Perfumes for rinse-off systems

Information

  • Patent Grant
  • 7446079
  • Patent Number
    7,446,079
  • Date Filed
    Tuesday, March 21, 2006
    18 years ago
  • Date Issued
    Tuesday, November 4, 2008
    15 years ago
Abstract
Perfume compositions and method of formulating perfume composition are designed for use in wash-off system to provide either a desired initial release with minimal residual perfume on the targeted system, a long sustained release of fragrance, or a residual deposition of fragrance after use, based upon the odorants selected according to their mass transfer values, odor detection thresholds and/or calculated odor indices.
Description
FIELD OF THE INVENTION

The present invention relates to perfume systems. More particularly, the present inventions relates to the optimization of perfumes used in high water dilution conditions and/or rinse off applications.


In addition, this invention relates to the design and engineering of a perfume using odorants' mass transfer properties in order to control the optimization and predicted progression and/or release of the fragrance hedonic profile with time in the presence of water.


BACKGROUND OF THE INVENTION

Fragrances are an important part of cosmetic compositions since their primary role is to create an agreeable sensory experience for the consumer, in addition to providing malodor coverage or other more functional roles.


Perfumes are composed of odorants with a wide range of molecular weights, vapor pressures and diffusivities as well as different polarities and chemical functionalities. Using these different properties, an individual skilled in the art could create different hedonic profiles describing the fragrance.


Fragrance materials are generally small molecular weight substances with a vapor pressure that allows their molecules to evaporate, become airborne, and eventually reach the olfactory organ of a living entity. There are a variety of different fragrance materials with different functional groups and molecular weights, both of which affect their vapor pressures, and hence, the ease with which they can be sensed.


Odorants used in perfumery offer a wide array of polarity ranging from the somewhat water miscible to the water immiscible chemical compounds. Perfumery in the various rinse-off applications spanning from cosmetic to industrial and household have different functionalities and must be engineered to fulfill certain needs and objectives. Perfumes' effect and quality during use plays a big role in the consumer's purchase intent as well and the desire of the consumer to purchase the product again.


For example, perfumery for dishwashing detergents must be engineered and designed not to leave any residual odor on the targeted surfaces (dishes) while providing the consumer an agreeable and impactful experience during the wash experience. On the other hand, perfumery for laundry systems must result in increased deposition of perfumes on the washed clothes.


Fragrances have been designed based upon the selection of odorants with certain properties. For instance, U.S. Pat. No. 6,143,707 directed to automatic dishwashing detergent discloses blooming fragrance compositions by which were chosen based on their clogP and boiling point values. Hydrophobicity is usually gauged by the clogP values of these odorants. The logP value of an odorant is defined as the ratio between its equilibrium concentration in octanol and in water. The logP value of many of the fragrance materials have been reported and are available in databases such as the Pomona92 database, the Daylight Chemical Information Systems, Inc, Irvine, Calif. The logP can also be very conveniently calculated using the fragment approach of Hansch and Leo. See A. Leo, Comprehensive Medicinal Chemistry, Vol 4, C. Hansch et al. p 295, Pergamon press, 1990. These logP values are referred to as clogP values. Odorants thought to result in bloom in water dilutions are thought to have clogP of at least 3.0 and boiling points of less than 26° C. The same rationale for dishwashing liquids with blooming perfumes is also disclosed in U.S. Patent Application Publication No. 2004/0138078. EP Patent No. 0888440B1 relates to a glass cleaning composition containing “blooming perfumes” based on criteria mentioned above. U.S. Pat. No. 6,601,789 discloses toilet bowl cleaning compositions also containing “blooming perfumes” made of odorants chosen based on their clogP values of at least 3.0 and boiling points of less that 260° C. Generally, odorants with delayed bloom are thought to have a clogP of less than 3.0 and boiling point values of less than 250 deg C.


While the above-mentioned references disclose methods of selecting odorants based upon the certain properties of the odoants, i.e. clogP and boiling point values, they do not encompass and identify all odorants which have superior release properties in heavy water dilutions. There remains a need in the art for fragrance compositions methods of formulating those compositions to achieve improved fragrance release in water based rinse-off systems.


SUMMARY OF THE INVENTION

A method of formulating a perfume composition for wash-off systems, comprising calculating values of odor detection threshold, odor detection threshold in air, acceleration (Γ), and flash water release (Ω) values for a group of odorants, selecting at least three different odorants based on these values and placing the perfume compostion in a wash-off system to provide either an initial water release and a minimal residual perfume on a targeted surface after wash-off, a long sustained perfume release and hedonic experience during the wash-off event, or a residual fragrance deposition, is provided.


A perfume composition for wash-off systems having either a desired initial water release and minimal residual perfume on a targeted surface after wash-off, a long sustained perfume release and hedonic experience during the wash-off event, or a residual fragrance deposition, comprising at least three different odorants selected based upon their acceleration (Γ) value, flash release, odor detection threshold and/or odor detection threshold in air, is provided.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a graph of odorants' residence time in headspace according to their Γ values.



FIG. 2 is the predicted tertiary structure for hOBPIIaα.



FIG. 3 shows a modeled binding site for hOBPIIaα.



FIG. 4 shows the docked conformation of 1-undecanal in hOBPIIaα's binding cavity.



FIG. 5 shows 1-undecanal conformation used in odor index calculation.



FIG. 6 is a graph of the correlation between calculated odor index and experimental odor detection threshold values.





DETAILED DESCRIPTION OF THE INVENTION

The general physical properties of perfume odorants as currently known in the art (e.g., U.S. Pat. No. 6,143,707 U.S. Patent Application Pub. No. 2004/0138078, EP Patent No. 0888440B1, and U.S. Pat. No. 6,601,789) do not provide a complete picture when creating perfumes for rinse-off systems. Odorants such as ethyl formate, ethyl acetoacetate, ethyl acetate, diethyl malonate, fructone, ethyl propionate, toluic aldehyde, leaf aldehyde, trans-2-hexenal, trans-2-hexenol, cis-3-hexenol, prenyl acetate, ethyl butyrate, hexanal, butyl acetate, 2-phenylpropanal, cis-4-heptenal, cis-3-hexenyl formate, propyl butyrate, amyl acetate, ethyl-2-methylbutyrate, ethyl amyl ketone, hexyl formate, 3-phenyl butanal, cis-3-hexenyl methyl carbonate, methyl phenyl carbinyl acetate, methyl hexyl ether, methyl cyclopentylidene acetate, 1-octen-3-ol, cis-3-hexenyl acetate, amyl vinyl carbinol, 2,4-dimethyl-3cyclohexen-1-carbaldehyde, ethyl 2-methylpentanoate, 1,3,3-trimethyl-2-oxabicyclo[2.2.2]octane, 3,7-dimethyl-7-methoxyoctan-2-ol etc. are considered by the authors of the herein invention to have superior release properties in heavy water dilutions. Yet, the above mentioned odorants are considered “delayed release” odorants according to the previously mentioned patents, which is counter to both empirical and experimental observations when used in wash-off products.


Furthermore, a direct relationship between the quantity of an odorant in a perfume and its ability to be released from the water partition under heavy water dilution is generally observed by perfumers skilled in the art. The opposite can also hold true when using very small amounts of an odorant in a perfume. Above mentioned patents do not account for the change in an odorant's ability to release or bloom due to its concentration or quantity. A mathematical relationship relating quantity of odorants in perfumes to their mass transfer properties needs to be established in order to predict the order of elution of perfume constituents when exposed to heavy water dilutions. For example, thiogeraniol (clogP 4.88, boiling point 250 deg C.) can have very delayed water release properties when used in parts per trillion in a perfume although considered a “blooming” material based on its physical properties, according to existing literature and above mentioned patents. By establishing a mathematical relationship with mass transfer properties, one can design and further improve water release hedonic perception of perfume materials. The result is the new optimization and applied perfumery for wash off applications.


