1. Technical Field
The present disclosure relates to systems and methods for providing energy to biological tissue and, more particularly, to a microwave ablation surgical probe having a porous core through which coolant is circulated and methods of use and manufacture therefor.
2. Background of Related Art
Energy-based tissue treatment is well known in the art. Various types of energy (e.g., electrical, ultrasonic, microwave, cryogenic, thermal, laser, etc.) are applied to tissue to achieve a desired result. Microwave energy can be delivered to tissue using an antenna probe. Presently, there are several types of microwave probes in use, e.g., monopole, dipole, and helical. One type is a monopole antenna probe, which consists of a single, elongated microwave conductor exposed at the end of the probe. The probe is typically surrounded by a dielectric sleeve. The second type of microwave probe commonly used is a dipole antenna, which consists of a coaxial construction having an inner conductor and an outer conductor with a dielectric junction separating a portion of the inner conductor. The inner conductor may be coupled to a portion corresponding to a first dipole radiating portion, and a portion of the outer conductor may be coupled to a second dipole radiating portion. The dipole radiating portions may be configured such that one radiating portion is positioned proximally of the dielectric junction, and the other portion is positioned distally of the dielectric junction. In monopole and dipole antenna probes, microwave energy generally radiates perpendicularly from the axis of the conductor.
A typical microwave antenna has a long, thin inner conductor that extends along the axis of the probe and is surrounded by a dielectric material and is further surrounded by an outer conductor around the dielectric material such that the outer conductor also extends along the axis of the probe. In another variation of the probe that provides for effective outward radiation of energy or heating, a portion or portions of the outer conductor can be selectively removed. This type of construction is typically referred to as a “leaky waveguide” or “leaky coaxial” antenna. Another variation on the microwave probe involves having the tip formed in a uniform spiral pattern, such as a helix, to provide the necessary configuration for effective radiation. This variation can be used to direct energy in a particular direction, e.g., perpendicular to the axis, in a forward direction (i.e., towards the distal end of the antenna), or combinations thereof.
Invasive procedures and devices have been developed in which a microwave antenna probe may be either inserted directly into a point of treatment via a normal body orifice or inserted percutaneously. Because of the small difference between the temperature required for denaturing malignant cells and the temperature injurious to healthy cells, a known heating pattern and predictable temperature control is important so that heating is confined to the tissue to be treated. For instance, hyperthermia treatment at the threshold temperature of about 41.5° C. generally has little effect on most malignant growth of cells. However, at slightly elevated temperatures above the approximate range of 43° C. to 45° C., thermal damage to most types of normal cells is routinely observed.
One approach to controlling probe and/or tissue temperature is to circulate coolant within the probe to extract excess heat from the probe. However, providing coolant passages within a probe may reduce probe strength, because such passages necessitate the introduction of voids into the probe structure.
In some surgical procedures, a microwave antenna probe may be inserted percutaneously into, for example, a chest wall of a patient. During such a procedure, negotiating the probe through, for example, fibrous thoracic tissue and ribs may place undue stresses on the probe. Additionally, a cooled probe may lack sufficient strength to withstand the stresses imposed by such percutaneous insertions, which may result in probe failure.
The present disclosure provides a high-strength electromagnetic surgical ablation probe that includes a cooled and dielectrically buffered antenna assembly. A cable provides electromagnetic energy to the probe via a coaxial conductor and/or provides coolant via a fluid conduit to improve power delivery performance and power handling, and to reduce component temperatures. Suitable coolants include deionized water, sterile water, or saline.
The disclosed ablation probe includes a coaxial feedline having in coaxial arrangement an outer sheath, an outer conductor, an inner conductor, and a dielectric disposed between the outer conductor and the inner conductor. The inner conductor extends distally beyond the outer sheath, the outer conductor, and the dielectric, e.g., the outer layers of the feedline may be stripped leaving the inner conductor extending distally. A hypotube is coaxially disposed around the feedline. The hypotube includes one or more longitudinal ribs extending radially inward from an inner surface of the hypotube. The ribs extend from the inner surface of the hypotube to an outer surface of the feedline to define one or more fluid channels between the feedline and the hypotube. During manufacture, the ribs may be formed in the hypotube by being drawn into the tubing, extrusion, and/or formed by welding two or more semicircular “clamshell” halves of the hypotube together.
A feed point seal joins a distal end of the hypotube to a porous core enclosed within the probe distal radiating section. The feed point seal includes one or more an openings defined therethrough to provide a fluid path between the fluid channels and the porous core. The feed point seal includes an opening, which may be axially positioned, to enable the inner conductor to pass therethough, e.g., to extend distally into the porous core. The feed point seal additionally or alternative seals one or more conductors of the feedline, which may help prevent coaxial feedline short circuiting (e.g., shorts between conductors and/or other elements of the probe).
A microwave ablation antenna in accordance with the present disclosure may be configured to operate in a range of about 915 MHz to about 2.45 GHz, or within any other suitable frequency range. In one embodiment, the hypotube ribs press into the coaxial cable thereby forming a separate fluid inflow channel and fluid outflow channel. A coolant, such as saline or dionized water, is introduced into a proximal end of the inflow channel, from where it flows distally, through openings in the feed point seal into a radiating section that includes a radiating section having a porous core. The porous core is perfused with coolant, which may help to reduce probe temperatures, and may provide improved dielectric coupling between the probe and tissue. The dual-chamber design of the disclosed probe may provide better coolant dispersion within the probe, thereby providing increased coolant efficiency, and allowing the size of the probe to be greatly reduced.
The porous perfused core may include a separator to define a two chamber perfusion arrangement wherein coolant would first travel distally past the distal radiating section through an inflow chamber region, then return proximally through an outflow chamber region. The porous core may be formed from porous ceramic, porous metal, or any suitable material that permits coolant fluid to circulate. Additionally, the porous core may add strength to the dielectric surface of the probe.
A dielectric coating may enclose the entire probe and act as the dielectric match between the probe and tissue The coating may act as a sealing layer for the entire probe, and may be formed from lubricious material to facilitate the insertion of the probe percutaneously into tissue.
