PERIPHERAL BLOOD DNA METHYLATION MODELS AS PREDICTORS OF KNEE OSTEOARTHRITIS RADIOGRAPHIC PROGRESSION

Information

  • Patent Application
  • 20220145393
  • Publication Number
    20220145393
  • Date Filed
    November 02, 2021
    3 years ago
  • Date Published
    May 12, 2022
    2 years ago
Abstract
The present invention includes a method for determining whether a subject diagnosed with osteoarthritis is at increased risk for progression to severe osteoarthritis within 12-24 months, the method comprising the steps of: (a) preparing a blood sample; (b) measuring in the blood sample prepared in step (a) a level of DNA methylation; (c) comparing the DNA methylation level(s) measured in step (b) to a control blood sample level(s) of DNA methylation, and (d) identifying the subject as being at increased risk for progression to severe osteoarthritis within 12-24 months when the DNA methylation is increased by at least 2 fold as compared to the control blood level(s) of DNA methylation.
Description
TECHNICAL FIELD OF THE INVENTION

The present invention relates in general to the field of peripheral blood DNA methylation, and more particularly, a novel method of predicting knee osteoarthritis radiographic progression from peripheral blood DNA methylation.


BACKGROUND OF THE INVENTION

Without limiting the scope of the invention, its background is described in connection with Knee osteoarthritis (OA).


Osteoarthritis (OA) is the leading cause of chronic disability in the United States, and is the third most rapidly rising chronic medical condition associated with disability worldwide [1,2]. Despite its importance and economic impact, there are no disease-modifying anti-osteoarthritic drugs (DMOADs) approved by the US Food and Drug Administration (FDA) or European Medicines Agency, in stark contrast to the multitude of biologic and nonbiologic disease-modifying treatments available in other forms of arthritis [3]. This lag in the development of DMOADs is due in no small part to a lack of easily accessible radiographic and/or biochemical biomarkers to diagnose OA and discriminate patient phenotypes, including prediction of future progressors.


Accordingly, much attention has recently been focused on the development of diagnostic and prognostic biomarkers for OA. Several groups have described biomarker candidates for OA diagnosis, discriminating OA patients from healthy controls based on peripheral blood analytes. In 2014, Ramos et al. described an mRNA-based peripheral blood signature which could discriminate OA patients from matched controls [4], with a c-statistic of 0.97. In 2018, Li et al. published a reanalysis of these data using a different machine learning technique that performed at an equally high sensitivity and specificity on a reduced subset genes [5]. In 2018, Huang and colleagues used data and biospecimens from the DOXY (doxycycline for treatment of OA) clinical trial to examine four plasma biomarkers [6] and found baseline levels of lipopolysaccharide binding protein (LBP) were associated with future radiographic progression (TIC over 18 months OR=1.418).


A more difficult but perhaps more clinically relevant biomarker task, however, is the classification of OA patients into distinct phenotypes. The largest study yet to take on the task of OA phenotype discrimination was an analysis of serum and urine biochemical biomarkers performed by the Foundation for the National Institutes of Health (FNIH) OA Biomarkers Consortium (OABC-FNIH), using data and biospecimens from the longitudinal, US-based Osteoarthritis Initiative (OAI) study [7,8]. In this study, the authors produced a model combining three serum and urine biomarkers that could discriminate radiographic and pain progressors from nonprogressors with a receiver operator characteristic area under the curve (AUC-ROC, c-statistic) of 0.631[9]. Baseline values of these parameters did not offer substantial predictive capability; rather, models utilized a time-integrated concentration (TIC) approach tracking analyte measurements over a period of years.


A drawback of traditional biochemical biomarkers such as those used in the OABC-FNIH is their inherent variability. Epigenetic assays offer theoretical advantages as biomarkers. Most notably, an epigenetics-based assay has the potential to offer prognostic information based on a single time point reflecting early, relatively stable gene regulatory changes that precede gene transcription and subsequent protein translation. Early epigenetic changes in peripheral blood have been found to be useful biomarkers in several rheumatic diseases including rheumatoid arthritis [10] and systemic lupus erythematosus [11], as well as several chronic low-level inflammatory diseases, including type-2 diabetes mellitus risk [12] and cardiovascular disease [13]. Several recent studies, including our own, have demonstrated alterations in joint tissue epigenetic patterns associated with OA development and progression [14-18]; however, no analyses of blood epigenetic changes have yet been published.


Despite these advances, what is needed is a rapid, inexpensive, and widely available method and system to identify OA disease progression from easily accessible biological samples.


SUMMARY OF THE INVENTION

In one embodiment, the present invention includes a method for determining whether a subject diagnosed with osteoarthritis is at increased risk for progression to severe osteoarthritis within 12-24 months, the method comprising the steps of: (a) preparing a blood sample; (b) measuring in the blood sample prepared in step (a) a level of DNA methylation, e.g., by differentiation of bisulfite-generated polymorphisms; (c) comparing the DNA methylation level(s) measured in step (b) to a control blood sample level(s) of DNA methylation in a subject without osteoarthritis, and (d) identifying the subject as being at increased risk for progression to severe osteoarthritis within 12-24 months when the DNA methylation is increased by at least 2 fold as compared to the control blood level(s) of DNA methylation. In one aspect, the blood sample comprises peripheral blood mononuclear cells or cell-free DNA. In another aspect, the control blood level of the DNA methylation in a similarly processed blood sample from a control subject or a mean level of several control subjects. In another aspect, the control subject (i) is matched to the tested subject by at least one of: age category, sex, BMI category, ethnicity, or baseline KL radiographic grade; and (ii) does not have osteoarthritis as determined by both radiographic and symptomatic examination. In another aspect, the control blood level of the DNA methylation is a predetermined standard. In another aspect, the DNA methylation is determined with a 450k, or 850k array, or CpG sites associates with at least one of: an antigen presentation pathway, adenosine monophosphate kinase (AMPK) signaling pathway, or a sonic hedgehog signaling pathway, or one or more top upstream regulators identified by IPA selected from transcription factor PITX2, histone H3, histone H4, miR-141, miR-9, miR-137, bone morphogenic protein 2, a TGF-β superfamily member, or 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, or 13 markers selected from cg04195161, cg22064129, cg04985016, cg12692919, cg04043957, cg08872579, cg02019955, cg01333532, cg23705082, cg05042110, cg00715363, cg01307007 and cg09239099. In another aspect, the subject is human. In another aspect, the osteoarthritis is a knee osteoarthritis. In another aspect, the subject has a Kellgren-Lawrence (KL) score of 1-3 in at least one knee. In another aspect, the method further comprises the step of treating the osteoarthritis wherein the treatment is at least one of acetaminophen, steroids, hyaluronic acid, nonsteroidal anti-inflammatory drugs (NSAIDs), or Duloxetine.


In another embodiment, the present invention includes a method for treating osteoarthritis in a subject, wherein the subject has been diagnosed with osteoarthritis but does not have severe osteoarthritis, the method comprising the steps of: (a) measuring in a blood plasma sample obtained from the subject the plasma level of DNA methylation, e.g., by differentiation of bisulfite-generated polymorphisms; and (b) if the plasma level DNA methylation is increased by at least 2 fold as compared to a control plasma level(s) of the DNA methylation in a subject without osteoarthritis, administering an osteoarthritis treatment to the subject. In one aspect, the subject has been diagnosed with knee osteoarthritis and has a Kellgren-Lawrence (KL) score of 1-3 in at least one knee. In another aspect, the subject is human. In another aspect, the blood plasma sample obtained from the subject has been prepared in the presence of heparin. In another aspect, the DNA methylation is determined with a 450k, or 850k array, or CpG sites associates with at least one of: an antigen presentation pathway, adenosine monophosphate kinase (AMPK) signaling pathway, or a sonic hedgehog signaling pathway, or one or more top upstream regulators identified by IPA selected from transcription factor PITX2, histone H3, histone H4, miR-141, miR-9, miR-137, bone morphogenic protein 2, a TGF-β superfamily member, or 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, or 13 markers selected from cg04195161, cg22064129, cg04985016, cg12692919, cg04043957, cg08872579, cg02019955, cg01333532, cg23705082, cg05042110, cg00715363, cg01307007 and cg09239099. In another aspect, the control blood level of the DNA methylation is a level of DNA methylation in a similarly processed blood sample from a control subject or a mean level of several control subjects. In another aspect, the control subject (i) is matched to the tested subject by at least one of: age category, sex, BMI category, ethnicity, or baseline KL radiographic grade; and (ii) does not have osteoarthritis as determined by both radiographic and symptomatic examination. In another aspect, the control plasma level of the DNA methylation is a predetermined standard. In another aspect, the osteoarthritis treatment is at least one of acetaminophen, steroids, hyaluronic acid, nonsteroidal anti-inflammatory drugs (NSAIDs), or Duloxetine.


In another embodiment, the present invention includes a method for treating osteoarthritis in a subject, the method comprising administering an osteoarthritis treatment to a subject with elevated plasma levels of DNA methylation, wherein the subject does not have severe osteoarthritis. In one aspect, the subject has been diagnosed with knee osteoarthritis and has a Kellgren-Lawrence (KL) score of 1-3 in at least one knee. In another aspect, the subject is human. In another aspect, the osteoarthritis treatment is at least one of acetaminophen, steroids, hyaluronic acid, nonsteroidal anti-inflammatory drugs (NSAIDs), or Duloxetine.





BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the features and advantages of the present invention, reference is now made to the detailed description of the invention along with the accompanying figures and in which:



FIG. 1 is a graph that shows the mean receiver operator characteristic (ROC) curves for patient characteristic-only models, DNA methylation-based models using Beta values, and DNA methylation-based models using M values models when tested on previously untested samples. Curves represent mean values over 40 cycles of development, error bars represent SEM. ROC-AUC (c-statistic) values are given as mean±SEM.



FIG. 2 is a flowchart that shows the Osteoarthritis (OA) rapid progressor PBMC DNA methylation-based machine learning discriminant model development plan.



FIG. 3 is a graph that shows a model performance by number of CpG sites included during development, including the mean number of CpGs selected for inclusion during model development and optimization was 22±2 (mean±SEM) for M-based and 19±2 for beta value-based assays.



FIG. 4 is a flowchart that shows another Osteoarthritis (OA) rapid progressor PBMC DNA methylation-based machine learning discriminant model development plan.





DETAILED DESCRIPTION OF THE INVENTION

While the making and using of various embodiments of the present invention are discussed in detail below, it should be appreciated that the present invention provides many applicable inventive concepts that can be embodied in a wide variety of specific contexts. The specific embodiments discussed herein are merely illustrative of specific ways to make and use the invention and do not delimit the scope of the invention.


To facilitate the understanding of this invention, a number of terms are defined below. Terms defined herein have meanings as commonly understood by a person of ordinary skill in the areas relevant to the present invention. Terms such as “a”, “an” and “the” are not intended to refer to only a singular entity, but include the general class of which a specific example may be used for illustration. The terminology herein is used to describe specific embodiments of the invention, but their usage does not delimit the invention, except as outlined in the claims.


The present invention uses peripheral blood mononuclear cell (PBMC)-based epigenetic models to predict future knee OA radiographic progression in a well-matched cohort of patients from the Osteoarthritis Initiative (OAI), using similar definitions to those previously published in OABC-FNIH studies[9].


Baseline patient demographic, disease, and PBMC composition characteristics were well matched. Models developed using only patient characteristics were not predictive of future progression.


The inventors first identified a group of 58 OA radiographic progressors with baseline Kellergren-Lawrence (K/L) radiographic grade 2-3, symptomatic knee OA who exhibited ≥0.7 mm of joint space width (JSW) loss over the first 24 months of follow-up and persistent JSW loss at 48 months from the longitudinal, US-based Osteoarthritis Initiative (OAI) study. The inventors then matched 58 nonprogressors with ≤0.5 mm of joint space width loss over 48 months of follow-up by age category, sex, BMI category, ethnicity, and baseline KL radiographic grade (Table 1). Although not included in the initial matching criteria, there were no statistical differences in baseline JSW, NSAID use, or smoking history between the two groups. The inventors did note a statistically significant increase in baseline Western Ontario and McMaster (WOMAC) pain subscale among progressors (21.5±2 mean±SEM vs. 17.0±1.5 points on a 0-100 point normalized scale, P=0.05).









TABLE 1







Patient group characteristics











Radiographic
Nonprogressors
2-



progressors (cases)
(controls)
tailed



(n = 58),
(n = 58),
P



mean ± SEM
mean ± SEM
value











Baseline characteristics










Age
60 ± 1   
60 ± 1   
0.90


Sex (% female)
53.4%  
60.3%  
0.13


BMI
30.5 ± 0.5   
30.9 ± 0.6   
0.61


Ethnicity (% Caucasian)
88%
88%
1.00


Smoking (% positive)
46%
43%
0.71


NSAID use (% positive)
29%
17%
0.13


Mean WOMAC pain (0-
21.5 ± 2  
17.0 ± 1.5   
0.05


100 point normalized


scale)


Mean JSW (mm)
3.9 ± 0.1
4.0 ± 0.1
0.34


Baseline K/L grade 2
25 
35 
0.09


Baseline K/L grade 3
33 
23 







Baseline estimated PBMC composition










CD8+ T cells
8.5 ± 0.7%
8.6 ± 0.6%
0.9


CD4+ T cells
 21 ± 0.9%
21 ± 1% 
0.9


NK cells
7.4 ± 0.5%
7.6 ± 0.6%
0.9


B cells
9.6 ± 0.5%
9.8 ± 0.5%
0.8


Monocytes
7.4 ± 0.3%
6.7 ± 0.3%
0.12


Granulocytes
51 ± 1% 
51 ± 1% 
0.9







Baseline comorbidities










Type 2 diabetes
4 (patients/58)
6 (# patients/58)
0.74


History of heart attack
0
0
n/a


History of heart failure
2
3
1.0


History of stroke
2
4
0.68


History of lung disease
0
0
n/a


History of cancer
1
4
0.36









Recent studies have reported that clinical characteristics alone can be used to model future GA progression[19]. To ensure that these models were not being affected by patient characteristics, the inventors first developed models using baseline patient characteristics data alone, without including DNA methylation data. These models included age, sex, BMI, baseline JSW, baseline WOMAC pain, smoking history, and NSAID use. Baseline models were not able to discriminate the two groups (receiver operator characteristic area under the curve ROC-AUC, c-statistic=0.49±0.01 mean±SEM, accuracy=50±0.7%) (FIG. 1). Although infrequent, the inventors then added data regarding comorbidities to these baseline models, including history of heart attack, heart failure, diabetes, lung disease, and cancer (Table 1). This did not improve the discriminatory capability of baseline patient characteristic models (p=0.28 for comparison with models not including comorbidity data).


DNA methylation data from mixed PBMC samples can be skewed by underlying differences in cellular composition among groups[20]. As the OAI dataset does not include data on individual blood sample cellular composition, the inventors estimated this using a computational approach[21]. There were no statistically significant differences in estimated PBMC composition between the two groups; however, the inventors did note a trend towards increased monocyte counts in cases (progressors 7.4±0.3% mean±SEM vs. nonprogressors 6.7±0.3%, P=0.12) (Table 1). Accordingly, the inventors corrected the dataset for PBMC composition differences using frozen surrogate variable analysis (FSVA), a technique previously demonstrated to be robust in correcting cellular composition differences in genome-wide DNA methylation data[22,23], before developing these epigenetic models.


Models developed based on PBMC DNA methylation data are predictive of radiographic progression. Traditionally, epigenome-wide association studies have reported DNA methylation data as beta values, defined as the fraction methylation (0-1 scale) of each CpG site included in the array. However, beta values are characterized by high heteroscedasticity (most beta values fall within extreme high- and low-percent methylation levels). Therefore, the inventors also analyzed M values (the log base-2 ratio of methylated:unmethylated probe intensities for a given CpG site), which are approximately homoscedastic, in these models[24]. In this analysis, models based on PBMC DNA methylation data were consistently capable of discriminating those patients who would go on to experience radiographic progression from nonprogressors (FIG. 1, FIG. 2, Table 2). Models based on M values outperformed those based on beta values (M value models c=0.81±0.01, mean±SEM, vs. beta value models 0.75±0.01, comparison p=0.002), with corresponding accuracies of 73±1%, mean±SEM, for M and 69±1% for beta based models. The mean number of CpGs selected for inclusion during model development and optimization was 22±2 (mean±SEM) for M-based and 19±2 for beta value-based assays (FIG. 3), this was not statistically significantly different between the two DNA methylation measures (p=0.32).


The inventors then added patient characteristic covariate data to model development, including age, sex, BMI, baseline JSW, baseline WOMAC pain, smoking history, and NSAID use. Including these data did not alter model performance (M value models c=0.80±0.01, beta value models c=0.78±0.01, both nonsignificant compared to models without covariates). Finally, as this analysis included data from two methylation assay types, the inventors then analyzed model performance for 450k and 850k chips separately; both types demonstrated equivalent performance in these models (p=0.27).









TABLE 2







Performance of PBMC DNA methylation models to predict


future radiographic progression in OA patients


when evaluating previously unseen data.










M-value based models
Beta value-based models



(mean ± SEM)
(mean ± SEM)













ROC-AUC (c-statistic)
0.81 ± 0.01 
0.75 ± 0.01 


Accuracy
73 ± 1%
69 ± 1%


Odds ratio
11 ± 2
9 ± 2 


Sensitivity
74 ± 1%
73 ± 2%


Specificity
70 ± 1%
70 ± 1%









A subset of DNA methylation CpG sites were selected frequently in multiple rounds of model development and were enriched in functional pathways previously associated with OA development. Although 969 CpGs were selected in at least one round of model development in either M or Beta based models, a subset of CpG sites were selected several times (Table 3, complete list of CpGs selected in Table 4). Many of these most frequently selected CpGs in both M value-based and Beta value-based model development were shared; for example, 7 of the top 20 most frequently selected CpGs in both M- and Beta-models were identical. The majority of the top 20 CpGs selected during modeling were associated with CpG islands (13 of 20 M- and 16 of 20 Beta-based models), including all but one of the CpG sites shared among the two methylation measures, suggesting these sites may play a role in gene regulation.









TABLE 3







Top 20 CpGs selected for supervised model development. CpGs shared by both


Beta-value-based and M-value-based models are highlighted in bold (n = 7).
















M value-
# of

CpG
Location
Beta value-
# of

CpG
Location


based
development

location
within
based
development

location
within


algorithm
rounds selected
Associated
(regulatory
CpG
algorithm
rounds selected
Associated
(regulatory
CpG


feature
(out of 40)
gene
region)
island
feature
(out of 40)
gene
region)
island



















cg15974085
15
C18orf55;
TSS200
Island

cg11865413


15




N

Shelf





FBXO15



cg26384229


14


ALG10B


TSS200


Island


cg21643086


15




cg21643086


12





cg17745251


11


C10orf140


Body


Island




cg03687650


11


OSBPL5


Body


S

Shelf


cg06409741


11


RASA3


Body


Island




cg06409741


11


RASA3


Body


Island


cg03870777


10


KRT18


TSS200


N

Shore



cg18111500
10



cg17956079
10
PLEKHB1
TSS200


cg07772660
9
MST1P9
Body
Island

cg26384229


9


ALG10B


TSS200


Island




cg11865413


9




N

Shelf


cg03687650

7

OSBPL5


Body


S

Shelf



cg03212634
9



cg10306485
7
RASAS
Body
S_Shelf


cg00142933
8
LIMS2
Body
N_Shore
cg19559392
7
MORN2;
5′UTR;
S_Shore









DHX57
TSS1500


cg16001460
8
PRIM2
TSS1500

cg05587853
7
MSL2
TSS1500
Island



cg17745251


7


C10orf140


Body


Island

cg14616423
7


cg14330460
7



cg08728848
6



cg03870777


6


KRT18


TSS200


N

Shore

cg07379140
5
ALG14
TSS200
Island


cg02215141
6

gl
N_Shore
cg02962630
5
DLL4
Body
Island


cg20200361
6
THADA
Body

cg16790849
5
NEU1
Body
N_Shore


cg07258847
6



cg00143249
5
MNX1
Body
Island


cg23226134
5
CLCN6;
1st Exon
Island
cg10609068
4
ANO6
TSS1500;
N_Shore




MTHFR




PLEKHA9
5′UTR


cg16121685
5
UHMK1
TSS200
Island
cg14710040
4
EEF2
TSS200
Island


cg10966582
5
MST1P9
Body
Island
cg17310773
4
SLC25A17
1stExon
Island









Although a differential methylation analysis was not performed in the traditional sense, it was reasoned that CpG sites chosen for inclusion in these models might still clustered in functional pathways important in OA. To investigate this, the inventors performed gene ontology analysis using the Ingenuity Pathway Analysis (IPA) system of genes associated with CpG sites chosen in at least one round of model development. The most significantly enriched canonical pathways enriched in this gene set included the antigen presentation pathway (n=6 genes, p=7E-4), adenosine monophosphate kinase (AMPK) signaling (n=15, p=1E-3, and sonic hedgehog signaling (n=4 genes, p=9E-3), among others (Table 4). The top upstream regulators identified by IPA include the transcription factor PITX2 (n=14 genes, p=1E-5), histone H3 (n=29 genes, p=7E-5) and H4 (n=14,p=9.6E-5), miR-141 (n=9, p=1.9E-4), miR-9 (n=5, p=3.4E-4), miR-137 (n=2, p=8.2E-4), and bone morphogenic protein 2 (BMP2, n=15, p=9.0E-4), a TGF-β superfamily member, among others (Table 4).









TABLE 4





Ontology analysis of genes associated with


rapid OA progressor DNA methylation models.

















Canonical




pathway
p-value
Genes associated





Antigen
7.08E−04
CIITA, HLA-DPA1, HLA-DPB1,


presentation

PSMB8, PSMB9, TAP2


AMPK
1.05E−03
AK8, CFTR, CHRM2, CHRNA2,


signaling

CHRNA9, EEF2, FOXG1, INS,




PDPK1, PPM1E, PRKACB, RAB7A,




RPTOR, SMARCA4, SMARCD3


Sonic
9.33E−03
GLIS1, GLIS2, PRKACB, SUFU


hedgehog


signaling


Synaptogenesis
1.58E−02
AP2A2, CACNB4, CDH22, CDH23,


Signaling

CDH4, EIF4EBP3, EPHA8, EPHB3,


Pathway

FGR, GRIN2B, PRKACB, SHC2,




STX1B, SYN2, SYT15, SYT5


Aryl
1.95E−02
ALDH1A3, ARNT, CDK6, CDKN2A,


Hydrocarbon

NCOA2, NR2F1, RXRG, SMARCA4,


Receptor

TP73


Signaling


Endocannabinoid
2.75E−02
CACNB4, CACNG3, CACNG8, CNR2,


Neuronal

GNG7, GRIN2B, PRKACB, PTGS2


Synapse


Pathway


Autophagy
2.82E−02
ATG7, CTSO, LAMP1, SQSTM1,




WIPI1















Upstream
Molecule

Number of



regulator
type
p-value
associated genes







PITX2
transcription
1.34E−05
14




regulator



Bvht
long noncoding
5.48E−05
10




RNA



histone H3
group
6.93E−05
29



histone H4
group
9.63E−05
14



miR-141
microRNA
1.91E−04
9



ASCL1
transcription
3.09E−04
10




regulator



miR-9
microRNA
3.37E−04
5



LHX6
transcription
4.42E−04
5




regulator



miR-137
microRNA
8.23E−04
2



BMP2
growth factor
8.96E−04
15










Biomarkers hold great potential for improving clinical outcomes in common chronic diseases including OA. The early identification of OA patients who are likely to progress radiographically, clinically, or both, will allow for the enrichment of clinical trials of disease-modifying antiosteoarthritic drugs (DMOADs) with appropriate patients. Biomarkers of progression may also allow clinicians to stratify early OA patients, offering personalized care by taking into account an individual's likelihood to respond to a particular therapy. In this pilot study, the inventors sought to test whether baseline peripheral blood mononuclear cell DNA methylation data could be used to develop models to discriminate those patients who would go on to experience radiographic progression from nonprogressors. While based on a relatively small number of patients from a single cohort, these results nonetheless suggest that peripheral blood-based epigenetic models may be useful for OA subtype discrimination and should be evaluated in future larger studies of heterogeneous OA patients from additional cohorts.