U.S. Pat. No. 6,858,574 relates odorants release properties in heavy water dilution to a relationship with components of the formulation in which the perfume is delivered, more notably, the surfactant system. The so-called perfume burst index (PBI) is defined by:






PBI
=


ϕ
-

1.4
/
CMC


K






where Φ is water/oil partition coefficient (an equivalent to clogP mentioned above), K is the volatility constant of perfumes in air (in direct relationship to boiling point values) and CMC is the critical micellization concentration of the surfactant systems (wt/wt). A burst release in water dilutions is thought to happen when there is at least 20% increase of the odorant in headspace. Examples provided by the author are done in dilutions not exceeding 60 and mostly between 0 and 30. Yet, in consumer usage of formulations in wash off conditions, especially in applications such as body wash, conditions, shampoos, and surface cleaners, the conditions far exceed the dilution values used in U.S. Pat. No. 6,858,574 for the calculations. For example, a typical usage of water during a shower exceeds 25 gallons of water and can reach 50 gallons of water when considering a typical household shower pressure dispensing 5-10 gallons a minute (See http://www.engr.uga.edu/service/extension/publications/c819-1.html). Values for water dilutions in a typical household, cosmetic, industrial wash-off application therefore far exceeds the dilution values used in U.S. Pat. No. 6,858,574. One can therefore argue that under these extreme dilution conditions of a typical wash-off application (1/100 and above), the release partitions become essentially water, water-air and air, with surfactants' contributions very minimal, almost non existent.


In the present invention, mass transfer properties of odorants in water as well as their odor detection thresholds determined either experimentally or theoretically are used to design fragrances optimized for water release. The above-mentioned physico-chemical properties of odorants are utilized in methods described in this invention to control and engineer superior olfactive perception of these perfumes during their use and release in the presence of water with resulting effects required by the wash-off applications in which they are delivered. According to the present invention, a perfume composition is optimized for various cosmetic, household and industrial applications in water systems and/or in presence of water. These perfumes comprise about 30% or more of the estimated total fragrance odor impact within specifically designated water release groupings as defined in the present invention, depending on the applications considered and described herein.


The perfumes of this invention are also designed to potentially give the consumer the perception of sustained and more prolonged release during wash-off, or initial burst of perfume without residual perfume left behind on a surface upon completion of the wash-off experience or a substantive deposition on a chosen surface at the end of a wash-off cycle depending on the applications and the engineered perfume designed according to the methods described in this invention.


This invention deals primarily with the optimization of fragrance diffusion and behavior in high water dilutions based on calculated mass transfer and transport properties of odorants in water, water vapor and air partitions according to methods described herein.


The object of this patent is to improve fragrance perception during delivery or release in presence of large volumes of water.


In water-based systems, choosing fragrance molecules based on specific mass-transfer values for release out of a matrix optimizes the perfume's intensity and perceived hedonic quality. These values are calculated according to these odorants' physico-chemical properties based on principles of mass transfer.


Water Release, Ω


Water release value (Ω) is defined by the authors as being the product of quantity of an odorant in a perfume totaling 100 parts, flux (Φ), pseudo-acceleration (Γ) of odorants out of the water partition. These Ω values are used to separate the fragrance into water release groups, therefore predicting the chronological elution of odorants out the water, water/air into the air partitions.

Ω.Φ.Γ


Within these defined water-release groups, odorants are then further described based on their experimentally determined odor detection thresholds (ODT) and/or theoretically calculated odor indices (O.I.) to further characterize the odor impact or olfactive intensity along with the hedonic type of the released group of odorants.


Based on the application considered, the perfume considered will be optimized using different groups of odorants based on their mass transfer values within the total perfume formula. These defined release groups for water partitions, defined in more details in the invention, are used to construct fragrances for different hedonic and effects according to the applications targeted.


Perfumes designed for surface cleaners and dishwashing detergents are composed of at least 30%, preferably at least 40% of total perfume odorants with characteristic flash water release values, (Γ values more than 1000. These odorants must elute within “water release groups” 1, 2 and 3, based on the odorants' water release values Ω as calculated according to methods set forth in this invention. Intensity of the released fragrance will also be based on odor detection threshold values and/or the correlated “odor indices”, a measure of odor intensity directly related to odor detection thresholds. Therefore, at least three of the perfume's flash release odorants must have odor detection threshold in water less than 50 parts per billion and/or odor detection thresholds in air of less than 0.025 mg/m3. Quantity and odor detection threshold value and/or correlated ‘odor indices’ of odorants in water release groups 4, 5, and 6 are proportionally minimized. Perfumes constructed according to the above set parameters will not be significantly residual on the targeted surfaces (dish surface, glass etc.) but will result in a good hedonic experience during release.


Perfumes engineered for shampoos, conditioners, body wash etc. will on the other hand be optimized using primarily sustained release odorants based on the optimal residence time in headspace. Fragrances constructed with at least 30% and preferably at least 40% of odorants with acceleration values for sustained release (Γ values between 1000 and 100). These sustained release odorants must elute within water release groups 1, 2, 3 and 4 according to their Ω values, resulting in a more sustained, well rounded long lasting hedonic experience to the consumer during a rinse-off experience. In addition, at least three of the perfume's flash release odorants must have odor detection threshold in water less than 50 parts per billion and/or odor detection thresholds in air of less than 0.025 mg/m3.


Finally, more residual fragrances for wash-off applications such as laundry can be engineered based on a majority of fragrance at least 40%, preferably 50% of odorants, referred to by the authors as “deposition odorants,” based on their mass transfer properties.


According to the present invention, perfumes designed for wash-off systems with a desired initial water release and minimal residual perfume on a targeted surface after wash-off, will contain at least three different odorants with odor detection thresholds of 50 parts per billion or less and/or odor detection threshold in air of less than 0.025 mg/m3, making up at least 30%, preferably more than 40% of the perfume's constituents. These above mentioned odorants must have flash release properties: Γ values more than 1000 and must be within water release groups 1 and/or 2 and/or 3, according to methods set forth in the herein patent.


In another aspect of the present invention, perfumes for wash-off systems engineered for a long sustained hedonic experience to the consumer during the wash-off event must have at least three different odorants with odor detection thresholds of 50 parts per billion or less and/or odor detection thresholds in air of less than 0.025 mg/m3, and Γ values for sustained release between 1000 and 100. These so-called sustain release odorants must constitute at least 30%, preferably at least 40% of the total perfume components and must elute between water release groups 1 and/or 2 and/or 3 and/or 4 based on their water release values: Ω.


In yet another aspect of the present invention, perfumes intended for deposition in wash-off systems must have at least 40% and preferably more than 50% of their components with “residual” physical properties or deposition properties in water as set forth in this invention: Γ less than 100.


In addition, the so-called residual odorants must contain at least three different odorants with odor detection threshold values in water of 50 parts per billion or less and/or odor detection thresholds in air of less than 0.025 mg/m3. These so-called “residual” odorants must also be released within water release groups 4 and/or 5 and/or 6, based on their water release values Ω.


Water based formulations are usually oil in water or water in oil emulsions with a varied concentration of water. By emulsifying these partitions, fragrances are dispersed and solubilized. Upon heavy water dilutions typical for the average household, industrial and cosmetic use, odorants making up perfumes need to diffuse through what is considered to be mostly water, a vapor phase above the liquid phase and finally the air phase.


Water Release Value, Ω


To increase the water release impact of these fragrances in these systems, properties of odorants based on their mass transfer characteristics were used. These odorants' release properties in water (Ω1,2) will determine the order of elution of these odorants in the partitions considered: water, water-air and air

Ω=nΦ·Γ  [1]

Φ=Flux of odorant in a system considering the partitions: water, water-air and air expressed in






mg


cm
2

×
sec






and Γ=Pseudo-acceleration factor of odorant in water, water-air and air expressed in







cm

sec
2


,





n is the parts quantity of an odorant in a total 100 parts of a perfume.


This value of water release is indicative of the chronological order of elution of the odorants involved in the composition of the perfume diluted in water. As discussed later in this document, it is intimately linked to various thermodynamic and calculated mass transfer properties obtained by the authors but also based on quantity of the odorant considered within the entire formula.


Below is the description of the terms used to derive equation [1].


