4473097 | Knickerbocker et al. | Sep 1984 | A |
4750532 | Grothoff | Jun 1988 | A |
5524680 | de Laforcade | Jun 1996 | A |
5623974 | Losenno et al. | Apr 1997 | A |
5791527 | Giuffredi | Aug 1998 | A |
6533482 | Byun | Mar 2003 | B1 |
6857806 | Harrison et al. | Feb 2005 | B2 |
7377296 | Gueret | May 2008 | B2 |
7665635 | Ramet et al. | Feb 2010 | B2 |
7743949 | Ramet | Jun 2010 | B2 |
8079388 | Turgeman | Dec 2011 | B2 |
20050056343 | Gueret | Mar 2005 | A1 |
20120090733 | Turgeman | Apr 2012 | A1 |
Number | Date | Country |
---|---|---|
2114634 | Sep 1992 | CN |
201055827 | May 2008 | CN |
1283180 | Dec 2003 | EP |
2698341 | May 1994 | FR |
2802447 | Jun 2001 | FR |
2893598 | May 2007 | FR |
2095103 | Sep 1982 | GB |
2229380 | Sep 1990 | GB |
8175578 | Jul 1996 | JP |
2004182305 | Jul 2004 | JP |
0243794 | Jun 2002 | WO |
Entry |
---|
Travolo, Travolo Perfume Atomizer Extended Information, http://us.travolo.com/4ml-perfume-atomizer.html , last accessed Nov. 21, 2011. |
Number | Date | Country | |
---|---|---|---|
20130126639 A1 | May 2013 | US |
Number | Date | Country | |
---|---|---|---|
61563302 | Nov 2011 | US |