Applications of the present invention relate generally to cardiac procedures and specifically to apparatus and methods for accessing a pericardial region, e.g., a pericardial cavity of a subject.
The heart is enclosed in a double layered membrane termed the pericardium. The pericardium and its serous fluid protect the heart and lubricate the moving surfaces of the heart. The pericardium is composed of two layers: the outermost fibrous pericardium and the inner serous pericardium. The serous pericardium is divided into two layers, the parietal pericardium, which is fused to the fibrous pericardium, and the visceral pericardium (also termed epicardium). Pericardial serous fluid is found in the pericardial cavity (also termed the pericardial space) between the parietal pericardium and visceral layer.
Accessing of the pericardium may facilitate, for example, drug delivery, a pericardiocentesis procedure (aspiration of pericardial fluid typically for diagnosis of a pericardial disease), left atrial appendage removal, coronary artery bypass grafting, or placement of a reflection-facilitation element as described in US 2013/0103028 to Tsoref et al., which is incorporated herein by reference.
Complications may arise during surgical procedures to access the pericardium, and injury may be caused to internal organs such as the liver, stomach and lungs. Therefore, safe and efficient means of accessing the pericardium are desirable.
In accordance with some applications of the present invention, apparatus is provided for safely accessing a pericardium of a subject and penetrating the pericardium to access a pericardial region. “Pericardial region,” as used in the present application, including the claims, consists of one or more regions selected from the group consisting of: a region between the pericardium and the myocardium, a region between the fibrous pericardium and the serous pericardium, a region of the pericardial cavity that is between the parietal pericardium and the visceral pericardium (also known as the epicardium).
Accessing of the pericardial region using any of the techniques described herein is useful during procedures such as a pericardiocentesis procedure in which pericardial fluid is aspirated for the purpose of diagnosing a pericardial disease, or for treatment of cardiac tamponade.
Accessing of the pericardial region using any of the techniques described herein may additionally be useful to apply pressure to bleeding myocardial tissue, typically by accessing the pericardial region and applying pressure to the site of bleeding (e.g., by placing a balloon in the pericardial region using the techniques described herein, and inflating the balloon).
The apparatus, as provided by some applications of the present invention, is shaped such as to allow a physician (e.g., an electrophysiologist) to reach the pericardium while avoiding damage to internal organs, including but not limited to, the liver, the diaphragm, the stomach and the lungs. Once the apparatus is in the vicinity of the pericardium, the apparatus contacts an outer surface of the pericardium and applies suction to the pericardium in order to draw a portion of the pericardium into the apparatus. Drawing of the portion of pericardium into the apparatus generally allows for puncturing of the pericardium by the apparatus and accessing of a pericardial region.
The apparatus comprises a longitudinal guide member, e.g., a guide tube, which is advanced distally towards a heart of the subject. The guide tube has a proximal end, a distal end and a guide-tube lumen between the proximal and distal ends. In the context of the present specification and in the claims, “proximal” means closer to the opening through which the guide is inserted into the body, and “distal” means further from this opening. The distal end of the guide tube is shaped as a blunt, typically but not necessarily dome-shaped, distal end. The blunt distal end facilitates advancement of the apparatus towards the heart by separation of tissue by blunt dissection, thereby reducing damage to internal organs. Additionally, at least part of the distal end is transparent, thus facilitating imaging of the procedure by an imaging device disposed, for example, within the guide-tube lumen.
For some applications, the apparatus further comprises a sheath which is shaped and sized to surround the guide tube and shaped to define an at least partially distally-facing suction port. When the apparatus reaches the vicinity of the heart, the sheath is brought into contact with a portion of the outer surface of the pericardium. Suction is then applied, e.g., via a suction tube in fluid communication with the inside of the sheath, to draw the portion of the pericardium into the suction port of the sheath.
The suction tube typically extends through the guide-tube lumen, and is in contact with a perimeter of a first hole in the distal end of the guide tube. The suction tube draws the portion of the pericardium into the distally-facing suction port of the sheath, by applying suction through the first hole.
The apparatus additionally comprises a needle tube which extends through the guide-tube lumen, and is in contact with a perimeter of a second hole in the distal end of the guide tube. A needle is passed through the needle tube and out of a distal end of the needle tube, in order to puncture the pericardium while the pericardium is in the sheath, gaining access to a pericardial region.
The apparatus further comprises a needle-restraining element which inhibits passage of a distal tip of the needle out of a distal end of the sheath so as to inhibit damage to cardiac tissue by the needle.
For some applications, the apparatus does not comprise a sheath, but rather the longitudinal guide member is shaped to define a suction port at a distal portion of the longitudinal guide member. For such applications, the apparatus facilitates drawing the portion of a pericardium of the heart through the suction port and into the longitudinal guide member. Typically, but not necessarily, the suction port is shaped to define a partially distally-facing and side-facing suction port at a distal portion of the longitudinal guide member.
For such applications, the needle is passed through the longitudinal guide member and punctures the portion of the pericardium while the portion of the pericardium is in the longitudinal guide member. For some applications, the needle-restraining element is shaped and positioned with respect to the needle to inhibit passage of a distal tip of the needle-restraining element out of the distal end of the longitudinal guide member.
There is therefore provided, in accordance with some applications of the present invention, apparatus including:
a longitudinal guide member (a) including a blunt distal end having an outer surface at least part of which is transparent, and (b) configured to be advanced distally toward a heart of a subject;
a sheath shaped and sized to surround the guide member and shaped to define an at least partially distally-facing suction port at a distal end of the sheath, the apparatus being configured to facilitate drawing a portion of a pericardium of the heart through the suction port and into the sheath, when the suction port is distal to the guide member;
a puncturing element configured to puncture the portion of the pericardium while the portion of the pericardium is in the sheath; and
a puncturing-element-restraining element shaped and positioned with respect to the puncturing element to inhibit passage of a distal tip of the puncturing element out of the distal end of the sheath.
In some applications, at least part of the outer surface the distal end of the guide member is dome-shaped.
In some applications,
the guide member is a guide tube having a proximal end,
the distal end is a distal end of the guide tube, and
and the guide tube is shaped to define a guide-tube lumen between the proximal
and distal ends of the guide tube.
In some applications, the apparatus further includes an imaging sensor disposed within the guide-tube lumen.
In some applications, the guide-tube lumen has a diameter of 4-15 mm.
In some applications, a radius of curvature at a distalmost point of the distal end of the guide tube is less than a radius of the guide tube.
In some applications, the radius of curvature at the distalmost point of the distal end of the guide tube is 30-60% of the radius of the guide tube.
In some applications, the guide member is a shaft shaped to define one or more longitudinal channels therealong.
In some applications, the apparatus further includes a puncturing-element tube, the puncturing element being sized and shaped to be passable through the puncturing-element tube and out of a distal end of the puncturing-element tube.
In some applications, the distal end of the puncturing-element tube defines a face that is not perpendicular to a local central longitudinal axis of the puncturing-element tube.
In some applications,
the distal end is shaped to define a puncturing-element-tube hole therein, and
the puncturing-element tube is disposed such that the puncturing-element tube is in contact with a perimeter of the puncturing-element-tube hole.
In some applications, the puncturing-element-tube hole has a diameter of 0.2-2 mm.
In some applications, the puncturing-element-tube hole has a diameter of 2-5 mm.
In some applications, the puncturing-element tube is disposed between the guide member and the sheath.
In some applications, the puncturing-element tube is a puncturing-element-and-suction tube configured to facilitate the drawing of the portion of the pericardium through the suction port of the sheath by application of suction through the puncturing-element-and-suction tube.
In some applications, the puncturing element is disposed between the guide member and the sheath.
In some applications, the apparatus further includes a suction tube configured to facilitate the drawing of the portion of the pericardium through the suction port of the sheath by application of suction through the suction tube.
In some applications, a distal end of the suction tube defines a face that is not perpendicular to a local central longitudinal axis of the suction tube.
In some applications, the suction tube is disposed between the guide member and the sheath.
In some applications,
the distal end is shaped to define a suction-tube hole therein, and
the suction tube is disposed such that a distal end of the suction tube is in contact with a perimeter of the suction-tube hole.
In some applications, the suction-tube hole has a diameter of 0.2-2 mm.
In some applications, the suction-tube hole has a diameter of 2-5 mm.
In some applications, the apparatus further includes a sensor configured to measure an electrophysiological signal occurring at a tip of the puncturing element.
In some applications, the puncturing element includes a radiofrequency wire, and the apparatus further includes a radiofrequency generator configured to transmit a radiofrequency signal to a distal end of the radiofrequency wire.