Flux (Φ12)


Flux of an odorant in partitions water, water-air and air, (Φ) is defined as the ratio of the quantity of odorant being transferred in the media considered divided by the time and area of the contained medium. Flux values can also be defined in relation to a concentration gradient of the odorant throughout a partition according to:










Φ
12

=

-


D
12



(




(

c
1

)




z


)







[
2
]







D12 is the diffusion constant of odorant (1) in partition (2) and






(




(

c
1

)




z


)





is the concentration gradient of odorant (1) throughout the partition.


D12 is calculated using the “Slattery Kinetic Theory” with non-polar odorants using odorants' critical parameters, unsteady state evaporation and measurement of binary diffusion coefficient. (Chem. Eng. Sci. 52, 1511-1515). The concentration gradients of the odorants composing the perfumes throughout the partitions considered (water, water-air and air) are calculated by solving for the dimensionless velocity value determined using the Arnold equation. (See Arnold, J. H. Studies in Diffusion: III. Unsteady State Vaporization and Absorption. Trans. Am. Inst. Chem Eng., 40, 361-378.). Some flux values for a variety of odorants out of a water partition are listed in the Table 1 below.









TABLE 1







Examples of flux values for some perfume odorants.









Φ (mg/cm2 ·


Odorant
sec)





Ethyl 2-methylbutyrate
0.004361536


d-1-Methyl-4-isopropenyl-1-cyclohexene
0.001571820


2,2-Dimethyl-3-(p-ethylphenyl)propanal
0.000006157


4-Methyl-3-decen-5-ol
0.000004491


5-Hexyldihydro-2(3H)-furanone
0.000005070


1-(5,5-Dimethyl-1-cyclohexen-1-yl)-pent-4-en-1-one
0.000005501


6,6-Dimethyl-2-methylenebicyclo-(3.1.1)-heptane
0.001912106


6-sec-Butylquinoline
0.000006754


Octahydro-4,7-methano-1H-indene-5-yl acetate
0.000009115


Ethyl 2,3-epoxy-3-methyl-3-phenylpropionate
0.000010182


2(6)-methyl-8-(1-methylethyl)-bicyclo[2.2.2] octe-5-
0.000003792


en-2(3)-yl-1,3-dioxolane


Isopropyl-methyl-2-butyrate;
0.002632239


Tricyclo-decenyl propionate
0.000003150


2,6,10-Trimethyl-9-undecenal
0.000001843


Methyl-2-hexyl-3-oxocyclopetanedecarboxylate
0.000000204


2-Phenylethyl phenylacetate
0.000000080


3,7-Dimethyl-1,6-octadien-3-yl 3-phenyl-2-propenoate
0.000000039


Ethyl octyne carbonate
0.000007735


3,7-Dimethyl-2,6-octadien-1-thiol
0.000046576


(1R-(1a,4b,4aa,6b,8aa))-Octahydro-4,8a,9,9-
0.000001119


tetramethyl-1,6-methano-1(2H)-naphtol










Pseudo-Acceleration, Γ12


In the analysis of the volatility of odorants, several variables are found to be important. First, the vapor pressure of the odorant is an important measure of its volatility. The product of the odorant's activity coefficient γ in the partition its mole fraction X and its pure vapor pressure value Pv, gives the odorant's relative vapor pressure. A second important factor for volatility is the diffusivity D12 of the odorant in the considered media: water, vapor phase and subsequently air.


Other important variables to consider are the molecular weight Mw, of the odorant and its density in the partition ρl and in the solvent vapor state ρv. The final variable to consider is an energy parameter in the partition state. The energy difference ε1212(polar)−ε12o(non-polar) is proportional to the partition coefficient of an odorant in a polar solvent such as water, and a water immiscible solvent such as octanol, benzene and paraffin liquid. The energy ε12 is called the partition energy and can be correlated to the clogP value of odorants. By definition: clogP proportional to (ε12(water)−ε12(octanol))/R*T; R=1.987 cal/(mole−° K); T=temperature (kelvin).


The five variables D12, Pv, Mw, ρv. and ε12 and the three dimensional variables indicate that there can be 5−3=2 dimensional variables which describe Newton's law. The easiest separation is to break the acceleration vector into 2 dimensional quantities: a frequency or first order rate constant (1/time) and a velocity (distance/time) term.


The velocity group can be formed from the vapor pressure and density. Since pressure has units of mass*distance/distance2*time2, and density has units of mass/distance3, the ratio of the two has units of velocity squared. The square root gives the desired velocity.


The first order rate constant can be formed from the variables Mw, D12 and ε12. Since the partition energy ε12 has dimensions of calories per mole (mass.length2/mole.time2) and the diffusivity coefficient D12 has a dimension of distance2 per time, the ratio yields exactly a molecular weight unit per time t. The energy can be made dimensionless by dividing by the gas constant k and temperature T. The remaining variable D12 can be made to a frequency by dividing by a cross sectional area L2. A molecular area calculated from the liquid molar volume could represent this area.


Some Γ values for a variety of odorants are listed below in Table 2.









TABLE 2







Calculated pseudo-acceleration values for some perfume odorants








Odorant
Γ (cm/sec2)











Ethyl 2-methylbutyrate
12827.56


d-1-Methyl-4-isopropenyl-1-cyclohexene
8200.76


2,2-Dimethyl-3-(p-ethylphenyl)propanal
121.17


4-Methyl-3-decen-5-ol
116.38


5-Hexyldihydro-2(3H)-furanone
115.36


1-(5,5-Dimethyl-1-cyclohexen-1-yl)-pent-4-en-1-one
109.12


6,6-Dimethyl-2-methylenebicyclo-(3.1.1)-heptane
9007.51


6-sec-Butylquinoline
135.34


Octahydro-4,7-methano-1H-indene-5-yl acetate
144.06


Ethyl 2,3-epoxy-3-methyl-3-phenylpropionate
147.67


2(6)-methyl-8-(1-methylethyl)-bicyclo[2.2.2] octe-5-
57.74


en-2(3)-yl-1,3-dioxolane


Isopropyl-methyl-2-butyrate;
8722.05


Tricyclo-decenyl propionate
60.58


2,6,10-Trimethyl-9-undecenal
43.58


Methyl-2-hexyl-3-oxocyclopetanedecarboxylate
6.71


2-Phenylethyl phenylacetate
2.29


3,7-Dimethyl-1,6-octadien-3-yl 3-phenyl-2-propenoate
0.71


Ethyl octyne carbonate
156.29


3,7-Dimethyl-2,6-octadien-1-thiol
659.09


(1R-(1a,4b,4aa,6b,8aa))-Octahydro-4,8a,9,9-tetramethyl-
25.57


1,6-methano-1(2H)-naphtol









Pseudo acceleration values are also closely linked to the ability of an odorant to travel through headspace once it is airborne in addition to its ability to migrate through the water and water-air partitions. This value is predictive of what the authors consider “flash release”, “sustained release” and “deposition” of odorants in heavy water dilutions.


“Flash release” is defined as fast migration through water and subsequent very low residence time in headspace, resulting in a short hedonic experience of initial release and very minimal deposition on a treated surface. “Sustained release” is characterized by good water release properties along with a longer residence time in the water vapor and subsequently, the air phase. “Deposition” is a term used to categorize odorants with very poor water/air release properties and consequently remain available for superior deposition on the surfaces treated.


Flash release odorants are considered by the authors to have acceleration, Γ values above 900 cm/sec2, sustained release odorants are thought to have Γ values between 900 and 100 and finally deposition odorants have acceleration values of less than 100.


As an illustration, some odorants with characteristic acceleration values for all three release categories defined by the authors are shown below. Water release properties are observed in 1 to 100 water dilution of a typical formulation containing these odorants as shown in the following procedure. The odorants chosen for this illustrative example are as follow in Table 3.









TABLE 3







Release properties and predicted residence time for some perfume


odorants.









Γ (acceleration water/air)














Flash Release
ethyl formate
46183.23
cm/sec2



ethyl-2-methyl butyrate
12827.56



melonal
2655.52



cyclacet
1687.87


Sustained Release
linalool
644.41



aldehyde c-11 moa
401.44



alpha ionone
283.60



lilial
104.63


Deposition Odorants
cyclamen aldehyde
99.64



jasmolactone
76.30



hexyl cinnamic aldehyde
21.01



acetal cd
0.08










Experimental Procedure:


Individual odorant to be tested was added to 20 g of shampoo formulation (see formula below in Table 4) at 0.1%.