Several groups have previously investigated biomarkers predictive of future OA progression. The largest biochemical study in this regard was the OAI biomarker studies including the osteoarthritis biomarker consortium of the Foundation for the National Institutes of Health (OABC-FNIH) which investigated a targeted set of biochemical biomarkers as predictors of OA pain and radiographic progression. Their analysis identified a combination of three biochemical biomarkers for discrimination of pain and radiographic progression from nonprogressors with a c-statistic of 0.631[9], although they used a time-integrated concentration (TIC) approach, requiring multiple biomarker measurements over time as input into their prognostic model. This same study also evaluated the predictive capability of baseline biomarkers alone, but these not demonstrate robust differentiation of progressors (c=0.586)[9].


Radiographic biomarkers predicting future disease progression have also been evaluated. In 2016, Collins et al. reported models based on changes in MRI semi-quantitative markers over 24 months to predict the likelihood of radiographic progression at 48 months as part of the OABC-FNIH study[26]; the best model achieved a c-statistic of 0.74. Like the OABC-FNIH biochemical biomarker study, this study leveraged changes in imaging parameters over time to predict future progression. Trabecular bone texture (TBT) is perhaps the best-studied single imaging biomarker for prediction of future OA progression. Kraus et al evaluated this in FNIH patients, with a best composite model using baseline TBT to predict future radiographic progression with a c-statistic of 0.624[27]. This is somewhat lower than previous reports using TBT, Janvier and colleagues, for example, reported a c-statistic of AUC 0.77 in 2017[28].


There have also been recent reports using machine learning to model future progression based on combinations of baseline imaging and demographic data. Joseph and colleagues in 2018 published the results of three such models, with a maximum c-statistic of 0.72 to predict progression to moderate-severe OA over 8 years including demographic data, risk factors, K/L score, cartilage WORMS score, meniscal tear, and cartilage MRI T2 imaging data[29] from the OAI cohort. Also in 2018, Halilaj and colleagues published the results of a mixed-effects mixture model within the OAI cohort to predict joint space narrowing in 1243 subjects. They described an impressive c-statistic of 0.86 for prediction of future progression using a combination of baseline and year 1 follow-up variables, using a 10-cycle, 90% development/10% lockbox validation data splitting approach with 10-fold internal cross-validation, not unlike the methodology of the present invention. Models based solely on baseline data, however, did not predict future radiographic progression (c≤0.6)[30].


Several recent studies have also identified mitochondrial haplotypes as biomarkers which can discriminate OA phenotypes. For example, in 2012 Fernandez-Moreno et al. identified significant increases in cartilage-specific biomarkers of OA in patients carrying mitochondrial haplogroup H associated with the onset of OA [31]. Similarly, this group later identified a decrease in incident OA risk in patients with mitochondrial haplogroup J compared to haplogroup H (HR 0.7, p<0.05) in both the OAI and CHECK cohorts [32], as well as slowing of the rates of radiographic progression rate among OA patients with haplogroup T compared to other haplogroups within the OAI cohort [33]. Future studies should investigate potential complementarity between mitochondrial haplogroups and DNA methylation as predictive OA biomarkers.


Much work has been done over the past several years linking epigenetic changes, particularly DNA methylation, with OA. The present inventors and others have noted differential DNA methylation in inflammatory cell pathways in both cartilage and subchondral bone from OA patients[14-17,34,35]. A subgroup of end-stage OA patients' cartilage demonstrates a fingerprint of epigenetic changes within inflammatory genes[18,36]. Given chondrocyte and subchondral bone DNA methylation aberrancy in both knee and hip OA, along with the known contributions of chronic inflammation and inflammatory gene epigenetic changes to OA, the DNA methylation patterns within PBMCs associated with OA progression the inventors describe in this report are intuitively consistent with previously published data.


The PBMC DNA methylation-based approach taught herein has several advantages over previously published biomarkers. Most notably, this approach offers predictive capability based on a single baseline blood draw. Further, this model demonstrated higher c-statistic values than previously described biochemical biomarkers. A traditional DNA methylation analysis of progressors and nonprogressors was performed and did not identify significantly differentially methylated positions (DMPs) with a false data rate-corrected p-value ≤0.05. This is not particularly surprising given the mixed PBMC population. This approach utilized the combined effects of multiple CpG sites when developing DNA methylation-based predictive models.


Gene ontology analysis revealed several canonical gene pathways and upstream regulators. Unfortunately, there have not been previous epigenetic analyses of peripheral blood cells in OA in humans or mice to compare these data to. However, many pathways and regulators previously described in articular tissues overlap with these findings. For example, AMP kinase (AMPK) deficiency in chondrocytes accelerates both age- and trauma-associated OA in mice[44], whereas a pharmacological stimulator of AMPK attenuates post-traumatic OA in rats[45]. The endocannabinoid system within synovial tissue has been associated with OA pain [46]. Autophagy has been widely associated with OA. Age-related loss of autophagy has been linked with OA severity in human [47] and murine [48] joint tissue. Furthermore, cartilage-specific deletion of mammalian target of rapamycin (mTOR) increases autophagy signaling and protects against post-traumatic OA induction in mice [49]. Among the upstream regulators identified in this ontology analysis was PITX2, a component of the Wnt signaling pathway key to mesenchymal stem cell function which is altered in OA patients [50]. MicroRNA-141 is dysregulated in human OA and contributes to pathogenesis by augmentation of lipid metabolism [51], and is important in maintaining the appropriate expression of key osteoblast differentiation proteins including Runx2, Sclerostin, ALP, and Dlx5[52]. MicroRNA-9 has been shown to directly augment the expression of the key catabolic enzyme matrix metalloproteinase-13 (MMP13) in OA patients [53] and animal models[54]. MicroRNA-137 regulates chondrocyte metabolism via targeting Runx2[55]. Finally, bone morphogenic protein-2 (BMP2) upregulation has been linked to OA development and increased matrix turnover [56]. It is a key regulator of chondrocyte metabolism [57] and has been suggested as a novel OA therapeutic[58].


A major concern with machine learning is generally the problem of overfitting. The inventors reduced this possibility through extensive cross-validation and report the accuracy of models when tested on data unseen during model development. The inventors included in the analysis data from both Illumina 450k and 850k chips. All data from 850k chips were subset to only those sites included on the 450k array and were batch corrected. The inventors saw no evidence for differences in predictive capability with the two chip types (see above). The inventors did see differences comparing M value-based to beta value-based models; however, this is not unsurprising given previous reports of variations in statistical measures of these values [24] owing to differences in scedasticity. There is an emerging literature in the OA field which has demonstrated the importance of activated macrophages in disease development and progression [63-65]. It is important to highlight that the gene ontology analyses performed herein were based on CpG sites selected following PBMC cell composition correction. Thus, the present invention can be used to perform predictive and/or prognostic biomarker analysis, which can include DNA from mixed PBMCs and/or whole blood.


These results demonstrate for the first time the use of peripheral blood epigenetic patterns as predictive models for knee OA radiographic progression. The use of linear modeling applied to a large genome-wide DNA methylation dataset from well-matched case and control cohorts offer the first glimpse into the potential of future OA epigenetic classification. The present invention offers significant advantages over traditional biochemical biomarkers, including requiring a single baseline blood sample. Thus, the present invention provides an easily accessible predictive biomarkers to personalize and improve the care of adults with knee OA.


Study Design. This nested case-control study (116 total patients, 58 progressors, 58 nonprogressors) used data and biospecimens from the Osteoarthritis Initiative (OAI) database, which is available for public access at https://data-archive.nimh.nih.gov/oai/. All Osteoarthritis Initiative (OAI) participants provided written informed consent, and the study was carried out in accordance with the OAI data user agreement, approved by the Committee on Human Research of the Institutional Review Board (IRB) for the University of California, San Francisco (UCSF).


The IRBs of the University of Oklahoma Health Sciences Center and Oklahoma Medical Research Foundation also reviewed and approved the project. Detailed case and control criteria are presented herein below. Participants had baseline and yearly follow-up knee radiographs and PBMC DNA available. Kellgren-Lawrence Grade (KLG) and quantitative joint space width (JSW) [59] were assessed by the central reading site using non-fluoroscopic fixed-flexion knee radiographs with a Synaflexer positioning device (Synaflexor, Synarc, Newark, Calif.). All participants had baseline KLG of 2-3 in at least one knee without a history of total knee joint replacement through 48-months. Participants with a tibial plateau rim distance of 6.5 mm at baseline, or with a change in the rim distance of >2.0 mm between baseline and follow-up were excluded due to unreliable radiographic positioning.


Definition of radiographic progression, case and control group characteristics. The definition of radiographic progression was similar to the case definitions of the OABC-FNIH[9]. Cases had radiographic progression in the medial tibiofemoral compartment by a longitudinal loss in the minimum JSW of at least 0.7 mm from baseline to 24-month follow-up in one index knee, with persistent narrowing in the same index knee at 48 months based on radiographs obtained from a non-fluoroscopic fixed flexion protocol (Synaflexor, Synarc, Newark, Calif.). In each case, the contralateral (non-index) knee had less progression than the index knee, or no progression over the follow-up period. Participants with a tibial plateau rim distance of 6.5 mm at baseline, or with a change in the rim distance of >2.0 mm between baseline and follow-up were excluded due to inappropriate and/or unreliable radiographic positioning. Non-progressors were defined as those with ≤0.5 mm of JSW loss from baseline to 48 months in either knee. These thresholds were set to coincide with previous OAI biomarker studies[9,60,62,66], as defined in the Foundation for the National Institutes of Health biomarker consortium project (OABC-FNIH) and were set based on the distribution of 1-month change in minimum JSW in normal knees of OAI control participants and estimated to have ≤10% probability of change due to measurement error[8,67].


Controls were frequency matched with cases by age category, sex, race, and BMI category as shown in Table 1 and were also frequency matched with the larger OAI cohort to broaden the applicability of these findings. Group differences were calculated using a Student t-test and statistically analyzed using a 2-tailed P value. There were no differences among the two groups in any demographic category with the exception of mean baseline Western Ontario and McMaster (WOMAC) pain subscale (Table 1), although it should be noted that there was a trend towards fewer females included among cases (53% vs. 60%, p=0.13), more NSAID use at baseline among cases (29% vs. 17%, p=0.13), and an increased mean baseline K/L grade among cases (2.2 vs. 2.0, p=0.09), although no difference in mean baseline JSW was noted in cases (3.9 vs. 4.0, p=0.34). The inventors also evaluated the presence of various comorbid conditions among data collected by the OAI, including history of heart attack, failure, stroke, pulmonary disease, diabetes, and cancer (Table 1). The inventors adjusted these models for these variables as part of the analysis (see below).


DNA methylation assays, PBMC composition assessment and adjustment. Five hundred nanograms of DNA was treated with sodium bisulfite (EZ DNA methylation kit, Zymo) and loaded onto Illumina Infinium HumanMethylation450k (n=62 samples: 30 cases, 32 controls) or 850k (n=54 samples: 28 cases, 26 controls) arrays. As no direct measures of PBMC cell type composition were available from the OAI, these data were estimated using the estimate Cell Counts function of minfi. No statistically significant differences in estimated PBMC cell composition were found between groups (Table 1, Table 5), although there was a trend towards increased monocytes among cases (7.4±0.3% vs. 6.7±0.3%, cases vs. controls mean±SEM, p=0.12). DNA methylation data were corrected for cell count variation using frozen surrogate variable analysis [22] via the sva package (v. 3.28.0). This method has been previously shown to robustly correct for cell count variation and other batch effects in large-scale epigenomic studies [22,23,68].



















TABLE 5













UCSC

RELATION



Beta
M
GENOME


UCSC_REFGENE
UCSC_REFGENE
REFGENE
UCSC_CPG
TO_UCSC


TargetID
counts
counts
BUILD
CHR
MAPINFO
NAME
ACCESSION
GROUP
ISLANDS_NAME
CPG_ISLAND

























cg00002464

1
37
8
120428418
NOV
NM_002514
TSS200
chr8: 120428398-120429178
Island


cg00027745

2
37
7
1452678



chr7: 1452417-1452794
Island


cg00089154
1

37
16
57352732


cg00105102
2

37
1
156217178
PAQR6; PAQR6
NM_024897; NM_198406
5′UTR; 5′UTR
chr1: 156215368-156215899
S_Shore


cg00105102

2
37
1
156217178
PAQR6; PAQR6
NM_024897; NM_198406
5′UTR; 5′UTR
chr1: 156215368-156215899
S_Shore


cg00107890
1

37
15
71492746
THSD4
NM_024817
Body


cg00125544
1

37
2
236865931
AGAP1; AGAP1
NM_014914; NM_001037131
Body; Body
chr2: 236867652-236867906
N_Shore


cg00142933
1

37
2
128420784
LIMS2; LIMS2;
NM_001136037; NM_017980;
Body; Body;
chr2: 128421719-128422182
N_Shore








LIMS2; LIMS2
NM_001161403; NM_001161404
Body; 5′UTR


cg00142933

8
37
2
128420784
LIMS2; LIMS2;
NM_001136037; NM_017980;
Body; Body;
chr2: 128421719-128422182
N_Shore








LIMS2; LIMS2
NM_001161403; NM_001161404
Body; 5′UTR


cg00143249
5

37
7
156798810
MNX1; MNX1
NM_001165255; NM_005515
Body; Body
chr7: 156795355-156799394
Island


cg00143249

1
37
7
156798810
MNX1; MNX1
NM_001165255; NM_005515
Body; Body
chr7: 156795355-156799394
Island


cg00152637

1
37
6
28104690



chr6: 28104781-28105240
N_Shore


cg00180559
1

37
1
233496768
KIAA1804
NM_032435
Body
chr1: 233497707-233497917
N_Shore


cg00192026
1

37
4
174411279


cg00278028
3

37
22
28196834
MN1; MN1
NM_002430; NM_002430
5′UTR; 1stExon
chr22: 28192793-28198592
Island


cg00290605
1

37
22
32366707



chr22: 32366492-32367061
Island


cg00308618

1
37
2
152831903
CACNB4; CACNB4;
NM_000726; NM_001145798;
Body; Body;








CACNB4; CACNB4
NM_001005747; NM_001005746
TSS1500; Body


cg00335286
2

37
18
13916355
MC2R
NM_000529
TSS1500


cg00336071
1

37
15
63449943
RPS27L
NM_015920
TSS1500
chr15: 63449418-63449874
S_Shore


cg00355514
1

37
13
24914782



chr13: 24914548-24915100
Island


cg00386663

1
37
16
692659
FAM195A
NM_138418
Body
chr16: 691597-692700
Island


cg00388154
1

37
15
68498857
CALML4; CALML4
NM_001031733; NM_033429
TSS1500; TSS1500


cg00401433
1

37
8
106674239
ZFPM2
NM_012082
Body


cg00409636

1
37
2
75720541
FAM176A; FAM176A
NM_001135032; NM_032181
Body; Body


cg00466544
1

37
14
57046243
C14orf101
NM_017799
TSS1500
chr14: 57046472-57046804
N_Shore


cg00491335

1
37
2
224705654



chr2: 224701962-224702790
S_Shelf


cg00496805

1
37
19
57901154
ZNF548
NM_152909
TSS200
chr19: 57901091-57901517
Island


cg00497251
1

37
2
241508725
RNPEPL1
NM_018226
5′UTR
chr2: 241507463-241507669
S_Shore


cg00510552

2
37
16
4511987
NMRAL1
NM_020677
Body


cg00551143

1
37
7
28998860
TRIL
NM_014817
TSS1500
chr7: 28995305-28998541
S_Shore


cg00562641
1

37
5
68789255
OCLN
NM_002538
5′UTR
chr5: 68788151-68789823
Island


cg00572243
1

37
8
28458806


cg00587472

1
37
2
6952860


cg00607154
1

37
5
6754116
POLS
NM_006999
Body
chr5: 6755104-6755387
N_Shore


cg00618507
1

37
7
102096322
ORAI2; ORAI2
NM_032831; NM_001126340
3′UTR; 3′UTR
chr7: 102097927-102098384
N_Shore


cg00704844
1

37
6
32821621
PSMB9; TAP1;
NM_002800; NM_000593;
TSS1500; 5′UTR;
chr6: 32820849-32822370
Island








PSMB9; TAP1
NM_148954; NM_000593
TSS1500; 1stExon


cg00704844

1
37
6
32821621
PSMB9; TAP1;
NM_002800; NM_000593;
TSS1500; 5′UTR;
chr6: 32820849-32822370
Island








PSMB9; TAP1
NM_148954; NM_000593
TSS1500; 1stExon


cg00708678

1
37
10
91294839
SLC16A12
NM_213606
5′UTR
chr10: 91294947-91295925
N_Shore


cg00712762
2

37
1
36351470
EIF2C1
NM_012199
Body
chr1: 36348501-36349731
S_Shore


cg00796164

1
37
19
57654968
ZIM3
NM_052882
5′UTR


cg00819788
1

37
17
7308579
C17orf61
NM_152766
TSS1500
chr17: 7307206-7308626
Island


cg00859178
1

37
1
162467208
UHMK1
NM_175866
TSS1500
chr1: 162467599-162468027
N_Shore


cg00878038

1
37
7
151107807
WDR86
NM_198285
TSS1500
chr7: 151106244-151107808
Island


cg00886571
1

37
14
105293199



chr14: 105293183-105293395
Island


cg00891611
1

37
1
108066602


cg00943060

1
37
7
65211784



chr7: 65215732-65216495
N_Shelf


cg00989986

1
37
8
49746558



chr8: 49747395-49747621
N_Shore


cg01022859

1
37
17
60767314
MRC2
NM_006039
Body


cg01029669
1

37
19
46999840
PNMAL2
NM_020709
TSS1500
chr19: 46996327-46998437
S_Shore


cg01062913

1
37
1
149169973


cg01090026

2
37
6
39692382
KIF6
NM_145027
Body
chr6: 39692743-39692966
N_Shore


cg01110552

1
37
10
103578627
MGEA5; MGEA5
NM_001142434; NM_012215
TSS1500; TSS1500
chr10: 103577394-103578256
S_Shore


cg01120851
1

37
1
6657644
KLHL21
NM_014851
Body
chr1: 6659125-6659505
N_Shore


cg01125463
1

37
6
42946178
PEX6
NM_000287
1stExon
chr6: 42946310-42947127
N_Shore


cg01138671
1

37
6
32130686
PPT2; PPT2
NM_005155; NM_138717
Body; Body
chr6: 32134460-32135196
N_Shelf


cg01144965
1

37
8
1811760
ARHGEF10
NM_014629
Body


cg01166564

1
37
2
26987492
C2orf18
NM_017877
Body
chr2: 26987030-26987500
Island


cg01198033
1

37
7
155302342
CNPY1
NM_001103176
5′UTR
chr7: 155302253-155303158
Island


cg01232267
1

37
3
47398209



chr3: 47397811-47398210
Island


cg01263999

1
37
13
108435129
FAM155A
NM_001080396
Body


cg01309395

1
37
6
33091795
HLA-DPB2
NR_001435
Body


cg01316857

2
37
19
48685724



chr19: 48685723-48686085
Island


cg01333080
1

37
3
183994568
ECE2; ECE2;
NM_001100120; NM_001037324;
Body; Body;
chr3: 183993905-183994347
S_Shore








ECE2; ECE2
NM_014693; NM_001100121
Body; Body


cg01338043
1

37
7
100136013
AGFG2
NM_006076
TSS1500
chr7: 100136448-100136919
N_Shore


cg01392841
1

37
19
47016869



chr19: 47016848-47017118
Island


cg01427750

1
37
12
131529339
GPR133
NM_198827
Body
chr12: 131529297-131529887
Island


cg01514015

1
37
1
236318427
GPR137B
NM_003272
Body


cg01515114
1

37
4
4139730


cg01543583
1

37
14
59947673
C14orf149
NM_144581
Body
chr14: 59950460-59951527
N_Shelf


cg01548562
1

37
9
71836408
TJP2; TJP2;
NM_001170414; NM_001170630;
Body; Body;
chr9: 71835913-71836409








TJP2; TJP2;
NM_001170415; NM_201629;
Body; Body;








TJP2; TJP2
NM_004817; NM_001170416
Body; Body


cg01565438

2
37
17
33776554
SLFN13
NM_144682
TSS1500
chr17: 33776553-33776888
Island


cg01591416
1

37
8
30601572
UBXN8
NM_005671
TSS200


cg01620570
1

37
17
15165908
PMP22; PMP22
NM_153321; NM_000304
TSS200; 5′UTR
chr17: 15165796-15166506
Island


cg01709473
1

37
6
12010960



chr6: 12012543-12013379
N_Shore


cg01709473

1
37
6
12010960



chr6: 12012543-12013379
N_Shore


cg01721429

1
37
16
47007486
DNAJA2; DNAJA2
NM_005880; NM_005880
5′UTR; 1stExon
chr16: 47006827-47008029
Island


cg01771479
1

37
8
144198810


cg01867419

1
37
6
30421515



chr6: 30418844-30419630
S_Shore


cg01872216
1

37
14
54430382



chr14: 54430154-54430670
Island


cg01900413

1
37
11
128419356
ETS1
NM_001143820
Body
chr11: 128419198-128419513
Island


cg01962086

1
37
3
195637027
TNK2
NM_005781
TSS1500
chr3: 195635359-195636895
S_Shore


cg02055540

1
37
5
165510804


cg02071447
1

37
5
151304542
GLRA1; GLRA1
NM_000171; NM_001146040
TSS200; TSS200
chr5: 151304226-151304824
Island


cg02148547

1
37
14
21457502
METT11D1; METT11D1
NM_001029991; NM_022734
TSS1500; TSS1500
chr14: 21458389-21458608
N_Shore


cg02192318

1
37
16
89500212
ANKRD11
NM_013275
5′UTR
chr16: 89500025-89500226
Island


cg02205746

1
37
16
2732724
KCTD5
NM_018992
1stExon
chr16: 2732272-2732940
Island


cg02215141
2

37
4
132663979



chr4: 132664263-132664658
N_Shore


cg02215141

6
37
4
132663979



chr4: 132664263-132664658
N_Shore


cg02216246
2

37
11
128564756
FLI1; FLI1
NM_002017; NM_001167681
Body; 5′UTR
chr11: 128562671-128565011
Island


cg02216246

1
37
11
128564756
FLI1; FLI1
NM_002017; NM_001167681
Body; 5′UTR
chr11: 128562671-128565011
Island


cg02241363
2

37
17
78450357
NPTX1; NPTX1
NM_002522; NM_002522
5′UTR; 1stExon
chr17: 78449507-78452783
Island


cg02268171

2
37
13
24477610



chr13: 24477426-24478053
Island


cg02275394
1

37
13
80917432



chr13: 80914013-80915574
S_Shore


cg02275622
1

37
2
207773017


cg02286547

2
37
11
75920278



chr11: 75918741-75922084
Island


cg02301193
1

37
1
90267201


cg02301193

1
37
1
90267201


cg02309335
1

37
6
30227294
HLA-L
NR_027822
TSS200
chr6: 30227320-30228255
N_Shore


cg02339418
1

37
12
123717776
C12orf65; C12orf65
NM_152269; NM_001143905
TSS200; TSS1500
chr12: 123717367-123718388
Island


cg02358630
1

37
10
71993457
PPA1
NM_021129
TSS1500
chr10: 71992414-71993467
Island


cg02368096
2

37
7
98248993
NPTX2
NM_002523
Body
chr7: 98245805-98247759
S_Shore


cg02398007
2

37
12
67616546


cg02398007

1
37
12
67616546


cg02444810

1
37
17
27055702
NEK8
NM_178170
TSS200
chr17: 27055187-27056056
Island


cg02448190
2

37
1
156030535
RAB25
NM_020387
TSS1500


cg02448190

1
37
1
156030535
RAB25
NM_020387
TSS1500


cg02491138

1
37
20
51589616
TSHZ2; TSHZ2
NM_173485; NM_173485
1stExon; 5′UTR
chr20: 51589707-51590020
N_Shore


cg02503646
1

37
3
52444059
PHF7; PHF7;
NM_173341; NM_016483;
TSS1500; TSS1500;
chr3: 52443677-52445104
Island