In some applications, a diameter of the sheath is between 0.1 and 4 mm greater than a diameter of the guide member.
In some applications, the diameter of the sheath is between 0.2 and 0.6 mm greater than the diameter of the guide member.
In some applications, a 1 cm line extending from a center of the suction port into the sheath, in a direction parallel to a local central longitudinal axis of the sheath, does not contact any part of the apparatus, when the suction port is distal to the guide member.
In some applications, a 1.5 cm line extending from the center of the suction port into the sheath, in the direction parallel to the local central longitudinal axis of the sheath, does not contact any part of the apparatus, when the suction port is distal to the guide member.
In some applications, a 4 mm line extending from a center of the suction port into the sheath, in a direction parallel to a local central longitudinal axis of the sheath, does not contact any part of the apparatus, when the suction port is distal to the guide member.
In some applications, the puncturing element includes a needle shaped to define a lumen thereof.
In some applications, the needle includes a radiofrequency needle, and the apparatus further includes a radiofrequency generator configured to transmit a radiofrequency signal to a distal end of the radiofrequency needle.
In some applications, the apparatus further includes a guidewire shaped to be passable through the lumen of the needle and through a distal end of the needle.
In some applications, the apparatus further includes a needle casing which surrounds the needle, and a distal tip of the needle:
is straight when the needle is surrounded by the casing, and
is curved when the needle is not surrounded by the casing.
In some applications, the apparatus further includes a rigid core structure disposed within the lumen of the needle, and a distal tip of the needle:
is straight when the rigid core structure is disposed within the lumen of the needle, and
is curved when the rigid core structure is not disposed within the lumen of the needle.
In some applications, the apparatus further includes an imaging device disposed at least partially at the distal end of the guide member.
In some applications, the imaging device includes an imaging sensor disposed at the distal end of the guide member.
In some applications, the imaging device includes:
a fiber optic array having a distal end that is disposed at the distal end of the guide member; and
an imaging sensor coupled to a proximal end of the fiber optic array.
In some applications, at least part of the imaging device is disposed within 15 mm of a distalmost point of the distal end of the guide member.
In some applications, the apparatus further includes at least one illumination-providing element disposed at least partially at the distal end of the guide member and configured to provide illumination for operation of the imaging device.
In some applications, the at least one illumination-providing element includes a light source disposed at the distal end of the guide member.
In some applications, the at least one illumination-providing element includes:
an optical fiber having a distal end that is disposed at the distal end of the guide member; and
a light source coupled to a proximal end of the optical fiber.
In some applications, at least 80% of light that is emitted from the at least one illumination-providing element and reflected by the distal end of the guide member is not directly reflected to the imaging device, due to a factor selected from the group consisting of: a disposition of the at least one illumination-providing element with respect to the imaging device, a shape of the distal end of the guide member, an optical parameter of the distal end of the guide member, and an optical parameter of a coating on the distal end of the guide member.
In some applications, the apparatus further includes one or more polarizing filters at least partially covering an element of the apparatus selected from the group consisting of: the at least one illumination-providing element, the imaging device, and an inner surface of the distal end.
In some applications, the apparatus further includes a heart-proximity sensor configured to generate a signal indicative of a proximity of the distal end of the guide member to the heart of the subject.
In some applications, the heart-proximity sensor includes an ultrasound sensor.
In some applications, the heart-proximity sensor includes a contact sensor configured to generate a signal indicative of contact of the distal end of the guide member to the heart of the subject.
In some applications, the heart-proximity sensor includes an accelerometer.
In some applications, the apparatus further includes a processor configured to (a) detect a component of the signal having a frequency between 0.5 and 3 Hz and a magnitude that is greater than a threshold, and (b) in response to the detecting, generate an output indicative of the proximity of the distal end of the guide member to the heart of the subject.
In some applications, the processor is configured to generate the output only if the detected component of the signal corresponds to a direction that is generally perpendicular to a plane defined by the suction port of the sheath.
In some applications, the processor is configured to generate the output only if the detected component of the signal corresponds to a direction that is generally parallel to a central longitudinal axis of the guide member at the distal end of the guide member.
In some applications, the heart-proximity sensor further includes a contact sensor, and the heart-proximity sensor is further configured to generate a signal indicative of a proximity of the distal end of the guide member to an internal organ that is not the heart of the subject, by (a) the contact sensor generating a signal that is indicative of contact of the contact sensor with the internal organ, and (b) the accelerometer not generating a signal having a frequency between 0.5 and 3 Hz and a magnitude that is greater than a threshold.
In some applications, an angle between (a) a local central longitudinal axis of the sheath, and (b) a normal to a plane defined by the suction port of the sheath, is between 40 and 70 degrees.
In some applications, an angle between (a) a local central longitudinal axis of the sheath, and (b) a normal to a plane defined by the suction port of the sheath, is between 0 and 50 degrees.
In some applications, the angle is between 10 and 40 degrees.
In some applications, the distal end of the guide member is rotationally asymmetric with respect to a local central longitudinal axis of the guide member.
In some applications, at least one site within 1 mm of a distalmost point of the distal end of the guide member, a centroid of a cross-section of the distal end of the guide member does not lie on the local central longitudinal axis of the guide member.
In some applications, at all sites within 3 mm of a distalmost point of the distal end of the guide member, a centroid of a cross-section of the distal end of the guide member does not lie on the local central longitudinal axis of the guide member.
In some applications, a radius of curvature at a distalmost point of the distal end of the guide member is between 0.5 and 5 mm.
In some applications, the apparatus further includes an o-ring disposed at the suction port of the sheath.
In some applications, the apparatus further includes a vibrating element configured to vibrate the distal end of the guide member.
There is further provided, in accordance with some applications of the present invention, a method including:
distally advancing a guide member toward a heart of a subject, the guide member having a distal end thereof;
deploying a sheath over the guide member, the sheath being shaped to define a suction port at a distal end thereof;
contacting an outer surface of a pericardium of the heart with a perimeter of the suction port;
drawing a portion of the pericardium into the sheath by applying suction to the pericardium through the suction port; and
using a puncturing element, puncturing the portion of the pericardium that is in the sheath.
In some applications, applying suction to the pericardium includes applying suction by applying an oscillating suction pressure.
In some applications, applying suction to the pericardium includes applying a suction pressure that increases at an average rate of between 5 and 15 mm Hg per second, for at least 1 second.
In some applications, the method further includes, before deploying the sheath over the guide member:
using a position sensor disposed at a distal portion of the guide member to measure a position of the distal end of the guide member; and
ascertaining a proximity of the distal end of the guide member to the heart of the subject, using the measured position.
In some applications, distally advancing the guide member toward the heart of the subject includes:
using a position sensor disposed at a distal portion of the guide member to measure a position of the distal end of the guide member; and
using the measured position to navigate the guide member.
In some applications, distally advancing the guide member toward the heart of the subject includes:
using a position-and-orientation sensor disposed at a distal portion of the guide member to measure a position and an orientation of the distal end of the guide member; and
using the measured position and orientation to navigate the guide member.
In some applications, distally advancing the guide member toward the heart of the subject includes:
using an ultrasound sensor disposed at a distal portion of the guide member to generate an image; and
using the image to navigate the guide member.
In some applications, distally advancing the guide member toward the heart of the subject includes using a preoperative image of the subject to navigate the guide member.
In some applications, the method further includes, following the puncturing:
using a sensor to measure an electrophysiological signal occurring at a tip of the puncturing element, and
ascertaining that the puncturing element has punctured the portion of the pericardium, in response to the measuring.
In some applications, applying suction to the pericardium includes applying suction through a space that is between an outer wall of the guide member and an inner wall of the sheath.
In some applications, applying suction to the pericardium includes applying suction through a suction tube.
In some applications, the puncturing element includes a radiofrequency wire, and using the puncturing element to puncture the portion of the pericardium includes using a radiofrequency generator to transmit a radiofrequency signal to a distal end of the radiofrequency wire.
In some applications, the method further includes using a puncturing-element-restraining element to inhibit passage of a distal tip of the puncturing element out of the distal end of the sheath.
In some applications, the puncturing element includes a needle, and using the puncturing element includes using the needle to puncture the portion of the pericardium.
In some applications, the needle includes a radiofrequency needle, and using the puncturing element to puncture the portion of the pericardium includes using a radiofrequency generator to transmit a radiofrequency signal to a distal end of the radiofrequency needle.
In some applications, the method further includes passing a guidewire through a lumen of the needle, following the puncturing of the portion of the pericardium.
In some applications, the method further includes, following the passing of the guidewire through the lumen of the needle:
withdrawing the needle;
passing a tube over the guidewire;
withdrawing the guidewire; and
passing a tool through the tube.