TABLE 4







House Shampoo Formulation










Phases
Ingredients
Supplier
Percent













A
D. I. Water

35.00


A
Standapol ES-2
Cognis Corp.
35.00


B
Standapol WAQ-LC
Cognis Corp
27.50


B
Glydant 2000
Lonza
0.30


C
Sodium Chloride

1.80









A 10 gram sample of formulation and fragrance was added to an empty 1000 ml pyrex beaker. This beaker was then filled with 1000 ml of 120 F tap water. Beaker with diluted shampoo sample was then immediately placed into a semi-enclosed plexiglass chamber.


Headspace Sampling: Once beaker was placed into chamber a Carboxan SPME field fiber was held at the top-side opening of the chamber over the beaker containing the sample. At 15 seconds, the fiber was released and the headspace emissions from the beaker were collected. Headspace emissions from beaker were collected at 15, 30, 60, 90, 120, 240 and 300 seconds using a different Carboxan-PDMS field fiber for each sampling time. Top of plexiglass chamber was held open for entire 5 minutes of headspace sampling.


Each Carboxan-PDMS SPME Field Fiber that was used for each of the seven above sampling time intervals was then desorbed on a Hewlett Packard HP6890 GC/5973 Mass Selective Detector System.


The partition release value Ω is defined as the product of the pseudo acceleration Γ and the flux value Φ and the quantity of odorant in a total 100 parts of the perfume diluted in water. The units of Ω are







(


mg
·
cm



cm
2

·

sec
2



)

·


1
sec

.






The expression of water release out of the water, water-air and air partitions can then be physically equated to a value of







(

Force
Area

)

×

1
sec






or in other words, units of pressure per time out partition. It is important to establish that water release values are indicative of the order of elution of odorants in a perfume out the partitions considered into headspace when subject to extreme aqueous dilutions. It is indicative of how fast in time will an odorant start to appear in time.


This predictive value for elution time allows a person skilled in the art to establish groupings of odorants eluting from the water dilutions, constructing therefore keys or hedonic profile and achieving better engineering control of their creative process. By engineering these groupings of odorants and their order of elution, a perfumer can construct optimized perfumes for water release systems, since most of these odorants will behave differently in aqueous dilutions as compared to emulsions with various surfactant proportions.


Water release values, Ω for the corresponding odorants is an indication of the time it will take before it appears in headspace when diluted in water. Once in headspace, acceleration values as well as odor detection thresholds (discussed in more details further) will dictate the intensity and odor contribution as well as residence time of odorants in the water vapor and air. The following relationships were empirically established by the authors for elution time of odorants in heavily diluted aqueous media based on Ω values in Table 5.









TABLE 5







Water Release Groups Definitions.










Water Release Values
Time of elution













Water Release Group 1
Ω ≧ 10
Upon dilution: t = 0




seconds


Water Release Group 2
10 > Ω ≧ 0.07
0 to 10 seconds


Water Release Group 3
0.07 > Ω ≧ 0.007
0 to 20 seconds


Water Release Group 4
0.007 > Ω ≧ 0.0005
0 to 30 seconds


Water Release Group 5
0.0005 > Ω ≧ 0.00003
0 to 45 seconds


Water Release Group 6
0.00003 > Ω
0 to 60 seconds









As an illustration, the below “Tropical Fruit” perfume release profile shown in Table 6 was observed in aqueous dilution of 1/100 using headspace GC-MS method at 1% in a house shampoo formulation (see formulation above).


The perfume's components are grouped in the predicted water release groups (1 to 6) according to the Ω values above along with the predicted time of elution (t) from the diluted aqueous/air partitions.









TABLE 6







Tropical Fruit Perfume










parts
Ω













Predicted Water Release Group 1




[t = 0 seconds]


d-LIMONENE
2
25.7802389895


Predicted Water Release Group 2


[t less than 10 seconds]


ETHYL BUTYRATE
0.1
7.0552312843


ETHYL 2-METHYLBUTYRATE PURE FCC
0.1
5.5947876874


TRIPLAL
0.3
4.1970000000


MANZANATE
0.1
0.5903646696


LINALOOL
9
0.2769314405


DIHYDROMYRCENOL
3
0.1905945812


Predicted Water Release Group 3


[t less than 20 seconds]


ROSE OXIDE (HIGH CIS)
0.1
0.0584040169


CIS-3-HEXEN-1-OL
0.2
0.0513223980


BENZYL ACETATE
1.3
0.0511546620


CITRONELLOL AJ, FCC
0.7
0.0405549107


VERDOX
2.5
0.0242936469


ALLYL HEPTOATE
0.5
0.0216167817


ALDEHYDE C-18
0.5
0.0209445281


CIS-3-HEXENYL ACETATE
0.1
0.0180243127


ETHYL LINALOOL
2.9
0.0121483853


BENZYL PROPIONATE
0.5
0.0114915690


FRUCTONE
0.3
0.0103951730


LIFFAROME
0.1
0.0102830404


DIHYDROLINALOOL
0.2
0.0071934130


Predicted Water Release Group 4


[t less than 30 seconds]


IONONE BETA PURE
0.9
0.0066027260


DIMETHYL BENZYL CARBINYL
1
0.0044592702


ACETATE


VERTENEX HC
0.1
0.0011211319


TERPINYL ACETATE
0.1
0.0010096117


Predicted Water Release Group 5


[t less than 45 seconds]


FLOROL
2.5
0.0004707520


TERPINEOL
0.1
0.0004502877


OXANE
0.01
0.0003278790


UNDECAVERTOL
0.6
0.0003136174


FLORHYDRAL
0.3
0.0002988038


ALLYL CYCLOHEXYL PROPIONATE
0.3
0.0002838164


HEXYL CINNAMIC ALDEHYDE
15
0.0002445428


GAMMA-DECALACTONE
0.3
0.0001754522


GAMMA UNDECALACTONE
0.3
0.0001426688


alpha-DAMASCONE
0.1
0.0001360916


MAGNOLAN/CORPS 719
3
0.0001281900


HELIONAL
1.4
0.0000393253


ADOXAL
0.4
0.0000321258


BENZYL ALCOHOL
0.2
0.0000319302


BACDANOL
1.5
0.0000316677


Predicted Water Release Group 6


[t less than 60 seconds]


HEDIONE
15
0.0000209666


SANDALORE
1.3
0.0000177176


DAMASCENONE
0.03
0.0000147507


GALAXOLIDE 50 IPM
5
0.0000144162


CALONE
0.03
0.0000057982


AMBROXAN
0.03
0.0000012314


ETHYLENE BRASSYLATE
4.3
0.0000012189


OXANONE CRYSTALS
0.4
0.0000010442


VERTOFIX COEUR
0.1
0.0000004524


EXALTOLIDE TOTAL
0.2
0.0000002980


METHYL ATRATATE
0.1
0.0000000003



79.1


propylene glycol
20.9


total perfume
100









Below, in Table 7 are the experimental results for the release profile in time (0 to 60 seconds) of the Tropical Fruit Perfume in 1/100 dilution in water using GC-MS headspace analysis.