Also disclosed is a microwave ablation system that includes a source of ablation energy, e.g., a microwave generator, that is operably coupled to a perfused core dielectrically loaded dipole microwave antenna probe as described herein. The disclosed system may include a source of coolant operably coupled to the probe, e.g., to the hypotube.
Also disclosed is a method of manufacturing a perfused core dielectrically loaded dipole microwave antenna probe that includes the steps of providing a hypotube having one or more longitudinal ribs extending radially inward from an inner surface thereof. A coaxial feedline is provided. The coaxial feedline has, in coaxial arrangement, an outer sheath, an outer conductor, an inner conductor, and a dielectric disposed between the outer conductor and the inner conductor. The inner conductor extends distally beyond the outer sheath, the outer conductor, and the dielectric. The inner conductor may be extended by, for example and without limitation, stripping the outer layers of the coaxial feedline to expose the inner conductor. The hypotube is mounted over the feedline to form a fluid channel between the inner surface of the hypotube, the one or more ribs, and an outer surface of the feedline. A feed point seal is overmolded at a distal end of at least one of the hypotube, the sheath, the outer conductor, or the dielectric, and the porous core is mounted to a distal end of the feed point seal.
The above and other aspects, features, and advantages of the present disclosure will become more apparent in light of the following detailed description when taken in conjunction with the accompanying drawings in which:
Particular embodiments of the present disclosure will be described hereinbelow with reference to the accompanying drawings; however, it is to be understood that the disclosed embodiments are merely exemplary of the disclosure, which may be embodied in various forms. Well-known functions or constructions are not described in detail to avoid obscuring the present disclosure in unnecessary detail. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a basis for the claims and as a representative basis for teaching one skilled in the art to variously employ the present disclosure in virtually any appropriately detailed structure.
In the drawings and in the descriptions that follow, the term “proximal,” as is traditional, shall refer to the end of the instrument that is closer to the user, while the term “distal” shall refer to the end that is farther from the user.
Alternatively, tip 123 may be rounded or flat, and may include a forceps or a blade. Generator assembly 28 may be a source of ablation energy, e.g., microwave energy in the range of about 915 MHz to about 2.45 GHz. Cable 15 may additionally or alternatively provide a conduit (not explicitly shown) configured to provide coolant from a coolant source 18 to the ablation probe 10.
With additional reference to
A tubular hypotube 134 is positioned coaxially around feedline 110 to form one or more fluid channels 141, 142. Hypotube 134 extends from a proximal end of the probe 10 to the feed point seal 135. Hypotube 134 includes one or more dividing ribs 136 (
Hypotube 134 and ribs 136 (as arranged around outer sheath 150 and/or inner hypotube 138) define a fluid inflow channel 141 and a fluid outflow channel 142, each having a proximal end and a distal end. A proximal end of fluid inflow channel 141 may be in operable fluid communication with a source of coolant 18, such as without limitation, saline and/or deionized water. A proximal end of fluid outflow channel 142 may be configured to expel spent coolant. Additionally or alternatively, outflow channel 142 may be configured to direct spent fluid to a reservoir (not explicitly shown), and/or to direct coolant to a circulator for re-use.
Continuing with reference to
As shown in
Feed point seal 135 is sealably coupled to hypotube 134 using any suitable manner of fluid sealing. Feed point seal 135 may additionally or alternatively form a fluid-tight seal around inner conductor 156. Feed point seal 135 may additionally or alternatively encapsulate a distal end of one or more of outer sheath 150, outer conductor 152, and/or dielectric layer 154, which may prevent electrical short circuiting therebetween. Feed point seal 135 may be formed by overmolding over a distal end 143 of hypotube 134, e.g., formed by molding feed point seal 135 in place thereby forming a fluid-tight seal between a distal end 143 of hypotube 134 and feed point seal 135. Feed point seal 135 may be formed from any suitable material that can withstand probe operating temperatures and that is electrically non-conductive, for example without limitation, polyether block amide, such as Pebax®, manufactured by The Arkema Group of Colombes, France; polyetherimide (PEI), such as Ultem® and/or Extem®, manufactured by SABIC Innovative Plastics of Saudi Arabia; and/or polyimide-based polymer, such as Vespel®, manufactured by E.I. du Pont de Nemours and Company of Wilmington, Del., United States.
Distal radiating section 105 includes an outer dielectric surface 106 and a porous core 114 therein. Porous core 114 may include an inflow region 115 and an outflow region 116 having a separator 175 disposed therebetween. One or more openings (not explicitly shown) may be defined within separator 175 to enable coolant to flow from inflow region 115 to outflow region 116. Porous core 114 may be formed from any suitable material that provides radial support to outer dielectric surface 106 and that enables coolant perfusion within porous core 114. For example, and without limitation, porous core 114 may be formed from a porous ceramic material having an open cell, closed cell, tangle fiber network, and/or membrane structure. In an embodiment, porous core 114 may be formed from a metallic material, such as without limitation, stainless steel, titanium, nickel, nickel alloys, and bronze formed by any suitable manner of manufacture, e.g., powder compaction sintering, gravity sintering, powder rolling and sintering, isostatic compaction and sintering, metal spraying, metal coating and sintering, metal injection molding and sintering, and/or any other suitable manner of porous metal forming.
As best illustrated in
An outer surface of the probe 10, e.g., an outer surface of choke outer jacket 126, dielectric choke 130, dielectric surface 106, and/or tip 120, may include a dielectric coating (not explicitly shown). The dielectric coating may be formed from any suitable material having the ability to withstand the operating temperature of the probe and having a low electrical conductivity at probe operating frequencies, such as without limitation, polytetrafluoroethylene (a.k.a. PTFE or Teflon®, manufactured by the E.I. du Pont de Nemours and Co. of Wilmington, Del., USA), polyethylene tephthalate (PET), or the like. Additionally or alternatively, an outer surface of the probe 10 as previously described may include a heat shrink covering, such as polyolefin tubing, or any suitable heat-shrink material. The dielectric coating and/or heat shrink covering may provide a lubricious interface between the probe 10 and tissue to reduce or prevent undesirable adhesion of tissue to the probe 10, and to aid insertion of the probe 10 into tissue.