BAP1
NM_004656
TSS200


cg02504716

1
37
11
124071642


cg02529035

1
37
2
220377885
ACCN4; ACCN4
NM_182847; NM_018674
TSS1500; TSS1500
chr2: 220377743-220377946
Island


cg02554361

1
37
16
11001757
CIITA
NM_000246
Body
chr16: 11001646-11001872
Island


cg02558537

1
37
11
107328586
CWF19L2
NM_152434
TSS200
chr11: 107328441-107328691
Island


cg02574502
1

37
19
54486058
CACNG8
NM_031895
Body
chr19: 54485303-54486322
Island


cg02625590
1

37
19
41880276
TMEM91
NM_001098825
5′UTR
chr19: 41882507-41882773
N_Shelf


cg02633148

1
37
4
46391476
GABRA2; GABRA2
NM_001114175; NM_000807
TSS200; 5′UTR
chr4: 46391903-46392572
N_Shore


cg02653364
1

37
16
58283706
CCDC113; CCDC113
NM_001142302; NM_014157
TSS200; TSS200
chr16: 58283703-58284084
Island


cg02704217

1
37
17
12568507
MYOCD; MYOCD
NM_153604; NM_001146312
TSS1500; TSS1500
chr17: 12568667-12569335
N_Shore


cg02721947
1

37
5
39719620



chr5: 39721548-39721835
N_Shore


cg02734521

1
37
6
108326291


cg02804100
1

37
19
720993
PALM; PALM
NM_002579; NM_001040134
Body; Body
chr19: 719098-720953
S_Shore


cg02811702
1

37
13
24901961



chr13: 24902292-24902696
N_Shore


cg02846648

1
37
12
129416689
GLT1D1
NM_144669
Body


cg02862362

1
37
6
131895102
ARG1
NM_000045
Body


cg02894027
1

37
2
17375162


cg02904235

1
37
14
91527369
RPS6KA5; RPS6KA5
NM_182398; NM_004755
TSS1500; TSS1500
chr14: 91526233-91527552
Island


cg02947232

1
37
20
42937544
FITM2
NM_001080472
Body
chr20: 42939 450-42940043
N_Shore


cg02962630
5

37
15
41222776
DLL4
NM_019074
Body
chr15: 41217789-41223180
Island


cg02962630

4
37
15
41222776
DLL4
NM_019074
Body
chr15: 41217789-41223180
Island


cg02991338
1

37
14
29236017
FOXG1
NM_005249
TSS1500
chr14: 29236835-29237832
N_Shore


cg03003722
2

37
6
38035488
ZFAND3
NM_021943
Body


cg03004273

1
37
18
7568265
PTPRM; PTPRM
NM_002845; NM_001105244
Body; Body
chr18: 7566557-7568830
Island


cg03054162
1

37
2
70485230
PCYOX1; PCYOX1
NM_016297; NM_016297
1stExon; 5′UTR
chr2: 70485231-70485679
N_Shore


cg03069383

1
37
2
18741691
RDH14
NM_020905
1stExon
chr2: 18741356-18741964
Island


cg03069736

1
37
17
72542117
CD300C; CD300C
NM_006678; NM_006678
1stExon; 5′UTR


cg03088705

1
37
10
111624928
XPNPEP1; XPNPEP1;
NR_030724; NM_001167604;
Body; 3′UTR;








XPNPEP1
NM_020383
3′UTR


cg03103023

1
37
1
25088406
CLIC4
NM_013943
Body


cg03119288

1
37
19
10829265
DNM2; DNM2;
NM_004945; NM_001005361;
Body; Body;
chr19: 10828657-10829340
Island








DNM2; DNM2
NM_001005362; NM_001005360
Body; Body


cg03124231
1

37
4
174255570
HMGB2; HMGB2;
NM_001130689; NM_002129;
TSS1500; 1stExon;
chr4: 174254683-174256538
Island








HMGB2; HMGB2
NM_001130688; NM_002129
TSS200; 5′UTR


cg03212634
4

37
19
54292238


cg03212634

9
37
19
54292238


cg03243450
1

37
5
1800782
NDUFS6; MRPL36
NM_004553; NM_032479
TSS1500; TSS1500
chr5: 1799461-1801905
Island


cg03243450

5
37
5
1800782
NDUFS6; MRPL36
NM_004553; NM_032479
TSS1500; TSS1500
chr5: 1799461-1801905
Island


cg03249986
1

37
11
66383717
RBM14
NM_006328
TSS1500
chr11: 66383571-66385047
Island


cg03290040
1

37
22
24110355
CHCHD10
NM_213720
TSS1500
chr22: 24110029-24110995
Island


cg03290752
1

37
3
176915082
TBL1XR1
NM_024665
TSS200
chr3: 176915511-176915854
N_Shore


cg03318904
1

37
22
39801522
MAP3K7IP1; MAP3K7IP1
NM_006116; NM_153497
Body; Body


cg03331282
1

37
1
36056567
TFAP2E
NM_178548
Body


cg03382797
1

37
9
135755363
C9orf98; C9orf9
NM_152572; NM_018956
TSS1500; 5′UTR
chr9: 135753347-135754384
S_Shore


cg03396103
1

37
12
116946354



chr12: 116946195-116946607
Island


cg03396325
1

37
15
87876345


cg03414134
2

37
3
187462086
BCL6
NM_001706
5′UTR
chr3: 187461974-187462197
Island


cg03440588
3

37
1
47900320
FOXD2; MGC12982
NM_004474; NR026878
TSS1500; TSS200
chr1: 47899661-47900385
Island


cg03440588

3
37
1
47900320
FOXD2; MGC12982
NM_004474; NR026878
TSS1500; TSS200
chr1: 47899661-47900385
Island


cg03448396
1

37
3
38495949
LOC100128640; ACVR2B
NR_028389; NM_001106
Body; Body
chr3: 38495088-38497151
Island


cg03539051

1
37
19
56418660
NLRP13
NM_176810
Body


cg03558399
2

37
3
67022555


cg03558805

1
37
7
73184883
CLDN3
NM_001306
TSS1500
chr7: 73183379-73185115
Island


cg03586240
1

37
7
1966361
MAD111; MAD111;
NM_003550; NM_001013837;
Body; Body;
chr7: 1967664-1967994
N_Shore








MAD111
NM_001013836
Body


cg03593908
1

37
13
60842299


cg03597540

1
37
1
149857491
HIST2H2BE; HIST2H2AC;
NM_003528; NM_003517;
1stExon; TSS1500;
chr1: 149857769-149859470
N_Shore








HIST2H2BE
NM_003528
3′UTR


cg03623968

1
37
3
128523333
RAB7A
NM_004637
Body


cg03632289
1

37
11
71301062


cg03657549

2
37
7
128116813
METTL2B; METTL2B
NM_018396; NM_018396
5′UTR; 1stExon
chr7: 128116667-128117312
Island


cg03672997

1
37
10
7859623
TAF3
NM_031923
TSS1500
chr10: 7860261-7861107
N_Shore


cg03677929
1

37
12
7342174
PEX5; PEX5;
NM_000319; NM_001131023;
TSS1500; TSS200;
chr12: 7342074-7342417
Island








PEX5; PEX5; PEX5
NM_001131025; NM_001131024;
TSS200; TSS200;









NM_001131026
5′UTR


cg03677929

1
37
12
7342174
PEX5; PEX5;
NM_000319; NM_001131023;
TSS1500; TSS200;
chr12: 7342074-7342417
Island








PEX5; PEX5; PEX5
NM_001131025; NM_001131024;
TSS200; TSS200;









NM_001131026
5′UTR


cg03687650
7

37
11
3144685
OSBPL5; OSBPL5;
NM_020896; NM_001144063;
Body; Body;
chr11: 3141642-3141877
S_Shelf








OSBPL5
NM_145638
Body


cg03687650

11
37
11
3144685
OSBPL5; OSBPL5;
NM_020896; NM_001144063;
Body; Body;
chr11: 3141642-3141877
S_Shelf








OSBPL5
NM_145638
Body


cg03703325

1
37
3
50606864
HEMK1
NM_016173
TSS200
chr3: 50606345-50606972
Island


cg03733229
2

37
21
46824701
COL18A1
NM_130445
TSS1500
chr21: 46824531-46826234
Island


cg03799405
2

37
4
1595726



chr4: 1595293-1595539
S_Shore


cg03822003

1
37
16
30569878
ZNF764
NM_033410
TSS1500
chr16: 30569181-30570049
Island


cg03870777
10

37
12
53342755
KRT18; KRT18
NM_000224; NM_199187
TSS200; 5′UTR
chr12: 53342805-53343162
N_Shore


cg03870777

6
37
12
53342755
KRT18; KRT18
NM_000224; NM_199187
TSS200; 5′UTR
chr12: 53342805-53343162
N_Shore


cg03916104

1
37
1
6314748
GPR153
NM_207370
Body
chr1: 6313761-6314139
S_Shore


cg03928690
1

37
2
198381209
MOBKL3; MOBKL3;
NM_199482; NM_001100819;
5′UTR; Body;
chr2: 198380423-198381301
Island








MOBKL3
NM_015387
Body


cg03937591
1

37
4
899553
GAK
NM_005255
Body
chr4: 899774-899985
N_Shore


cg04016326

1
37
12
14132940
GRIN2B; GRIN2B
NM_000834; NM_000834
1stExon; 5′UTR
chr12: 14134626-14135242
N_Shore


cg04035728
1

37
8
27323467
CHRNA2
NM_000742
Body
chr8: 27320914-27321276
S_Shelf


cg04072156
1

37
3
148544962
CPB1
NM_001871
TSS1500


cg04083921
2

37
5
130915922
RAPGEF6; RAPGEF6;
NM_001164388; NM_001164386;
Body; Body;








RAPGEF6; RAPGEF6;
NM_001164390; NM_001164389;
Body; Body;








RAPGEF6; RAPGEF6
NM_001164387; NM_016340
Body; Body


cg04101351

1
37
12
20522672
PDE3A
NM_000921
1stExon
chr12: 20521616-20523122
Island


cg04113418

1
37
19
49646093
PPFIA3
NM_003660
Body
chr19: 49646092-49646308
Island


cg04120546

1
37
8
125740895
MTSS1
NM_014751
TSS200
chr8: 125739685-125741266
Island


cg04166812

1
37
14
61122051



chr14: 61123613-61124613
N_Shore


cg04171803

1
37
2
233561907
GIGYF2; GIGYF2;
NM_015575; NM_001103148;
TSS200; TSS200;
chr2: 233562005-233562547
N_Shore








GIGYF2; GIGYF2
NM_001103146; NM_001103147
TSS200; TSS200


cg04186622

1
37
1
148556562



chr1: 148555640-148556626
Island


cg04199621

1
37
6
30955712
MUC21
NM_001010909
Body


cg04215672
1

37
4
4108791



chr4: 4108734-4109499
Island


cg04223160

1
37
14
23755398
HOMEZ
NM_020834
TSS200
chr14: 23755121-23755456
Island


cg04254690

1
37
4
25031951
LGI2
NM_018176
Body
chr4: 25032028-25032311
N_Shore


cg04262428
2

37
11
70673256
SHANK2
NM_012309
Body
chr11: 70672834-70673055
S_Shore


cg04285141
2

37
16
57872427


cg04285141

1
37
16
57872427


cg04293489

1
37
6
49917881
DEFB133
NM_001166478
TSS1500


cg04357082
1

37
16
980022
LMF1
NM_022773
Body
chr16: 979785-980198
Island


cg04357082

1
37
16
980022
LMF1
NM_022773
Body
chr16: 979785-980198
Island


cg04360049

1
37
1
158150797
CD1D
NM_001766
5′UTR
chr1: 158150620-158151503
Island


cg04381865

1
37
16
15219673



chr16: 15221568-15222202
N_Shore


cg04406981

1
37
19
48453315
SNAR-C3
NR_024221
TSS1500


cg04427003

4
37
5
63257499
HTR1A
NM_000524
1stExon
chr5: 63256548-63257886
Island


cg04441477

4
37
16
24267399
CACNG3; CACNG3
NM_006539; NM_006539
1stExon; 5′UTR
chr16: 24267040-24267527
Island


cg04493430

1
37
16
1030388
SOX8
NM_014587
TSS1500
chr16: 1029878-1035327
Island


cg04498153
1

37
7
157690139
PTPRN2; PTPRN2;
NM_002847; NM_130842;
Body; Body;
chr7: 157690559-157690770
N_Shore








PTPRN2
NM_130843
Body


cg04498153

3
37
7
157690139
PTPRN2; PTPRN2;
NM_002847; NM_130842;
Body; Body;
chr7: 157690559-157690770
N_Shore








PTPRN2
NM_130843
Body


cg04529860

2
37
19
39900650



chr19: 39900139-39900888
Island


cg04544058

1
37
3
13609195
FBLN2; FBLN2;
NM_001165035; NM_001004019;
TSS1500; 5′UTR;
chr3: 13611923-13612435
N_Shelf








FBLN2
NM_001998
5′UTR


cg04574459

1
37
21
47010768



chr21: 47009996-47011163
Island


cg04691540

1
37
1
179198414
ABL2; ABL2; ABL2;
NM_001136001; NM_001168238;
1stExon; 1stExon;
chr1: 179198163-179199200
Island








ABL2; ABL2
NM_001168236; NM_007314;
1stExon; 1stExon;









NM_001168237
1stExon


cg04706600
2

37
5
178741004
ADAMTS2; ADAMTS2
NM_021599; NM_014244
Body; Body


cg04706600

4
37
5
178741004
ADAMTS2; ADAMTS2
NM_021599; NM_014244
Body; Body


cg04723723

1
37
1
67966270


cg04729004

1
37
7
128550932
KCP; KCP
NM_001135914; NM_199349
TSS200; TSS200
chr7: 128550409-128550903
S_Shore


cg04737185

1
37
11
1445041
BRSK2
NM_003957
Body


cg04786330

1
37
12
27091356
C12orf11; FGFR1OP2;
NM_018164; NM_015633;
TSS200; 5′UTR;
chr12: 27091158-27091857
Island








FGFR1OP2
NM_015633
1stExon


cg04819714
1

37
11
100861375
FLJ32810; TMEM133
NM_152432; NM_032021
3′UTR; TSS1500


cg04821026
1

37
21
15068553



chr21: 15068825-15070104
N_Shore


cg04837170
1

37
16
1494876
CCDC154
NM_001143980
TSS1500
chr16: 1495039-1495366
N_Shore


cg04884908

2
37
2
72374840
CYP26B1
NM_019885
1stExon
chr2: 72371121-72375004
Island


cg04891086
1

37
12
5018513
KCNA1
NM_000217
TSS1500
chr12: 5018585-5021171
N_Shore


cg04899500
1

37
19
48965791
KCNJ14; KCNJ14
NM_170720; NM_013348
Body; Body
chr19: 48965002-48965792
Island


cg05025392
1

37
17
14738114


cg05070971
2

37
21
43239518
PRDM15; PRDM15
NM_022115; NM_001040424
Body; Body
chr21: 43240351-43240586
N_Shore


cg05070971

1
37
21
43239518
PRDM15; PRDM15
NM_022115; NM_001040424
Body; Body
chr21: 43240351-43240586
N_Shore


cg05088794

1
37
18
33081137



chr18: 33077545-33078063
S_Shelf


cg05101846

1
37
17
72580962
C17orf77; CD300LD
NM_152460; NM_001115152
TSS200; Body


cg05157470

1
37
6
28937310


cg05229450

1
37
6
169465101


cg05240017
2

37
5
40756081
TTC33
NM_012382
TSS200
chr5: 40755537-40756257
Island


cg05240017

1
37
5
40756081
TTC33
NM_012382
TSS200
chr5: 40755537-40756257
Island


cg05242257
1

37
16
2588092
PDPK1; PDPK1;
NM_031268; NM_002613;
5′UTR; 1stExon;
chr16: 2588034-2588556
Island








PDPK1; PDPK1
NM_031268; NM_002613
1stExon; 5′UTR


cg05304037

1
37
19
50094202
PRR12; PRRG2
NM_020719; NM_000951
TSS1500; 3′UTR
chr19: 50093657-50095507
Island


cg05377387

1
37
16
84328658
WFDC1
NM_021197
1stExon
chr16: 84328519-84328720
Island


cg05388057
1

37
1
78226545
USP33; USP33;
NM_015017; NM_201626;
TSS1500; TSS1500;
chr1: 78224843-78225650
S_Shore








USP33
NM_201624
TSS1500


cg05436007
1

37
6
147213060


cg05436007

1
37
6
147213060


cg05553502

1
37
5
92924091
NR2F1
NM_005654
Body
chr5: 92923487-92924497
Island


cg05587853
7

37
3
135914748
MSL2; MSL2
NM_001145417; NM_018133
TSS1500; TSS200
chr3: 135914197-135916090
Island


cg05592114
1

37
12
7244104
C1R
NM_001733
Body


cg05597349
1

37
10
102882978
TLX1NB
NM_001085398
5′UTR
chr10: 102882977-102883551
Island


cg05634255

1
37
4
138864033


cg05668926
1

37
7
39609343
C7orf36
NM_020192
Body
chr7: 39605776-39606376
S_Shelf


cg05743054
2

37
3
158288903
MLF1; MLF1;
NM_001130156; NM_022443;
TSS200; TSS200;
chr3: 158288800-158289271
Island








MLF1
NM_001130157
TSS200


cg05757007

1
37
6
101053555
ASCC3
NM_006828
Body


cg05835009

1
37
4
710272
PCGF3
NM_006315
5′UTR
chr4: 713927-714137
N_Shelf


cg05851240
1

37
18
72201663
CNDP1
NM_032649
TSS200


cg05852760

1
37
7
23508224
IGF2BP3
NM_006547
Body
chr7: 23508184-23509712
Island


cg05854114
1

37
12
77719408



chr12: 77718453-77719440
Island


cg05907237

1
37
10
126849609
CTBP2; CTBP2;
NM_001083914; NM_001083914;
1stExon; 5′UTR;
chr10: 126847224-126851327
Island








CTBP2
NM_001329
TSS1500


cg05931119

1
37
6
168569742


cg05936555

2
37
6
30539508
ABCF1; ABCF1
NM_001090; NM_001025091
Body; Body
chr6: 30538983-30539487
S_Shore


cg05952475

1
37
6
163681845
PACRG; PACRG;
NM_152410; NM_001080378;
Body; Body;

Island








PACRG
NM_001080379
Body


cg05963872

1
37
7
63652631



chr7: 63652630-63652962


cg06016354

3
37
6
32163966
GPSM3; NOTCH4
NM_022107; NM_004557
TSS1500; Body
chr6: 32163292-32164383
Island


cg06039161

1
37
11
70672835
SHANK2
NM_012309
Body
chr11: 70672834-70673055
Island


cg06079468
1


10
81839181
LOC219347; LOC219347;
NR_027430; NR_027431;
TSS1500; TSS1500;
chr10: 81838359-81839078
S_Shore








LOC219347; C10orf57;
NR_027428; NM_025125;
TSS1500; Body;








LOC219347; LOC219347
NR_027432; NR_027429
TSS1500; TSS1500


cg06081199

1
37
7
117120064
CFTR; CFTR
NM_000492; NM_000492
1stExon; 5′UTR


cg06087019

1
37
3
27770182



chr3: 27771638-27771942
N_Shore


cg06090383

1
37
4
174292579
SAP30
NM_003864
1stExon
chr4: 174291879-174293273
Island


cg06098215
2

37
10
51575702
NCOA4; NCOA4;
NM_005437; NM_001145263;
5′UTR; 5′UTR;
chr10: 51572198-51572620
S_Shelf








NCOA4; NCOA4;
NM_001145261; NM_001145262;
Body; TSS1500;








NCOA4
NM_001145260
Body


cg06153883
1

37
7
136683107
CHRM2; CHRM2;
NM_001006631; NM_000739;
5′UTR; 5′UTR;








CHRM2; CHRM2;
NM_001006627; NM_001006628;
5′UTR; 5′UTR;








CHRM2; CHRM2;
NM_001006629; NM_001006632;
5′UTR; 5′UTR;








CHRM2; CHRM2
NM_001006630; NM_001006626
5′UTR; 5′UTR


cg06166932
1

37
8
143530800



chr8: 143530645-143530872
Island


cg06180519
2

37
10
32800689
CCDC7; CCDC7
NM_145023; NM_001026383
Body; Body


cg06180519

3
37
10
32800689
CCDC7; CCDC7
NM_145023; NM_001026383
Body; Body


cg06212297

1
37
16
48079666


cg06254801
2

37
9
79379216
PCA3; PRUNE2
NR_015342; NM_015225
TSS200; Body


cg06319785
1

37
2
75437207


cg06326713

1
37
17
20745278



chr17: 20746783-20747635
N_Shore


cg06329022

5
37
17
26926511
SPAG5
NM_006461
TSS1500
chr17: 26925742-26926512
Island


cg06354519

1
37
1
27939417
FGR; FGR;
NM_005248; NM_001042729;
3′UTR; 3′UTR;
chr1: 27941865-27942324
N_Shelf








FGR
NM_001042747
3′UTR


cg06409741
11

37
13
114767222
RASA3
NM_007368
Body
chr13: 114766710-114767223
Island


cg06409741

11
37
13
114767222
RASA3
NM_007368
Body
chr13: 114766710-114767223
Island


cg06444730
1

37
1
84544284
PRKACB; PRKACB
NM_002731; NM_207578
Body; Body
chr1: 84543146-84544261
S_Shore


cg06452419
1

37
17
55938940



chr17: 55939088-55939591
N_Shore


cg06456389
2

37
10
99052468
ARHGAP19
NM_032900
TSS200
chr10: 99051934-99052490
Island


cg06466917

1
37
5
17216259
LOC285696; BASP1
NR_027253; NM_006317
Body; TSS1500
chr5: 17216489-17217036
N_Shore


cg06483559
1

37
11
123624914
OR6X1
NM_001005188
1stExon


cg06502456
2

37
15
25304609
SNORD116-4
NR_003319
TSS200


cg06502456

1
37
15
25304609
SNORD116-4
NR_003319
TSS200


cg06515771

1
37
6
26614168



chr6: 26614013-26614851
Island


cg06521472
1

37
16
88990232
CBFA2T3; CBFA2T3
NM_175931; NM_005187
5′UTR; Body
chr16: 88994137-88994442
N_Shelf


cg06525193

1
37
2
238145456


cg06525491

5
37
11
71353991



chr11: 71350345-71350998
S_Shelf


cg06528306

1
37
8
53852661
NPBWR1
NM_005285
1stExon
chr8: 53851701-53854426
Island


cg06546406
2

37
1
39269756



chr1: 39269729-39270251
Island


cg06577604

1
37
3
184279443
EPHB3
NM_004443
TSS200
chr3: 184279194-184280721
Island


cg06594186

1
37
7
12971260


cg06638787
1

37
6
5997243



chr6: 5997027-5997414
Island


cg06677013
1

37
6
84570388
CYB5R4
NM_016230
Body
chr6: 84569263-84569619
S_Shore


cg06681324
2

37
2
165000237


cg06681324

1
37
2
165000237


cg06731021

1
37
6
116442866
COL10A1; NT5DC1
NM_000493; NM_152729
Body; Body


cg06766273

2
37
11
62521983
ZBTB3
NM_024784
TSS1500
chr11: 62521370-62521962
S_Shore


cg06796869

1
37
1
228471009
OBSCN; OBSCN
NM_052843; NM_001098623
Body; Body
chr1: 228473835-228474043
N_Shelf


cg06800849
1

37
16
89180587
ACSF3; ACSF3;
NM_174917; NR_023316;
Body; Body;








ACSF3
NM_001127214
Body


cg06816239
2

37
1
169679199
SELL; SELL
NM_000655; NR_029467
Body; TSS1500


cg06894723

1
37
13
110398142


cg06900229
1

37
17
48556928
RSAD1
NM_018346
Body
chr17: 48556004-48556509
S_Shore


cg06902609

2
37
7
985719
ADAP1
NM_006869
Body
chr7: 985613-985913
Island


cg06916315
1

37
5
174178587



chr5: 174178214-174178928
Island


cg06996175
1

37
19
2546877
GNG7
NM_052847
5′UTR
chr19: 2546620-2546983
Island


cg07054668

1
37
3
52811637
ITIH1; ITIH1
NM_002215; NM_001166434
1stExon; TSS1500


cg07O61145
1

37
15
78556178
DNAJA4; DNAJA4
NM_018602; NM_001130182
TSS1500; TSS1500
chr15: 78556405-78557542
N_Shore


cg07089698

1
37
3
5161802



chr3: 5163838-5164540
N_Shelf


cg07102406
1

37
16
2294639
DCI
NM_001919
Body


cg07102406

3
37
16
2294639
DCI
NM_001919
Body


cg07115206

1
37
16
6425686
A2BP1; A2BP1
NM_001142333; NM_018723
5′UTR; 5′UTR


cg07119830
1

37
10
104412306
TRIMS
NM_030912
Body


cg07139514
1

37
2
10665727



chr2: 10666541-10666765
N_Shore


cg07145255

1
37
5
59995354
DEPDC1B; DEPDC1B
NM_018369; NM_001145208
Body; Body
chr5: 59995374-59996331
N_Shore


cg07163173

1
37
2
67624373
ETAA1
NM_019002
TSS200
chr2: 67624372-67624844
Island


cg07165115

1
37
2
82756475


cg07165756

1
37
11
66311422
ZDHHC24
NM_207340
Body
chr11: 66313169-66313822
N_Shore


cg07170752
1

37
1
225427173
DNAH14
NM_001373
Body


cg07184658
2

37
9
96722329



chr9: 96720586-96723189
Island


cg07190543

1
37
7
8261154
ICA1; ICA1;
NM_004968; NM_001136020;
Body; Body;