TABLE 7







GC Abundance



















5 seconds




d-LIMONENE
7000



10 seconds



d-LIMONENE
7000



ETHYL 2-METHYLBUTYRATE
3000



ETHYL BUTYRATE
2800



TRIPLAL
1000



MANZANATE
1000



LINALOOL
500



DIHYDROMYRCENOL
500



20 seconds



d-LIMONENE
7000



TRIPLAL
14000



ETHYL BUTYRATE
2800



ETHYL 2-METHYLBUTYRATE PURE FCC
3100



MANZANATE
4000



LINALOOL
18000



DIHYDROMYRCENOL
15000



ROSE OXIDE (HIGH CIS)
10000



CIS-3-HEXEN-1-OL
14000



BENZYL ACETATE
12000



CITRONELLOL AJ,FCC
7000



VERDOX
5000



ALLYL HEPTOATE
4000



ALDEHYDE C-18
2000



CIS-3-HEXENYL ACETATE
5000



ETHYL LINALOOL
5000



BENZYL PROPIONATE
2000



FRUCTONE
3000



LIFFAROME
3000



DIHYDROLINALOOL
3000



30 seconds



d-LIMONENE
7000



TRIPLAL
14000



ETHYL BUTYRATE
2800



ETHYL 2-METHYLBUTYRATE PURE FCC
3100



MANZANATE
4000



LINALOOL
18000



DIHYDROMYRCENOL
15000



ROSE OXIDE (HIGH CIS)
14000



CIS-3-HEXEN-1-OL
14000



BENZYL ACETATE
17000



CITRONELLOL AJ,FCC
7000



VERDOX
14000



ALLYL HEPTOATE
10000



ALDEHYDE C-18
2000



CIS-3-HEXENYL ACETATE
14000



ETHYL LINALOOL
10000



BENZYL PROPIONATE
6000



FRUCTONE
5000



LIFFAROME
3000



DIHYDROLINALOOL
3000



IONONE BETA PURE
2000



DIMETHYL BENZYL CARBINYL ACETATE
2000



VERTENEX HC
2000



TERPINYL ACETATE
1000



40 seconds



d-LIMONENE
5000



TRIPLAL
10000



ETHYL BUTYRATE
2000



ETHYL 2-METHYLBUTYRATE PURE FCC
2000



MANZANATE
3000



LINALOOL
18000



DIHYDROMYRCENOL
15000



ROSE OXIDE (HIGH CIS)
14000



CIS-3-HEXEN-1-OL
14000



BENZYL ACETATE
18000



CITRONELLOL AJ,FCC
7000



VERDOX
18000



ALLYL HEPTOATE
12000



ALDEHYDE C-18
4000



CIS-3-HEXENYL ACETATE
14000



ETHYL LINALOOL
10000



BENZYL PROPIONATE
6000



FRUCTONE
5000



LIFFAROME
3000



DIHYDROLINALOOL
3000



IONONE BETA PURE
10000



DIMETHYL BENZYL CARBINYL ACETATE
8000



VERTENEX HC
8000



TERPINYL ACETATE
9000



FLOROL
10000



TERPINEOL
10000



OXANE
2000



UNDECAVERTOL
10000



FLORHYDRAL
9000



ALLYL CYCLOHEXYL PROPIONATE
7000



HEXYL CINNAMIC ALDEHYDE
2000



GAMMA-DECALACTONE
4000



GAMMA UNDECALACTONE
4000



alpha-DAMASCONE
1000



MAGNOLAN/CORPS 719
1000



HELIONAL
500



ADOXAL
300



BENZYL ALCOHOL
50



BACDANOL
100



50 seconds



d-LIMONENE
4000



TRIPLAL
6000



ETHYL BUTYRATE
800



ETHYL 2-METHYLBUTYRATE PURE FCC
1500



MANZANATE
1500



LINALOOL
18000



DIHYDROMYRCENOL
15000



ROSE OXIDE (HIGH CIS)
14000



CIS-3-HEXEN-1-OL
14000



BENZYL ACETATE
18000



CITRONELLOL AJ,FCC
7000



VERDOX
20000



ALLYL HEPTOATE
12000



ALDEHYDE C-18
4000



CIS-3-HEXENYL ACETATE
14000



ETHYL LINALOOL
10000



BENZYL PROPIONATE
6000



FRUCTONE
5000



LIFFAROME
3000



DIHYDROLINALOOL
3000



IONONE BETA PURE
18000



DIMETHYL BENZYL CARBINYL ACETATE
8000



VERTENEX HC
10000



TERPINYL ACETATE
9000



FLOROL
15000



TERPINEOL
15000



OXANE
2000



UNDECAVERTOL
10000



FLORHYDRAL
10000



ALLYL CYCLOHEXYL PROPIONATE
10000



HEXYL CINNAMIC ALDEHYDE
9000



GAMMA-DECALACTONE
7000



GAMMA UNDECALACTONE
7000



alpha-DAMASCONE
5000



MAGNOLAN/CORPS 719
3000



HELIONAL
5000



ADOXAL
3000



BENZYL ALCOHOL
100



BACDANOL
5000



GALAXOLIDE 50 IPM
1000



HEDIONE
4000



SANDALORE
2000



DAMASCENONE
1000



CALONE
1000



AMBROXAN
1000



ETHYLENE BRASSYLATE
20



OXANONE CRYSTALS
70



VERTOFIX COEUR
50



EXALTOLIDE TOTAL
50



METHYL ATRATATE
50










Odorants making up the perfume eluted in a 1/100 water dilution as predicted by their calculated Ω values. For example, when considering the first 20 seconds of the release profile of the diluted perfume, the inventors predicted d-limonene to elute first based on its Ω value (Water Release Group 1). The headspace experiment confirmed the above calculated prediction.


The next group of odorants predicted to elute from the diluted partition (Water Release Group 2) was made of: triplal, ethyl butyrate, ethyl-2-methyl butyrate, manzanate, linalool and dihydromyrcenol at time less than 10 seconds. This second “wave” of released odorants will enter the headspace above the aqueous dilution in a background of “d-limonene”, a flash release citrus note released earlier. This assumption was again validated by the experimental GC-MS headspace experiment.


The third group of odorants predicted to elute at time less than 20 seconds was expected to be rose oxide, cis-3-hexenol, benzyl acetate, citronellol, verdox, allyl heptoate, aldehyde C-18, cis-3-hexenyl acetate, ethyl linalool, benzyl propionate, fructone, liffarome and dihydrolinalool based on their Ω values. In the background, odorants making up water release groups 1 and 2 are present. This theoretical prediction is again validated by the GC MS headspace experimental data. All other odorants making up the subsequent release profile of the perfume are also accurately predicted based on odorants' W values as shown in the experimental data above. A person skilled in the art can, as a result use the invention to engineer the perceived progression of the fragrance in time as it is liberated from the aqueous dilution.


Odor Detection Thresholds


Upon their release in headspace, odorants are detected based on their odor detection threshold values. Odor detection thresholds are defined as the lowest concentration of odorants in a selected medium (air or water) to be detected. By including odor index values of odorants in the model, one can further improve on the values for predicted performance of once odorants are released from the partition into the air.


It is also important to construct the fragrance with a balanced olfactive intensity in order not to overwhelm the consumer or to be aesthetically unappealing. Constructing each segment for the targeted application or intended effect must be based on balanced impact in accordance to these ODT values while at the same time answering to certain rules to give a well-rounded experience to the consumer.


Various databases for experimental odor detection threshold values in various partitions such as water and air are available. See Compilation of Odor and Taste Threshold Values Data, American Society for Testing and Materials, F. A. Fazzalari Editor; Booleans Aroma Chemical Information Service (BACIS))


In this invention, Odor Index (O.I.) values are calculated theoretically for odorants in air. These odor index values show a strong correlation with experimental odor detection thresholds in air and in water.


An example of how the inventors calculate mathematically these odor indices, the conformation of 1-undecanal deduced from docking experiments into hOBPIIa is used below.


a. Modeling of hOBPIIaα Binding Site and Odorant Docking Experiments


Human odorant binding protein hOBPIIaα (17.8 kDa), belongs to the Lipocalin family. The amino acid sequence is 45.5% similar to the rat OBPII and 43% similar to the human tear lipocalin (TL-VEG). The tertiary structure of hOBPIIaα was obtained using the automated SWISS-MODEL protein modeling service (http://swissmodel.expasy.org/). The modeled structure along with the modeled protein binding site is shown below in FIG. 2. The eight-stranded β-barrel, a common motif for lipocalins is present as well as two alpha helices (as also predicted by Lacazette et al., Human Molecular Genetics, 2000, 9, 2, 289-301).



FIG. 3 shows modeled binding site for hOBPIIaα. The conserved hydrophobic amino acids described by Lacazette et al. and thought to interact with ligands are shown.