A method of manufacturing an ablation probe 10 in accordance with the present disclosure includes the steps of providing a hypotube 134 having one or more longitudinal ribs 136 extending radially inward from an inner surface 137 thereof. Hypotube 134 and/or ribs 136 may be formed by any suitable manner of manufacture, including without limitation by extrusion and/or welding. Hypotube 134 may be constructed by joining two or more semicircular sections (not explicitly shown) along a common longitudinal edge thereof to form the generally tubular shape of hypotube 134. A coaxial feedline 110 may be provided, wherein the feedline includes (in coaxial arrangement) an outer sheath 150, an outer conductor 152, an inner conductor 156, and a dielectric 154 disposed between the outer conductor 152 and the inner conductor 156, wherein the inner conductor 156 extends distally beyond the outer sheath 150, the outer conductor 152, and the dielectric 154. The inner conductor 156 may be extended by stripping outer sheath 150, outer conductor 152, and dielectric 154 as will be familiar to the skilled artisan.
Hypotube 134 is mounted over the feedline 110 to form one or more fluid channels defined between an inner surface 137 of hypotube 134, the one or more ribs 136, and an outer surface of the sheath (not explicitly shown). A distal end 143 of hypotube 134 is substantially aligned with a distal end of outer sheath 150, outer conductor 152, and/or dielectric 154. A feed point seal 135 may be mounted at a distal end of at least one of the sheath 150, the outer conductor 152, or the dielectric 154. The feed point seal 135 may be formed in place by overmolding whereby the sheath 150, the outer conductor 152, and/or the dielectric 154 are encapsulated within the feed point seal 135. During the overmolding step, the inner conductor 156 extends distally through the feed point seal 135. In this manner, a fluid-tight seal may be formed between inner conductor 156 and feed point seal 135.
A proximal end of porous core 114 is mounted to a distal end of the feed point seal 135. Porous core 114 may be mounted within distal radiating section 105 and/or tip 120. Porous core 114 may additionally or alternatively be formed within distal radiating section 105 and/or tip 120, and mounted to a distal end of the feed point seal. Feed point seal 135 may additionally or alternatively be overmolded over the combination of feedline 110 (including without limitation sheath 150, outer conductor 152, dielectric 154, and/or inner conductor 156) and porous core 114.
The described embodiments of the present disclosure are intended to be illustrative rather than restrictive, and are not intended to represent every embodiment of the present disclosure. Further variations of the above-disclosed embodiments and other features and functions, or alternatives thereof, may be made or desirably combined into many other different systems or applications without departing from the spirit or scope of the disclosure as set forth in the following claims both literally and in equivalents recognized in law.
This application is a Continuation of U.S. patent application Ser. No. 12/561,096, filed Sep. 16, 2009, the entirety of which is hereby incorporated by reference herein for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
3631363 | Miller | Dec 1971 | A |
D223367 | Kountz | Apr 1972 | S |
D263020 | Rau, III | Feb 1982 | S |
D266842 | Villers et al. | Nov 1982 | S |
4397313 | Vaguine | Aug 1983 | A |
4462412 | Turner | Jul 1984 | A |
D278306 | McIntosh | Apr 1985 | S |
4572190 | Azam et al. | Feb 1986 | A |
D295893 | Sharkany et al. | May 1988 | S |
D295894 | Sharkany et al. | May 1988 | S |
4744372 | Kikuchi et al. | May 1988 | A |
4791930 | Suzuki et al. | Dec 1988 | A |
4798215 | Turner | Jan 1989 | A |
5097844 | Turner | Mar 1992 | A |
5275597 | Higgins et al. | Jan 1994 | A |
5366490 | Edward et al. | Nov 1994 | A |
5370675 | Edwards et al. | Dec 1994 | A |
D354218 | Van de Peer | Jan 1995 | S |
5417210 | Funda et al. | May 1995 | A |
5470308 | Edwards et al. | Nov 1995 | A |
5536240 | Edwards et al. | Jul 1996 | A |
5599294 | Edwards et al. | Feb 1997 | A |
5607389 | Edwards et al. | Mar 1997 | A |
5609151 | Mulier et al. | Mar 1997 | A |
5620480 | Rudie | Apr 1997 | A |
5643197 | Brucker et al. | Jul 1997 | A |
5688267 | Panescu et al. | Nov 1997 | A |
5720718 | Rosen et al. | Feb 1998 | A |
5944749 | Fenn | Aug 1999 | A |
5997532 | McLaughlin et al. | Dec 1999 | A |
6002968 | Edwards | Dec 1999 | A |
6031375 | Atalar et al. | Feb 2000 | A |
6053912 | Panesco | Apr 2000 | A |
D424693 | Pruter | May 2000 | S |
D424694 | Tetzlaff et al. | May 2000 | S |
D425201 | Tetzlaff et al. | May 2000 | S |
6067475 | Graves et al. | May 2000 | A |