In some applications, the method further includes, following the passing of the guidewire through the lumen of the needle:
withdrawing the needle; and
passing a tool over the guidewire.
In some applications, the tool includes a reflection-facilitation element, and the method further includes, following the passing of the tool over the guidewire:
placing the reflection-facilitation element between a myocardium of the heart and the pericardium; and
transmitting an ultrasound signal from within a chamber of the heart, toward the reflection-facilitation element.
In some applications, the tool includes an expandable element, and passing the tool over the guidewire includes passing the expandable element over the guidewire.
In some applications, the method further includes, following the passing of the expandable element over the guidewire, expanding the expandable element between a myocardium of the heart and the pericardium.
In some applications, the expandable element includes an inflatable element, and expanding the expandable element includes inflating the inflatable element.
In some applications, the expandable element includes an expandable mesh, and expanding the expandable element includes expanding the expandable mesh.
In some applications, the method further includes, following the expanding of the expandable element, inhibiting bleeding of the heart by applying pressure with the expandable element.
In some applications, expanding the expandable element includes creating a working space between a myocardium of the heart and the pericardium, and the method further includes passing a surgical tool over the guidewire and into the working space.
In some applications, the method further includes, before deploying the sheath over the guide member:
using an imaging device disposed at least partially at the distal end of the guide member to generate an image of at least part of the heart of the subject; and ascertaining a proximity of the distal end of the guide member to the heart of the subject, using the image.
In some applications, the method further includes rinsing a lens of the imaging device by passing rinsing fluid through a rinse port that is adjacent to the lens.
In some applications, the method further includes using at least one illumination-providing element disposed at least partially at the distal portion of the guide member to provide illumination for operation of the imaging device.
In some applications, using the at least one illumination-providing element to provide illumination for the operation of the imaging device includes:
ascertaining a level of glare in the image; and
in response to the level of glare, moving the illumination-providing element.
In some applications, the at least one illumination-providing element includes a first illumination-providing element and a second illumination-providing element, and using the at least one illumination-providing element to provide illumination for the operation of the imaging device includes:
ascertaining a level of glare in the image;
in response to the level of glare, selecting exactly one illumination-providing element from the first illumination-providing element and the second illumination-providing element; and
providing illumination from the selected illumination-providing element.
In some applications, the method further includes, before deploying the port of the sheath over the guide member:
using a heart-proximity sensor to generate a signal; and
ascertaining a proximity of the distal end of the guide member to the heart of the subject, in response to the signal.
In some applications, the heart-proximity sensor includes an ultrasound sensor, and using the heart-proximity sensor to generate the signal includes using the ultrasound sensor to generate the signal.
In some applications, the heart-proximity sensor includes a contact sensor, and using the heart-proximity sensor to generate the signal includes using the contact sensor to generate a signal indicative of contact of the distal end of the guide member with the heart of the subject.
In some applications,
the distal end of the guide member is covered by a cover,
the heart-proximity sensor includes a contact sensor, and
using the heart-proximity sensor to generate the signal includes using the contact sensor to generate a signal indicative of contact of the cover with the heart of the subject.
In some applications, the heart-proximity sensor includes an accelerometer, and using the heart-proximity sensor to generate the signal includes using the accelerometer to generate the signal.
In some applications, the method further includes using a processor to (a) detect a component of the signal having a frequency between 0.5 and 3 Hz and a magnitude that is greater than a threshold, and (b) in response to the detecting, generate an output indicative of the proximity of the distal end of the guide member to the heart of the subject.
In some applications, using the processor to generate the output includes using the processor to generate the output in response to the detected component of the signal corresponding to a direction that is generally perpendicular to a plane defined by the suction port of the sheath.
In some applications, using the processor to generate the output includes using the processor to generate the output in response to the detected component of the signal corresponding to a direction that is generally parallel to a central longitudinal axis of the guide member at the distal end of the guide member.
In some applications, the heart-proximity sensor further includes a contact sensor, and the method further includes, upon the distal end of the guide member being proximate to an internal organ that is not the heart of the subject, using the heart-proximity sensor to generate a signal indicative of the proximity of the distal end of the guide member to the internal organ, by (a) the contact sensor generating a signal that is indicative of contact of the contact sensor with the internal organ, and (b) the accelerometer not generating a signal having a frequency between 0.5 and 3 Hz and a magnitude that is greater than a threshold.
In some applications,
the distal end of the guide member is covered by a cover,
the heart-proximity sensor further includes a contact sensor, and
the method further includes, upon the cover being proximate to an internal organ that is not the heart of the subject, using the heart-proximity sensor to generate a signal indicative of the proximity of the cover to the internal organ, by (a) the contact sensor generating a signal that is indicative of contact of the contact sensor with the internal organ, and (b) the accelerometer not generating a signal having a frequency between 0.5 and 3 Hz and a magnitude that is greater than a threshold.
There is further provided, in accordance with some applications of the present invention, apparatus including:
a longitudinal guide member configured to be advanced distally toward a heart of a subject, the guide member having a distal end thereof;
a distal-end cover shaped to (i) define an aperture therein, and (ii) cover the distal end of the guide member;
a sheath shaped and sized to surround the guide member and shaped to define an at least partially distally-facing suction port at a distal end of the sheath, the apparatus being configured to facilitate drawing a portion of a pericardium of the heart through the suction port and into the sheath;
a puncturing element configured to puncture the portion of the pericardium while the portion of the pericardium is in the sheath;
an imaging device disposed at the distal end of the guide member and facing the aperture; and
a puncturing-element-restraining element shaped and positioned with respect to the puncturing element to inhibit passage of a distal tip of the puncturing element out of the distal end of the sheath.
In some applications, the distal end of the guide member is shaped to define a rinse port therein, and the apparatus further includes a rinse tube in fluid communication with the rinse port.
In some applications, the rinse tube is a rinse-and-suction tube configured to facilitate the drawing of the portion of the pericardium through the suction port of the sheath by application of suction through the rinse-and-suction tube.
In some applications, the apparatus further includes a puncturing-element tube, the puncturing element being sized and shaped to be passable through the puncturing-element tube and out of a distal end of the puncturing-element tube.
In some applications, the distal end of the puncturing-element tube defines a face that is not perpendicular to a local central longitudinal axis of the puncturing-element tube.
In some applications, the puncturing-element tube is disposed between the guide member and the sheath.
In some applications, the puncturing-element tube is a puncturing-element-and-suction tube configured to facilitate the drawing of the portion of the pericardium through the suction port of the sheath by application of suction through the puncturing-element-and-suction tube.
In some applications,
the guide member is a guide tube having a proximal end,
the distal end is a distal end of the guide tube, and
the guide tube is shaped to define a guide-tube lumen between the proximal and distal ends of the guide tube.
In some applications, the guide-tube lumen has a diameter of 4-15 mm.
In some applications, the apparatus further includes a suction tube configured to facilitate the drawing of the portion of the pericardium through the suction port of the sheath by application of suction through the suction tube.
In some applications, a distal end of the suction tube defines a face that is not perpendicular to a local central longitudinal axis of the suction tube.
In some applications, the suction tube is disposed between the guide member and the sheath.
In some applications, the apparatus further includes a sensor configured to measure an electrophysiological signal occurring at a tip of the puncturing element.
In some applications, the puncturing element includes a radiofrequency wire, and the apparatus further includes a radiofrequency generator configured to transmit a radiofrequency signal to a distal end of the radiofrequency wire.
In some applications, a diameter of the sheath is between 0.1 and 4 mm greater than a diameter of the guide member.
In some applications, the diameter of the sheath is between 0.2 and 0.6 mm greater than the diameter of the guide member.
In some applications, a 1 cm line extending from a center of the suction port into the sheath, in a direction parallel to a local central longitudinal axis of the sheath, does not contact any part of the apparatus, when the suction port is distal to the guide member.
In some applications, a 1.5 cm line extending from the center of the suction port into the sheath, in the direction parallel to the local central longitudinal axis of the sheath, does not contact any part of the apparatus, when the suction port is distal to the guide member.
In some applications, a 4 mm line extending from a center of the suction port into the sheath, in a direction parallel to a local central longitudinal axis of the sheath, does not contact any part of the apparatus, when the suction port is distal to the guide member.
In some applications, the puncturing element includes a needle shaped to define a lumen thereof.
In some applications, the needle includes a radiofrequency needle, and the apparatus further includes a radiofrequency generator configured to transmit a radiofrequency signal to a distal end of the radiofrequency needle.
In some applications, the apparatus further includes a guidewire shaped to be passable through the lumen of the needle and through a distal end of the needle.