ICA1
NM_022307
Body


cg07216337

1
37
8
75233610
JPH1
NM_020647
TSS200
chr8: 75232649-75234101
Island


cg07258847
2

37
6
66708570


cg07258847

6
37
6
66708570


cg07266964
1

37
2
135941054


cg07276861

1
37
4
76862355
NAAA; NAAA
NM_014435; NM_001042402
TSS200; TSS200
chr4: 76861089-76862426
Island


cg07288557

3
37
12
47226301



chr12: 47224912-47225664
S_Shore


cg07304175
1

37
3
181414139
SOX2OT
NR_004053
Body
chr3: 181413014-181414022
S_Shore


cg07321237

1
37
7
82754608
PCLO; PCLO
NM_014510; NM_033026
Body; Body


cg07331204

1
37
6
74998385


cg07367469

1
37
5
115988245


cg07379140
5

37
1
95538546
ALG14
NM_144988
TSS200
chr1: 95538251-95538551
Island


cg07379140

1
37
1
95538546
ALG14
NM_144988
TSS200
chr1: 95538251-95538551
Island


cg07476643

1
37
10
102729063



chr10: 102729299-102729710
N_Shore


cg07483064
1

37
1
8938751
ENO1; ENO1
NM_001428; NM_001428
1stExon; 5′UTR
chr1: 8938098-8939409
Island


cg07487925

1
37
17
25620950
WSB1; WSB1
NM_015626; NM_134265
TSS200; TSS200
chr17: 25620999-25621730
N_Shore


cg07493834

1
37
2
22114272


cg07499372

1
37
19
57631232
USP29
NM_020903
TSS1500
chr19: 57630339-57630633
S_Shore


cg07517948
1

37
15
67801494


cg07549590

1
37
16
15018862



chr16: 15018805-15019032
Island


cg07554478
1

37
3
113492074
ATP6V1A
NM_001690
5′UTR


cg07562918
2

37
9
21994435
CDKN2A; CDKN2BAS
NM_058195; NR_003529
1stExon; TSS1500
chr9: 21994101-21995910
Island


cg07576142
1

37
13
93879769
GPC6
NM_005708
1stExon
chr13: 93879245-93880877
Island


cg07581226

2
37
2
2939627


cg07588141
1

37
3
105588208
CBLB
NM_170662
TSS1500
chr3: 105587279-105588218
Island


cg07596845

1
37
6
82957841
IBTK
NM_015525
TSS1500
chr6: 82957625-82957842
Island


cg07602984
1

37
1
36790927
FAM176B
NM_018166
TSS1500
chr1: 36786500-36789402
S_Shore


cg07605410

1
37
1
16828163



chr1: 16825138-16826377
S_Shore


cg07633317

1
37
16
49732623
ZNF423
NM_015069
Body
chr16: 49732348-49732712
Island


cg07695475
1

37
15
102358936
OR4F15
NM_001001674
1stExon


cg07741793
1

37
17
26989030
SDF2; SUPT6H
NM_006923; NM_003170
TSS200; TSS1500
chr17: 26988721-26989391
Island


cg07743117

2
37
5
77146278



chr5: 77146998-77147785
N_Shore


cg07749943

1
37
4
3468188
DOK7; DOK7
NM_173660; NM_001164673
Body; Body
chr4: 3464799-3465440
S_Shelf


cg07772660
1

37
1
17085863
MST1P9
NR_002729
Body
chr1: 17085411-17086974
Island


cg07772660

9
37
1
17085863
MST1P9
NR_002729
Body
chr1: 17085411-17086974
Island


cg07781162
1

37
17
74533951
CYGB
NM_134268
TSS200
chr17: 74533281-74534566
Island


cg07812819
1

37
7
89975908
GTPBP10; GTPBP10
NM_001042717; NM_033107
TSS200; TSS200
chr7: 89975785-89976027
Island


cg07813249
1

37
4
46392253
GABRA2; GABRA2
NM_000807; NM_001114175
TSS200; TSS1500
chr4: 46391903-46392572
Island


cg07813747

1
37
16
21514953
LOC100271836
NR_027155
TSS1500
chr16: 21512854-21513971
S_Shore


cg07817024

1
37
1
119535500



chr1: 119535666-119535987
N_Shore


cg07835814
1

37
20
32077669
CBFA2T2
NM_001032999
TSS1500
chr20: 32077657-32078469
Island


cg07864467
1

37
10
134246595


cg07883117
1

37
7
101005846
EMID2
NM_133457
TSS1500
chr7: 101005899-101007443
N_Shore


cg07908805

2
37
19
427022
SHC2
NM_012435
Body
chr19: 426792-427819
Island


cg07919744
1

37
15
52873609
KIAA1370
NM_019600
3′UTR


cg07962315

1
37
9
77704473
OSTF1; C9orf95;
NM_012383; NR023352;
Body; TSS1500;
chr9: 77702885-77703819
S_Shore








C9orf95; C9orf95
NM_001127603; NM_017881
TSS1500; TSS1500


cg07966388

1
37
15
93363564


cg08028004

1
37
2
109336023
RANBP2; RANBP2
NM_006267; NM_006267
1stExon; 5′UTR
chr2: 109335768-109336670
Island


cg08035555

1
37
19
3558417
C19orf28; C19orf28;
NM_021731; NM_001042680;
TSS1500; TSS1500;
chr19: 3556962-3558293
S_Shore








C19orf28
NM_174983
TSS1500


cg08076266
1

37
2
120190202
TMEM37
NM_183240
Body
chr2: 120190030-120190308
Island


cg08237220
1

37
3
156332967


cg08242475

1
37
7
1327791



chr7: 1328525-1329029
N_Shore


cg08269037

1
37
1
11751616
MAD2L2; C1orf187;
NM_001127325; NM_198545;
5′UTR; TSS200;
chr1: 11750701-11752651
Island








MAD2L2
NM_001127325
1stExon


cg08318726
1

37
12
114844265
TBX5; TBX5;
NM_181486; NM_000192;
TSS1500; 5′UTR;
chr12: 114845861-114847650
N_Shore








TBX5
NM_080717
5′UTR


cg08356503
1

37
16
88105836
BANP; BANP
NM_017869; NM_079837
Body; Body
chr16: 88105640-88105908
Island


cg08376824
1

37
20
5987738
CRLS1; CRLS1
NM_019095; NM_001127458
Body; TSS200
chr20: 5986399-5987297
S_Shore


cg08447792
1

37
4
110600020
CCDC109B
NM_017918
Body


cg08453096

1
37
2
44065893
ABCG5; ABCG8;
NM_022436; NM_022437;
5′UTR; TSS1500;








ABCG5
NM_022436
1stExon


cg08476757

1
37
3
107940931
IFT57
NM_018010
Body
chr3: 107940930-107941503
Island


cg08514765

2
37
16
58058888
MMP15
NM_002428
TSS1500
chr16: 58058712-58058928
Island


cg08521684

1
37
3
195488725
MUC4; MUC4;
NM_018406; NM_138297;
Body; Body;
chr3: 195488595-195489381
Island








MUC4
NM_004532
Body


cg08561442
1

37
16
49891857



chr16: 49888474-49893354
Island


cg08592761

1
37
15
71146185
LARP6; LARP6
NM_197958; NM_018357
Body; Body
chr15: 71145995-71146820
Island


cg08623277

1
37
2
206004876
PARD3B; PARD3B;
NM_152526; NM_057177;
Body; Body;








PARD3B
NM_205863
Body


cg08643994

1
37
4
141500606


cg08658621
1

37
10
133999287
DPYSL4
NM_006426
TSS1500
chr10: 133998912-134001500
Island


cg08671647
1

37
4
30724564
PCDH7; PCDH7;
NM_032456; NM_032457;
1stExon; Body;
chr4: 30721204-30724842
Island








PCDH7
NM_002589
1stExon


cg08671647

2
37
4
30724564
PCDH7; PCDH7;
NM_032456; NM_032457;
1stExon; Body;
chr4: 30721204-30724842
Island








PCDH7
NM_002589
1stExon


cg08727867
1

37
21
15588349
RBM11
NM_144770
TSS200
chr21: 15588439-15588908
N_Shore


cg08728848
6

37
17
30437958


cg08728848

3
37
17
30437958


cg08751971
1

37
7
128587827
IRF5; IRF5;
NM_032643; NM_001098629;
Body; Body;








IRF5; IRF5;
NM_001098628; NM_001098631;
Body; Body;








IRF5; IRF5;
NM_001098630; NM_001098627;
Body; Body;








IRF5
NM_002200
Body


cg08753297
2

37
6
56716612
DST; DST;
NM_001144771; NM_001144770;
TSS200; 5′UTR;








DST; DST
NM_001144770; NM_001144769
1stExon; Body


cg08782158
4

37
2
927755


cg08813539

1
37
10
29011452



chr10: 29011053-29011453
Island


cg08852245
1

37
4
175138785



chr4: 175135259-175135496
S_Shelf


cg08864035

3
37
1
114471711
HIPK1; HIPK1
NM_198268; NM_152696
TSS1500; TSS1500
chr1: 114471965-114472899
N_Shore


cg08866633
1

37
13
113968514
LAMP1
NM_005561
Body


cg08891883
1

37
4
8347266



chr4: 8347476-8347889
N_Shore


cg08905496
3

37
1
165414332
RXRG; RXRG;
NM_001009598; NM_006917;
5′UTR; 5′UTR;








RXRG; RXRG
NM_006917; NM_001009598
1stExon; 1stExon


cg08943292
1

37
4
40337370
CHRNA9
NM_017581
TSS200


cg08983429
1

37
16
3577455
CLUAP1; CLUAP1
NM_015041; NM_024793
Body; Body


cg08992729

1
37
6
32809425
PSMB8; PSMB8
NM_004159; NM_148919
Body; Body
chr6: 32811494-32811839
N_Shelf


cg09032973
1

37
5
140165998
PCDHA1; PCDHA1;
NM_031410; NM_031411;
1stExon; 1stExon;
chr5: 140165958-140166214
Island








PCDHA1
NM_018900
1stExon


cg09119967
1

37
20
9494838
C20orf103
NM_012261
TSS1500
chr20: 9495253-9495597
N_Shore


cg09214993
1

37
15
64673618
KIAA0101; KIAA0101;
NM_001029989; NM_014736;
1stExon; 1stExon;








KIAA0101; KIAA0101
NM_001029989; NM_014736
5′UTR; 5′UTR


cg09222892

1
37
1
25734099
RHCE; RHCE;
NM_138616; NM_138617;
Body; Body; Body;








RHCE; RHCE
NM_138618; NM_020485
Body


cg09272909
1

37
9
71736999
TJP2
NM_001170414
5′UTR
chr9: 71736074-71737367
Island


cg09292409

2
37
16
15461083


cg09334915
1

37
1
239450936


cg09343402
1

37
19
24216269


cg09365557

1
37
17
59477564
TBX2
NM_005994
1stExon
chr17: 59473060-59483266
Island


cg09413529
1

37
12
115112225
TBX3; TBX3
NM_005996; NM_016569
Body; Body
chr12: 115112014-115112627
Island


cg09418673
3

37
11
76372128
LRRC32; LRRC32
NM_001128922; NM_005512
Body; Body


cg09418673

4
37
11
76372128
LRRC32; LRRC32
NM_001128922; NM_005512
Body; Body


cg09463211
1

37
15
99093248



chr15: 99091355-99091812
S_Shore


cg09499421
1

37
16
31020735
STX1B
NM_052874
Body


cg09507411
1

37
5
82395650
XRCC4; XRCC4;
NM_022550; NM_003401;
5′UTR; 5′UTR;








XRCC4
NM_022406
5′UTR


cg09600829

2
37
9
96216052
FAM120A; FAM120AOS
NM_014612; NM_198841
Body; TSS200
chr9: 96213340-96214953
S_Shore


cg09653641
1

37
7
92455499
CDK6; CDK6
NM_001259; NM_001145306
Body; Body


cg09672383
2

37
2
25390540
POMC; POMC
NM_000939; NM_001035256
5′UTR; 5′UTR
chr2: 25391072-25391875
N_Shore


cg09672383

1
37
2
25390540
POMC; POMC
NM_000939; NM_001035256
5′UTR; 5′UTR
chr2: 25391072-25391875
N_Shore


cg09717927

1
37
13
112630399



chr13: 112630568-112630796
N_Shore


cg09788029
3

37
12
103004347


cg09814034

1
37
20
44876346
CDH22
NM_021248
Body
chr20: 44875253-44875454
S_Shore


cg09822136
1

37
5
14144123
TRIO
NM_007118
Body
chr5: 14143017-14145350
Island


cg09952395
1

37
11
63258712
HRASLS5; HRASLS5;
NM_001146728; NM_001146729;
TSS200; TSS200;
chr11: 63258378-63258804
Island








HRASLS5
NM_054108
TSS200


cg10006235

2
37
11
49226370
FOLH1; FOLH1
NM_004476; NM_001014986
Body; Body
chr11: 49229717-49230040
N_Shelf


cg10045446
1

37
7
32530734
LSM5; LSM5;
NM_001139499; NM_012322;
5′UTR; TSS1500;
chr7: 32529753-32530146
S_Shore








LSM5; LSM5
NR_024466; NM_001130710
TSS1500; 5′UTR


cg10045446

2
37
7
32530734
LSM5; LSM5;
NM_001139499; NM_012322;
5′UTR; TSS1500;
chr7: 32529753-32530146
S_Shore








LSM5; LSM5
NR_024466; NM_001130710
TSS1500; 5′UTR


cg10077985
1

37
10
833127


cg10091458
3

37
9
116858634
KIF12
NM_138424
Body
chr9: 116860473-116860695
N_Shore


cg10128416

1
37
1
75198403
TYW3; CRYZ;
NM_001162916; NM_001130042;
TSS1500; 5′UTR;








CRYZ; TYW3;
NM_001130043; NR_027962;
5′UTR; TSS1500;








TYW3; CRYZ;
NM_138467; NM_001134759;
TSS1500; 5′UTR;








CRYZ
NM_001889
5′UTR


cg10159215

1
37
1
99470560
LPPR5; LPPR5
NM_001010861; NM_001037317
TSS200; TSS200
chr1: 99469932-99470968
Island


cg10174031

1
37
16
31408898
ITGAD
NM_005353
Body


cg10202874

1
37
16
32165225
HERC2P4
NR_002827
TSS1500


cg10206440
4

37
1
16353594
CLCNKA; CLCNKA
NM_001042704; NM_004070
Body; Body


cg10206440

1
37
1
16353594
CLCNKA; CLCNKA
NM_001042704; NM_004070
Body; Body


cg10211414
1

37
1
8875053
RERE; RERE
NM_012102; NM_001042681
5′UTR; 5′UTR
chr1: 8877012-8877283
N_Shore


cg10211414

1
37
1
8875053
RERE; RERE
NM_012102; NM_001042681
5′UTR; 5′UTR
chr1: 8877012-8877283
N_Shore


cg10261325
1

37
10
29874759
SVIL; SVIL
NM_021738; NM_003174
5′UTR; 5′UTR


cg10261325

1
37
10
29874759
SVIL; SVIL
NM_021738; NM_003174
5′UTR; 5′UTR


cg10306485
7

37
13
114881556
RASA3
NM_007368
Body
chr13: 114879041-114879530
S_Shelf


cg10306485

3
37
13
114881556
RASA3
NM_007368
Body
chr13: 114879041-114879530
S_Shelf


cg10368533

1
37
12
22778127
ETNK1; ETNK1
NM_001039481; NM_018638
1stExon; 1stExon
chr12: 22777988-22778301
Island


cg10368935
1

37
10
18240316
SLC39A12; SLC39A12
NM_001145195; NM_152725
TSS1500; TSS1500


cg10405239

1
37
17
26733360
SLC46A1
NM_080669
TSS200
chr17: 26732812-26733396
Island


cg10423227
1

37
2
64752200
AFTPH; AFTPH;
NM_203437; NM_001002243;
5′UTR; 5′UTR;
chr2: 64751141-64752083
S_Shore








AFTPH
NM_017657
5′UTR


cg10490795
1

37
5
150035893
SYNPO
NM_007286
Body
chr5: 150035968-150036629
N_Shore


cg10514235

1
37
4
15003844



chr4: 15003059-15006761
Island


cg10579818
1

37
19
34117242
CHST8; CHST8
NM_001127895; NM_001127896
5′UTR; 5′UTR
chr19: 34112279-34114353
S_Shelf


cg10596590

1
37
6
51814836
PKHD1; PKHD1
NM_138694; NM_170724
Body; Body


cg10601972

1
37
3
12851576
CAND2; CAND2
NM_001162499; NM_012298
Body; Body
chr3: 12851516-12851823
Island


cg10607939

1
37
7
112091280
IFRD1JFRD1
NM_001550; NM_001007245
Body; Body
chr7: 112090122-112091412
Island


cg10609068
4

37
12
45609265
ANO6; ANO6;
NM_001142680; NM_001142679;
TSS1500; TSS1500;
chr12: 45609713-45610752
N_Shore








PLEKHA9; ANO6
NM_015899; NM_001025356
5′UTR; TSS1500


cg10609068

1
37
12
45609265
ANO6; ANO6;
NM_001142680; NM_001142679;
TSS1500; TSS1500;
chr12: 45609713-45610752
N_Shore








PLEKHA9; ANO6
NM_015899; NM_001025356
5′UTR; TSS1500


cg10674754
4

37
4
8456019
C4orf23
NM_152544
TSS200


cg10674754

3
37
4
8456019
C4orf23
NM_152544
TSS200


cg10688514
1

37
10
48354852
ZNF488
NM_153034
TSS1500
chr10: 48354459-48355197
Island


cg10703619
1

37
7
155014511


cg10711996
1

37
10
32635917
EPC1; EPC1
NM_025209; NM_025209
5′UTR; 1stExon
chr10: 32635217-32636655
Island


cg10722444

1
37
13
112630569



chr13: 112630568-112630796
Island


cg10776643
1

37
14
71527576
PCNX
NM_014982
Body


cg10842913
1

37
12
125755229


cg10843276
1

37
4
726697
PCGF3
NM_006315
5′UTR
chr4: 724335-726070
S_Shore


cg10895973

1
37
17
14212636
HS3ST3B1
NM_006041
Body
chr17: 14212363-14212788
Island


cg10902101
1

37
22
48899955
FAM19A5
NM_001082967
Body
chr22: 48896375-48896591
S_Shelf


cg10909154

1
37
16
2723619



chr16: 2722923-2723674
Island


cg10932815
1

37
12
68294240


cg10966582
1

37
1
17085860
MST1P9
NR_002729
Body
chr1: 17085411-17086974
Island


cg10966582

5
37
1
17085860
MST1P9
NR_002729
Body
chr1: 17085411-17086974
Island


cg10988062

1
37
7
64023434
ZNF680; ZNF680;
NM_001130022; NM_178558;
1stExon; 5′UTR;








ZNF680; ZNF680
NM_178558; NM_001130022
1stExon; 5′UTR


cg11005250

3
37
12
108297742



chr12: 108297426-108297743
Island


cg11084629

1
37
1
55230770
PARS2
NM_152268
TSS1500
chr1: 55229992-55230369
S_Shore


cg11104313
1

37
3
111717534
TAGLN3; TAGLN3;
NM_013259; NM_001008272;
TSS200; TSS200;








TAGLN3
NM_001008273
TSS1500


cg11159141

1
37
3
11529333
ATG7; ATG7;
NM_001136031; NM_001144912;
Body; Body;
chr3: 11529784-11530120
N_Shore








ATG7
NM_006395
Body


cg11199172
1

37
17
46707338



chr17: 46710812-46711419
N_Shelf


cg11203397
1

37
13
46870454


cg11222065
1

37
6
33240468
VPS52; RPS18
NM_022553; NM_022551
TSS1500; Body
chr6: 33239326-33240099
S_Shore


cg11273848

1
37
10
130506845



chr10: 130508443-130508658
N_Shore


cg11303425

1
37
12
6798826
ZNF384; ZNF384;
NM_001039916; NM_001039920;
TSS1500; TSS200;








ZNF384; ZNF384;
NM_001135734; NM_001039918;
TSS200; TSS1500;








ZNF384; ZNF384;
NM_001039917; NM_133476;
TSS200; TSS1500;








ZNF384
NM_001039919
TSS200


cg11322849

1
37
11
2182783
INS; INS-IGF2;
NM_000207; NR_003512;
TSS1500; TSS1500;








INS-IGF2
NM_001042376
TSS1500


cg11336643

1
37
12
124432686
CCDC92
NM_025140
5′UTR


cg11350208

1
37
2
133033202


cg11386711
1

37
3
186651116
ST6GAL1; ST6GAL1
NM_173216; NM_173217
5′UTR; 5′UTR
chr3: 186648174-186649103
S_Shelf


cg11461030
1

37
1
46932239



chr1: 46932130-46932892
Island


cg11461302
1

37
22
38507451
BAIAP2L2
NM_025045
TSS1500


cg11498652
2

37
5
40834691
RPL37
NM_000997
Body
chr5: 40835241-40835873
N_Shore


cg11542394
2

37
15
101419011
ALDH1A3
NM_000693
TSS1500
chr15: 101419261-101421133
N_Shore


cg11551464

3
37
8
49595738


cg11553116

1
37
6
2871823



chr6: 2875601-2875811
N_Shelf


cg11575929

1
37
6
28414894


cg11677722

1
37
19
39881393
MED29; PAF1
NM_017592; NM_019088
TSS1500; Body
chr19: 39881332-39882164
Island


cg11723795
1

37
14
91975931
SMEK1
NM_032560
Body
chr14: 91975670-91977326
Island


cg11746846
3

37
18
3067337
MYOM1; MYOM1
NM_019856; NM_003803
Body; Body
chr18: 3067297-3067533
Island


cg11746846

1
37
18
3067337
MYOM1; MYOM1
NM_019856; NM_003803
Body; Body
chr18: 3067297-3067533
Island


cg11750736
1

37
17
10634140
TMEM220
NM_001004313
TSS1500
chr17: 10632789-10633490
S_Shore


cg11781564
1

37
5
73016764
RGNEF
NM_001080479
Body


cg11801727

1
37
1
228659093



chr1: 228658937-228659152
Island


cg11832722
1

37
18
28623060
DSC3; DSC3
NM_001941; NM_024423
TSS1500; TSS1500
chr18: 28621489-28623117
Island


cg11865413
15

37
10
72969054



chr10: 72972075-72973895
N_Shelf


cg11865413

9
37
10
72969054



chr10: 72972075-72973895
N_Shelf


cg11958128
1

37
12
3226445
TSPAN9; TSPAN9
NM_001168320; NM_006675
5′UTR; 5′UTR


cg12000587
1

37
17
30186630
C17orf79
NM_018405
TSS1500
chr17: 30185764-30186580
S_Shore


cg12014145

1
37
16
30346812
LOC595101
NR_002453
TSS200
chr16: 30346052-30346865
Island


cg12015279
1

37
18
55318716
ATP8B1
NM_005603
Body
chr18: 55315730-55315932
S_Shelf


cg12041387

2
37
7
96650171
DLX5
NM_005221
Body
chr7: 96650221-96651551
N_Shore


cg12068833
1

37
4
132896266



chr4: 132896360-132896778
N_Shore


cg12068833

1
37
4
132896266



chr4: 132896360-132896778
N_Shore


cg12071328
1

37
11
20690930
NELL1; NELL1
NM_201551; NM_006157
TSS200; TSS200
chr11: 20690579-20691845
Island


cg12102432
1

37
11
119378641


cg12226306
1

37
3
105087718
ALCAM
NM_001627
Body
chr3: 105088072-105088339
N_Shore


cg12226306

1
37
3
105087718
ALCAM
NM_001627
Body
chr3: 105088072-105088339
N_Shore


cg12243858

1
37
7
149473178
SSPO
NM_198455
1stExon
chr7: 149469542-149469748
S_Shelf


cg12285737

1
37
19
49931759



chr19: 49931203-49931804
Island


cg12329460

1
37
10
105992247
C10orf79
NM_025145
TSS200
chr10: 105991899-105992248
Island


cg12378753
1

37
10
116527201



chr10: 116527524-116528474
N_Shore


cg12400434

1
37
5
1491377
LPCAT1
NM_024830
Body
chr5: 1489799-1490071
S_Shore


cg12458866
1

37
1
9353610
SPSB1
NM_025106
5′UTR


cg12466737
2

37
18
35146589
BRUNOL4; BRUNOL4;
NM_001025089; NM_001025087;
TSS1500; TSS1500;
chr18: 35144907-35147628
Island