FIG. 4 shows a docked conformation of 1-undecanal in the hOBPIIaα binding cavity using a box size of 19×19.75×15.5 angstroms. The pose shown has docking energy of −10.05 kcal/mol. As an example, 1-undecanal was docked into the binding cleft of hOBPIIaα using Argus lab software 4.0.1 in order to obtain the recognized conformation of the odorant (http://www.planaria-software.com/arguslab40.htm). The docked conformation of 1-undecanal within the binding cleft of the hOBP is show in FIG. 3.



FIGS. 4 and 5 show 1-undecanal conformation used in odor index calculation: the conformation for 1-undecanal was deduced from docking experiment into the binding cleft of hOBPIIaα. FIG. 4 shows the docked conformation of 1-undecanal in hOBPiIIaα's binding cavity using a box size of 19×19.75×15.5 angstroms. The pose shown has docking energy of −10.05 kcal/mol. As shown in FIG. 5, the conformation for 1-undecanal was deduced from docking experiment into the binding cleft of hOBPIIaα.


The most energetically favored conformation for 1-undecanal is used to calculate the maximum moment of inertia using a mathematical model of inertial ellipse.


b. Odor Index Calculation


Moment of Inertia


The inertial ellipse (which is fixed in the rigid body) rolls and reorients on the invariable plane. The path followed on the plane is called the herpolhode. The tip of the vector on the inertial ellipse in which the total angular momentum L is normal rotates on the ellipse to form a path called the polhode. The polhode is the property of the odorant molecule. The invariable plane is a hypothetical plane external to the molecule, which can “fit” into the receptor. The herpolhode is a curve on surface defining receptor site “geometry”. The height in which the inertial ellipse sits above the plane is inversely related to the ratio of rotational/translational forces.


The inertial ellipse incorporates the moment of inertia and angular momentum (L) of the odorant in the reference frame in which L is fixed in space.


Translational/Rotational Constant


The translational/rotational constant is a ratio of translational to rotational energy. This factor is found to correlate to the type of functional group and most importantly to the Lydersen critical property increments.


Conformation of 1-undecanal shown in FIGS. 4 and 5 was used to calculate the odor index value of 1-undecanal both in air and in water as an illustrative example. The odor index value in air was found to be equal 0.000219 mg/m3. The experimental value for odor detection threshold in air was determined to be 0.00054 mg/m3 by Randenbrock (See Randebrock, R. E. (1986) Perfuem. Kosmet. 67, 1, 10-24). Calculated odor index in water was calculated to be equal to 8.2 parts per billion (ppb), and found to be within the experimental range determined by Schnabel et al. (Schnabel, K. O. Belitz, H. D., Von Ranson, C. (1988) Lebensm. Unters. Forsch. 187, 215-223).


Odor Index Calculation for Various Odorants


The model and algorithm for odor index calculation was further applied to odorants from various chemical classes. The correlation results with published experimental odor detection thresholds as seen in FIG. 6.



FIG. 6 shows the correlation between the experimental odor detection threshold values from the “Compilations of Odor Threshold Values in Air” from the Booleans Aroma Chemical Information Service (BACIS) and calculated odor indices of various odorants. (All values are shown in mg/m3.)


Odor Index (O.I.) values can also be calculated in water by correlating the activity of the odorants in a water partition and well as their diffusivity in the water, water-air and air partitions. These calculation results are shown below for some odorants and are correlated with experimental values from the Booleans database for experimental odor detection thresholds in water as shown in Table 8.











TABLE 8






exp




ODT
O.I.



(ppb)
(ppb)


Name of Odorant
water
Water

















Butyl acetate
44-88
118.00


2,6-Dimethyl-2,6-octadien-8-ol
 1-10
5.00


trans-3,7-Dimethyl-2,6-octadien-1-yl propanoate
10
2.00


I-1-Methyl-4-isopropenyl-6-cyclohexen-2-one
50
22.00


4-(2,2,6-Trimethyl-2-cyclohexen-1-yl)-3-buten-2-
0.4-10 
2.5


one


4-Hydroxy-3-methoxybenzaldehyde
25-58
27.53


Ethyl butyrate
1
5


4-(2,2,6-Trimethyl-2-cyclohexen-1-yl)-3-buten-2-
0.4-10 
2.5


one


1-(2,6,6-Trimethylcyclohexa-1,3-dienyl)-2-buten-1-
0.002
0.009


one


Pentyl butyrate
44-87
68


cis-3-hexenol
39
25


Ethyl 2-methylpentanoate
0.0030
0.001


α-1-(2,6,6-Trimethyl-2-cyclohexen-1-yl)-2-buten-1-
1.5
1.50


one


4-(2,6,6-Trimethyl-1-cyclohexen-1-yl)-3-buten-2-
4-6
2


one


ethyl 2-methylbutyrate
0.1-0.3
0.1


1-Hydroxy-2-methoxy-4-propenylbenzene
30-40
40.00


2,6-Dimethyl-5-heptenal
16
24


1-Octanal
30
33


Tetrahydro-4-methyl-2-(2-methylpropen-1-yl)pyran
0.5
4


4-Hydroxy-3-methoxybenzaldehyde
 20-200
28


Pentyl Acetate
43
72


Ethyl methylphenylglycidate
25
3


5-Methyl-2-isopropylphenol
400
306









Applied Perfume Examples

As an illustration, a grapefruit-peach type fragrance was designed according to the rationale described in the invention to fit the application needs of three different wash-off categories: dish-washing and surface cleaners, body wash and shampoos, conditioners, and finally laundry detergents.


Dish Washing and Surface Cleaners


The fragrance designed for these types of application are intended to give a superior impact to the consumer whilst avoiding any hedonics or streak residual on the targeted cleaned surface. One can design a pleasant and full experience for the user of the market product with the engineered perfume while at the same time minimizing substantivity.


Formulations for these types of household and/or industrial applications must contain perfumes that answer to the following criteria: at least 30%, preferably more than 40% of the odorant constituents must have Γ values characteristic of flash release in aqueous dilutions, as described above. At least three of these flash release odorants must have an odor detection threshold in water of less than 50 parts per billion and/or an odor detection threshold in air of less than 0.025 mg/m3.














TABLE 9







parts
Γ
Ω
ODT (ppb)




















Water Release Group1






d-LIMONENE
41.60
8200.7592
536.22897


ETHYL BUTYRATE
0.30
14612.2887
21.165694
less than 50 ppb


total parts
41.90


Water Release Group 2


HEXYL ACETATE
0.90
3118.7849
1.3050609
less than 50 ppb


LINALOOL
8.60
644.4128
0.2646234
less than 50 ppb


TRIPLAL
0.60
1696.1058
0.2004637
less than 50 ppb


CIS-3-HEXENYL ACETATE
0.90
1384.2710
0.1622188
less than 50 ppb


ETHYL ACETOACETATE
2.30
640.3492
0.1061676
less than 50 ppb


ALLYL CAPROATE
0.30
1736.6656
0.1098162
less than 50 ppb


VERDOX
8.60
564.5618
0.0835701
less than 50 ppb


CIS-3-HEXEN-1-OL
0.30
1569.1101
0.0769836
less than 50 ppb


total parts
22.50


Water Release Group 3


CITRONELLYL NITRILE
1.40
913.0422
0.0681181
less than 50 ppb


FRUCTONE
1.40
554.7882
0.0485108
less than 50 ppb


TERPINYL ACETATE
2.90
613.4379
0.0292787


NERYL ACETATE
1.40
456.9131
0.0255047
less than 50 ppb


TETRAHYDROLINALOOL
0.90
503.4877
0.0151079


IONONE BETA PURE
1.40
311.3167
0.0102709
less than 50 ppb


total parts
9.40


Water Release Group 4


OXANE
0.06
610.1552
0.0019673
less than 50 ppb


LILIAL
2.90
104.6269
0.0017276
less than 50 ppb


PHENOXY ETHYL ISOBUTYRATE
8.60
52.6664
0.0011495
less than 50 ppb


ALLYL CYCLOHEXYL PROPIONATE
0.90
126.7982
0.0008514
less than 50 ppb


GAMMA UNDECALACTONE
1.40
42.9827
0.0006658
less than 50 ppb


GAMMA-DECALACTONE
0.90
115.3553
0.0005264
less than 50 ppb


total parts
14.76


Water Release Group 5


CYCLOGALBANATE
0.30
134.8094
0.0003666
less than 50 ppb


total parts
0.30


Water release Group 6


GALAXOLIDE 50 IPM
5.70
7.4931
0.00001644
less than 50 ppb


HEDIONE
2.90
8.3964
0.00000331
less than 50 ppb


EBANOL
0.14
15.5977
0.00000108
less than 50 ppb


CIS-3-HEXENYL SALICYLATE
0.60
2.8007
0.00000015
less than 50 ppb


total parts
9.34


DIPROPYLENE GLYCOL
1.80


total perfume parts
100.00









The perfume odorants determined by the inventors to result in flash release in water dilutions are in bold: d-limonene, ethyl butyrate, hexyl acetate, triplal, cis-3-hexenyl acetate, allyl caproate, and cis-3-hexenol. These flash release odorants as determined by the authors make up 45% of the total perfume.