In some applications, the apparatus further includes a needle casing which surrounds the needle, and a distal tip of the needle:
is straight when the needle is surrounded by the casing, and
is curved when the needle is not surrounded by the casing.
In some applications, the apparatus further includes a rigid core structure disposed within the lumen of the needle, and a distal tip of the needle:
is straight when the rigid core structure is disposed within the lumen of the needle, and
is curved when the rigid core structure is not disposed within the lumen of the needle.
In some applications, the apparatus further includes at least one illumination-providing element disposed at least partially at the distal end of the guide member and configured to provide illumination for operation of the imaging device.
In some applications, the apparatus further includes a heart-proximity sensor configured to generate a signal indicative of a proximity of the distal-end cover to the heart of the subject.
In some applications, the heart-proximity sensor includes an ultrasound sensor.
In some applications, the heart-proximity sensor includes a contact sensor configured to generate a signal indicative of contact of the distal-end cover with the heart of the subject.
In some applications, the heart-proximity sensor includes an accelerometer.
In some applications, the apparatus further includes a processor configured to (a) detect a component of the signal having a frequency between 0.5 and 3 Hz and a magnitude that is greater than a threshold, and (b) in response to the detecting, generate an output indicative of the proximity of the distal-end cover to the heart of the subject.
In some applications, the processor is configured to generate the output only if the detected component of the signal corresponds to a direction that is generally perpendicular to a plane defined by the suction port of the sheath.
In some applications, the processor is configured to generate the output only if the detected component of the signal corresponds to a direction that is generally parallel to a central longitudinal axis of the guide member at the distal end of the guide member.
In some applications, the heart-proximity sensor further includes a contact sensor, and the heart-proximity sensor is further configured to generate a signal indicative of a proximity of the distal-end cover to an internal organ that is not the heart of the subject, by (a) the contact sensor generating a signal that is indicative of contact of the contact sensor with the internal organ, and (b) the accelerometer not generating a signal having a frequency between 0.5 and 3 Hz and a magnitude that is greater than a threshold.
In some applications, an angle between (a) a local central longitudinal axis of the sheath, and (b) a normal to a plane defined by the suction port of the sheath, is between 40 and 70 degrees.
In some applications, an angle between (a) a local central longitudinal axis of the sheath, and (b) a normal to a plane defined by the suction port of the sheath, is between 0 and 50 degrees.
In some applications, the angle is between 10 and 40 degrees.
In some applications, the apparatus further includes an o-ring disposed at the suction port of the sheath.
In some applications, the apparatus further includes a vibrating element configured to vibrate the distal-end cover.
There is further provided, in accordance with some applications of the present invention, apparatus for applying pressure between two layers of tissue, the apparatus including:
a flexible longitudinal element shaped to define a lumen thereof;
an expandable element disposed at a distal portion of the flexible longitudinal element, the expandable element being shaped to define, upon being expanded, a disk, and configured to apply pressure upon being expanded; and
an imaging device disposed at least partially at a distal portion of the apparatus.
There is further provided, in accordance with some applications of the present invention, apparatus for creating a working space between two layers of tissue, the apparatus including:
a flexible longitudinal element shaped to define a lumen thereof;
an expandable element disposed at a distal portion of the flexible longitudinal element, the expandable element shaped to define and at least partly surround the working space, upon the expandable element being expanded; and
an imaging device disposed at least partially at a distal portion of the apparatus.
In some applications, a surface of the expandable element is shaped to define a rough surface.
In some applications, a surface of the expandable element is shaped to define one or more grooves.
In some applications, the imaging device includes an imaging sensor disposed at the distal portion of the apparatus.
In some applications, the imaging device includes:
a fiber optic array having a distal end that is disposed at the distal portion of the apparatus; and
an imaging sensor coupled to a proximal end of the fiber optic array.
In some applications, the fiber optic array is shaped to be passable through the lumen of the flexible longitudinal element.
In some applications, the imaging device is coupled to an element selected from the group consisting of: the flexible longitudinal element, and the expandable element.
In some applications, the imaging device includes an imaging sensor that is shaped to be passable through the lumen of the flexible longitudinal element.
In some applications, the apparatus further includes a surgical tool shaped to be passable through the lumen of the flexible longitudinal element and into the working space.
In some applications, the expandable element includes an expandable mesh.
In some applications, the expandable mesh is shaped to define a concave shape upon being expanded.
In some applications, the expandable element includes an inflatable element.
In some applications, the expandable element is shaped to define, upon being expanded, a ring.
In some applications, the expandable element is shaped to define, upon being expanded, a partial ring.
In some applications, the expandable element is sized and shaped to be containable within a rectangle having (a) a length between 3 and 8 cm, and (b) a width between 3 and 8 cm, upon the expandable element being expanded.
In some applications, the expandable element is configured to, upon being expanded, have a greater cross-sectional area at a proximal portion thereof, relative to a distal portion thereof.
In some applications, the expandable element is configured to, upon being expanded, have a greater cross-sectional area at a distal portion thereof, relative to a proximal portion thereof.
In some applications, the expandable element is configured to, upon being expanded, have a greater cross-sectional area at a middle portion thereof, relative to (a) a proximal portion thereof, and (b) a distal portion thereof.
There is further provided, in accordance with some applications of the present invention, a method for performing a procedure in an area between two layers of tissue, the method including:
creating a working space, by expanding an expandable element in the area such that the expandable element defines and at least partly surrounds the working space;
passing a tool into the working space; and
using the tool to perform the procedure.
In some applications, the two layers of tissue include a myocardium of a heart and a pericardium of the heart, and performing the procedure includes performing the procedure in an area between the myocardium and the pericardium.
In some applications, the two layers of tissue include two layers of meninges, and performing the procedure includes performing the procedure in an area between the two layers of meninges.
In some applications, the expandable element is disposed at a distal portion of a flexible longitudinal element, and the method further includes using an imaging device coupled to an element selected from the group consisting of: the flexible longitudinal element, and the expandable element, to image the working space.
In some applications, the method further includes reducing flow of blood in a blood vessel, by applying pressure to the blood vessel with the expandable element.
In some applications, reducing flow of blood in the blood vessel includes reducing flow of blood toward the working space.
In some applications, reducing flow of blood in the blood vessel includes reducing flow of blood away from the working space.
In some applications, applying pressure to the blood vessel with the expandable element includes applying pressure to the blood vessel with a proximal portion of the expandable element.
In some applications, performing the procedure includes at least partially removing a left atrial appendage that is at least partially contained within the working space.
In some applications, performing the procedure includes applying a suture to a blood vessel, and the method further includes testing a resistance of the suture to pressure, by applying pressure to the blood vessel with the expandable element.
In some applications, expanding the expandable element in the area includes expanding an expandable mesh.
In some applications, passing the tool into the working space includes passing the tool through the expandable mesh.
In some applications, expanding the expandable element in the area includes inflating an inflatable element.
There is further provided, in accordance with some applications of the present invention, apparatus including:
a longitudinal guide member configured to be advanced distally toward a heart of a subject, the guide member including a distal end including:
the apparatus being configured to facilitate the drawing of a portion of a pericardium of the heart into a portion of the lumen of the outer tube-wall that is between the outer tube-wall and inner tube-wall, by application of suction through the portion of the lumen of the outer tube-wall;
a puncturing element configured to puncture the portion of the pericardium while the portion of the pericardium is in the portion of the lumen of the outer tube-wall; and
a puncturing-element-restraining element shaped and positioned with respect to the puncturing element to inhibit passage of a distal tip of the puncturing element out of the distal end of the guide tube.
In some applications, the distal end further includes a blunt dome-shaped cover at least part of which is transparent, the cover being disposed at a distal end of the inner tube-wall and covering space that is inside the inner tube-wall.
In some applications, an inner diameter of the outer tube-wall is 0.2-4 mm greater than an outer diameter of the inner tube-wall.
In some applications, a distalmost perimeter of the inner tube-wall is 0.2-4 mm distal to a distalmost perimeter of the outer tube-wall.
There is further provided, in accordance with some applications of the present invention, apparatus for use with a catheter, the apparatus including:
a heart-proximity sensor including:
the heart-proximity sensor being configured to (a) be disposed at a distal portion of the catheter, and (b) generate a signal indicative of a proximity of the distal portion of the catheter to an internal organ of a subject that is not a heart of the subject, in response to (a) the contact sensor generating a signal that is indicative of contact of the contact sensor with the internal organ, and (b) the accelerometer not generating a signal having a frequency between 0.5 and 3 Hz and a magnitude that is greater than a threshold.