BRUNOL4; BRUNOL4
NM_020180; NM_001025088
TSS1500; TSS1500


cg12467960
2

37
11
68201194
LRP5
NM_002335
Body
chr11: 68201118-68201321
Island


cg12473849
1

37
3
136882749


cg12489353

1
37
19
48231499
EHD2
NM_014601
Body
chr19: 48229072-48229507
S_Shore


cg12494529
1

37
10
1082432
C10orf110; C10orf110;
NR_024629; NR_027708;
Body; Body;








C10orf110; C10orf110
NR_027709; NR_024628
Body; Body


cg12512039

1
37
7
65958832



chr7: 65958470-65959121
Island


cg12522342
2

37
17
64831573



chr17: 64831193-64831574
Island


cg12532563

1
37
4
83956223
COPS4
NM_016129
TSS200


cg12568669
1

37
8
11666485
FDFT1
NM_004462
Body
chr8: 11665773-11666045
S_Shore


cg12583367

1
37
4
4412229
D4S234E; D4S234E
NM_014392; NM_001040101
Body; Body


cg12624829
2

37
10
106113175
CCDC147
NM_001008723
TSS1500


cg12791476

1
37
7
44059249
POLR2J4
NR_003655
TSS1500
chr7: 44058608-44058988
S_Shore


cg12797594
1

37
22
36236395
RBM9; RBM9;
NM_014309; NM_001082578;
5′UTR; Body;








RBM9; RBM9;
NM_001082579; NM_001082576;
Body; 5′UTR;








RBM9; RBM9;
NM_001031695; NM_001031695;
5′UTR; 1stExon;








RBM9; RBM9;
NM_001082576; NM_014309;
1stExon; 1stExon;








RBM9; RBM9
NM_001082577; NM_001082577
5′UTR; 1stExon


cg12822242

1
37
8
127572993



chr8: 127568676-127570873
S_Shelf


cg12877889

1
37
3
21446874
VENTXP7
NR_002311
TSS1500


cg12934366

2
37
8
1960466



chr8: 1956926-1957177
S_Shelf


cg13016524

1
37
11
16628944



chr11: 16626053-16629180
Island


cg13066016

1
37
1
63786083



chr1: 63782394-63790471
Island


cg13074470

1
37
3
126854308



chr3: 126854106-126854848
Island


cg13112361
1

37
11
63258739
HRASLS5; HRASLS5;
NM_001146728; NM_001146729;
TSS200; TSS200;
chr11: 63258378-63258804
Island








HRASLS5
NM_054108
TSS200


cg13130934
1

37
15
25449922
SNORD115-21; SNORD115-20;
NR_003313; NR_003312;
TSS1500; TSS1500;








SNORD115-15
NR_003307
TSS1500


cg13193962

2
37
4
156875105
CTSO
NM_001334
TSS200
chr4: 156874740-156875083
S_Shore


cg13209388

1
37
1
6355060
ACOT7; ACOT7;
NM_181864; NM_181865;
Body; Body;








ACOT7; ACOT7
NM_007274; NM_181866
Body; Body


cg13229233
1

37
17
67326602



chr17: 67322709-67323837
S_Shelf


cg13229345
1

37
4
187984633



chr4: 187984505-187984762
Island


cg13230424
2

37
17
45930033
SP6
NM_199262
5′UTR
chr17: 45928211-45928710
S_Shore


cg13230424

3
37
17
45930033
SP6
NM_199262
5′UTR
chr17: 45928211-45928710
S_Shore


cg13279956

1
37
11
55653268
SPRYD5
NM_032681
Body


cg13286318

1
37
8
57906058
IMPAD1
NM_017813
1stExon
chr8: 57905700-57906452
Island


cg13306164
1

37
1
33352184
HPCA
NM_002143
5′UTR
chr1: 33351686-33352397
Island


cg13312403
1

37
8
71246470
NCOA2
NM_006540
5′UTR


cg13401339
1

37
2
24272928
FKBP1B; FKBP1B
NM_054033; NM_004116
Body; Body
chr2: 24272582-24273313
Island


cg13411336

1
37
11
43968842



chr11: 43963626-43966048
S_Shelf


cg13424673

2
37
1
50489744
AGBL4
NM_032785
TSS200
chr1: 50489417-50489846
Island


cg13426079

3
37
1
41284948
KCNQ4; KCNQ4
NM_004700; NM_172163
Body; Body
chr1: 41284847-41285149
Island


cg13462158
3

37
1
55522104
PCSK9
NM_174936
Body


cg13473576

1
37
7
97601586
MGC72080
NR_002822
Body
chr7: 97601307-97601813
Island


cg13488605
2

37
19
38908709
RASGRP4; RASGRP4;
NM_001146205; NM_001146207;
Body; Body;
chr19: 38908487-38909240
Island








RASGRP4; RASGRP4;
NM_001146204; NM_170604;
Body; Body;








RASGRP4; RASGRP4;
NM_001146202; NM_001146203;
Body; Body;








RASGRP4
NM_001146206
Body


cg13523386
1

37
4
71457838
AMBN
NM_016519
TSS200


cg13560904

1
37
1
149982854
OTUD7B
NM_020205
TSS200
chr1: 149982153-149982860
Island


cg13565382
1

37
10
63628787


cg13565382

4
37
10
63628787


cg13568258

1
37
19
48823427
CCDC114
NM_144577
TSS200
chr19: 48824529-48825493
N_Shore


cg13605988
1

37
15
45421612
DUOX1; DUOX1;
NM_175940; NM_017434;
TSS1500; TSS1500;
chr15: 45421236-45422394
Island








DUOXA1
NM_144565
5′UTR


cg13612295

1
37
18
72124791
FAM69C
NM_001044369
TSS1500
chr18: 72123606-72124717
S_Shore


cg13614440
2

37
17
76471012
DNAH17
NM_173628
Body
chr17: 76472296-76472533
N_Shore


cg13648344
1

37
9
36328161


cg13663218

1
37
12
72666976
LOC283392; TRHDE;
NR_026837; NM_013381;
Body; 1stExon;
chr12: 72665683-72667551
Island








LOC283392
NR_026836
Body


cg13667739
1

37
14
105944604
CRIP2
NM_001312
Body
chr14: 105944421-105945700
Island


cg13667739

1
37
14
105944604
CRIP2
NM_001312
Body
chr14: 105944421-105945700
Island


cg13684188

1
37
9
135282273
TTF1
NM_007344
TSS200
chr9: 135282052-135282315
Island


cg13686622

1
37
13
41634589
WBP4
NM_007187
TSS1500
chr13: 41634172-41636120
Island


cg13857186

1
37
9
116173257
C9orf43; POLE3;
NM_152786; NR_027261;
5′UTR; TSS1500;
chr9: 116172303-116173090
S_Shore








C9orf43; POLE3
NM_152786; NM_017443
1stExon; TSS1500


cg13861904
1

37
9
139428006
NOTCH1
NM_017617
Body
chr9: 139428318-139428527
N_Shore


cg13892902

1
37
15
43478040
CCNDBP1; CCNDBP1;
NM_037370; NM_012142;
TSS200; Body;
chr15: 43477588-43477816
S_Shore








CCNDBP1; CCNDBP1
NR_027513; NR_027514
Body; Body


cg13896879
1

37
1
150785718
ARNT; ARNT;
NM_178427; NM_001668;
Body; Body;








ARNT
NM_178426
Body


cg13918350
1

37
7
1153507
C7orf50; C7orf50;
NM_001134395; NM_032350;
Body; Body;
chr7: 1155303-1157445
N_Shore








C7orf50
NM_001134396
Body


cg13918350

1
37
7
1153507
C7orf50; C7orf50;
NM_001134395; NM_032350;
Body; Body;
chr7: 1155303-1157445
N_Shore








C7orf50
NM_001134396
Body


cg13944505

1
37
1
187460781


cg13995006
1

37
8
118532813
MED30
NM_080651
TSS200
chr8: 118532855-118533311
N_Shore


cg13999514

1
37
7
106302548
FLJ36031
NM_175884
TSS1500
chr7: 106300402-106301573
S_Shore


cg14022105
2

37
11
78288793



chr11: 78285405-78285995
S_Shelf


cg14022105

3
37
11
78288793



chr11: 78285405-78285995
S_Shelf


cg14048880

1
37
9
139069897



chr9: 139069755-139070076
Island


cg14056644

1
37
4
111559105
PITX2; PITX2
NM_153427; NM_153426
TSS1500; TSS1500
chr4: 111560563-111560808
N_Shore


cg14097440

1
37
14
74251018
C14orf43
NM_001043318
5′UTR
chr14: 74253387-74254188
N_Shelf


cg14109799
2

37
14
31495427
AP4S1; STRN3;
NM_007077; NM_014574;
5′UTR; 1stExon;








STRN3; STRN3;
NM_014574; NM_001083893;
5′UTR; 1stExon;








STRN3; AP4S1
NM_001083893; NM_001128126
5′UTR; 5′UTR


cg14157578

1
37
9
110764967


cg14185808

1
37
2
105653893
MRPS9
NM_182640
TSS1500
chr2: 105654249-105654771
N_Shore


cg14200609

1
37
12
94853950
CCDC41; CCDC41;
NM_016122; NM_001042399;
TSS200; TSS200;
chr12: 94853336-94854307
Island








LOC144486
NR_027035
Body


cg14237674
1

37
17
43239170
HEXIM2
NM_144608
5′UTR
chr17: 43238260-43239233
Island


cg14249856

1
37
7
77167329
PTPN12; PTPN12;
NM_001131009; NM_001131008;
TSS200; TSS200;
chr7: 77166610-77167337
Island








PTPN12
NM_002835
Body


cg14279842
2

37
14
50159788
KLHDC1
NM_172193
TSS200
chr14: 50159667-50160424
Island


cg14280905

5
37
9
136424187
ADAMTSL2; ADAMTSL2
NM_014694; NM_001145320
Body; Body
chr9: 136426124-136426390
N_Shore


cg14294250

3
37
17
1957154
HIC1
NM_006497
TSS1500
chr17: 1952919-1962328
Island


cg14314896
1

37
19
430690
SHC2
NM_012435
Body
chr19: 429260-429581
S_Shore


cg14330460
4

37
6
168559427


cg14330460

7
37
6
168559427


cg14351127
1

37
9
102956206
INVS; INVS
NM_014425; NM_183245
Body; Body


cg14361033

1
37
9
124981504
LHX6; LHX6
NM_199160; NM_014368
Body; Body
chr9: 124981535-124982835
N_Shore


cg14397696

1
37
13
105792284


cg14414764
1

37
8
67741966
SGK3; SGK3;
NM_170709; NM_001033578;
Body; Body;








SGK3
NM_013257
Body


cg14447152
1

37
9
140153393
COBRA1
NM_015456
Body
chr9: 140149205-140150502
S_Shelf


cg14447152

2
37
9
140153393
COBRA1
NM_015456
Body
chr9: 140149205-140150502
S_Shelf


cg14455170
1

37
13
42002398


cg14466759
1

37
7
101518899
CUX1; CUX1;
NM_181500; NM_181552;
Body; Body;








CUX1
NM_001913
Body


cg14466759

1
37
7
101518899
CUX1; CUX1;
NM_181500; NM_181552;
Body; Body;








CUX1
NM_001913
Body


cg14467066
1

37
17
79419739
BAHCC1
NM_001080519
Body
chr17: 79420144-79420437
N_Shore


cg14482093

1
37
8
22461488
KIAA1967; C8orf58;
NM_021174; NM_001013842;
TSS1500; 3′UTR;
chr8: 22462092-22462868
N_Shore








KIAA1967
NM_199205
TSS1500


cg14540650
1

37
9
6683274



chr9: 6680856-6681758
S_Shore


cg14543412
1

37
6
26224100
HIST1H3E
NM_003532
TSS1500
chr6: 26225386-26225790
N_Shore


cg14555127

3
37
7
35841578
SEPT7; SEPT7
NM_001011553; NM_001788
Body; Body
chr7: 35840132-35841591
Island


cg14616423
7

37
9
16315271


cg14616423

1
37
9
16315271


cg14639163
1

37
2
219738529
WNT6
NM_006522
Body
chr2: 219738081-219738788
Island


cg14657159

2
37
12
56211136
ORMDL2; SARNP;
NM_014182; NR_026723;
TSS1500; Body;
chr12: 56211325-56211553
N_Shore








SARNP; SARNP
NR_026722; NM_033082
Body; Body


cg14710040
4

37
19
3985464
EEF2
NM_001961
TSS200
chr19: 3984962-3985722
Island


cg14737877

1
37
8
664783
ERICH1
NM_207332
Body
chr8: 663998-664794
Island


cg14780600
1

37
2
240281345
HDAC4
NM_006037
5′UTR


cg14795305

2
37
7
150974453
SMARCD3; SMARCD3
NM_001003802; NM_003078
TSS1500; TSS1500
chr7: 150974116-150974535
Island


cg14834675

1
37
12
70083105
BEST3; BEST3
NM_032735; NM_152439
Body; TSS200


cg14857851
1

37
3
15115139
ZFYVE20
NM_022340
3′UTR
chr3: 15116003-15116219
N_Shore


cg14858469

1
37
15
96874050
NR2F2; NR2F2
NM_021005; NM_001145155
TSS200; Body
chr15: 96873408-96877721
Island


cg14866032
1

37
15
98195808



chr15: 98196021-98196391
N_Shore


cg14870156

1
37
6
33048540
HLA-DPB1
NM_002121
Body
chr6: 33048416-33048814
Island


cg14871601
1

37
7
64030039



chr7: 64029902-64030972
Island


cg14877741

1
37
9
125703099
RABGAP1
NM_012197
TSS200
chr9: 125703098-125703597
Island


cg14938587

1
37
7
155790392


cg14965968

1
37
3
44803235
KIF15; KIF15;
NM_020242; NM_020242;
1stExon; 5′UTR;
chr3: 44802852-44803618
Island








KIAA1143
NM_020696
TSS200


cg15002362
1

37
6
129796899
LAMA2; LAMA2
NM_001079823; NM_000426
Body; Body


cg15002362

1
37
6
129796899
LAMA2; LAMA2
NM_001079823; NM_000426
Body; Body


cg15002580
1

37
8
98636815



chr8: 98636694-98636904
Island


cg15025054

2
37
1
212964885
TATDN3; NSL1;
NM_00U46171; NM_015471;
TSS1500; 1stExon;
chr1: 212964866-212965347
Island








TATDN3; NSL1;
NM_001042553; NM_001042549;
TSS1500; 1stExon;








TATDN3; TATDN3;
NM_001042552; NM_001146170;
TSS1500; TSS1500;








TATDN3
NM_001146169
TSS1500


cg15109571
2

37
10
104264023
SUFU
NM_016169
1stExon
chr10: 104263676-104264155
Island


cg15119076

1
37
19
19976606
ZNF253
NM_021047
TSS200


cg15140902

1
37
6
21667815
FLJ22536
NR_015410
Body
chr6: 21665715-21666031
S_Shore


cg15196058

1
37
4
130934318


cg15228928
2

37
13
112727521



chr13: 112726281-112728419
Island


cg15330255

1
37
10
103454985
FBXW4
NM_022039
TSS1500
chr10: 103454126-103454478
S_Shore


cg15333277
2

37
8
41733931
ANK1
NM_001142446
Body
chr8: 41733535-41733911
S_Shore


cg15347484
2

37
2
79515194


cg15490897

1
37
1
55038020
ACOT11; ACOT11
NM_015547; NM_147161
Body; Body


cg15518950

1
37
5
72415770
TMEM171; TMEM171
NM_001161342; NM_173490
TSS1500; TSS1500
chr5: 72415611-72416766
Island


cg15554438
1

37
11
92931280
SLC36A4
NM_152313
TSS200
chr11: 92930760-92931391
Island


cg15590056

1
37
7
149732579


cg15595333
1

37
11
117689733


cg15602420
1

37
1
20205059



chr1: 20208807-20209462
N_Shelf


cg15651394

1
37
2
36584981
CRIM1
NM_016441
Body
chr2: 36584500-36584982
Island


cg15681626
1

37
11
64739253



chr11: 64739010-64739750
Island


cg15685834

1
37
1
18970180
PAX7; PAX7;
NM_013945; NM_002584;
Body; Body;
chr1: 18969548-18970739
Island








PAX7
NM_001135254
Body


cg15705470
1

37
5
87972265
LOC645323; LOC645323
NR_024383; NR_015436
Body; Body
chr5: 87973951-87974294
N_Shore


cg15709065

1
37
3
134090737
AMOTL2
NM_016201
5′UTR
chr3: 134092257-134093741
N_Shore


cg15714041
1

37
9
32384344
ACO1
NM_002197
TSS1500
chr9: 32384420-32384911
N_Shore


cg15745910

1
37
13
112874219


cg15750986
1

37
7
98249103
NPTX2
NM_002523
Body
chr7: 98245805-98247759
S_Shore


cg15760840
1

37
7
27225222
HOXA11AS; HOXA11
NR_002795; NM_005523
Body; TSS1500
chr7: 27225050-27225629
Island


cg15810744

1
37
11
67211300
CORO1B; CORO1B
NM_001018070; NM_020441
TSS200; TSS1500


cg15812873

1
37
16
28635015
SULT1A1
NM_177536
TSS200
chr16: 28634440-28635031
Island


cg15840462

1
37
1
969744
AGRN
NM_198576
Body
chr1: 967966-970238
Island


cg15846886
1

37
17
79790116
FAM195B; FAM195B
NM_207368; NM_001093767
5′UTR; 5′UTR
chr17: 79790530-79791553
N_Shore


cg15877233
1

37
7
40611688
C7orf10
NM_024728
Body


cg15892650

1
37
5
150524635
ANXA6; ANXA6
NM_001155; NM_004033
Body; Body


cg15913680

3
37
11
72353343
PDE2A; PDE2A;
NM_001143839; NR026572;
1stExon; Body;
chr11: 72353222-72354358
Island








PDE2A; PDE2A
NM_001146209; NM_002599
Body; Body


cg15917344
1

37
7
89975873
GTPBP10; GTPBP10
NM_001042717; NM_033107
TSS200; TSS200
chr7: 89975785-89976027
Island


cg15959921
1

37
4
8702279


cg15974085
1

37
18
71815641
C18orf55; FBXO15;
NM_014177; NM_152676;
TSS200; TSS1500;
chr18: 71814555-71815716
Island








FBXO15
NM_001142958
TSS1500


cg15974085

15
37
18
71815641
C18orf55; FBXO15;
NM_014177; NM_152676;
TSS200; TSS1500;
chr18: 71814555-71815716
Island








FBXO15
NM_001142958
TSS1500


cg15994467
1

37
12
52401523
GRASP
NM_181711
Body
chr12: 52400467-52401696
Island


cg16000637

1
37
7
1274142
UNCX
NM_001080461
Body
chr7: 1269165-1282864
Island


cg16001460
3

37
6
57181802
PRIM2
NM_000947
TSS1500


cg16001460

8
37
6
57181802
PRIM2
NM_000947
TSS1500


cg16009381
2

37
5
173043599
BOD1; BOD1;
NM_138369; NM_138369;
5′UTR; 1stExon;
chr5: 173043123-173043895
Island








BOD1; BOD1
NM_001159651; NM_001159651
5′UTR; 1stExon


cg16009381

1
37
5
173043599
BOD1; BOD1;
NM_138369; NM_138369;
5′UTR; 1stExon;
chr5: 173043123-173043895
Island








BOD1; BOD1
NM_001159651; NM_001159651
5′UTR; 1stExon


cg16013630

2
37
1
1406606
ATAD3B
NM_031921
TSS1500
chr1: 1406844-1407821
N_Shore


cg16026088
1

37
9
132565261
TOR1B
NM_014506
TSS200
chr9: 132565316-132566033
N_Shore


cg16060163

3
37
17
80454814



chr17: 80454652-80455632
Island


cg16084014

1
37
7
114585003
MDFIC; MDFIC
NM_199072; NM_001166345
Body; Body


cg16091269
1

37
3
197183271



chr3: 197183404-197183724
N_Shore


cg16091269

1
37
3
197183271



chr3: 197183404-197183724
N_Shore


cg16101346

1
37
1
186650479
PTGS2
NM_000963
TSS1500
chr1: 186649310-186650081
S_Shore


cg16101636
1

37
6
29711438
LOC285830; LOC285830
NR_026972; NR_026973
Body; Body


cg16101636

1
37
6
29711438
LOC285830; LOC285830
NR_026972; NR_026973
Body; Body


cg16121685

5
37
1
162467625
UHMK1
NM_175866
TSS200
chr1: 162467599-162468027
Island


cg16143319

1
37
2
32230813
MEMO1; MEMO1
NM_015955; NM_001137602
Body; Body
chr2: 32234653-32236248
N_Shelf


cg16208269

1
37
3
45665937
LIMD1
NM_014240
Body


cg16226310
1

37
5
843633
ZDHHC11
NM_024786
Body
chr5: 843458-843767
Island


cg16226310

1
37
5
843633
ZDHHC11
NM_024786
Body
chr5: 843458-843767
Island


cg16233210
1

37
3
171778391
FNDC3B; FNDC3B
NM_022763; NM_001135095
5′UTR; 5′UTR


cg16234298

1
37
22
17091297
psiTPTE22
NR_001591
Body
chr22: 17090455-17091224
S_Shore


cg16271221
1

37
3
188656237


cg16315155

1
37
19
55249794
KIR2DL3; KIR2DL3
NM_015868; NM_014511
TSS200; TSS200


cg16348316
1

37
2
128181325
PROC
NM_000312
Body
chr2: 128180294-128181381
Island


cg16349612
1

37
7
50849723
GRB10
NM_001001555
5′UTR
chr7: 50849752-50850871
N_Shore


cg16355305

1
37
12
65220152



chr12: 65218245-65219143
S_Shore


cg16404784
1

37
14
38087605



chr14: 38091469-38092176
N_Shelf


cg16410115
2

37
1
24240000
CNR2
NM_001841
TSS200


cg16410115

1
37
1
24240000
CNR2
NM_001841
TSS200


cg16459519
1

37
10
46970584
SYT15; SYT15;
NM_031912; NM_181519;
1stExon; 5′UTR;
chr10: 46969991-46971557
Island








SYT15; SYT15
NM_031912; NM_181519
5′UTR; 1stExon


cg16481280
1

37
6
32120955
PPT2; PRRT1;
NM_005155; NM_030651;
TSS1500; TSS1500;
chr6: 32121829-32122529
N_Shore








PPT2
NM_138717
TSS1500


cg16506566
1

37
5
10420680
43530
NM_005885
Body


cg16517838

1
37
14
106154914



chr14: 106153128-106153364
S_Shore


cg16542426

1
37
15
23205622
WHAMML1
NR_003521
Body
chr15: 23207949-23208796
N_Shelf


cg16573957

1
37
8
21970273



chr8: 21966485-21967329
S_Shelf


cg16619071
1

37
19
52408324
ZNF649
NM_023074
TSS200


cg16626809
1

37
21
46825856
COL18A1
NM_130445
Body
chr21: 46824531-46826234
Island


cg16668042
1

37
5
132388215
HSPA4
NM_002154
Body
chr5: 132387100-132388369
Island


cg16668042

1
37
5
132388215
HSPA4
NM_002154
Body
chr5: 132387100-132388369
Island


cg16681830

1
37
20
62586920
UCKL1AS; UCKL1
NR_027287; NM_017859
Body; Body
chr20: 62586919-62588218
Island


cg16707641

1
37
2
175436630
WIPF1; WIPF1
NM_003387; NM_001077269
Body; Body


cg16730825
1

37
11
928439
AP2A2
NM_012305
Body
chr11: 925183-926083
S_Shelf


cg16788797

1
37
8
75132833


cg16790849
5

37
6
31829511
NEU1
NM_000434
Body
chr6: 31830299-31830948
N_Shore


cg16790849

3
37
6
31829511
NEU1
NM_000434
Body
chr6: 31830299-31830948
N_Shore


cg16837441
1

37
20
43935222
MATN4; MATN4;
NM_003833; NM_030592;
5′UTR; 5′UTR;
chr20: 43935199-43935633
Island








MATN4; RBPJL
NM_030590; NM_014276
5′UTR; TSS1500


cg16872520

1
37
11
72929124
P2RY2; P2RY2;
NM_176071; NM_176072;
TSS1500; TSS1500;
chr11: 72928982-72929885
Island