6097985 | Kasevich et al. | Aug 2000 | A |
6149677 | Dobak, III | Nov 2000 | A |
6181970 | Kasevich | Jan 2001 | B1 |
6233490 | Kasevich | May 2001 | B1 |
6275738 | Kasevich et al. | Aug 2001 | B1 |
6289249 | Arndt et al. | Sep 2001 | B1 |
D449886 | Tetzlaff et al. | Oct 2001 | S |
6312391 | Ramadhyani et al. | Nov 2001 | B1 |
6334074 | Spertell | Dec 2001 | B1 |
6375606 | Garibaldi et al. | Apr 2002 | B1 |
D457958 | Dycus et al. | May 2002 | S |
D457959 | Tetzlaff et al. | May 2002 | S |
6413255 | Stern | Jul 2002 | B1 |
6419653 | Edwards et al. | Jul 2002 | B2 |
6451015 | Rittman | Sep 2002 | B1 |
6512956 | Arndt et al. | Jan 2003 | B2 |
6592579 | Arndt et al. | Jul 2003 | B2 |
6603994 | Wallace et al. | Aug 2003 | B2 |
6610054 | Edwards et al. | Aug 2003 | B1 |
6675050 | Arndt et al. | Jan 2004 | B2 |
D487039 | Webster et al. | Feb 2004 | S |
6725080 | Melkent et al. | Apr 2004 | B2 |
D496997 | Dycus et al. | Oct 2004 | S |
6807444 | Tu et al. | Oct 2004 | B2 |
D499181 | Dycus et al. | Nov 2004 | S |
6847848 | Sterzer et al. | Jan 2005 | B2 |
6852091 | Edwards et al. | Feb 2005 | B2 |
6866624 | Chornenky et al. | Mar 2005 | B2 |
6944504 | Arndt et al. | Sep 2005 | B1 |
6974463 | Magers et al. | Dec 2005 | B2 |
7008421 | Daniel et al. | Mar 2006 | B2 |
D525361 | Hushka | Jul 2006 | S |
D531311 | Guerra et al. | Oct 2006 | S |
D533942 | Kerr et al. | Dec 2006 | S |
D535027 | James et al. | Jan 2007 | S |
D541418 | Schechter et al. | Apr 2007 | S |
D541938 | Kerr et al | May 2007 | S |
7276061 | Schaer et al. | Oct 2007 | B2 |
7282050 | Starkebaum et al. | Oct 2007 | B2 |
7285116 | De la Rama et al. | Oct 2007 | B2 |
7285119 | Stewart et al. | Oct 2007 | B2 |
7311703 | Turovskiy et al. | Dec 2007 | B2 |
7326208 | Vanney et al. | Feb 2008 | B2 |
D564662 | Moses et al. | Mar 2008 | S |
7377917 | Trembly | May 2008 | B2 |
7387626 | Edwards et al. | Jun 2008 | B2 |
D576932 | Strehler | Sep 2008 | S |
7439736 | Meaney et al. | Oct 2008 | B2 |
7467015 | Van der Weide | Dec 2008 | B2 |
D594736 | Esjunin | Jun 2009 | S |
D594737 | Kelly et al. | Jun 2009 | S |
7565207 | Turner et al. | Jul 2009 | B2 |
D606203 | Husheer et al. | Dec 2009 | S |
7642451 | Bonn | Jan 2010 | B2 |
D613412 | DeCarlo | Apr 2010 | S |
7697972 | Verard | Apr 2010 | B2 |
7826904 | Appling | Nov 2010 | B2 |
7875024 | Turovskiy | Jan 2011 | B2 |
D634010 | DeCarlo | Mar 2011 | S |
7998139 | Rossetto et al. | Aug 2011 | B2 |
8035570 | Prakash | Oct 2011 | B2 |
8059059 | Bonn | Nov 2011 | B2 |
8118808 | Smith | Feb 2012 | B2 |
8182480 | Huseman | May 2012 | B2 |
8192427 | Buysse | Jun 2012 | B2 |
8197473 | Rossetto | Jun 2012 | B2 |
8202270 | Rossetto | Jun 2012 | B2 |
8211098 | Paulus | Jul 2012 | B2 |
8211099 | Buysse | Jul 2012 | B2 |
8216227 | Podjahsky | Jul 2012 | B2 |
8221418 | Prakash | Jul 2012 | B2 |
8235981 | Prakash | Aug 2012 | B2 |
8246614 | DeCarlo | Aug 2012 | B2 |
8251987 | Willyard | Aug 2012 | B2 |
8262653 | Plaza | Sep 2012 | B2 |
8262703 | Prakash | Sep 2012 | B2 |
8292880 | Prakash | Oct 2012 | B2 |
8292881 | Brannan | Oct 2012 | B2 |
8343149 | Rossetto | Jan 2013 | B2 |
8353902 | Prakash | Jan 2013 | B2 |
8353903 | Podhajsky | Jan 2013 | B2 |
8355803 | Bonn et al. | Jan 2013 | B2 |
20020022836 | Goble et al. | Feb 2002 | A1 |
20030032951 | Rittman | Feb 2003 | A1 |
20030065317 | Rudie et al. | Apr 2003 | A1 |
20040242992 | Hareyama | Dec 2004 | A1 |
20050015082 | O'Sullivan et al. | Jan 2005 | A1 |
20050222564 | Plaza | Oct 2005 | A1 |
20050228370 | Sterzer et al. | Oct 2005 | A1 |
20050245920 | Vitullo et al. | Nov 2005 | A1 |
20060085054 | Zikorus et al. | Apr 2006 | A1 |
20070016182 | Lipson et al. | Jan 2007 | A1 |
20070078453 | Johnson et al. | Apr 2007 | A1 |
20070156132 | Drysen | Jul 2007 | A1 |
20070282319 | van der Weide et al. | Dec 2007 | A1 |
20070288079 | van der Weide et al. | Dec 2007 | A1 |
20070293854 | Pless et al. | Dec 2007 | A1 |
20070293855 | Sliwa, Jr. et al. | Dec 2007 | A1 |
20070299435 | Crowe et al. | Dec 2007 | A1 |
20090187180 | Brannan | Jul 2009 | A1 |
20090192510 | Bahney | Jul 2009 | A1 |
20090222002 | Bonn et al. | Sep 2009 | A1 |
20090248005 | Rusin | Oct 2009 | A1 |
20090248006 | Paulus | Oct 2009 | A1 |
20090299364 | Batchelor et al. | Dec 2009 | A1 |
20090306652 | Buysse | Dec 2009 | A1 |
20100030206 | Brannan | Feb 2010 | A1 |
20100030208 | Manley | Feb 2010 | A1 |
20100030210 | Paulus | Feb 2010 | A1 |
20100045558 | Rossetto | Feb 2010 | A1 |
20100045559 | Rossetto | Feb 2010 | A1 |
20100057070 | Behnke | Mar 2010 | A1 |
20100076422 | Podhajsky | Mar 2010 | A1 |
20100087808 | Paulus | Apr 2010 | A1 |
20100094272 | Rossetto | Apr 2010 | A1 |
20100094273 | Rossetto | Apr 2010 | A1 |
20100097284 | Brannan | Apr 2010 | A1 |
20100256624 | Brannan | Oct 2010 | A1 |
20100262134 | Jensen | Oct 2010 | A1 |