The above perfume was included at 0.5% in a typical dish washing product with a formulation provided below in Table 10.












TABLE 10





Phases
Ingredients
Supplier
Percent


















A
D. I. Water

82.95


A
Calsoft F-90
Pilot Chem
7.00


A
Standamid LD
Cognis Corp.
3.50


B
Standapol ES-2
Cognis Corp
6.00


B
Versene 100
Dow Chem.
0.05


C
Fragrance

0.50









The above perfume provides hedonic impact during the washing of glass and other types of dishes as well as surface cleaners while also leaving a minimum amount of residual fragrance or streaks upon completing the cycle or the cleaning experience.


Body-Wash,Soap, Shampoo and Conditoners


It is important to establish that a perfume during a wash off experience for these types of applications must provide a well rounded hedonic experience that will last throughout the entire washing process. Residence time of the chosen odorants within the perfume formula must therefore be optimally based on their acceleration Γ out of the water partition. Since Γ is derived partly based on the vapor pressure and the diffusion coefficients in water, water-air and air, it is an indication of the residence time of odorants.


Grouping odorants in a perfume according to their mass correlated water release values and optimizing specific release groups will serve to result in a longer residence time in headspace and a more rounded hedonic experience for the user during the wash-off. A balance between Ω and Γ values resulting in odorant within water release groups 1, 2, 3 and 4 will ultimately yield a good hedonic release impact of the materials while at the same time provide a longer experience during the wash-off.


Perfumes for wash-off systems such as shampoos, conditioners and body-wash lotions and gels must have at least three different perfume odorants making up 30%, preferably 40% of the total perfume with Γ values characteristic of sustained release, as defined earlier within this patent. These sustained release odorants must also elute between water release groups 1 and 4, based on their Ω values. In order to design a powerful and sustained hedonic release, a measure of the physiological response to these chosen odorants must also be included in the engineering design of the released perfume. Odor detection threshold values and or odor indices as described above must also be considered. At least three of the sustained odorants must have an odor detection threshold in water of 50 ppb or less and/or an odor index in air of less than 0.025 mg/m3.


Below in Table 11 is an illustrative example of a fragrance engineered for sustained release in high water dilutions.














TABLE 11







parts
Γ
Ω
ODT (ppb)




















Water Release Group 1






d-LIMONENE
32.03
8200.75918
412.8705274


ETHYL BUTYRATE
0.46
14612.28873
32.45406391
less than 50 ppb


total parts
32.49


Water Release Group 2


HEXYL ACETATE
1.39
3118.784871
2.015594108
less than 50 ppb


LINALOOL
13.24
644.4128163
0.407396919
less than 50 ppb


TRIPLAL
0.92
1696.105796
0.307377724
less than 50 ppb


CIS-3-HEXENYL ACETATE
1.39
1384.270995
0.250537947
less than 50 ppb


ETHYL ACETOACETATE
3.54
640.3491788
0.163405746
less than 50 ppb


ALLYL CAPROATE
0.46
1736.665583
0.168384846
less than 50 ppb


VERDOX
13.24
564.5618108
0.128659154
less than 50 ppb


CIS-3-HEXEN-1-OL
0.46
1569.110141
0.118041515
less than 50 ppb


CITRONELLYL NITRILE
2.16
913.0421757
0.105096515
less than 50 ppb


FRUCTONE
2.16
554.7881788
0.074845246
less than 50 ppb


total parts
38.96


Water Release Group 3


TERPINYL ACETATE
4.46
613.4379125
0.04502868


NERYL ACETATE
2.16
456.9131114
0.039350035
less than 50 ppb


TETRAHYDROLINALOOL
0.69
503.4876831
0.01158273


IONONE BETA PURE
1.08
311.3166919
0.007923271
less than 50 ppb


total parts
8.39


Water Release Group 4


OXANE
0.05
610.1551529
0.001508244
less than 50 ppb


LILIAL
2.23
104.6269183
0.001328486
less than 50 ppb


PHENOXY ETHYL ISOBUTYRATE
6.62
52.6663967
0.000884842
less than 50 ppb


ALLYL CYCLOHEXYL PROPIONATE
0.69
126.7982325
0.000652778
less than 50 ppb


GAMMA UNDECALACTONE
1.08
42.9827363
0.000513608
less than 50 ppb


total parts
10.67


Water Release Group 5


GAMMA-DECALACTONE
0.69
115.3552787
0.00040354
less than 50 ppb


CYCLOGALBANATE
0.23
134.8093664
0.000281095
less than 50 ppb


total parts
0.92


Water Release Group 6


GALAXOLIDE 50 IPM
4.39
7.493096107
0.000012657
less than 50 ppb


HEDIONE
2.23
8.396448605
0.000002545
less than 50 ppb


EBANOL
0.11
15.59773278
0.000000831
less than 50 ppb


CIS-3-HEXENYL SALICYLATE
0.46
2.800719742
0.000000115
less than 50 ppb


total parts
7.19


DIPROPYLENE GLYCOL
1.39


TOTAL PERFUME PARTS
100.00









The perfume odorants determined by the inventors to result in a sustained release in water dilutions are: linalool, ethyl acetoacetate, verdox, citronellyl nitrile, fructone, terpinyl acetate, neryl acetate, tetrahydrolinalool, beta ionone, lilial and allyl cyclohexyl propionate, gamma-decalactone and cyclogalabanate. These sustained release odorants as determined by the authors make up 45.65% of the total perfume.


The above perfume was put at 1% in a house base shampoo formulated according to the formula below in Table 12. During use, the product gave a well-rounded impactful experience to the user.












TABLE 12





Phases
Ingredients
Supplier
Percent


















A
D. I. Water

34.00


A
Standapol ES-2
Cognis Corp.
35.00


B
Standapol WAQ-LC
Cognis Corp
27.50


B
Glydant 2000
Lonza
0.30


C
Sodium Chloride

1.80


D
Fragrance

1.00










Laundry Products


At the end of a typical wash cycle, perfume deposition is often minimal due to the relative solubility and water-release values of a number of odorants making up a typical perfume in addition to the large amount of water used during a typical household wash cycle. It is therefore important to engineer fragrances with maximum deposition on woven and non-woven surfaces for obvious commercial and environmental reasons when considering these types of household and industrial applications.


Since water release values are derived based on activity and water diffusion coefficients of odorants in water, as well as partition energies of these odorants for polar and non polar partitions, vapor pressure etc., it is possible to predict quantitatively the substantivity of the individual odorants considered in the perfume in water.


Based on the Ω values of odorants and their subsequent grouping in various release groups, it is possible to engineer certain hedonic notes or perfumes to be perceived by the consumer after wash-off, upon completing a laundry cycle. In addition, this fragrance design limits unnecessary environmental waste of the perfume used in formulating the wash product during the wash procedure.


Perfumes intended for maximum deposition in wash-off systems must have at least three different odorants constituting 40% and preferably at least 50% of the total perfume within water release groups 4 and/or 5 and/or 6 according to the method described in the herein invention and with non-release Γ values, i.e. less than 100. At least three different odorants must have an odor detection threshold in water of less than 50 parts per billion and/or an odor detection threshold in air of less than 0.025 mg/m3.