P2RY2
NM_002564
TSS1500


cg17001464
1

37
7
130679521
FLJ43663; FLJ43663
NR_015431; NR_024153
Body; Body


cg17010112

1
37
4
77227123
STBD1
NM_003943
TSS1500
chr4: 77227354-77228482
N_Shore


cg17038667
1

37
11
69632883
FGF3
NM_005247
Body
chr11: 69632033-69634710
Island


cg17049418

1
37
6
3722453


cg17278466

2
37
17
76798203
USP36
NM_025090
Body
chr17: 76798154-76798461
Island


cg17310773
4

37
22
41215357
SLC25A17; SLC25A17
NM_006358; NM_006358
1stExon; 5′UTR
chr22: 41215135-41215576
Island


cg17310773

1
37
22
41215357
SLC25A17; SLC25A17
NM_006358; NM_006358
1stExon; 5′UTR
chr22: 41215135-41215576
Island


cg17319849

1
37
1
155214564
GBA; GBA;
NM_001005749; NM_001005750;
TSS200; TSS200;








GBA; GBA
NM_001005742; NM_001005741
TSS200; TSS200


cg17330305
1

37
17
56834361
PPM1E
NM_014906
Body
chr17: 56832961-56833986
S_Shore


cg17330305

2
37
17
56834361
PPM1E
NM_014906
Body
chr17: 56832961-56833986
S_Shore


cg17351882
1

37
17
4692162
GLTPD2
NM_001014985
TSS200
chr17: 4692249-4693977
N_Shore


cg17392018
1

37
7
134590119
CALD1; CALD1;
NM_033139; NM_033157;
Body; Body;








CALD1; CALD1;
NM_033140; NM_033138;
Body; Body;








CALD1
NM_004342
Body


cg17393572

1
37
5
176326365
HK3
NM_002115
TSS200


cg17419597

1
37
1
156211529
BGLAP
NM_199173
TSS1500
chr1: 156215368-156215899
N_Shelf


cg17514665
1

37
17
1657533
SERPINF2; SERPINF2;
NM_000934; NM_001165921;
Body; Body;
chr17: 1657447-1657677
Island








SERPINF2
NM_001165920
Body


cg17599471
1

37
1
25174745



chr1: 25174560-25175367
Island


cg17656474

1
37
12
176424
IQSEC3
NM_001170738
1stExon
chr12: 175666-176400
S_Shore


cg17690515

2
37
19
1360278
MUM1; MUM1
NR_024247; NM_032853
Body; Body
chr19: 1360038-1360347
Island


cg17745251
11

37
10
21806139
C10orf140
NM_207371
Body
chr10: 21805879-21806630
Island


cg17745251

7
37
10
21806139
C10orf140
NM_207371
Body
chr10: 21805879-21806630
Island


cg17747332
1

37
19
11071239
SMARCA4; SMARCA4;
NM_003072; NM_001128849;
TSS1500; TSS1500;
chr19: 11071116-11072340
Island








SMARCA4
NM_001128844
TSS1500


cg17749356

1
37
2
118692673
CCDC93
NM_019044
Body


cg17775382
1

37
5
1584233
SDHAP3
NR_003263
Body


cg17782025
1

37
3
23958698
NKIRAS1; RPL15
NM_020345; NM_002948
TSS200; 5′UTR
chr3: 23957941-23959181
Island


cg17794241
1

37
15
74658653
CYP11A1; CYP11A1
NM_000781; NM_001099773
Body; TSS200
chr15: 74658038-74658574
S_Shore


cg17815035

1
37
18
54790380



chr18: 54788959-54789194
S_Shore


cg17877237
2

37
13
32497491
EEF1DP3
NR_027062
Body


cg17892069
2

37
7
70061616
AUTS2; AUTS2
NM_015570; NM_001127231
Body; Body
chr7: 70060834-70061456
S_Shore


cg17892069

3
37
7
70061616
ALTS2; AUTS2
NM_015570; NM_001127231
Body; Body
chr7: 70060834-70061456
S_Shore


cg17897445

1
37
8
7537473



chr8: 7537626-7538267
N_Shore


cg17918201
1

37
10
27150106
ABI1; ABI1;
NM_005470; NM_001012752;
TSS200; TSS200;
chr10: 27149166-27150229
Island








ABI1; ABI1
NM_001012751; NM_001012750
TSS200; TSS200


cg17956079
10

37
11
73358572
PLEKHB1; PLEKHB1;
NM_001130035; NM_001130036;
TSS200; TSS1500;








PLEKHB1; PLEKHB1;
NM_001130034; NM_001130033;
TSS200; Body;








PLEKHB1
NM_021200
Body


cg17956079

4
37
11
73358572
PLEKHB1; PLEKHB1;
NM_001130035; NM_001130G36;
TSS200; TSS1500;








PLEKHB1; PLEKHB1;
NM_001130034; NM_001130033;
TSS200; Body;








PLEKHB1
NM_021200
Body


cg17987505

1
37
5
179246106
SQSTM1; SQSTM1
NM_001142298; NM_001142299
5′UTR; 5′UTR
chr5: 179247784-179248711
N_Shore


cg18007959
1

37
5
153863525



chr5: 153862142-153862451
S_Shore


cg18056133
1

37
11
60609408
CCDC86
NM_024098
TSS200
chr11: 60609392-60609786
Island


cg18099523

1
37
6
146285676
SHPRH; SHPRH
NM_173082; NM_001042683
TSS1500; TSS1500
chr6: 146284795-146285701
Island


cg18111500
3

37
14
61655727


cg18111500

10
37
14
61655727


cg18193219

1
37
3
53164697
RFT1
NM_052859
TSS1500
chr3: 53164206-53164698
Island


cg18207011
1

37
14
68861095
RAD51L1; RAD51L1;
NM_133509; NM_002877;
Body; Body;








RAD51L1
NM_133510
Body


cg18217175
2

37
1
18967020
PAX7; PAX7;
NM_013945; NM_002584;
Body; Body;
chr1: 18967251-18968119
N_Shore








PAX7
NM_001135254
Body


cg18217175

1
37
1
18967020
PAX7; PAX7;
NM_013945; NM_002584;
Body; Body;
chr1: 18967251-18968119
N_Shore








PAX7
NM_001135254
Body


cg18220799
1

37
18
44099340
LOXHD1; LOXHD1;
NM_001145473; NM_144612;
TSS1500; Body;








LOXHD1
NM_001145472
Body


cg18239858

1
37
7
101712363
CUX1; CUX1;
NM_181500; NM_181552;
Body; Body;








CUX1
NM_001913
Body


cg18325160
1

37
3
193311041
OPA1; OPA1;
NM_130836; NM_130831;
5′UTR; 5′UTR;
chr3: 193310824-193311188
Island








OPA1; OPA1;
NM_130837; NM_130834;
5′UTR; 1stExon;








OPA1; OPA1;
NM_130832; NM_130836;
5′UTR; 1stExon;








OPA1; OPA1;
NM_130833; NM_130831;
5′UTR; 1stExon;








OPA1; OPA1;
NM_130837; NM_130832;
1stExon; 1stExon;








OPA1; OPA1;
NM_015560; NM_130835;
5′UTR; 1stExon;








OPA1; OPA1;
NM_130834; NM_130833;
5′UTR; 1stExon;








OPA1; OPA1
NM_130835; NM_015560
5′UTR; 1stExon


cg18337963
1

37
11
46383209
DGKZ; DGKZ;
NM_001105540; NM_201533;
1stExon; Body;








DGKZ; DGKZ;
NM_001105540; NM_003646;
5′UTR; Body;








DGKZ
NM_201532
Body


cg18391209

1
37
1
223747670
CAPN8
NM_001143962
Body
chr1: 223741965-223744525
S_Shelf


cg18415822

1
37
7
155857781



chr7: 155856030-155856349
S_Shore


cg18452149
1

37
3
108308268
KIAA1524; DZIP3;
NM_020890; NM_014648;
5′UTR; TSS200;
chr3: 108308227-108308604
Island








KIAA1524
NM_020890
1stExon


cg18460938

1
37
15
86842630
AGBL1
NM_152336
Body


cg18496140
1

37
11
44286375
ALX4
NM_021926
3′UTR


cg18501555

1
37
4
111554966
PITX2; PITX2
NM_153427; NM_153426
5′UTR; 5′UTR
chr4: 111554965-111555504
Island


cg18561676
2

37
1
148855262



chr1: 148853996-148855761
Island


cg18561676

4
37
1
148855262



chr1: 148853996-148855761
Island


cg18580296
1

37
7
15726411
MEOX2
NM_005924
TSS200


cg18580296

2
37
7
15726411
MEOX2
NM_005924
TSS200


cg18633379

1
37
18
59855274
PIGN; PIGN;
NM_012327; NM_176787;
TSS1500; TSS1500;
chr18: 59853977-59855252
S_Shore








KIAA1468
NM_020854
Body


cg18633561

1
37
7
121943354
FEZF1; FEZF1
NM_001160264; NM_001024613
Body; Body
chr7: 121943867-121944538
N_Shore


cg18676488
1

37
5
70848105
BDP1
NM_018429
Body


cg18676488

2
37
5
70848105
BDP1
NM_018429
Body


cg18686165

1
37
3
57200492
IL17RD
NM_017563
TSS1500
chr3: 57198243-57199378
S_Shore


cg18700813

3
37
14
102702123
RAGE
NM_014226
Body


cg18710412
1

37
5
90654191


cg18724069

1
37
5
39721760



chr5: 39721548-39721835
Island


cg18762036

1
37
2
107872062


cg18779296
1

37
4
41878119



chr4: 41880224-41880500
N_Shelf


cg18855674

1
37
8
72469553



chr8: 72468560-72469561
Island


cg18862888
4

37
10
31346162


cg18902057

1
37
16
88636444
ZC3H18
NM_144604
TSS1500
chr16: 88636176-88637333
Island


cg18927185
1

37
6
33091634
HLA-DPB2
NR_001435
Body


cg18954388

1
37
11
20621495
SLC6A5
NM_004211
Body
chr11: 20622720-20623399
N_Shore


cg19037304

2
37
7
19812760
TMEM196
NM_152774
TSS1500
chr7: 19812569-19813005
Island


cg19132477
1

37
3
8484313


cg19132477

1
37
3
8484313


cg19154754
1

37
11
48977527


cg19157696
1

37
11
27384984
CCDC34; CCDC34
NM_080654; NM_030771
TSS200; TSS200
chr11: 27384359-27384870
S_Shore


cg19190016
1

37
17
81025684



chr17: 81024122-81024360
S_Shore


cg19207486
1

37
19
22323107



chr19: 22320743-22320976
S_Shelf


cg19227053
1

37
20
60116795
CDH4
NM_001794
Body
chr20: 60119507-60119712
N_Shelf


cg19265948
2

37
12
23229286


cg19265948

1
37
12
23229286


cg19327615
1

37
20
19955436
RIN2
NM_018993
Body
chr20: 19955536-19956034
N_Shore


cg19327615

1
37
20
19955436
RIN2
NM_018993
Body
chr20: 19955536-19956034
N_Shore


cg19380675
1

37
22
32808489
C22orf28
NM_014306
TSS1500
chr22: 32807825-32808285
S_Shore


cg19409687

1
37
11
65682960



chr11: 65685100-65685364
N_Shelf


cg19441646

1
37
14
102695456
RAGE
NM_014226
3′UTR
chr14: 102695455-102695804
Island


cg19448318

2
37
6
30698784
FLOT1
NM_005803
Body


cg19469087

1
37
7
98556941
TRRAP
NM_003496
Body
chr7: 98552746-98552962
S_Shelf


cg19480274

1
37
20
37098327



chr20: 37101171-37101742
N_Shelf


cg19484381

1
37
6
28890673
TRIM27
NM_006510
Body
chr6: 28890951-28892013
N_Shore


cg19488906

1
37
6
161694840
AGPAT4
NM_020133
5′UTR


cg19513744

2
37
3
56836209
ARHGEF3; ARHGEF3
NM_001128615; NM_019555
Body; TSS1500
chr3: 56835650-56836210
Island


cg19514542

1
37
10
125614284
CPXM2
NM_198148
Body
chr10: 125617057-125617329
N_Shelf


cg19559392
7

37
2
39103372
MORN2; DHX57
NM_001145450; NM_198963
5′UTR; TSS1500
chr2: 39102805-39103214
S_Shore


cg19562312
1

37
10
44069847
ZNF239; ZNF239;
NM_001099284; NM_001099282;
5′UTR; 5′UTR;
chr10: 44069359-44070179
Island








ZNF239
NM_001099283
5′UTR


cg19625088
1

37
5
87976156
LOC645323
NR_015436
Body
chr5: 87976094-87976546
Island


cg19627869

1
37
12
56391069
SUOX; SUOX;
NM_001032386; NM_001032387;
5′UTR; 1stExon;








SUOX; SUOX;
NM_001032386; NM_001032387;
1stExon; 5′UTR;








SUOX; SUOX
NM_000456; NM_000456
5′UTR; 1stExon


cg19693446
1

37
14
102144192


cg19749898
1

37
11
1712765
HCCA2
NM_053005
Body
chr11: 1715347-1715607
N_Shelf


cg19777001
1

37
14
103150180
RCOR1
NM_015156
Body


cg19837938
1

37
5
23507458
PRDM9
NM_020227
TSS1500


cg19837938

2
37
5
23507458
PRDM9
NM_020227
TSS1500


cg19852211
1

37
5
140187240
PCDHA2; PCDHA1;
NM_018905; NM_031411;
Body; Body;
chr5: 140186792-140187268
Island








PCDHA1; PCDHA4;
NM_018900; NM_018907;
Body; 1stExon;








PCDHA3; PCDHA4
NM_018906; NM_031500
Body; 1stExon


cg19852211

1
37
5
140187240
PCDHA2; PCDHA1;
NM_018905; NM_031411;
Body; Body;
chr5: 140186792-140187268
Island








PCDHA1; PCDHA4;
NM_018900; NM_018907;
Body; 1stExon;








PCDHA3; PCDHA4
NM_018906; NM_031500
Body; 1stExon


cg19855573
2

37
1
152297873
FLG
NM_002016
TSS200


cg19865375

1
37
7
86629801
KIAA1324L; KIAA1324L
NM_001142749; NR030672
Body; Body


cg19875976
1

37
9
114246783
KIAA0368
NM_001080398
Body
chr9: 114245044-114246784
Island


cg19875976

1
37
9
114246783
KIAA0368
NM_001080398
Body
chr9: 114245044-114246784
Island


cg19991948
1

37
10
121335173
TIAL1; TIAL1
NM_001033925; NM_003252
3′UTR; 3′UTR


cg19998654

1
37
2
37458983
CEBPZ; C2orf56;
NM_005760; NM_144736;
TSS1500; Body;
chr2: 37458398-37459199
Island








C2orf56
NM_001083946
Body


cg20059151

1
37
1
95286311
SLC44A3; SLC44A3
NM_152369; NM_001114106
5′UTR; Body
chr1: 95285602-95286319
Island


cg20069765
1

37
6
33036464
HLA-DPA1
NM_033554
Body


cg20081364
1

37
20
13202225
ISM1
NM_080826
TSS200
chr20: 13200670-13202616
Island


cg20155875
1

37
17
66452567
WIPI1
NM_017983
Body
chr17: 66453349-66454137
N_Shore


cg20162076
3

37
6
6588089
LY86; LOC285780
NM_004271; NR_026970
TSS1500; Body


cg20162076

5
37
6
6588089
LY86; LOC285780
NM_004271; NR_026970
TSS1500; Body


cg20172795

1
37
6
127441199
RSPO3
NM_032784
Body
chr6: 127441553-127441760
N_Shore


cg20183094

4
37
7
121950924



chr7: 121950249-121950927
Island


cg20200361

6
37
2
43775888
THADA; THADA
NM_022065; NM_001083953
Body; Body


cg20268522

2
37
11
112832152
NCAM1; NCAM1;
NM_001076682; NM_001076682;
1stExon; 5′UTR;








NCAM1; NCAM1;
NM_000615; NM_181351;
5′UTR; 1stExon;








NCAM1; NCAM1
NM_181351; NM_000615
5′UTR; 1stExon


cg20274430

1
37
22
41075992
MCHR1
NM_005297
Body


cg20294319
1

37
13
47253842
LRCH1; LRCH1;
NM_015116; NM_001164213;
Body; Body;








LRCH1
NM_001164211
Body


cg20319405

1
37
11
10830230
EIF4G2; EIF4G2
NM_001418; NM_001042559
5′UTR; 5′UTR
chr11: 10829361-10831121
Island


cg20327784
1

37
17
73703307
SAP30BP
NM_013260
3′UTR


cg20327784

1
37
17
73703307
SAP30BP
NM_013260
3′UTR


cg20458353

2
37
7
21260293


cg20500836

1
37
17
78818645
RPTOR; RPTOR
NM_001163034; NM_020761
Body; Body
chr17: 78818440-78818696
Island


cg20532937
1

37
10
13748985
FRMD4A
NM_018027
Body


cg20555922
1

37
20
33880266
FAM83C
NM_178468
TSS200
chr20: 33879904-33880215
S_Shore


cg20587808
1

37
3
184320123



chr3: 184320005-184320218
Island


cg20593868
1

37
20
62588672
UCKL1; ZNF512B
NM_017859; NM_020713
TSS1500; 3′UTR
chr20: 62586919-62588218
S_Shore


cg20593868

1
37
20
62588672
UCKL1; ZNF512B
NM_017859; NM_020713
TSS1500; 3′UTR
chr20: 62586919-62588218
S_Shore


cg20684251
3

37
19
51840554
VSIG10L
NM_001163922
Body
chr19: 51842128-51842353
N_Shore


cg20684251

1
37
19
51840554
VSIG10L
NM_001163922
Body
chr19: 51842128-51842353
N_Shore


cg20707630
1

37
15
25018449



chr15: 25018174-25018533
Island


cg20743744
1

37
4
1243849
C4orf42; CTBP1;
NM_052861; NM_001328;
TSS1500; TSS1500;
chr4: 1241412-1244111
Island








CTBP1
NM_001012614
TSS1500


cg20888142
1

37
3
12045662
SYN2; SYN2
NM_003178; NM_133625
TSS200; TSS200
chr3: 12045652-12046627
Island


cg20914725
1

37
2
74776831
LOXL3
NM_032603
Body
chr2: 74776016-74776897
Island


cg21000072
1

37
1
3567408
WDR8
NM_017818
TSS1500
chr1: 3566445-3569636
Island


cg21007262

1
37
20
18122863
PET117; CSRP2BP
NM_001164811; NM_020536
Body; TSS200
chr20: 18117962-18118989
S_Shelf


cg21102950

4
37
3
155524173
C3orf33
NM_173657
TSS200
chr3: 155523740-155524174
Island


cg21117978

1
37
2
64957132


cg21200923

1
37
18
9481257
RALBP1
NM_006788
5′UTR
chr18: 9478452-9478920
S_Shelf


cg21211367

1
37
2
162094118



chr2: 162094460-162096195
N_Shore


cg21231400

2
37
5
155108085



chr5: 155107504-155108934
Island


cg21234471
2

37
9
92023797
SEMA4D; SEMA4D
NM_001142287; NM_006378
5′UTR; 5′UTR


cg21242508

1
37
22
28199621



chr22: 28192793-28198592
S_Shore


cg21251791

1
37
2
3129858


cg21263471
1

37
17
56399584
BZRAP1; BZRAP1
NM_004758; NM_024418
Body; Body
chr17: 56401728-56402343
N_Shelf


cg21314304
1

37
17
41135517
RUNDC1
NM_173079
Body
chr17: 41132462-41133367
S_Shelf


cg21434114

1
37
18
3450282
TGIF1; TGIF1;
NM_174886; NM_173208;
5′UTR; 5′UTR;
chr18: 3448006-3452360
Island








TGIF1; TGIF1;
NM_003244; NM_173209;
5′UTR; 5′UTR;








TGIF1; TGIF1;
NM_170695; NM_173210;
TSS1500; TSS1500;








TGIF1; TGIF1
NM_003244; NM_173207
1stExon; Body


cg21441716
1

37
1
176317762


cg21450738

1
37
8
100909366



chr8: 100905657-100906003
S_Shelf


cg21481322
1

37
8
40984072


cg21503582
1

37
7
151001017



chr7: 151000579-151001042
Island


cg21503582

1
37
7
151001017



chr7: 151000579-151001042
Island


cg21549195
1

37
19
52452368



chr19: 52452316-52452543
Island


cg21552319
1

37
6
24356996
DCDC2; KAAG1
NM_016356; NM_181337
Body; TSS200
chr6: 24357719-24358309
N_Shore


cg21552319

2
37
6
24356996
DCDC2; KAAG1
NM_016356; NM_181337
Body; TSS200
chr6: 24357719-24358309
N_Shore


cg21584710

1
37
17
72306141
DNAI2
NM_023036
Body


cg21584983
1

37
19
11640070
ECSIT; ECSIT;
NM_001142464; NR_024551;
TSS200; TSS1500;
chr19: 11639614-11639897
S_Shore








ECSIT; ECSIT
NM_001142465; NM_016581
TSS200; TSS200


cg21584983

1
37
19
11640070
ECSIT; ECSIT;
NM_001142464; NR_024551;
TSS200; TSS1500;
chr19: 11639614-11639897
S_Shore








ECSIT; ECSIT
NM_001142465; NM_016581
TSS200; TSS200


cg21590497
1

37
19
23299649



chr19: 23299727-23300167
N_Shore


cg21593588
1

37
4
109574236
OSTC
NM_021227
Body
chr4: 109571693-109572039
S_Shelf


cg21643086
15

37
6
27243037


cg21643086

12
37
6
27243037


cg21686797
1

37
6
30303645
TRIM39; TRIM39
NM_172016; NM_021253
Body; Body


cg21715599
1

37
15
92463554
SLCO3A1; SLCO3A1
NM_001145044; NM_013272
Body; Body
chr15: 92459266-92459678
S_Shelf


cg21729798

1
37
6
24357078
DCDC2; KAAG1
NM_016356; NM_181337
Body; TSS200
chr6: 24357719-24358309
N_Shore


cg21737039
1

37
4
8271391
HTRA3
NM_053044
TSS200
chr4: 8271214-8272091
Island


cg21737039

2
37
4
8271391
HTRA3
NM_053044
TSS200
chr4: 8271214-8272091
Island


cg21857885
3

37
14
60337864
RTN1
NM_021136
TSS1500
chr14: 60336951-60337461
S_Shore


cg21857885

2
37
14
60337864
RTN1
NM_021136
TSS1500
chr14: 60336951-60337461
S_Shore


cg21947488
2

37
16
2185289
PKD1; PKD1
NM_001009944; NM_000296
Body; Body
chr16: 2185139-2186406
Island


cg21947488

2
37
16
2185289
PKD1; PKD1
NM_001009944; NM_000296
Body; Body
chr16: 2185139-2186406
Island


cg22028161

1
37
2
95658954


cg22078976
1

37
20
58515561
C20orf177; C20orf177;
NM_022106; NM_022106;
1stExon; 5′UTR;
chr20: 58514071-58515636
Island








PPP1R3D
NM_006242
TSS1500


cg22079902

1
37
5
23507644
PRDM9
NM_020227
TSS200


cg22169384

2
37
12
129417623
GLT1D1
NM_144669
Body


cg22199410
1

37
12
51985016
SCN8A
NM_014191
TSS200
chr12: 51984474-51985284
Island


cg22205573
4

37
13
113968561
LAMP1
NM_005561
Body


cg22205573

1
37
13
113968561
LAMP1
NM_005561
Body


cg22240520
1

37
7
158855297
VIPR2
NM_003382
Body
chr7: 158856817-158857209
N_Shore


cg22380533

1
37
19
55690741
SYT5
NM_003180
5′UTR
chr19: 55690182-55691623
Island


cg22384904

1
37
1
227975220



chr1: 227975295-227976570
N_Shore


cg22389137
1

37
4
113432227



chr4: 113431825-113432596
Island


cg22491379
2

37
2
120553625
PTPN4
NM_002830
5′UTR


cg22491379

1
37
2
120553625
PTPN4
NM_002830
5′UTR


cg22499893
1

37
1
24307535
SFRS13A; SFRS13A
NM_054016; NM_006625
TSS1500; TSS1500
chr1: 24306363-24307017
S_Shore


cg22510362
1

37
16
87251839



chr16: 87251634-87251840
Island


cg22630628
1

37
10
73337125
CDH23; CDH23
NM_052836; NM_022124
Body; Body


cg22657457

1
37
5
75469969
SV2C
NM_014979
Body
chr5: 75469968-75470173
Island


cg22730967
1

37
1
203097454
ADORA1; ADORA1
NM_001048230; NM_000674
5′UTR; 5′UTR
chr1: 203097233-203097496
Island


cg22730967

1
37
1
203097454
ADORA1; ADORA1
NM_001048230; NM_000674
5′UTR; 5′UTR
chr1: 203097233-203097496
Island


cg22791936

1
37
6
137243410
SLC35D3; SLC35D3
NM_001008783; NM_001008783
1stExon; 5′UTR
chr6: 137242315-137245442
Island


cg22819135
1

37
5
41920822
C5orf51
NM_075921
3′UTR


cg22821289
1

37
11
115581830


cg22827060
1

37
13
30424359
UBL3; UBL3
NM_007106; NM_007106
1stExon; 5′UTR
chr13: 30423921-30424941
Island


cg22836434

1
37
11
86014570
C11orf73; C11orf73;
NM_016401; NR_024597;
Body; Body;