20100286683 | Podhajsky | Nov 2010 | A1 |
20100305560 | Peterson | Dec 2010 | A1 |
20130030429 | Rusin | Jan 2013 | A1 |
20130041362 | Lee et al. | Feb 2013 | A1 |
20130041365 | Rusin | Feb 2013 | A1 |
Number | Date | Country |
---|---|---|
1103807 | Jun 1995 | CN |
390937 | Mar 1924 | DE |
1099658 | Feb 1961 | DE |
1139927 | Nov 1962 | DE |
1149832 | Jun 1963 | DE |
1439302 | Jan 1969 | DE |
2439587 | Feb 1975 | DE |
2455174 | May 1975 | DE |
2407559 | Aug 1975 | DE |
2415263 | Oct 1975 | DE |
2429021 | Jan 1976 | DE |
2460481 | Jun 1976 | DE |
2602517 | Jul 1976 | DE |
2504280 | Aug 1976 | DE |
2627679 | Jan 1977 | DE |
2540968 | Mar 1977 | DE |
2820908 | Nov 1978 | DE |
2803275 | Aug 1979 | DE |
2823291 | Nov 1979 | DE |
2946728 | May 1981 | DE |
3143421 | May 1982 | DE |
3045996 | Jul 1982 | DE |
3120102 | Dec 1982 | DE |
3510586 | Oct 1986 | DE |
3604823 | Aug 1987 | DE |
8712328 | Mar 1988 | DE |
3711511 | Jun 1988 | DE |
3904558 | Aug 1990 | DE |
3942998 | Jul 1991 | DE |
4238263 | May 1993 | DE |
4303882 | Aug 1994 | DE |
4339049 | May 1995 | DE |
29616210 | Jan 1997 | DE |
19608716 | Apr 1997 | DE |
19751106 | May 1998 | DE |
19717411 | Nov 1998 | DE |
19751108 | May 1999 | DE |
19801173 | Jul 1999 | DE |
19848540 | May 2000 | DE |
10224154 | Dec 2003 | DE |
10310765 | Sep 2004 | DE |
10328514 | Mar 2005 | DE |
102004022206 | Dec 2005 | DE |
202005015147 | Mar 2006 | DE |
102009015699 | May 2010 | DE |
0 246 350 | Nov 1987 | EP |
0 481 685 | Apr 1992 | EP |
0 521 264 | Jan 1993 | EP |
0 541 930 | May 1993 | EP |
0 556 705 | Aug 1993 | EP |
0 558 429 | Sep 1993 | EP |
0 572 131 | Dec 1993 | EP |
0 836 868 | Apr 1998 | EP |
0 882 955 | Dec 1998 | EP |
1 159 926 | May 2001 | EP |
1 278 007 | Jan 2003 | EP |
0 648 515 | Apr 2003 | EP |
1 810 627 | Jul 2007 | EP |
179 607 | Nov 1906 | FR |
1 275 415 | Oct 1961 | FR |
1 347 865 | Nov 1963 | FR |
2 235 669 | Jan 1975 | FR |
2 276 027 | Jan 1976 | FR |
2 313 708 | Dec 1976 | FR |
2 502 935 | Oct 1982 | FR |
2 517 953 | Jun 1983 | FR |
2 573 301 | May 1986 | FR |
2 862 813 | May 2005 | FR |
2 864 439 | Jul 2005 | FR |
5-5106 | Jan 1993 | JP |
05-40112 | Feb 1993 | JP |
06343644 | Dec 1994 | JP |
07265328 | Oct 1995 | JP |
08056955 | Mar 1996 | JP |
08252263 | Oct 1996 | JP |
09000492 | Jan 1997 | JP |
09010223 | Jan 1997 | JP |
11244298 | Sep 1999 | JP |
2000342599 | Dec 2000 | JP |
2000350732 | Dec 2000 | JP |
2001003776 | Jan 2001 | JP |
2001008944 | Jan 2001 | JP |
2001029356 | Feb 2001 | JP |
2001037775 | Feb 2001 | JP |
2001128990 | May 2001 | JP |
2001231870 | Aug 2001 | JP |
2008142467 | Jun 2008 | JP |
166452 | Nov 1964 | SU |
401367 | Nov 1974 | SU |
727201 | Apr 1980 | SU |
WO9741924 | Nov 1997 | WO |
WO9743971 | Nov 1997 | WO |
WO9956812 | Nov 1999 | WO |
WO0036985 | Jun 2000 | WO |
WO0048672 | Aug 2000 | WO |
WO0051513 | Sep 2000 | WO |
WO0053113 | Sep 2000 | WO |
WO0101847 | Jan 2001 | WO |
WO0174252 | Oct 2001 | WO |
WO0245790 | Jun 2002 | WO |
WO02061880 | Aug 2002 | WO |
WO2005016119 | Feb 2004 | WO |
WO2004112628 | Dec 2004 | WO |
WO2007112081 | Oct 2007 | WO |
WO2010035831 | Apr 2010 | WO |
Entry |
---|
U.S. Appl. No. 08/136,098, filed Oct. 14, 1993, Roger A. Stern. |
U.S. Appl. No. 08/483,742, filed Jun. 7, 1995, Roger A. Stern. |
U.S. Appl. No. 13/236,997, filed Sep. 20, 2011, Behnke II, et al. |
U.S. Appl. No. 13/237,068, filed Sep. 20, 2011, Behnke II, et al. |
U.S. Appl. No. 13/237,187, filed Sep. 20, 2011, Behnke II, et al. |
U.S. Appl. No. 13/237,342, filed Sep. 20, 2011, Behnke II, et al. |
U.S. Appl. No. 13/237,488, filed Sep. 20, 2011, Behnke II, et al. |
U.S. Appl. No. 13/343,788, filed Jan. 5, 2012, William O. Reid Jr. |
U.S. Appl. No. 13/343,798, filed Jan. 5, 2012, William O. Reid Jr. |
U.S. Appl. No. 13/344,753, filed Jan. 6, 2012, Lee et al. |
U.S. Appl. No. 13/344,790, filed Jan. 6, 2012, Lee et al. |
U.S. Appl. No. 13/358,129, filed Jan. 25, 2012, Brannan. |
U.S. Appl. No. 13/400,223, filed Feb. 20, 2012, Anthony B. Ross. |
U.S. Appl. No. 13/419,981, filed Mar. 14, 2012, Joseph D. Brannan. |
U.S. Appl. No. 13/430,810, filed Mar. 27, 2012, Joseph D. Brannan. |
U.S. Appl. No. 13/440,690, filed Apr. 5, 2012, Joseph D. Brannan. |
U.S. Appl. No. 13/460,440, filed Apr. 30, 2012, Arnold V. DeCarlo. |
U.S. Appl. No. 13/464,021, filed May 4, 2012, Joseph D. Brannan. |
U.S. Appl. No. 13/477,260, filed May 22, 2012, William R. Reid, Jr. |
U.S. Appl. No. 13/477,320, filed May 22, 2012, Joseph D. Brannan. |
U.S. Appl. No. 13/657,270, filed Oct. 22, 2012, Brannan. |
U.S. Appl. No. 13/657,609, filed Oct. 22, 2012, Prakash. |
U.S. Appl. No. 13/657,638, filed Oct. 22, 2012, Brannan. |
U.S. Appl. No. 13/681,741, filed Nov. 20, 2012, Steven Kim. |
U.S. Appl. No. 13/711,067, filed Dec. 11, 2012, Brannan. |