There is further provided, in accordance with some applications of the present invention, apparatus for use with a catheter, the apparatus including:
an accelerometer configured to (a) be disposed at a distal portion of the catheter, and (b) generate a signal indicative of a proximity of the distal portion of the catheter to a heart of a subject; and
a processor configured to (a) detect a component of the signal having a frequency between 0.5 and 3 Hz and a magnitude that is greater than a threshold, and (b) in response to the detecting, generate an output indicative of the proximity of the distal portion of the catheter to the heart of the subject, only if the detected component of the signal corresponds to a direction that is generally parallel to a local central longitudinal axis of the catheter.
There is further provided, in accordance with some applications of the present invention, apparatus including:
a longitudinal guide member (a) including a blunt distal end having an outer surface at least part of which is transparent, (b) configured to be advanced distally toward a heart of a subject, and (c) shaped to define an at least partially distally-facing and side-facing suction port at a distal portion of the longitudinal guide member, the apparatus being configured to facilitate drawing a portion of a pericardium of the heart through the suction port and into the longitudinal guide member; and
a puncturing element configured to puncture the portion of the pericardium while the portion of the pericardium is in the longitudinal guide member.
In some applications, the apparatus further includes, a puncturing-element-restraining element shaped and positioned with respect to the puncturing element to inhibit passage of a distal tip of the puncturing element out of the distal end of the longitudinal guide member.
In some applications, the blunt distal end of the guide member is rotationally asymmetric with respect to a central longitudinal axis of the guide member.
In some applications, part of the blunt distal end of the guide member is shaped to define an oblique plane with respect to the central longitudinal axis of the guide member, and an angle between (a) the central longitudinal axis of the guide member, and (b) a normal to the oblique plane defined by the blunt distal end of the guide member, is 40-70 degrees.
In some applications, the distal end of the guide member is shaped to define a blunt dissection tip, a smallest radius of curvature of the blunt dissection tip being 100-1000 microns.
In some applications, the smallest radius of curvature is less than 500 microns.
In some applications, the distal end of the guide tube is shaped to define a blunt dissection tip, a smallest radius of curvature of the blunt dissection tip being greater than 1 mm.
In some applications, the smallest radius of curvature is less than 6 mm.
In some applications, the apparatus further includes a liner, attached to the longitudinal guide member along at least a portion of a perimeter of the suction port.
In some applications, the suction port is shaped to define a perimeter thereof, and a smallest radius of curvature at each of a plurality of tissue-contact sites along the perimeter is greater than 0.1 mm.
In some applications, the smallest radius of curvature at each of a plurality of tissue-contact sites along the perimeter is between 0.1 and 0.2 mm.
In some applications, the smallest radius of curvature is less than 60 mm.
In some applications, the longitudinal guide member is shaped to define a tube wall having a thickness along at least part of the perimeter that is 40-60 microns.
In some applications, the outer surface of the blunt distal end is transparent.
In some applications, the apparatus further includes an imaging device disposed in the longitudinal guide member.
In some applications, the longitudinal guide member is shaped to define an imaging device chamber, a suction chamber, and a barrier preventing fluid communication between the imaging device chamber and the suction port, and the imaging device is disposed in the imaging device chamber.
In some applications, the imaging device is arranged to provide simultaneous imaging of (a) the suction port and (b) tissue beyond the blunt distal end.
In some applications, the imaging device includes a fish-eye lens.
In some applications, the imaging device is disposed within the longitudinal guide member such that an angle between (a) the central longitudinal axis of the guide member, and (b) an optical axis of the imaging device, is between 0-45 degrees.
In some applications, the apparatus further includes at least one illumination-providing element.
In some applications, the at least one illumination-providing element is disposed in the longitudinal guide member and configured to emit collimated light.
In some applications, the at least one illumination-providing element includes:
an optical fiber having a distal end that is disposed at the distal end of the longitudinal guide member; and
a light source coupled to a proximal end of the optical fiber.
In some applications, the longitudinal guide member further includes a barrier between the imaging device and the suction port, the barrier shaped to define an imaging device chamber and a suction chamber, and the at least one illumination-providing element is disposed in the suction chamber.
In some applications, the apparatus further includes at least one light baffle disposed within the longitudinal guide member and arranged to reduce glare from reaching the imaging device.
In some applications, the at least one light baffle is aligned generally perpendicular to the imaging device.
In some applications, the apparatus further includes a mechanical seal coupled to a proximal portion of the puncturing element and configured to inhibit flow of air through the puncturing element due to application of suction to the suction port.
In some applications, the apparatus further includes a gasket coupled to the puncturing element and configured to inhibit flow of air around the puncturing element due to application of suction to the suction port.
In some applications, an edge of the suction port is shaped to define a protrusion configured to inhibit slippage of the portion of a pericardium from the suction port when the puncturing element punctures the portion of the pericardium while the portion of the pericardium is in the suction port.
In some applications, the edge of the suction port is a distal edge of the suction port, and the protrusion is a proximally-facing protrusion.
In some applications, the proximally-facing protrusion has a surface area of less than 1 cm2.
In some applications, the proximally-facing protrusion has a surface area of less than 20 mm2.
In some applications, the proximally-facing protrusion has a surface area of greater than 1 mm2.
In some applications, the protrusion has a width between 100 and 250 microns.
In some applications, the apparatus further includes a light-reflector configured to direct light rays from the suction port to the imaging device.
There is further provided, in accordance with some applications of the present invention, a method including:
distally advancing a guide member toward a heart of a subject, the guide member having (a) a puncturing element, (b) a mechanical seal at a proximal portion of the puncturing element, and (c) a suction port at a distal portion of the guide member;
contacting an outer surface of a pericardium of the heart with a perimeter of the suction port;
drawing a portion of the pericardium into the suction port by applying suction to the pericardium through the suction port;
using the mechanical seal to inhibit flow of air through the puncturing element due to the application of suction to the pericardium; and
using the puncturing element, puncturing the portion of the pericardium that is in the suction port.
In some applications, the puncturing element is coupled to a gasket, and the method further includes using the gasket to inhibit flow of air around the puncturing element due to the application of suction to the pericardium.
There is further provided, in accordance with some applications of the present invention, a method including:
distally advancing a guide member toward a heart of a subject, the guide member having a distal portion thereof and shaped to define a suction port at the distal portion;
contacting an outer surface of a pericardium of the heart with a perimeter of the suction port;
drawing a portion of the pericardium into the suction port by applying suction to the pericardium through the suction port;
using a pressure sensor, measuring a first level of negative pressure within the guide member;
using a puncturing element, puncturing the portion of the pericardium that is in the suction port;
using the pressure sensor, measuring a second level of negative pressure within the guide member;
assessing a change in the negative pressure; and
inhibiting advancement of the puncturing element through the portion of the pericardium based on the assessed change in the negative pressure, in response to identifying that a magnitude of the negative pressure increased as a result of the puncturing.
The present invention will be more fully understood from the following detailed description of embodiments thereof, taken together with the drawings, in which:
The present description begins with a general overview of a method for accessing a pericardial region, in accordance with some applications of the present invention, as depicted in
When guide tube 22 reaches the heart, the operating physician deploys sheath 60 over the guide tube, e.g., by sliding a slide bar 56 distally, and a perimeter of suction port 62 contacts an outer surface of pericardium 90 (
After the portion of pericardium 90 is drawn into sheath 60, a puncturing element 50 (e.g., a needle 51) is advanced distally to puncture the portion of the pericardium, as shown in
For some applications, following the puncturing of pericardium 90, a guidewire 70 is advanced through a lumen of needle 51 and into pericardial region 92 (
Reference is now made to
Apparatus 20 is generally shaped to provide safe and efficient access to the heart. For example, distal end 16 of guide tube 22, as shown in
Reference is now made to
In addition to having distal end 16, guide tube 22 has a proximal end 14, and is shaped to define a guide-tube lumen 18 between proximal end 14 and distal end 16. A diameter D2 (
Typically, at least part of outer surface 17 of distal end 16 is transparent. Typically, apparatus 20 comprises an imaging device 24, e.g., a camera, disposed at least partially at distal end 16, and the transparency of distal end 16 facilitates the use of imaging device 24. In some applications, the imaging device comprises an imaging sensor that is disposed within the guide tube (e.g., within guide-tube lumen 18 and/or distal end 16). Alternatively or additionally, imaging device 24 comprises a fiber optic array having a distal end that is disposed within the guide tube, and an imaging sensor coupled to a proximal end of the fiber optic array (application not shown). For some applications, at least part of imaging device 24 is disposed within 15 mm of distalmost point 45 of distal end 16.