To illustrate the importance of Ω values in designing perfumes for this laundry detergents, the below fragrance is shown below in Table 13.














TABLE 13







parts
Γ
Ω
ODT (ppb)




















Water Release Group 1






d-LIMONENE
21.28
8200.7592
274.3017428


ETHYL BUTYRATE
0.15
14612.289
10.5828469
less than 50 ppb


total parts
21.43


Water Release Group 2


HEXYL ACETATE
0.46
3118.7849
0.6670311
less than 50 ppb


LINALOOL
4.42
644.4128
0.1360041
less than 50 ppb


TRIPLAL
0.31
1696.1058
0.1035729
less than 50 ppb


CIS-3-HEXENYL ACETATE
0.46
1384.271
0.0829118
less than 50 ppb


total parts
5.65


Water Release Group 3


ETHYL ACETOACETATE
1.18
640.3492
0.0544686
less than 50 ppb


ALLYL CAPROATE
0.15
1736.6656
0.0549081
less than 50 ppb


VERDOX
4.42
564.5618
0.0429512
less than 50 ppb


CIS-3-HEXEN-1-OL
0.15
1569.108
0.0384918
less than 50 ppb


CITRONELLYL NITRILE
0.72
913.04218
0.0350322
less than 50 ppb


FRUCTONE
0.72
554.78818
0.0249484
less than 50 ppb


TERPINYL ACETATE
1.49
613.43791
0.0150432


NERYL ACETATE
0.72
456.91311
0.0131167
less than 50 ppb


TETRAHYDROLINALOOL
1.85
503.48768
0.0310551


IONONE BETA PURE
2.88
311.31669
0.0211287
less than 50 ppb


total parts
14.28


Water Release Group 4


OXANE
0.12
610.15515
0.0039345
less than 50 ppb


LILIAL
5.95
104.62692
0.0035446
less than 50 ppb


PHENOXY ETHYL ISOBUTYRATE
14.32
52.666397
0.0019140
less than 50 ppb


ALLYL CYCLOHEXYL PROPIONATE
1.85
126.79823
0.0017502
less than 50 ppb


GAMMA UNDECALACTONE
2.88
42.982736
0.0013696
less than 50 ppb


GAMMA-DECALACTONE
1.85
115.35528
0.0010820
less than 50 ppb


CYCLOGALBANATE
1.24
134.80937
0.0015155
less than 50 ppb


total parts
28.21


Water Release Group 5


GALAXOLIDE 50 IPM
14.00
7.4930961
0.0000404
less than 50 ppb


HEXYL CINNAMIC ALDEHYDE
2.83
21.014233
0.0000461
less than 50 ppb


total parts
16.83


Water Release Group 6


LYRAL
2.83
6.500843
0.0000035
less than 50 ppb


HEDIONE
5.95
8.3964486
0.0000068
less than 50 ppb


EBANOL
0.25
15.597733
0.0000019
less than 50 ppb


CIS-3-HEXENYL SALICYLATE
1.24
2.8007197
0.0000003
less than 50 ppb


BENZYL SALICYLATE
3.33
1.7312373
0.0000004


total parts
13.60


total Perfume parts
100.00









A total of 47.63% of the above perfume is composed of non-release odorants under heavy aqueous dilutions based on the odorants' Γ values. The substantive odorants are: phenoxy ethyl isobutyrate, gamma-undecalactone, galaxolide, hexyl cinnamic aldehyde, lyral, hedione, ebanol, cis-3-hexenyl salicylate and benzyl salylate.


The above description is for the purposes of teaching the person of ordinary skill in the art how to practice the present invention, and it is not intended to detail all those obvious modifications and variations of it which will become apparent to the skilled worker upon reading the description.

Claims
  • 1. A method of formulating a perfume composition for wash-off systems, comprising: calculating values of odor detection threshold, odor detection threshold in air, acceleration (Γ) flash water release (Ω) values for a group of odorants;selecting at least three different odorants, each odorant having an acceleration (Γ) value of about 1000 or greater,a flash release (Ω) value selected from the group consisting of about 10 or greater, from about 0.07 to about 10, and from about 0.007 to about 0.07, anda property selected from the group consisting of an odor detection threshold of about 50 parts per billion or less, an odor detection threshold in air of about 0.025 mg/m3 or less, and combinations of these; andplacing the perfume composition in a wash-off system to provide an initial water release and a minimal residual perfume on a targeted surface after wash-off.
  • 2. The method of claim 1, wherein the wash-off system is selected from the group consisting of surface cleaner and dishwashing detergent.
  • 3. The method of claim 1, wherein the odorants comprise at least about 30% of the perfume composition.
  • 4. The method of claim 1, wherein the odorants comprise at least about 40% of the perfume composition.
  • 5. A method of formulating a perfume composition for wash-off systems, comprising: calculating values of odor detection threshold, odor detection threshold in air, acceleration (Γ), and flash water release (Ω) values for a group of odorants;selecting at least three different odorants, each odorant having an acceleration (Γ) value from about 100 to about 1000,a flash release (Ω) value selected from the group consisting of about 10 or greater, from about 0.07 to about 10, from about 0.007 to about 0.07, and from about 0.0005 to about 0.007, anda property selected from the group consisting of an odor detection threshold of about 50 parts per billion or less, an odor detection threshold in air of about 0.025 mg/m3 or less, and combinations of these; andplacing the perfume in a wash-off system to provide a long sustained perfume release and hedonic experience during the wash-off event.
  • 6. The method of claim 5, wherein the wash-off system is selected from the group consisting of a shampoo, conditioner, body wash and soap.
  • 7. The method of claim 5, wherein the odorants comprise at least about 30% of the perfume composition.
  • 8. The method of claim 5, wherein the odorants comprise at least about 40% of the perfume composition.
  • 9. A method of formulating a perfume composition for wash-off systems, comprising: calculating values of odor detection threshold, odor detection threshold in air, acceleration (Γ), and flash water release (Ω) values for a group of odorants; selecting at least three different odorants, each odorant havingan acceleration (Γ) value of about 100 or less,a flash release (Ω) value selected from the group consisting of about 10 or greater, from about 0.07 to about 10, from about 0.007 to about 0.07, from about 0.0005 to about 0.007, from about 0.00003 to about 0.0005, and about 0.00003 or less, anda property selected from the group consisting of an odor detection threshold of about 50 parts per billion or less, an odor detection threshold in air of about 0.025 mg/m3 or less, and combinations of these; andplacing the perfume composition in a wash-off system to provide residual fragrance deposition.
  • 10. The method of claim 9, wherein the wash-off system is selected from the group consisting of shampoo, conditioner, body wash and soap.
  • 11. The method of claim 9, wherein the odorants comprise at least about 40% of the perfume composition.
  • 12. The method of claim 9, wherein the odorants comprise at least about 50% of the perfume composition.
CROSS-REFERENCE TO RELATED APPLICATIONS

Applicants claim priority benefits under 35 U.S.C. §119(e) of U.S. Provisional Patent Application Ser. No. 60/669,120 filed Apr. 7, 2005.

US Referenced Citations (10)
Number Name Date Kind
6143707 Trinh et al. Nov 2000 A
6455086 Trinh et al. Sep 2002 B1
6601789 Bajadali et al. Aug 2003 B1
6858574 Yang et al. Feb 2005 B2
20020055452 McGee et al. May 2002 A1
20030022805 Clare Jan 2003 A1
20030166498 Yang et al. Sep 2003 A1
20040138078 Clare et al. Jul 2004 A1
20060003031 Fadel et al. Jan 2006 A1
20060207037 Fadel et al. Sep 2006 A1
Foreign Referenced Citations (4)
Number Date Country
1146057 Oct 2001 EP
0 888 440 Jan 2003 EP
WO 9734987 Sep 1997 WO
WO 02064722 Aug 2002 WO
Related Publications (1)
Number Date Country
20070099804 A1 May 2007 US
Provisional Applications (1)
Number Date Country
60669120 Apr 2005 US