U.S. Appl. No. 13/711,086, filed Dec. 11, 2012, Brannan. |
U.S. Appl. No. 13/711,164, filed Dec. 11, 2012, Brannan. |
U.S. Appl. No. 13/734,638, filed Jan. 4, 2013, Bonn. |
U.S. Appl. No. 13/740,706, filed Jan. 14, 2013, Rossetto. |
U.S. Appl. No. 13/740,754, filed Jan. 14, 2013, Prakash. |
Alexander et al., “Magnetic Resonance Image-Directed Stereotactic Neurosurgery: Use of Image Fusion with Computerized Tomography to Enhance Spatial Accuracy” Journal Neurosurgery, 83 (1995), pp. 271-276. |
Anderson et al., “A Numerical Study of Rapid Heating for High Temperature Radio Frequency Hyperthermia” International Journal of Bio-Medical Computing, 35 (1994), pp. 297-307. |
Anonymous. (1999) Auto Suture MIBB Site Marker: Single Use Clip Applier, United States Surgical (Product instructions), 2 pages. |
Anonymous. (2001) Disposable Chiba Biopsy Needles and Trays, Biopsy and Special Purpose Needles Cook Diagnostic and Interventional Products Catalog (products list), 4 pages. |
Anonymous. (1987) Homer Mammalok™ Breast Lesion Needle/Wire Localizer, Namic® Angiographic Systems Division, Glens Falls, New York, (Hospital products price list), 4 pages. |
Anonymous. (1999) MIBB Site Marker, United States Surgical (Sales brochure), 4 pages. |
Anonymous. Blunt Tubes with Finished Ends. Pointed Cannula, Popper & Sons Biomedical Instrument Division, (Products Price List), one page, Jul. 19, 2000. |
Anonymous. Ground Cannulae, ISPG, New Milford, CT, (Advertisement) one page, Jul. 19, 2000. |
B. Levy M.D. et al., “Randomized Trial of Suture Versus Electrosurgical Bipolar Vessel Sealing in Vaginal Hysterectomy” Obstetrics & Gynecology, vol. 102, No. 1, Jul. 2003. |
B. Levy M.D. et al., “Update on Hysterectomy New Technologies and Techniques” OBG Management, Feb. 2003. |
B. Levy M.D., “Use of a New Vessel Ligation Device During Vaginal Hysterectomy” FIGO 2000, Washington, D.C. |
B. F. Mullan et al., (May 1999) “Lung Nodules: Improved Wire for CT-Guided Localization,” Radiology 211:561-565. |
B. T. Heniford M.D. et al., “Initial Research and Clinical Results with an Electrothermal Bipolar Vessel Sealer” Oct. 1999. |
Bergdahl et al., “Studies on Coagulation and the Development of an Automatic Computerized Bipolar Coagulator” Journal of Neurosurgery 75:1 (Jul. 1991), pp. 148-151. |
Bulletin of the American Physical Society, vol. 47, No. 5, Aug. 2002, p. 41. |
C. F. Gottlieb et al., “Interstitial Microwave Hyperthermia Applicators having Submillimetre Diameters”, Int. J. Hyperthermia, vol. 6, No. 3, pp. 707-714, 1990. |
C. H. Durney et al., “Antennas for Medical Applications”, Antenna Handbook: Theory Application and Design, p. 24-40, Van Nostrand Reinhold, 1988 New York, V.T. Lo, S.W. Lee. |
Carbonell et al., “Comparison of the Gyrus PlasmaKinetic Sealer and the Valleylab LigaSure™ Device in the Hemostasis of Small, Medium, and Large-Sized Arteries” Carolinas Laparoscopic and Advanced Surgery Program, Carolinas Medical Center, Charlotte, NC 2003. |
Carus et al., “Initial Experience With the LigaSure™ Vessel Sealing System in Abdominal Surgery” Innovations That Work, Jun. 2002. |
Chicharo et al., “A Sliding Goertzel Algorithm” Aug. 1996 DOS pp. 283-297 Signal Processing, Elsevier Science Publishers B.V. Amsterdam, NL, vol. 52, No. 3. |
Chou, C.K., (1995) “Radiofrequency Hyperthermia in Cancer Therapy,” Chapter 941n Biologic Effects of Nonionizing Electromagnetic Fields, CRC Press, Inc., pp. 1424-1428. |
Chung et al., “Clinical Experience of Sutureless Closed Hemorrhoidectomy with LigaSure™” Diseases of the Colon & Rectum, vol. 46, No. 1, Jan. 2003. |
Cosman et al., “Methods of Making Nervous System Lesions” In William RH, Rengachary SS (eds): Neurosurgery, New York: McGraw Hill, vol. 111, (1984), pp. 2490-2499. |
Cosman et al., “Radiofrequency Lesion Generation and its Effect on Tissue Impedence”, Applied Neurophysiology, 51:230-242, 1988. |
Cosman et al., “Theoretical Aspects of Radiofrequency Lesions in the Dorsal Root Entry Zone” Neurosurgery 15:(1984), pp. 945-950. |
Crawford et al., “Use of the LigaSure™ Vessel Sealing System in Urologic Cancer Surger” Grand Rounds in Urology 1999, vol. 1, Issue 4, pp. 10-17. |
Dulemba et al., “Use of a Bipolar Electrothermal Vessel Sealer in Laparoscopically Assisted Vaginal Hysterectomy” Sales/Product Literature; Jan. 2004. |
E. David Crawford, “Evaluation of a New Vessel Sealing Device in Urologic Cancer Surgery” Sales/Product Literature 2000. |
E. David Crawford, “Use of a Novel Vessel Sealing Technology in Management of the Dorsal Veinous Complex” Sales/Product Literature 2000. |
Esterline, “Light Key Projection Keyboard” Advanced Input Systems, located at: <http://www.advanced-input.com/lightkey> 2002. |
Esterline Product Literature, “Light Key: Visualize a Virtual Keyboard. One With No Moving Parts”, Nov. 1, 2003; 4 pages. |