C11orf73; C11orf73
NR_024596; NR_024598
Body; Body


cg22856949

1
37
10
127408044
C10orf137
NM_015608
TSS200
chr10: 127407627-127408566
Island


cg22877380

1
37
2
131804299
ARHGEF4; ARHGEF4
NM_032995; NM_015320
3′UTR; 3′UTR


cg22963777
1

37
20
34115350
C20orf173; C20orf173
NM_001145350; NR026933
3′UTR; Body


cg23013894
1

37
5
5025912


cg23067355

1
37
6
125425012



chr6: 125420743-125421141
S_Shelf


cg23078194
1

37
6
27661566


cg23146197

1
37
12
66271002
HMGA2; HMGA2
NM_003484; NM_003483
Body; Body


cg23191118

1
37
8
145560718
SCRT1
NM_031309
TSS1500
chr8: 145555342-145562310
Island


cg23210118

1
37
10
95653378
TMEM20; TMEM20
NM_153226; NM_001134658
TSS1500; TSS1500
chr10: 95653641-95654181
N_Shore


cg23226134

5
37
1
11866389
CLCN6; CLCN6;
NM_001286; NM_021737;
1stExon; 1stExon;
chr1: 11865462-11866566
Island








CLCN6; CLCN6;
NM_021735; NM_021736;
1stExon; 1stExon;








MTHFR
NM_005957
TSS1500


cg23232056
1

37
1
121461578


cg23239690
3

37
10
131505815
MGMT
NM_002412
Body


cg23239690

1
37
10
131505815
MGMT
NM_002412
Body


cg23275972
1

37
7
157224017


cg23283362

1
37
1
45263371



chr1: 45265534-45266783
N_Shelf


cg23285761
2

37
8
38089462
DDHD2; DDHD2;
NM_015214; NM_001164234;
5′UTR; 5′UTR;
chr8: 38088735-38089956
Island








DDHD2
NM_001164232
TSS200


cg23350744
1

37
5
122422098



chr5: 122424337-122424539
N_Shelf


cg23369529

1
37
1
68149989
GADD45A
NM_001924
TSS1500
chr1: 68150913-68152270
N_Shore


cg23442853

1
37
3
122296488
PARP15; PARP15
NM_001113523; NM_001113523
5′UTR; 1stExon
chr3: 122296612-122296828
N_Shore


cg23465289
1

37
5
54909384


cg23509665

2
37
7
158293697
PTPRN2; PTPRN2;
NM_002847; NM_130842;
Body; Body;








PTPRN2
NM_130843
Body


cg23517116

1
37
8
65499841



chr8: 65499748-65500145
Island


cg23574427

1
37
4
122746245
BBS7; CCNA2
NM_176824; NM_001237
3′UTR; TSS1500
chr4: 122744557-122745267
S_Shore


cg23645639
1

37
19
21203403
ZNF430
NM_025189
TSS200


cg23660155
1

37
1
22915626
EPHA8; EPHA8
NM_001006943; NM_020526
Body; Body


cg23692620
1

37
19
19971862



chr19: 19971577-19971863
Island


cg23730260

1
37
11
8290409



chr11: 8289532-8290322
S_Shore


cg23777173

2
37
12
132698353
GALNT9
NM_001122636
Body
chr12: 132696661-132697724
S_Shore


cg23802518

1
37
10
80827482
ZMIZ1; LOC283050;
NM_020338; NR024431;
TSS1500; TSS1500;
chr10: 80827070-80830537
Island








LOC283050; LOC283050
NR024429; NR015429
TSS1500; TSS1500


cg23813156

1
37
20
47935243



chr20: 47934839-47935684
Island


cg23837438

1
37
10
135132457



chr10: 135132006-135132458
Island


cg23951961
1

37
4
42154912
BEND4; BEND4
NM_207406; NM_001159547
TSS200; TSS200
chr4: 42152766-42154984
Island


cg23970785

1
37
16
11036526
DEXI
NM_014015
TSS1500
chr16: 11035496-11036696
Island


cg24030735
1

37
17
10533089
MYH3
NM_002470
Body


cg24099067

1
37
6
26758750


cg24177983

1
37
11
2398403
CD81
NM_004356
TSS200
chr11: 2398223-2399598
Island


cg24216966

1
37
6
31540121
LTA; LTA;
NM_000595; NM_001159740;
1stExon; 5′UTR;








LTA
NM_000595
5′UTR


cg24243790

1
37
4
9760736


cg24285811
1

37
9
139143869



chr9: 139143508-139144429
Island


cg24300033

1
37
2
241640149



chr2: 241640409-241641359
N_Shore


cg24330818

1
37
13
33002388
N4BP2L1; N4BP2L1
NM_052818; NM_001079691
TSS200; TSS200
chr13: 33001249-33002078
S_Shore


cg24364491
2

37
6
32806906
TAP2; TAP2
NM_018833; NM_000544
TSS1500; TSS1500
chr6: 32806284-32806669
S_Shore


cg24408706

2
37
11
363484


cg24453123
1

37
15
35374148


cg24453123

1
37
15
35374148


cg24533904

1
37
1
184467193
C1orf21
NM_030806
Body


cg24541871

1
37
2
55845713
SMEK2; SMEK2
NM_001122964; NM_020463
TSS1500; TSS1500
chr2: 55844267-55845065
S_Shore


cg24547359

1
37
1
53975500
GLIS1
NM_147193
Body


cg24550933
1

37
1
111932556
LOC441897
NR_029429
TSS200


cg24563317
1

37
8
48872822
MCM4; MCM4;
NM_005914; NM_182746;
TSS1500; TSS1500;
chr8: 48872458-48873907
Island








PRKDC; PRKDC
NM_006904; NM_001081640
TSS200; TSS200


cg24594224

1
37
6
33136015
COL11A2; COL11A2;
NM_080679; NM_080681;
Body; Body;








COL11A2
NM_080680
Body


cg24629356

1
37
1
35122551


cg24706188

1
37
8
55088456


cg24710435

1
37
10
14543847


cg24734300
1

37
7
35677335
HERPUD2
NM_022373
Body


cg24766104
1

37
19
16309072
AP1M1; AP1M1
NM_032493; NM_001130524
Body; Body
chr19: 16308557-16309313
Island


cg24766104

2
37
19
16309072
AP1M1; AP1M1
NM_032493; NM_001130524
Body; Body
chr19: 16308557-16309313
Island


cg24779831
1

37
2
2799370


cg24794433
1

37
9
124462172
DAB2IP
NM_032552
Body
chr9: 124461797-124462190
Island


cg24811352

1
37
5
140529499
PCDHB6
NM_018939
TSS1500
chr5: 140531157-140532017
N_Shore


cg24839562
1

37
6
31673423
LY6G6F
NM_001003693
TSS1500
chr6: 31670594-31671274
S_Shelf


cg24856050

1
37
19
3192433
NCLN
NM_020170
Body
chr19: 3192416-3192705
Island


cg24864663
1

37
15
43532243
TGM5; TGM5
NM_201631; NM_004245
Body; Body


cg24891539
3

37
8
55370407
SOX17
NM_022454
TSS200
chr8: 55370170-55372525
Island


cg24891539

1
37
8
55370407
SOX17
NM_022454
TSS200
chr8: 55370170-55372525
Island


cg24917945
1

37
10
120514927
C10orf46
NM_153810
TSS200
chr10: 120513949-120515108
Island


cg24968786

1
37
11
66360800
CCDC87; CCS
NM_018219; NM_005125
TSS1500; Body
chr11: 66360097-66360834
Island


cg25013910

1
37
2
1478219
TPO; TPO;
NM_175719; NM_000547;
Body; Body;
chr2: 1480758-1481631
N_Shelf








TPO; TPO
NM_175721; NM_175722
Body; Body


cg25025455
1

37
3
134204912
CEP63; CEP63;
NM_001042383; NM_001042400;
5′UTR; 5′UTR;
chr3: 134204520-134205439
Island








ANAPC13; CEP63;
NR_024400; NM_001042384;
TSS200; 5′UTR;








CEP63; ANAPC13;
NM_025180; NM_015391;
TSS200; TSS200;








CEP63; ANAPC13
NM_001042400; NR_024401
1stExon; TSS200


cg25092989
1

37
8
10932494
XKR6
NM_173683
Body
chr8: 10928984-10929211
S_Shelf


cg25100962

2
37
12
31782808


cg25124476
1

37
7
150497738
TMEM176B; TMEM176B;
NM_001101312; NM_001101314;
TSS200; TSS200;
chr7: 150496809-150498206
Island








TMEM176A; TMEM176B;
NM_018487; NM_014020;
TSS200; 5′UTR;








TMEM176B
NM_001101311
TSS200


cg25149069

2
37
1
233464229
KIAA1804
NM_032435
1stExon
chr1: 233463526-233464414
Island


cg25154733

2
37
13
28965632
FLT1; FLT1;
NM_001159920; NM_001160030;
Body; Body;








FLT1
NM_002019
Body


cg25161386

1
37
17
27621177
NUFIP2
NM_020772
TSS200
chr17: 27621169-27621455
Island


cg25181381
1

37
11
134373655


cg25193384
1

37
7
39837692



chr7: 39833494-39833725
S_Shelf


cg25194328

1
37
5
54472477



chr5: 54468783-54469324
S_Shelf


cg25206705

2
37
17
1082774
ABR; ABR
NM_021962; NM_001159746
Body; 5′UTR
chr17: 1082376-1083833
Island


cg25236028

1
37
17
767334
NXN
NM_022463
Body


cg25246158

1
37
19
1940184
CSNK1G2
NM_001319
TSS1500
chr19: 1940303-1941940
N_Shore


cg25259296

1
37
21
43235862
PRDM15; PRDM15
NM_022115; NM_001040424
Body; Body
chr21: 43236025-43236510
N_Shore


cg25328184
1

37
5
110406414
TSLP
NM_033035
TSS1500
chr5: 110408704-110409039
N_Shelf


cg25328184

1
37
5
110406414
TSLP
NM_033035
TSS1500
chr5: 110408704-110409039
N_Shelf


cg25334660

1
37
8
42270520



chr8: 42268436-42268759
S_Shore


cg25356214
2

37
12
51611871
POU6F1
NR_026893
TSS1500
chr12: 51610892-51611724
S_Shore


cg25367905

1
37
5
176790350
RGS14
NM_006480
Body
chr5: 176789978-176790296
S_Shore


cg25370231

1
37
10
13391182
SEPHS1
NM_012247
TSS1500


cg25402787

1
37
15
53084679



chr15: 53086629-53086858
N_Shore


cg25409448

2
37
19
49558849
CGB7; CGB7
NM_033142; NM_033142
5′UTR; 1stExon
chr19: 49559222-49560497
N_Shore


cg25417551

1
37
17
35767582
TADA2A; TADA2A;
NM_001488; NM_133439;
1stExon; 1stExon;
chr17: 35766664-35767335
S_Shore








ACACA; TADA2A;
NM_198834; NM_001166105;
TSS1500; 5′UTR;








ACACA; TADA2A;
NM_198839; NM_001488;
TSS1500; 5′UTR;








TADA2A
NM_133439
5′UTR


cg25427880

1
37
10
102322128



chr10: 102321832-102322395
Island


cg25456593

1
37
11
70672858
SHANK2
NM_012309
Body
chr11: 70672834-70673055
Island


cg25502179

1
37
3
46875342
PRSS42
NM_182702
Body
chr3: 46874892-46875769
Island


cg25545088

1
37
6
43398446
ABCC10
NM_033450
TSS1500
chr6: 43395188-43395894
S_Shelf


cg25550629

1
37
12
53546895


cg25714381

1
37
7
76751893
CCDC146
NM_020879
TSS200
chr7: 76750995-76751394
S_Shore


cg25734864
2

37
13
113812986
PROZ
NM_003891
1stExon


cg25756867

1
37
3
180042726


cg25758828

1
37
2
113976143
PAX8; PAX8;
NM_013953; NM_003466;
3′UTR; Body;








PAX8; PAX8;
NM_013952; NM_013951;
3′UTR; Body;








PAX8; LOC440839
NM_013992; NR_029399
3′UTR; Body


cg25778535

1
37
11
8190572
RIC3; RIC3;
NM_001135109; NM_024557;
1stExon; 5′UTR;
chr11: 8190226-8190671
Island








RIC3; RIC3
NM_001135109; NM_024557
5′UTR; 1stExon


cg25803630
2

37
8
29885309



chr8: 29884771-29885310
Island


cg25820279
1

37
2
177001909



chr2: 177001221-177001783
S_Shore


cg25824218
1

37
12
25104798



chr12: 25101607-25102073
S_Shelf


cg25824218

1
37
12
25104798



chr12: 25101607-25102073
S_Shelf


cg25859012

1
37
2
219524278
BCS1L; ZNF142;
NM_004328; NM_001105537;
TSS200; TSS200;
chr2: 219523901-219524577
Island








BCS1L
NM_001079866
TSS200


cg25884094

1
37
8
17785204
PCM1
NM_006197
5′UTR
chr8: 17780032-17781272
S_Shelf


cg25894839

1
37
1
161696082
FCRLB
NM_001002901
Body
chr1: 161695637-161697298
Island


cg25943588

1
37
11
14993913
CALCA; CALCA;
NM_001033952; NM_001033953;
TSS200; TSS200;
chr11: 14995128-14995908
N_Shore








CALCA
NM_001741
TSS200


cg26003814

3
37
1
16444599


cg26053864
1

37
15
35087635
ACTC1
NM_005159
5′UTR


cg26074111
1

37
6
24776063
GMNN
NM_015895
5′UTR
chr6: 24775046-24775729
S_Shore


cg26084511

1
37
7
20818226



chr7: 20817455-20818227
Island


cg26091183
3

37
17
78387382
LOC100294362
NR_029376
Body
chr17: 78388437-78389722
N_Shore


cg26091183

2
37
17
78387382
LOC100294362
NR_029376
Body
chr17: 78388437-78389722
N_Shore


cg26105278

1
37
1
3624054
TP73; TP73;
NM_001126240; NM_005427;
Body; Body;
chr1: 3623318-3623521
S_Shore








TP73; TP73
NM_001126242; NM_001126241
Body; Body


cg26114595
1

37
17
28395749
EFCAB5; EFCAB5;
NR_026738; NM_198529;
Body; Body;








EFCAB5
NM_001145053
Body


cg26129303

1
37
8
142095375


cg26148236
1

37
2
233497957
EFHD1; EFHD1
NM_025202; NR_027663
TSS1500; Body
chr2: 233497826-233499727
Island


cg26149738

1
37
19
34287125
KCTD15; KCTD15;
NM_001129994; NM_024076;
TSS1500; TSS1500;
chr19: 34286184-34289135
Island








KCTD15
NM_001129995
TSS1500


cg26163463
1

37
5
139926773
EIF4EBP3;
NM_003732; NM_020690
TSS1500; Body
chr5: 139927157-139927491
N_Shore








ANKHD1-EIF4EBP3


cg26203055

2
37
18
19284713
ABHD3; ABHD3
NM_138340; NM_138340
1stExon; 5′UTR
chr18: 19284165-19285052
Island


cg26266950
2

37
7
19160621



chr7: 19156050-19158042
S_Shelf


cg26384229
9

37
12
38710491
ALG10B
NM_001013620
TSS200
chr12: 38710392-38710643
Island


cg26384229

14
37
12
38710491
ALG10B
NM_001013620
TSS200
chr12: 38710392-38710643
Island


cg26490274

1
37
16
4385435
GLIS2
NM_032575
Body


cg26524638
1

37
11
2481449
KCNQ1; KCNQ1
NM_181798; NM_000218
TSS1500; Body


cg26541533

1
37
6
164256018



chr6: 164255450-164256062
Island


cg26573704

2
37
5
33892223
ADAMTS12
NM_030955
TSS200
chr5: 33892191-33892403
Island


cg26575535
1

37
16
65157839



chr16: 65154656-65157664
S_Shore


cg26586710
1

37
10
134216688
PWWP2B; PWWP2B
NM_001098637; NM_138499
Body; Body
chr10: 134218268-134219615
N_Shore


cg26588943

2
37
4
172734718
GALNTL6; GALNTL6
NM_001034845; NM_001034845
1stExon; 5′UTR
chr4: 172733734-172735118
Island


cg26616283
1

37
7
11871535
THSD7A
NM_015204
1stExon


cg26616283

1
37
7
11871535
THSD7A
NM_015204
1stExon


cg26634911

2
37
4
47916863
NFXL1
NM_152995
TSS1500
chr4: 47915861-47916880
Island


cg26651514
1

37
13
33864734


cg26654519

1
37
8
142517494
FLJ43860
NM_207414
TSS200


cg26712605

1
37
6
37745367


cg26759552

2
37
7
139877471
LOC100134229; JHDM1D
NR_024451; NM_030647
Body; TSS1500
chr7: 139875411-139877493
Island


cg26777456

1
37
12
54454250
FLJ12825
NR_026655
Body
chr12: 54454249-54454458
Island


cg26835440
2

37
8
55037773


cg26919149
2

37
6
168501903



chr6: 168501902-168502790
Island


cg26933136

1
37
1
28661842
MED18; MED18
NM_001127350; NM_017638
3′UTR; 3′UTR


cg26946235
2

37
10
134890799



chr10: 134891010-134893402
N_Shore


cg26994413
1

37
12
130909408
RIMBP2
NM_015347
Body
chr12: 130908777-130909191
S_Shore


cg27037109

1
37
19
12512034
ZNF799
NM_001080821
TSS200
chr19: 12511608-12512144
Island


cg27042491

2
37
10
77191686



chr10: 77191061-77191571
S_Shore


cg27062060

1
37
17
79258687
SLC38A10; SLC38A10
NM_001037984; NM_138570
Body; Body
chr17: 79259282-79259537
N_Shore


cg27072218
1

37
13
106912755


cg27101157
1

37
17
62340122
TEX2
NM_018469
5′UTR
chr17: 62339803-62340799
Island


cg27140170

1
37
2
231280096
SP100; SP100
NM_001080391; NM_003113
TSS1500; TSS1500


cg27181253

2
37
1
113051846
WNT2B; WNT2B;
NM_004185; NM_024494;
Body; 1stExon;
chr1: 113050813-113052301
Island








WNT2B
NM_024494
5′UTR


cg27207308

1
37
20
47935683



chr20: 47934839-47935684
Island


cg27313674

1
37
20
6035120
LRRN4
NM_152611
TSS1500
chr20: 6032675-6033517
S_Shore


cg27323009

1
37
5
110408974
TSLP; TSLP
NM_138551; NM_033035
TSS200; Body
chr5: 110408704-110409039
Island


cg27343123
1

37
2
62423136
B3GNT2
NM_006577
TSS200
chr2: 62422191-62424458
Island


cg27391127
1

37
10
104415919
TRIM8
NM_030912
Body
chr10: 104416555-104417165
N_Shore


cg27426287

1
37
10
30025782
SVIL
NM_003174
TSS1500
chr10: 30024072-30026077
Island


cg27445005
1

37
18
76190006



chr18: 76189718-76190190
Island


cg27445005

2
37
18
76190006



chr18: 76189718-76190190
Island


cg27553486
1

37
7
930964
C7orf20
NM_015949
Body
chr7: 930913-931215
Island


cg27633010
1

37
10
135097477
TUBGCP2
NM_006659
Body
chr10: 135097516-135097801
N_Shore


cg27633010

3
37
10
135097477
TUBGCP2
NM_006659
Body
chr10: 135097516-135097801
N_Shore


cg27640020
1

37
19
19002253
GDF1; LASS1;
NM_001492; NM_198207;
5′UTR; Body;
chr19: 19006031-19007546
N_Shelf








LASS1
NM_021267
Body


ch.16.1667936F

1
36
16
73947777


ch.2.3048096R
1

36
2
147986881









Data preprocessing. Statistical analysis was performed using R (v. 3.5.0). Raw .IDAT files were processed using the minfi package (v. 1.26.2). Illumina 850k (EPIC) array data were subset to only those sites also included in the 450k array. Preprocessing and normalization were performed using the preprocess Funnorm function. All samples passed internal controls included on each chip and had detection p≤0.01 for ≥97% of cytosine-guanosine dinucleotide (CpG) positions included on each array. Epigenome-wide association studies traditionally have used DNA methylation beta values, defined as the fraction methylation (0-1 scale) for a particular CpG site. Beta values, however, are characterized by high heteroscedasticity (most beta values fall within extreme high- and low-percent methylation levels), and questions have been raised regarding statistical validity of beta value analysis [24]. Therefore, the inventors also analyzed M values (the log2 ratio of methylated:unmethylated probe intensities for a given CpG site), which are approximately homoscedastic. The inventors excluded from analysis CpG probes located on sex chromosomes, probes with known single nucleotide polymorphisms (SNPs) with minor allele frequency of ≥5%, and probes not detected in all samples, leaving a final n=435,118 CpG sites for analysis in each sample.


Modeling. Elastic-net regularized generalized linear models were developed using the glmnet package (v. 2.0-16). As model overfitting is a frequently-occurring problem when developing classifiers on high-dimensional data, the inventors implemented three strategies to reduce potential overfitting. First, the inventors performed 7-fold internal cross-validation during development via the cv.glmnet function, utilizing the ‘one standard error rule’ when selecting lambda values [69]. Second, the inventors tested models on lockbox data not used for training (FIG. 2). Finally, the inventors repeated the model development and testing with 40 cycles of random splits of data into development and lockbox (validation) subsets. During each cycle of development, data were first randomly split into 60% development and 40% lockbox sets. Development data were then used to generate regularized cross-validated models and these models were tested on lockbox data and performance characteristics recorded. Model performance was assessed by the mean c-statistic (area under the receiver operator characteristic curve AUC-ROC), diagnostic odds ratio, accuracy, sensitivity, and specificity. The identity of DNA methylation sites (features) selected by glmnet for inclusion in each model, and the total number of sites required by each model, were recorded and compared. The performance of models by chip type (450k vs. 850k) was assessed by comparing accuracies using Fisher's exact test of a 2×2 contingency table.


Ontology analysis. Genes associated with CpG sites selected at least once during model development (n=969) were analyzed using Ingenuity Pathway Analysis (IPA, Qiagen) v. 48207413 build 2019-06-16 using default settings.


Case and control eligibility and Selection Process.


1. Subject Inclusion:


1.1. A subject with one or two knees with symptomatic OA that are eligible to be a Fast Progressor and/or a Non Progressor**.


An eligible knee is defined as:


1.1a. Mild-moderate symptomatic OA at baseline: in the same knee, KLG 2-3 and frequent pain (pain on most days of a month in past year) at baseline.


1.1b. Medial compartment JSW>=1.5 mm (VooMCMJSW>=1.5) at baseline since at <1.5 mm knee is already close to end stage and further fast progression is less unlikely to be preventable at that point; in addition JSW measurement is less reliable when knee approaches bone on bone.


1.1c. JSN in medial compartment at baseline is equal to or worse than JSN in lateral compartment.


1.1d. JSW data at BL, 24 m and 48 m time points. (Exception: Fast Progressor knees can be missing JSW due to a TKR at 36 or 48 m.).


1.1e. Adequate radiographic positioning at BL, 24 and 48 m time points defined as VxxTPCFDS<7.0 mm and change in VxxTPCFDS<2 mm in magnitude BL to 24 m or BL to 48 m.


1.2. Subjects with only one eligible knee at baseline**:


1.2a. The contralateral knee KLG is less than or equal to the eligible knee at baseline. (e.g., subjects with a KLG 2 symptomatic eligible knee can have a KLG 0-2 symptomatic or non-symptomatic. If the eligible knee is KLG 3, then the contralataeral knee can be a KLG 0-3 symptomatic or non-symptomatic knee. The contralateral knee must have a baseline medial JSW of >=1.5 mm.