Typically, at least one illumination-providing element 26 is disposed at least partially within the guide tube and is configured to provide visible and/or infrared illumination for operation of the imaging device. (For example, four illumination-providing elements may be disposed in the guide tube, as shown in
Apparatus 20 is typically configured such that most of the light that is emitted from the illumination-providing element is not directly reflected to the imaging device by distal end 16, as such reflection might cause the imaging device to be at least partially “blinded”. Typically, at least 80% of light that is emitted from the at least one illumination-providing element and reflected by distal end 16 is not directly reflected to the imaging device. In some applications, this property of apparatus 20 is at least partially due to a disposition of the at least one illumination-providing element with respect to the imaging device. Alternatively or additionally, a shape of the distal end 16, and/or an optical parameter of distal end 16 and/or of coating applied internally or externally to distal end 16, may facilitate the relatively small amount of blinding reflection. Alternatively or additionally, the relatively small amount of blinding reflection may be facilitated by one or more polarizing filters (not shown) that at least partially cover the at least one illumination-providing element, and/or the imaging device, and/or an inner surface of distal end 16.
Reference is now additionally made to
Returning to
The imaging sensor belonging to imaging device 24, described hereinabove, may be considered to be a heart-proximity sensor, in that the imaging performed by imaging device 24 helps the operator ascertain that distal end 16 is proximate to the heart; typically, imaging device 24 is used to generate an image of at least part of the heart of the subject, and the proximity is ascertained, using the image. Alternatively or additionally to imaging device 24, apparatus 20 comprises one or more other types of heart-proximity sensor 29 configured to generate a signal indicative of a proximity of the distal end of the guide tube to the heart of the subject. Before deploying the suction port of the sheath over the guide tube, heart-proximity sensor 29 is used to generate the signal, and the proximity is ascertained, using the signal. As shown in
In some applications, heart-proximity sensor 29 comprises an ultrasound (e.g., a Doppler ultrasound) sensor (e.g., transducer). In response to a signal (e.g., an ultrasound image) received by the ultrasound sensor, the operator may ascertain that distal end 16 is proximal to the heart. (The ultrasound transducer may also be used for treatment.) Alternatively or additionally, the heart-proximity sensor comprises a contact sensor configured to generate a signal indicative of contact of the blunt distal end of the guide tube to the heart of the subject. Alternatively or additionally, the heart-proximity sensor comprises an accelerometer. Typically, for applications in which an accelerometer is used, apparatus 20 further comprises a processor 31 configured to generate an output indicative of the proximity of the blunt distal end of the guide tube to the heart of the subject, based on a signal received from the accelerometer, as further described immediately hereinbelow with reference to
While advancing guide tube 22 toward the heart of the subject, care must be taken not to damage (e.g., puncture) internal organs, such as the liver, of the subject. In some applications, the heart-proximity sensor comprises both an accelerometer and a contact sensor, which together help prevent such damage from occurring, as further described immediately hereinbelow with reference to
The scope of the present invention includes use of certain proximity-sensing apparatus and methods, even outside of the context of pericardium penetration. In this regard, reference is now additionally made to
In some applications, directional accelerometry is used, and the processor is configured to generate the output only if (per a direction-comparison step 334) the detected component of the signal corresponds to a direction that is generally perpendicular to a local central longitudinal axis A4 of the catheter. In the context of apparatus 20, the processor generates the output only if the detected component of the signal corresponds to a direction that is generally perpendicular to a plane 33 (
If contact sensor 322 contacts the organ, the contact sensor generates a signal that is indicative of this contact. The signal from the contact sensor is received, e.g., by processor 31, in a contact-signal-receiving step 336. Then, detection step 328, as described above with reference to
Apparatus 319 and 321 may be combined into a single apparatus, and methods 323 and 325 may be practiced in combination with each other. For example, method 325 may include direction-comparison step 334 of method 323, prior to output step 338.
Returning to
Reference is now additionally made to
Reference is now additionally made to
As further shown in
In some applications, apparatus 20 further comprises a sensor 39 configured to measure an electrophysiological signal occurring at a tip of puncturing element 50. For example, a voltmeter coupled to a proximal end of the puncturing element may measure a voltage occurring at the tip of the puncturing element. Since the voltage within the pericardium is different from the voltage outside of the pericardium, sensor 39 may help the operator ascertain that the pericardium has been punctured.
As described hereinabove with reference to
In some applications, as shown in
For some applications, a distal end of suction tube 30 defines a face that is not perpendicular to a local central longitudinal axis of suction tube 30, as shown in
In some applications, suction is applied through a space 41 (
In some applications, an oscillating suction pressure is applied, such as to facilitate separation of the portion of the pericardium from the tissue (e.g., myocardial tissue) that is underneath it. Alternatively or additionally, to facilitate this separation, a suction pressure that increases at an average rate of at least 5 and/or less than 15 mm Hg per second is applied for at least 1 second. In some applications, apparatus 20 comprises a vibrating element 47 configured to vibrate the distal end of the guide tube during and after the drawing of the portion of the pericardium into sheath 60. This vibration may help separate the portion of the pericardium from the portion of the myocardium that is underneath it.
In some applications, rinsing fluid may be passed through puncturing-element tube 32 and puncturing-element-tube hole 44, and/or through suction tube 30 and suction-tube hole 42, in order to remove debris from an external surface of distal end 16. In some applications, the rinsing fluid is passed through a separate rinsing-fluid lumen in guide tube 22 (not shown), and/or through a separate hole in distal end 16 (not shown).
In some applications, the advancement of apparatus 20 is facilitated by the use of electrophysiological sensing. For example, electrodes may be attached to apparatus 20 (e.g., to distal end 16 and/or puncturing element 50), the electrodes electrically coupled to an extracorporeal monitor. The electrodes facilitate navigation of apparatus 20 by detecting electrical activity of the heart (e.g., ECG signals). Alternatively or additionally, such electrodes may be radiopaque, and may facilitate navigation of apparatus 20 toward the heart by use of fluoroscopic imaging techniques.
Other navigation techniques include use of a 3D (i.e., position only) or 6D (i.e., position and orientation) navigation system in order to facilitate safe and efficient access to the heart. In some applications, a position sensor 43 disposed at a distal portion of the guide tube (e.g., coupled to distal end 16) is used to measure a position of distal end 16, and a proximity of the distal end of the guide tube to the heart of the subject is ascertained, using the measured position. In some applications, sensor 43 is a position-and-orientation sensor, and the position and orientation measured by sensor 43 are used to navigate the guide member. Alternatively or additionally, sensor 43 comprises an ultrasound sensor (e.g., a Doppler ultrasound sensor), and the image from the ultrasound sensor is used to navigate the guide tube. In some applications, sensor 43 is integrated with a CARTO™ or NavX™ navigation system.
For some applications, a preoperative image (e.g., a preoperative CT image) of the subject is used for navigation. The preoperative image may be used in combination with the 3D or 6D navigation system described above, and/or in combination with realtime images from imaging device 24, e.g., via use of image registration techniques.
Typically, a handle 12, shown in
Reference is now made to
Apparatus 21 comprises guide member 23 (e.g., guide tube 22). As in apparatus 20, guide tube 22 has a proximal end 14 and a distal end 16, and is shaped to define a guide-tube lumen 18 between the proximal and distal ends. A distal-end cover 116 is shaped to (i) define an aperture 100 therein, and (ii) cover distal end 16 of the guide tube. Distal-end cover 116 is typically shaped such as to facilitate blunt dissection and safe navigation and advancement of apparatus 21 toward the heart, as described hereinabove with respect to distal end 16 of apparatus 20. Aperture 100 typically has a diameter D4 of at least 1 mm and/or less than 5 mm. In some respects, the function of distal-end cover 116 of apparatus 21 is analogous to that of distal end 16 of apparatus 20. For example, heart proximity sensor(s) 29 (
Imaging device 24 is typically disposed at distal end 16 of guide tube 22. Apparatus 21 may further comprise one or more, e.g., four, illumination-providing elements 26, e.g., LEDs, as describe hereinabove with reference to apparatus 20. In some applications, distal-end cover 116 is transparent. In other applications, distal-end cover 116 is not transparent; in such applications, imaging device 24 is typically aligned with aperture 100, and illumination-providing elements 26 are typically disposed such that illumination may pass through aperture 100. (Typically, apparatus 21 is configured to reduce blinding reflections, as described hereinabove with respect to apparatus 20.)
As in apparatus 20, puncturing element 50 is disposed within guide-tube lumen 18, or between guide member 23 (e.g., guide tube 22) and sheath 60. In some applications, puncturing element 50 is disposed within puncturing-element tube 32, as in apparatus 20.