Geddes et al., “The Measurement of Physiologic Events by Electrical Impedence” Am. J. MI, Jan. Mar. 1964, pp. 16-27. |
Goldberg et al., “Image-guided Radiofrequency Tumor Ablation: Challenges and Opportunities—Part I”, (2001) J Vasc. Interv. Radiol, vol. 12, pp. 1021-1032. |
Goldberg et al. (1995) “Saline-enhanced RF Ablation: Demonstration of Efficacy and Optimization of Parameters”, Radiology, 197(P): 140 (Abstr). |
Goldberg et al., “Tissue Ablation with Radiofrequency: Effect of Probe Size, Gauge, Duration, and Temperature on Lesion Volume” Acad Radio (1995) vol. 2, No. 5, pp. 399-404. |
H. Schwarzmaier et al., “Magnetic Resonance Imaging of Microwave Induced Tissue Heating” Dept. of Laser Medicine & Dept. of Diagnostic Radiology; Heinrich-Heine-University, Duesseldorf, Germany; Dec. 8, 1994; pp. 729-731. |
Heniford et al., “Initial Results with an Electrothermal Bipolar Vessel Sealer” Surgical Endoscopy (2001) 15:799-801. |
Herman at al., “Laparoscopic Intestinal Resection With the LigaSure™ Vessel Sealing System: A Case Report” Innovations That Work, Feb. 2002. |
Humphries Jr. et al., “Finite•Element Codes to Model Electrical Heating and Non•LInear Thermal Transport in Biological Media”, Proc. ASME HTD-355, 131 (1997). |
Ian D. McRury et al., The Effect of Ablation Sequence and Duration on Lesion Shape Using Rapidly Pulsed Radiofrequency Energy Through Electrodes, Feb. 2000, Springer Netherlands, vol. 4; No. 1, pp. 307-320. |
Jarrett et al., “Use of the LigaSure™ Vessel Sealing System for Peri-Hilar Vessels in Laparoscopic Nephrectomy” Sales/Product Literature 2000. |
Johnson et al., “Evaluation of a Bipolar Electrothermal Vessel Sealing Device in Hemorrhoidectomy” Sales/Product Literature, Jan. 2004. |
Johnson, “Evaluation of the LigaSure™ Vessel Sealing System in Hemorrhoidectormy” American College of Surgeons (ACS) Clinic La Congress Poster (2000). |
Johnson et al., “New Low-Profile Applicators for Local Heating of Tissues”, IEEE Transactions on Biomedical Engineering, Vol., BME-31, No. 1, Jan. 1984, pp. 28-37. |
Johnson, “Use of the LigaSure™ Vessel Sealing System in Bloodless Hemorrhoidectomy” Innovations That Work, Mar. 2000. |
Joseph G. Andriole M.D. et al., “Biopsy Needle Characteristics Assessed in the Laboratory”, Radiology 148: 659-662, Sep. 1983. |
Joseph Ortenberg, “LigaSure™ System Used in Laparoscopic 1st and 2nd Stage Orchiopexy” Innovations That Work, Nov. 2002. |
Kennedy et al., “High-burst-strength, feedback-controlled bipolar vessel sealing” Surgical Endoscopy (1998) 12: 876-878. |
Kopans, D.B. et al., (Nov. 1985) “Spring Hookwire Breast Lesion Localizer: Use with Rigid-Compression. Mammographic Systems,” Radiology 157(2):537-538. |
Koyle et al., “Laparoscopic Palomo Varicocele Ligation in Children and Adolescents” Pediatric Endosurgery & Innovative Techniques, vol. 6, No. 1, 2002. |
LigaSure™ Vessel Sealing System, the Seal of Confidence in General , Gynecologic, Urologic, and Laparaoscopic Surgery, Sales/Product Literature, Jan. 2004. |
Livraghi et al., (1995) “Saline-enhanced RF Tissue Ablation in the Treatment of Liver Metastases”, Radiology, p. 140 (Abstr). |
Lyndon B. Johnson Space Center, Houston, Texas, “Compact Directional Microwave Antenna for Localized Heating,” NASA Tech Briefs, Mar. 2008. |
M. A. Astrahan, “A Localized Current Field Hyperthermia System for Use with 192-Iridium Interstitial Implants” Medical Physics. 9(3), May/Jun. 1982. |
Magdy F. Iskander et al., “Design Optimization of Interstitial Antennas”, IEEE Transactions on Biomedical Engineering, vol. 36, No. 2, Feb. 1989, pp. 238-246. |
McGahan et al., (1995) “Percutaneous Ultrasound-guided Radiofrequency Electrocautery Ablation of Prostate Tissue in Dogs”, Acad Radiol, vol. 2, No. 1: pp. 61-65. |
McLellan et al., “Vessel Sealing for Hemostasis During Pelvic Surgery” Int'l Federation of Gynecology and Obstetrics FIGO World Congress 2000, Washington, DC. |
MDTECH product literature (Dec. 1999) “FlexStrand”: product description, 1 page. |
MDTECH product literature (Mar. 2000) I'D Wire: product description, 1 page. |
Medtrex Brochure “The O.R. Pro 300” 1 page, Sep. 1998. |
Michael Choti, “Abdominoperineal Resection with the LigaSure™ Vessel Sealing System and LigaSure™ Atlas 20 cm Open Instrument” Innovations That Work, Jun. 2003. |
Muller et al., “Extended Left Hemicolectomy Using the LigaSure™ Vessel Sealing System” Innovations That Work. LJ, Sep. 1999. |
Murakami, R. et al., (1995). “Treatment of Hepatocellular Carcinoma: Value of Percutaneous Microwave Coagulation,” American Journal of Radiology (AJR) 164:1159-1164. |
Ni Wei et al., “A Signal Processing Method for the Coriolis Mass Flowmeter Based on a Normalized . . . ” Journal of Applied Sciences•Yingyong Kexue Xuebao, Shangha CN, vol. 23, No. 2:(Mar. 2003); pp. 160-184. |
Ogden, “Goertzel Alternative to the Fourier Transform” Jun. 1993 pp. 485-487 Electronics World; Reed Business Publishing, Sutton, Surrey, BG, vol. 99, No. 9, 1687. |
Olsson M.D. et al., “Radical Cystectomy in Females” Current Surgical Techniques in Urology, vol. 14, Issue 3, 2001. |
Organ, L W., “Electrophysiologic Principles of Radiofrequency Lesion Making” Appl. Neurophysiol, vol. 39: pp. 69-76 (1976/77). |
P.R. Stauffer et al., “Interstitial Heating Technologies”, Thermoradiotheray and Thermochemotherapy (1995) vol. I, Biology, Physiology, Physics, pp. 279-320. |
Palazzo et al., “Randomized clinical trial of LigaSure™ versus open haemorrhoidectomy” British Journal of Surgery 2002,89,154-157 “Innovations in Electrosurgery” Sales/Product Literature; Dec. 31, 2000. |
Paul G. Horgan, “A Novel Technique for Parenchymal Division During Hepatectomy” The American Journal of Surgery, vol. 181, No. 3, Apr. 2001, pp. 236-237. |
Peterson et al., “Comparison of Healing Process Following Ligation with Sutures and Bipolar Vessel Sealing” Surgical Technology International (2001). |
R. Gennari et al., (Jun. 2000) “Use of Technetium-99m-Labeled Colloid Albumin for Preoperative and Intraoperative Localization of Non palpable Breast Lesions,” American College of Surgeons. 190(6):692-699. |
Valleylab Brochure, “Reducing Needlestick Injuries in the Operating Room” 1 page, Mar. 2001. |
Reidenbach, (1995) “First Experimental Results with Special Applicators for High-Frequency Interstitial Thermotherapy”, Society Minimally Invasive Therapy, 4(Suppl 1):40 (Abstr). |
Richard Wolf Medical Instruments Corp. Brochure, “Kleppinger Bipolar Forceps & Bipolar Generator” 3 pages, Jan. 1989. |
Rothenberg et al., “Use of the LigaSure™ Vessel Sealing System in Minimally Invasive Surgery in Children” Int'l Pediatric Endosurgery Group (I PEG) 2000. |
Sayfan et al., “Sutureless Closed Hemorrhoidectomy: A New Technique” Annals of Surgery, vol. 234, No. 1, Jul. 2001, pp. 21-24. |
Sengupta et al., “Use of a Computer-Controlled Bipolar Diathermy System in Radical Prostatectomies and Other Open Urological Surgery” ANZ Journal of Surgery (2001) 71.9 pp. 538-540. |
Sigel et al., “The Mechanism of Blood Vessel Closure by High Frequency Electrocoagulation” Surgery Gynecology & Obstetrics, Oct. 1965 pp. 823-831. |
Solbiati et al., (2001) “Percutaneous Radio-frequency Ablation of Hepatic Metastases from Colorectal Cancer: Long-term Results in 117 Patients”, Radiology, vol. 221, pp. 159-166. |
Solbiati et al. (1995) “Percutaneous US-guided RF Tissue Ablation of Liver Metastases: Long-term Follow-up”, Radiology, pp. 195-203. |
Strasberg et al., “Use of a Bipolar Vassel-Sealing Device for Parenchymal Transection During Liver Surgery” Journal of Gastrointestinal Surgery, vol. 6, No. 4, Jul./Aug. 2002 pp. 569-574. |
Sugita et al., “Bipolar Coagulator with Automatic Thermocontrol” J. Neurosurg., vol. 41, Dec. 1944, pp. 777-779. |
Sylvain Labonte et al., “Monopole Antennas for Microwave Catheter Ablation”, IEEE Trans. on Microwave Theory and Techniques, vol. 44, No. 10, pp. 1832-1840, Oct. 1995. |
T. Matsukawa et al, “Percutaneous Microwave Coagulation Therapy in Liver Tumors”, Acta Radiologica, vol. 38, pp. 410-415, 1997. |
T. Seki et al., (1994) “Ultrasonically Guided Percutaneous Microwave Coagulation Therapy for Small Hepatocellular Carcinoma,” Cancer 74(3):817•825. |
Urologix, Inc.-Medical Professionals: Targis™ Technology (Date Unknown). “Overcoming the Challenge” located at: <http://www.urologix.com!medicaUtechnology.html > Nov. 18, 1999; 3 pages. |
Urrutia et al., (1988). “Retractable-Barb Needle for Breast Lesion Localization: Use in 60 Cases,” Radiology 169(3):845-847. |
Valleylab Brochure, “Valleylab Electroshield Monitoring System” 2 pages, Nov. 1995. |
ValleyLab Brochure, “Electosurgery: A Historical Overview”, Innovations in Electrosurgery, 1999. |
Vallfors et al., “Automatically Controlled Bipolar Electrocoagulation-‘COA-COMP’” Neurosurgical Review 7:2-3 (1984) pp. 187-190. |
W. Scott Helton, “LigaSure™ Vessel Sealing System: Revolutionary Hemostasis Product for General Surgery” Sales/Product Literature 1999. |
Wald et al., “Accidental Burns”, JAMA, Aug. 16, 1971, vol. 217, No. 7, pp. 916-921. |
Walt Boyles, “Instrumentation Reference Book”, 2002, Butterworth-Heinemann, pp. 262-264. |
Wonnell et al., “Evaluation of Microwave and Radio Frequency Catheter Ablation in a Myocardium-Equivalent Phantom Model”, IEEE Transactions on Biomedical Engineering, vol. 39, No. 10, Oct. 1992; pp. 1086-1095. |
Number | Date | Country | |
---|---|---|---|
20130123772 A1 | May 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12561096 | Sep 2009 | US |
Child | 13734638 | US |