The lens 25 of imaging device 24 might become obstructed by debris that enters aperture 100. Hence, in some applications, apparatus 21 includes elements that facilitate cleaning of the lens. For example, distal end 16 may be shaped to define a rinse port 136 therein, rinse port 136 typically being close to lens 25 of imaging device 24. In such applications, apparatus 21 further comprises a rinse tube 130 in fluid communication with the rinse port, e.g., in contact with a perimeter 137 of rinse port 136. Rinse fluid may be passed through rinse tube 130 and through port 136 to remove the debris, thus facilitating the imaging functionality of imaging device 24. In some applications, distal end 16 is further shaped to define a groove 142, which facilitates the flow of the rinse fluid over the lens of the imaging device.
In some applications, rinse tube 130 is a rinse-and-suction tube, i.e., it also functions as a suction tube, for facilitating drawing the portion of the pericardium into the sheath. In other applications, apparatus 21 comprises a separate suction tube, e.g., as described hereinabove with respect to apparatus 20.
In general, the description herein relating to the operation of apparatus 20, e.g., with respect to the drawing of the sheath over the guide tube, puncturing of the pericardium, etc. also relates to apparatus 21, mutatis mutandis.
Reference is now made to
Reference is now made to
As shown in
In general, outer-tube wall 304 functions in a similar manner to sheath 60, at least in that it provides a suction port 310 through which the portion of the pericardium may be drawn. Thus, in most (but not necessarily all) applications, apparatus 300 does not include sheath 60.
Typically, distal end 302 further comprises a blunt dome-shaped cover 312, at least part of which is transparent. Cover 312 is disposed at a distal end of inner tube-wall 308 and covers space that is inside the inner tube-wall. The transparency of cover 312 facilitates imaging by imaging device 24, and the bluntness of cover 312 facilitates safe and effective advancement of guide member 23 toward the heart, as described hereinabove with respect to outer surface 17 of distal end 16 (
Typically, the inner diameter D3 of outer tube-wall 304 is at least 0.2 mm and/or less than 4 mm greater than the outer diameter D5 of inner tube-wall 308. (This allows for a space between the two walls that is large enough to facilitate the application of suction, but not so large as to have an unduly-large outer diameter of outer tube-wall 304.) In some applications, the distalmost perimeter 314 of the inner tube-wall is at least 0.2 mm and/or less than 4 mm distal to the distalmost perimeter 316 of the outer tube-wall, such that, for example, height H shown in
Reference is now made to
As described hereinabove, apparatus 20 may comprise puncturing-element tube 32, e.g., disposed within guide tube 22. Advancement of puncturing element 50 (e.g., needle 51) distally in puncturing-element tube 32 is shown in
Reference is now made to
Reference is also made to
For some applications, at least one force sensor 63 is coupled to an inner surface of sheath 60. Force sensor 63 generates a force sensor signal responsive to contact of pericardium 90 with the inner surface of sheath 60, to determine, responsive to the signal, the degree to which the pericardium has been drawn in to sheath 60.
For some applications, portions of apparatus 20 are transparent to X-ray, to allow X-ray-based imaging techniques (including fluoroscopy) to be used to assist in navigating the apparatus. For example, outer surface 17 of distal end 16 is typically transparent to X-ray. In some applications, at least a distal portion of sheath 60 (e.g., a portion extending proximally at least 1 cm from the distal end of sheath 60) is transparent to X-ray to enable X-ray imaging of the drawing of the pericardium into sheath 60. For some such applications, needle 50 injects a contrast medium prior to the pericardium being drawn into sheath 60, which allows the drawing of the pericardium into sheath 60 to appear on X-ray. Additionally or alternatively, needle 50 injects a contrast medium into the pericardial region subsequently to puncturing the pericardium, in order to allow X-ray imaging of the heart and pericardial region.
Reference is now made to
Reference is now made to
For some applications (
Alternatively, curved needle 53 is surrounded by a needle casing (e.g., a straight rigid casing) 98 while disposed within puncturing-element tube 32 (
In
Although
As described hereinabove with reference to
In some applications, the tool that is passed into pericardial region 92 includes a reflection-facilitation element, as described, for example, in US 2011/0282249 to Tsoref, which is incorporated herein by reference. As further described in US 2011/0282249 to Tsoref, ultrasound energy may then be transmitted from within a chamber of the heart, toward the reflection-facilitation element, to ablate myocardial tissue.
In some applications, as further described hereinbelow with reference to
In applications in which a working space is created, a surgical tool may then be passed over the guidewire and into the working space, in order to perform a surgical procedure on the heart. Creating a working space within a pericardial region, as described in the present application, is useful for facilitating various cardiac procedures, including but not limited to left atrial appendage (LAA) treatment, coronary artery bypass grafts (CABG), and bleeding reduction by application of pressure. Examples of surgical tools that may be used include a forceps, a needle, an electrosurgery tool, a cutting tool, a suction device, and a balloon. For example,
Reference is now made to
Typically, apparatus 200 further comprises an imaging device 24 disposed at least partially at a distal portion of the apparatus. In some applications, imaging device 24 comprises an imaging sensor 24a disposed at the distal portion of the apparatus. (Imaging sensor 24a may be shaped to be passable through the lumen of the flexible longitudinal element.) In other applications (not shown), imaging device 24 comprises a fiber optic array having a distal end that is disposed at the distal portion of the apparatus, and an imaging sensor coupled to a proximal end of the fiber optic array. In some applications, the fiber optic array is shaped to be passable through the lumen of the flexible longitudinal element. Imaging device 24 is typically used to image working space 225 before, during, and/or following the procedure.
As shown in
Apparatus 200 is typically used once access to the pericardial region has been achieved by apparatus 20 or 21, or by any other means. As described hereinabove, apparatus 200 may be advanced over guidewire 70.
For some applications, one or more substances, e.g., nanoparticles, are passed through apparatus 200 into working space 225. For some applications, the one or more substances comprise chemical and/or biological substances (e.g., therapeutic agents).
Reference is now made to
Typically, expandable element is sized and shaped to be containable within a rectangle 208 having (a) a length L between 3 and 8 cm, and (b) a width W between 3 and 8 cm, upon the expandable element being expanded.
In some applications, as shown in
In some applications, expandable element 210 is an expandable mesh 204 shaped to define a concave shape upon being expanded (
In general, the various shapes and designs presented in
Reference is now made to
In some applications, flow of blood toward the working space is reduced (
In summary, applications of the present invention include performing the following series of steps: (a) creating a working space, by expanding an expandable element in an area between two layers of tissue such that the expandable element defines and at least partly surrounds the working space, (b) passing a tool into the working space, and (c) using the tool to perform a procedure, such as (i) partially removing a left atrial appendage that is at least partially contained within the working space, or (ii) applying a suture to a blood vessel, and testing a resistance of the suture to pressure, by applying pressure to the blood vessel with the expandable element.
Reference is again made to the apparatus for penetrating the pericardium of the subject which were described hereinabove. As described hereinabove with reference to
Similarly to apparatus 20, apparatus 120 is inserted into the subject, and is advanced distally toward the heart of the subject. It is noted that apparatus 120 may be advanced towards the heart through any suitable pathway. For example, apparatus 120 may be advanced through the subxiphoid incision, above the diaphragm, directly to the heart. Advancement of apparatus 120 is typically facilitated by an imaging device and at least one illumination-providing element, which provides illumination for the imaging device. When brought into contact with the heart of the subject, apparatus 120 is configured to facilitate drawing a portion of the pericardium of the heart into the apparatus and to puncture the portion of the pericardium in order to gain access to the pericardial region.
As shown in
Typically, longitudinal guide member 220 comprises a blunt distal end 160 having an outer surface 164 at least part of which is transparent. Typically, apparatus 120 does not comprise a sheath, but rather, longitudinal guide member 220 is shaped to define a suction port. For some applications, longitudinal guide member 220 is shaped to define an at least partially distally-facing and side-facing suction port 660 at a distal portion 662 of longitudinal guide member 220. When apparatus 120 is brought into contact with the pericardium, a portion of the pericardium is drawn into longitudinal guide member 220 through suction port 660. Apparatus 120 additionally comprises a puncturing element, e.g., puncturing element 50 (shown in
For some applications, apparatus 120 additionally comprises a puncturing-element-restraining element (for example restraining element 52 shown in
Apparatus 120 is generally shaped to provide safe and efficient access to the heart. Accordingly, distal end 160 of longitudinal guide member 220 is typically blunt, rather than sharp. The bluntness of distal end 160 generally facilitates blunt dissection of tissue (i.e., generally atraumatic separation of adjacent tissues) during advancement toward the heart, and generally reduces the chances of injury to internal organs such as the diaphragm, the lungs, the stomach and the liver. Blunt distal end 160 is configured in size and shape to allow blunt dissection. In some applications, as shown in
Reference is now made to
For some applications, an angle alpha2 between (a) central longitudinal axis A5 of guide member 220, and (b) a normal N2 to the oblique plane defined by the blunt distal end of the guide member, is 90 degrees (application not shown).
As noted hereinabove, at least part of blunt distal end 160 is transparent. The transparency of distal end 160 facilitates imaging by the imaging device, and the bluntness of distal end 160 facilitates safe and effective advancement of guide member 220 toward the heart.
As shown in
Partially distally-facing and side-facing suction port 660 typically provides improved access to the heart and facilitates drawing a portion of the pericardium into apparatus 120 from various angles and orientations. For example, port 660 facilitates accessing a posterior portion of the heart (e.g., a posterior portion of the apex) even when apparatus 120 is advanced to an anterior portion of the heart. The orientation at which apparatus 120 is advanced toward the heart is a function of the angle theta (as shown in
Additionally or alternatively, having partially side-facing port 660 allows accessing the heart non-perpendicularly (e.g., in an orientation that is generally parallel to surface of the heart).
For some applications, a length between two lying along a perimeter of side-facing suction port 660 is at least 3 mm and/or less than 20 mm, e.g., less than 15 mm.
Additionally or alternatively, providing a partially distally-facing and side-facing suction port 660 facilitates viewing of tissue through the distally-facing portion of the suction port until the portion of the pericardium is drawn into guide 220 and a suction seal is attained.
For some applications, apparatus 120 further comprises a liner 667, attached to the longitudinal guide member 220 along at least a portion of a perimeter of suction port 660. Typically, such a liner adds to the thickness of the perimeter of suction port 660 in order to ensure that suction port 660 does not define sharp ends along the perimeter thereof. For some applications, the liner comprises a plastic liner.
In any case, with or without the addition of liner 667 along the perimeter of suction port 660, the edges of suction port 660 are generally blunt and not sharp, e.g., rounded. In other words, a plurality, e.g., some or all, of tissue-contact sites along the perimeter of suction port 660, are dull in order to facilitate safe advancement of apparatus 120 toward the heart and reduce the risk of damaging and slicing into tissue during advancement of apparatus 120. For some applications, each one of the tissue-contact sites of port 660, or alternatively, only the distally-facing tissue-contact sites, have a smallest radius of curvature R5 (with or without liner 667) that is greater than 0.1 mm, e.g., greater than 0.2 mm, or between 0.1 mm and 0.2 mm. Typically, smallest radius of curvature R5 is less than 60 mm. This radius of curvature contributes to the bluntness of the perimeter of suction port 660, such that tissue-contact sites of port 660 do not damage tissue during advancement of apparatus 120. For some applications, longitudinal guide member 220 is shaped to define a tube wall 223 having a thickness T1 along at least part of the perimeter that is 40-60 microns, e.g., 50 microns. Typically, a distance D6 between two edges of perimeter of suction port 660 is between 1 and 6 mm, e.g., 4-5 mm.
For some applications, an edge of suction port 660 is shaped to define a protrusion 665 configured to inhibit slippage of the portion of a pericardium from suction port 660 when the puncturing element punctures the portion of the pericardium while the portion of the pericardium is in suction port 660. Protrusion 665 typically facilitates holding of the portion of pericardium within port 660 and longitudinal member 220. Typically protrusion 665 has a width W2 that is at least 100 microns or less than 250 microns, e.g., between 100 and 250 microns. For some applications width W2 is between 100 microns and 2 mm.
As shown in
Reference is made to
For some applications, longitudinal guide member 220 is shaped to define an imaging device chamber 822, a suction chamber 824, and a typically transparent barrier 826 for preventing fluid communication between imaging device chamber 822 and suction port 660. Imaging device 240 is disposed in the imaging device chamber and is arranged to provide simultaneous imaging of (a) suction port 660 and (b) tissue beyond blunt distal end 160, as indicated by rays 131. It is further noted that imaging device 240 is configured to additionally provide imaging through suction port 660 in order to image tissue beyond port 660 prior to drawing the portion of the pericardium into port 660.
For some applications, imaging device 240 comprises a wide-angle lens 242, e.g., a fish-eye lens, for facilitating simultaneous imaging of the suction port and the blunt distal end (and the tissue beyond the distal end). Alternatively or additionally, imaging device 240 is disposed within longitudinal guide member 220 such that an angle alpha3 between (a) central longitudinal axis A5 of guide member 220, and (b) an optical axis A6 of imaging device 240, is less than 45 degrees, e.g., 10 degrees. Positioning imaging device 240 on an angle typically facilitates simultaneous imaging of suction port 660 and blunt distal end 160 (and the tissue beyond the distal end). Additionally, transparency of barrier 826 typically allows imaging of suction port 660 and the tissue drawn into the port when device 240 is disposed in chamber 822. For some applications, angle alpha3 between (a) central longitudinal axis A5 of guide member 220, and (b) optical axis A6 of imaging device 240, is adjusted by the physician (by moving imaging device 240) in order to capture both suction port 660 and the tissue beyond distal end 160.
It is further noted that imaging of suction port 660 by imaging device 240 facilitates viewing of the portion of the pericardium that is drawn into port 660. Additionally, imaging of suction port 660 by imaging device 240 facilitates viewing of the puncturing by puncturing element 50 of the tissue that was drawn into suction port 660.
As noted hereinabove, longitudinal guide member 220 further comprises at least one illumination-providing element (for example element 26 shown in
For some applications, the at least one illumination-providing element is disposed in suction chamber 824 and not in imaging device chamber 822. Placing illumination-providing element in suction chamber 824 typically reduces the amount of blinding reflections. For some applications, barrier 826 is positioned on an angle, in order to reduce the amount of blinding reflections. For example, although barrier 826 is shown in
Alternatively or additionally, the illumination-providing element comprises an optical fiber having a distal end that is disposed at distal end 160 of longitudinal guide member 220, and a light source coupled to a proximal end of the optical fiber or disposed outside of longitudinal guide member 220 (application not shown). Such a configuration typically reduces the amount of blinding reflections.
Reference is made to
It is noted that any factors described throughout the specification with respect to reducing blinding light reflections, typically apply to apparatus 120 as well. For example: a disposition of the at least one illumination-providing element with respect to the imaging device, an optical parameter of the distal end of the guide member, and an optical parameter of a coating on the distal end of the guide member.
Reference is again made to
Reference is made to
Reference is made to
Reference is made to
Reference is made to
Reference is made to
Reference is now made to
For some applications, a light reflector, e.g, a mirror 58, is disposed within longitudinal guide member 220, typically within imaging device chamber 822. When used, mirror 58 typically facilitates providing a wider field of view (e.g., viewing images which are not in a direct optical axis of imaging device 240), often without moving of the imaging device or adjusting focusing of device 240. For example, during advancement of apparatus 120 in a distal direction toward the heart, imaging device 240 images tissue beyond distal end 160, and mirror 58 is not used (shown in
Reference is made to
Apparatus and techniques described in the following references, each of which is incorporated by reference in the present application, may be combined with apparatus and techniques presented herein:
U.S. patent application Ser. No. 12/780,240, issued as U.S. Pat. No. 8,617,150;
U.S. patent application Ser. No. 14/144,265;
U.S. patent application Ser. No. 13/015,951, published as US 2011/0282203 and issued as U.S. Pat. No. 8,956,346; and
U.S. patent application Ser. No. 13/697,831, published as US 2013/0103028.
It will be appreciated by persons skilled in the art that the present invention is not limited to what has been particularly shown and described hereinabove. Rather, the scope of the present invention includes both combinations and subcombinations of the various features described hereinabove, as well as variations and modifications thereof that are not in the prior art, which would occur to persons skilled in the art upon reading the foregoing description.
The present application: (a) claims the priority of U.S. Provisional Application No. 61/988,457, entitled “Pericardial Access Device,” filed May 5, 2014, (b) is a continuation-in-part of U.S. application Ser. No. 14/324,457, entitled “Pericardial Access Device,” filed Jul. 7, 2014, (c) is related to U.S. Provisional Application No. 62/021,327, entitled “Left Atrial Appendage Closure,” to Gross, filed on Jul. 7, 2014, and (d) is related to a PCT application filed on even date herewith, entitled “Pericardial Access Device.” Each of the above applications is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61988457 | May 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14324457 | Jul 2014 | US |
Child | 14704857 | US |