2. Subject Exclusion.


2.1 TKR in either knee at BL, 12 m or 24 m.


2.2 RA diagnosis at any visit thru 72 m (RAVISIT is 0, 1, 2, 5, 6 or 8). What about subjects with self-reported psoriatic arthritis, AS, or reactive arthritis? How many are there?


2.3 Oral Glucocorticoid use reported at >=2 visits from BL to 72 m. How many are there?


3. Classify eligible knees of eligible subjects as Fast Progressor or Non-Progressor Index knees.


3.1 Fast Progressor Index knees: JSW loss of more than 0.7 mm between BL and 24 m and remains narrowed more than 0.7 mm at 48 m or has a TKR by 48 m.


3.2 Non-Progressor Index knees: JSW loss less than 0.5 mm between BL and 24 m and remains narrowed less than 0.5 mm at 48 m. Knee does not have TKR at 36 m or 48 m and does not have lateral JSN progression through 48 m.


4. Fast Progressor Subjects.


A Fast Progressor subject has one or two Fast Progressor Index knees.


For those with one Fast Progressor Index knee the contralateral knee can be:


4.1 A Non Progressor Index knee with a KLG≤to the KLG of the progressor knee;


4.2 An ineligible knee (e.g. KLG 0-1, KLG 2-3 nonsymptomatic and KLG≤to the KLG of Progressor knee) that meets Fast Progressor JSW criteria;


4.3 An ineligible knee that does not meet Fast Progressor criteria and KLG≤to the KLG of Progressor knee; or


4.4 An ineligible knee that does not meet conditions 1.1b to 1.1e and KLG≤to the KLG of Progressor knee.


5. Non Progressor Subjects


A Non Progressor Subject has one or two Non Progressor Index knees.


If a subject has only one Non Progressor Index knee:


5.1. The contralateral knee cannot be a Fast Progressor Index knee;


5.2. If the contralateral knee is not an eligible knee, then the contralateral knee must a) have KLG≤to the KLG of Progressor knee, b) allow assessment for Fast Progression (meet conditions 1.1b. to 1.1e.) and c) have JSW loss less than 0.5 mm between BL and 24 m and remain narrowed less than 0.5 mm at 48 m, d) does not have lateral JSN progression by 48 m and e) does not have TKR at 36 m or 48 m.


Example 2. Modeling Method and Development/Validation Sample Selection

Designed to differentiate rapid radiographic and/or pain progressors from nonprogressors. This study utilized the Foundation for the NIH cohort of the OAI using biochemical biomarker data (PMID 27296323).


Development and validation on 464 (to date, estimated 600 upon completion) patients, including 299 rapid radiographic- and/or pain-progressors and 165 nonprogressors. All participants had baseline Kellegren-Lawrence radiographic grade (KLG) of 1-3 in at least one knee without a history of total knee joint replacement through 24-months. Patients with radiographic and/or pain progression by 12-months were excluded.


Case definition. Radiographic progressors had radiographic progression in the medial tibiofemoral compartment by a longitudinal loss in the minimum JSW of at least 0.7 mm from baseline to 24-month follow-up in one index knee, with persistent narrowing in the same index knee at 48 months based on radiographs obtained from a non-fluoroscopic fixed flexion protocol (Synaflexor, Synarc, Newark, Calif.). Participants with a tibial plateau rim distance of 6.5 mm at baseline, or with a change in the rim distance of >2.0 mm between baseline and follow-up were excluded due to inappropriate and/or unreliable radiographic positioning. Non-radiographic progressors were defined as those with ≤0.5 mm of JSW loss from baseline to 48 months in either knee.


Pain progressors were defined as >=9 points at 2 or more timepoints on the Western Ontario McMasters (WOMAC) pain subscale from the 24-month to 60-month pain assessment.


Controls were frequency matched with cases by age category, sex, race, and BMI category (<25, 25-27.5, 27.5-30, 30-35, and >=35 kg/m2.


DNA methylation assays, PBMC composition assessment and adjustment. Five hundred nanograms of DNA was treated with sodium bisulfite (EZ DNA methylation kit, Zymo) and loaded onto Illumina Infinium HumanMethylation850k arrays. DNA methylation data were corrected for cell count variation using frozen surrogate variable analysis via the sva package (v. 3.28.0).


Data preprocessing. Statistical analysis was performed using R (v. 3.5.0). Raw .IDAT files were processed using the ChAMP package v.2.20.1. Preprocessing and normalization were performed using Beta-Mixture Quantile (BMIQ) normalization. Beta values, defined as the fraction methylation (0-1 scale) for a particular CpG site were used for model development. The inventors excluded from analysis CpG probes located on sex chromosomes, probes with known single nucleotide polymorphisms (SNPs) with minor allele frequency of ≥5%, and probes not detected in all samples, leaving a final n=710,589 CpG sites for analysis in each sample. The simplified method eliminated the need to correct for PBMC composition and batch correction using frozen surrogate variable analysis (fsva). This method also increased the random split to 1:10, and is 10-fold validated, with an increase to 664,736 CpGs+/−gimnet models.


Modeling. Elastic-net regularized generalized linear models were developed using the glmnet package (v. 2.0-16). First, 10-fold internal cross-validation was performed during development via the cv.glmnet function, utilizing the ‘one standard error rule’ when selecting lambda values. Second, the models were tested on lockbox data not used for training (FIG. 4). Finally, model development was repeated and tested with 40 cycles of random splits of data into development and lockbox (validation) subsets. During each cycle of development, data were first randomly split into 70% development and 30% lockbox sets. Development data were then used to generate regularized cross-validated models and these models were tested on lockbox data and performance characteristics recorded. Model performance was assessed by the mean c-statistic (area under the receiver operator characteristic curve AUC-ROC), diagnostic odds ratio, accuracy, sensitivity, and specificity. The identity of DNA methylation sites (features) selected by glmnet for inclusion in each model, and the total number of sites required by each model, were recorded and compared.


Differences between the two approaches in Example 1 and 2. Smaller number of development and validation groups in the initial approach. Inclusion of both pain and radiographic progressors in the new approach vs. radiographic progressors only. It is now possible to differentiate pain vs. radiographic vs. dual progressors using a stepwise learning approach. Different/more extensive DNA methylation arrays used for the new approach. Increased cross-validation folds used in the new approach (10 vs. 7). Different development/validation ratio can also be used in the new approach (80/20 vs. 70/30). The CpG sites selected by the new modeling approach were substantially different than the original study (owing to inclusion of pain progressors and much larger number of CpG sites made available to the modeling system with the use of 850k chips).


Additional variations between Example 1 and Example 2. OAI/FNIH samples were DNA obtained from Buffy coat (peripheral blood mononuclear cells+neutrophils). A second set of sample DNA (Johnson County (JoCo)) was obtained from peripheral blood mononuclear cells (no neutrophils). The difference in initial cell type, along with differences in radiographic measurements, contribute to reduced discrimination capability of the models; however, the accuracy the models display even given these differences speak to the robustness of the process and final models. The Beta- and M-models performed equivalently in this new modeling cohort; therefore, models based on beta values (more commonly used in DNA methylation analyses) were utilized.


Johnson County (JoCo) cohort. 121 total participants, 70 progressors, 51 control nonprogressors. Definition of progression (different than previous cohorts given lack of quantitative joint space measurements). Radiographic progressors: Increase in overall radiographic grade (Kellegren-Lawrence Grade, KLG) of at least 1 from baseline to 48 months. Non-radiographic-progressors: No increase, or within-grade increase, in KLG from baseline to 48 months.









TABLE 6







Model expansion and redevelopment (FNIH-OABC cohort


(n = 471), JoCo cohort (n = 121)).










FNIH-OABC cohort
JoCo cohort



(mean ± SEM)
(mean ± SEM)















ROC-AUC (c-statistic)

0.94 ± 0.004

0.85 ± 0.001



Accuracy
84 ± 1%
70 ± 1%



Odds ratio
73 ± 8




Sensitivity
81 ± 1%




Specificity
93 ± 1%











Example 3. Peripheral Blood DNA Methylation-Based Machine Learning Models to Predict Future OA Progression

As outlined above, baseline peripheral blood cell DNA methylation patterns from a group of patients from the Osteoarthritis Initiative (OAI) and demonstrated methylation-based models distinguish future radiographic progressors from nonprogressors. In this example, the method to the FNIH OsteoArthritis Biomarkers Consortium (OABC) subcohort of the OAI that included pain-, radiographic-, and dual- (both pain and radiographic) progressors compared to nonprogressors controls was used.


Buffy coat DNA was obtained from the OAI from baseline visits of OABC patients (n=600). 500 ng of DNA was bisulfite treated and loaded onto Illumina EPIC arrays then imaged by the Clinical Genomics Center at the Oklahoma Medical Research Foundation. Raw data were extracted and Beta-Mixture Quantile (BMIQ) normalized using the Chip Analysis Methylation Pipeline (ChAMP) package. 46 samples were eliminated due to low quality or sex mismatch leaving 81 radiographic-, 91 pain-, 193 dual-, and 189 non-progressors. Elastic net-penalized generalized linear models (GLMs) were then developed. Following a 70%-development, 30%-validation data split, GLMs underwent further internal 10-fold cross validation and optimized models were tested on validation data. Model development was repeated for a total of 40 randomized data splits and mean performance calculated. Supervised ‘reduced’ models were developed by reducing the dataset to include those CpG sites selected in ≥10/40 development rounds in the any- vs. nonprogressor comparison (n=13 CpGs). An independent radiographic progressor validation cohort was obtained from the Johnston County Osteoarthritis Project (JoCo), including 89 future progressors (≥1 K/L grade worsening at 48 mo or joint replacement) and 56 nonprogressors (no- or within-grade K/L worsening). Peripheral blood mononuclear cells methylation was quantified, 33 samples were removed due to low quality. Models were also tested on DNA methylation data from our previous peripheral blood methylation publication, including 27 radiographic-only and 28 nonprogressors from the OAI cohort.


Baseline buffy coat DNA methylation patterns accurately predicted future radiographic (accuracy 87%±0.8% mean±SEM, see Table 7 for AUC-ROC c-statistic, pain (89%±0.9%), dual radiographic+pain (72%±0.7%), and ‘all’ progressors (radiographic, pain, or dual) (78%±0.4%). Intriguingly, pain-only and radiographic-only progressors were not reliably distinguished (accuracy 58%±1%). The inclusion of demographic characteristics did not alter model performance, nor the addition of baseline serum/urine analytes, nor the inclusion of methylation array batch data. Models included a mean of 13±1 CpG sites. Supervised reduced models including 13 CpG sites (cg04195161, cg22064129, cg04985016, cg12692919, cg04043957, cg08872579, cg02019955, cg01333532, cg23705082, cg05042110, cg00715363, cg01307007 and cg09239099) had similar discriminatory capability (Table 7). Despite differences in the definition of radiographic progression and the cell type input (buffy coat vs. PBMC) in the JoCo cohort, models accurately discriminated radiographic progressors from nonprogressors (81%±0.3%). Models also performed accurately when applied to our previous OAI DNA methylation dataset (80% 0.3%).


These results confirm the predictive capability of peripheral blood-based DNA methylation models in a large cohort of OA patients and confirmed these findings in two independent cohorts. These data show that a pain and structural progression share early systemic immune epigenotypes.









TABLE 7







Model performance characteristics










Unsupervised ‘full’ models
Supervised ‘reduced’ models












Accuracy
AUC-ROC
Accuracy
AUC-ROC


Comparison groups
(mean ± SEM)
(mean ± SEM)
(mean ± SEM)
(mean ± SEM)





Radiographic-only vs.
87% ± 0.8%
0.94 ± 0.004
89% ± 0.5%
0.94 ± 0.003


nonprogressor


Pain-only vs.
89% ± 0.9%
0.97 ± 0.004
90% ± 0.7%
0.95 ± 0.005


nonprogressor


Dual- vs. nonprogressor
72% ± 0.7%
0.79 ± 0.006
76% ± 0.6%
0.85 ± 0.005


Any
78% ± 0.4%
0.86 ± 0.004
82% ± 0.3%
0.89 ± 0.003


(pain/radiographic/dual)


vs. nonprogressor


Radiographic-only vs.
0.58% ± 1%   
0.62 ± 0.01 
n/a
n/a


pain-only


JoCo cohort:


81% ± 0.3%
0.89 ± 0.002


radiographic-only vs.


nonprogressor


OAI cohort from our


80% ± 0.4%
0.89 ± 0.002


previous study:


radiographic-only vs.


nonprogressor









It is contemplated that any embodiment discussed in this specification can be implemented with respect to any method, kit, reagent, or composition of the invention, and vice versa. Furthermore, compositions of the invention can be used to achieve methods of the invention.


It will be understood that particular embodiments described herein are shown by way of illustration and not as limitations of the invention. The principal features of this invention can be employed in various embodiments without departing from the scope of the invention. Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, numerous equivalents to the specific procedures described herein. Such equivalents are considered to be within the scope of this invention and are covered by the claims.


All publications and patent applications mentioned in the specification are indicative of the level of skill of those skilled in the art to which this invention pertains. All publications and patent applications are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.


The use of the word “a” or “an” when used in conjunction with the term “comprising” in the claims and/or the specification may mean “one,” but it is also consistent with the meaning of “one or more,” “at least one,” and “one or more than one.” The use of the term “or” in the claims is used to mean “and/or” unless explicitly indicated to refer to alternatives only or the alternatives are mutually exclusive, although the disclosure supports a definition that refers to only alternatives and “and/or.” Throughout this application, the term “about” is used to indicate that a value includes the inherent variation of error for the device, the method being employed to determine the value, or the variation that exists among the study subjects.


As used in this specification and claim(s), the words “comprising” (and any form of comprising, such as “comprise” and “comprises”), “having” (and any form of having, such as “have” and “has”), “including” (and any form of including, such as “includes” and “include”) or “containing” (and any form of containing, such as “contains” and “contain”) are inclusive or open-ended and do not exclude additional, unrecited elements or method steps. In embodiments of any of the compositions and methods provided herein, “comprising” may be replaced with “consisting essentially of” or “consisting of”. As used herein, the phrase “consisting essentially of” requires the specified integer(s) or steps as well as those that do not materially affect the character or function of the claimed invention. As used herein, the term “consisting” is used to indicate the presence of the recited integer (e.g., a feature, an element, a characteristic, a property, a method/process step or a limitation) or group of integers (e.g., feature(s), element(s), characteristic(s), propertie(s), method/process steps or limitation(s)) only.


The term “or combinations thereof” as used herein refers to all permutations and combinations of the listed items preceding the term. For example, “A, B, C, or combinations thereof” is intended to include at least one of: A, B, C, AB, AC, BC, or ABC, and if order is important in a particular context, also BA, CA, CB, CBA, BCA, ACB, BAC, or CAB.


Continuing with this example, expressly included are combinations that contain repeats of one or more item or term, such as BB, AAA, AB, BBC, AAABCCCC, CBBAAA, CABABB, and so forth. The skilled artisan will understand that typically there is no limit on the number of items or terms in any combination, unless otherwise apparent from the context.


As used herein, words of approximation such as, without limitation, “about”, “substantial” or “substantially” refers to a condition that when so modified is understood to not necessarily be absolute or perfect but would be considered close enough to those of ordinary skill in the art to warrant designating the condition as being present. The extent to which the description may vary will depend on how great a change can be instituted and still have one of ordinary skilled in the art recognize the modified feature as still having the required characteristics and capabilities of the unmodified feature. In general, but subject to the preceding discussion, a numerical value herein that is modified by a word of approximation such as “about” may vary from the stated value by at least ±1, 2, 3, 4, 5, 6, 7, 10, 12 or 15%.


Additionally, the section headings herein are provided for consistency with the suggestions under 37 CFR 1.77 or otherwise to provide organizational cues. These headings shall not limit or characterize the invention(s) set out in any claims that may issue from this disclosure. Specifically and by way of example, although the headings refer to a “Field of Invention,” such claims should not be limited by the language under this heading to describe the so-called technical field. Further, a description of technology in the “Background of the Invention” section is not to be construed as an admission that technology is prior art to any invention(s) in this disclosure. Neither is the “Summary” to be considered a characterization of the invention(s) set forth in issued claims. Furthermore, any reference in this disclosure to “invention” in the singular should not be used to argue that there is only a single point of novelty in this disclosure. Multiple inventions may be set forth according to the limitations of the multiple claims issuing from this disclosure, and such claims accordingly define the invention(s), and their equivalents, that are protected thereby. In all instances, the scope of such claims shall be considered on their own merits in light of this disclosure, but should not be constrained by the headings set forth herein.


All of the compositions and/or methods disclosed and claimed herein can be made and executed without undue experimentation in light of the present disclosure. While the compositions and methods of this invention have been described in terms of preferred embodiments, it will be apparent to those of skill in the art that variations may be applied to the compositions and/or methods and in the steps or in the sequence of steps of the method described herein without departing from the concept, spirit and scope of the invention. All such similar substitutes and modifications apparent to those skilled in the art are deemed to be within the spirit, scope and concept of the invention as defined by the appended claims.


To aid the Patent Office, and any readers of any patent issued on this application in interpreting the claims appended hereto, applicants wish to note that they do not intend any of the appended claims to invoke paragraph 6 of 35 U.S.C. § 112, U.S.C. § 112 paragraph (f), or equivalent, as it exists on the date of filing hereof unless the words “means for” or “step for” are explicitly used in the particular claim.


For each of the claims, each dependent claim can depend both from the independent claim and from each of the prior dependent claims for each and every claim so long as the prior claim provides a proper antecedent basis for a claim term or element.


REFERENCES



  • 1. Vos T, Flaxman A D, Naghavi M, Lozano R, Michaud C, Ezzati M, et al. Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012; 380: 2163-2196.

  • 2. Centers for Disease Control and Prevention (CDC). Prevalence of doctor-diagnosed arthritis and arthritis-attributable activity limitation—United States, 2010-2012. MMWR Morb Mortal Wkly Rep. 2013; 62: 869-873.

  • 3. Singh J A, Saag K G, Bridges S L Jr, Akl E A, Bannuru R R, Sullivan M C, et al. 2015 American College of Rheumatology Guideline for the Treatment of Rheumatoid Arthritis. Arthritis Rheumatol. 2016; 68: 1-26.

  • 4. Ramos Y F M, Bos S D, Lakenberg N, Böhringer S, den Hollander W J, Kloppenburg M, et al. Genes expressed in blood link osteoarthritis with apoptotic pathways. Ann Rheum Dis. 2014; 73: 1844-1853.

  • 5. Li J, Lan C-N, Kong Y, Feng S-S, Huang T. Identification and Analysis of Blood Gene Expression Signature for Osteoarthritis With Advanced Feature Selection Methods. Front Genet. 2018; 9: 246.

  • 6. Huang Z Y, Perry E, Huebner J L, Katz B, Li Y-J, Kraus V B. Biomarkers of inflammation—LBP and TLR—predict progression of knee osteoarthritis in the DOXY clinical trial. Osteoarthritis Cartilage. 2018. doi:10.1016/j.joca.2018.08.005

  • 7. Hunter D, Nevitt M, Lynch J, Kraus V B, Katz J N, Collins J E, et al. Longitudinal validation of periarticular bone area and 3D shape as biomarkers for knee OA progression? Data from the FNIH OA Biomarkers Consortium. Ann Rheum Dis. 2016; 75: 1607-1614.

  • 8. Hunter D J, Nevitt M, Losina E, Kraus V. Biomarkers for osteoarthritis: current position and steps towards further validation. Best Pract Res Clin Rheumatol. 2014; 28: 61-71.

  • 9. Kraus V B, Collins J E, Hargrove D, Losina E, Nevitt M, Katz J N, et al. Predictive validity of biochemical biomarkers in knee osteoarthritis: data from the FNIH OA Biomarkers Consortium. Ann Rheum Dis. 2016. doi:10.1136/annrheumdis-2016-209252

  • 10. de Andres M C, Perez-Pampin E, Calaza M, Santaclara F J, Ortea I, Gomez-Reino J J, et al. Assessment of global DNA methylation in peripheral blood cell subpopulations of early rheumatoid arthritis before and after methotrexate. Arthritis Res Ther. 2015; 17: 233.

  • 11. Zhao M, Zhou Y, Zhu B, Wan M, Jiang T, Tan Q, et al. IFI44L promoter methylation as a blood biomarker for systemic lupus erythematosus. Ann Rheum Dis. 2016; 75: 1998-2006.

  • 12. Toperoff G, Aran D, Kark J D, Rosenberg M, Dubnikov T, Nissan B, et al. Genome-wide survey reveals predisposing diabetes type 2-related DNA methylation variations in human peripheral blood. Hum Mol Genet. 2012; 21: 371-383.

  • 13. Nakatochi M, Ichihara S, Yamamoto K, Naruse K, Yokota S, Asano H, et al. Epigenome-wide association of myocardial infarction with DNA methylation sites at loci related to cardiovascular disease. Clin Epigenetics. 2017; 9: 54.

  • 14. Rushton M D, Reynard L N, Barter M J, Refaie R, Rankin K S, Young D A, et al. Characterization of the cartilage DNA methylome in knee and hip osteoarthritis. Arthritis Rheumatol. 2014; 66: 2450-2460.

  • 15. den Hollander W, Ramos Y F M, Bos S D, Bomer N, van der Breggen R, Lakenberg N, et al. Knee and hip articular cartilage have distinct epigenomic landscapes: implications for future cartilage regeneration approaches. Ann Rheum Dis. 2014; 73: 2208-2212.

  • 16. Jeffries M A, Donica M, Baker L W. Genome□Wide DNA Methylation Study Identifies Significant Epigenomic Changes in Osteoarthritic Subchondral Bone and Similarity to Overlying Cartilage. Arthritis. 2016. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/art.39555

  • 17. Jeffries M A, Donica M, Baker L W. Genome□wide DNA methylation study identifies significant epigenomic changes in osteoarthritic cartilage. Arthritis. 2014. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/art.38762

  • 18. Fernández-Tajes J, Soto-Hermida A, Vázquez-Mosquera M E, Cortés-Pereira E, Mosquera A, Fernández-Moreno M, et al. Genome-wide DNA methylation analysis of articular chondrocytes reveals a cluster of osteoarthritic patients. Ann Rheum Dis. 2014; 73: 668-677.

  • 19. LaValley M P, Lo G H, Price L L, Driban J B, Eaton C B, McAlindon T E. Development of a clinical prediction algorithm for knee osteoarthritis structural progression in a cohort study: value of adding measurement of subchondral bone density. Arthritis Res Ther. 2017; 19: 95.

  • 20. Titus A J, Gallimore R M, Salas L A, Christensen B C. Cell-type deconvolution from DNA methylation: a review of recent applications. Hum Mol Genet. 2017; 26: R216-R224.

  • 21. Houseman E A, Accomando W P, Koestler D C, Christensen B C, Marsit C J, Nelson H H, et al. DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinformatics. 2012; 13: 86.

  • 22. Parker H S, Corrada Bravo H, Leek J T. Removing batch effects for prediction problems with frozen surrogate variable analysis. PeerJ. 2014; 2: e561.

  • 23. Kaushal A, Zhang H, Karmaus W J J, Ray M, Torres M A, Smith A K, et al. Comparison of different cell type correction methods for genome-scale epigenetics studies. BMC Bioinformatics. 2017; 18: 216.

  • 24. Du P, Zhang X, Huang C-C, Jafari N, Kibbe W A, Hou L, et al. Comparison of Beta-value and M-value methods for quantifying methylation levels by microarray analysis. BMC Bioinformatics. 2010; 11: 587.

  • 25. Yamashita R, Suzuki Y, Sugano S, Nakai K. Genome-wide analysis reveals strong correlation between CpG islands with nearby transcription start sites of genes and their tissue specificity. Gene. 2005. pp. 129-136. doi:10.1016/j.gene.2005.01.012

  • 26. Collins J E, Losina E, Nevitt M C, Roemer F W, Guermazi A, Lynch J A, et al. Semiquantitative Imaging Biomarkers of Knee Osteoarthritis Progression: Data From the Foundation for the National Institutes of Health Osteoarthritis Biomarkers Consortium. Arthritis Rheumatol. 2016; 68: 2422-2431.

  • 27. Kraus V B, Collins J E, Charles H C, Pieper C F, Whitley L, Losina E, et al. Predictive Validity of Radiographic Trabecular Bone Texture in Knee Osteoarthritis: The Osteoarthritis Research Society International/Foundation for the National Institutes of Health Osteoarthritis Biomarkers Consortium. Arthritis Rheumatol. 2018; 70: 80-87.

  • 28. Janvier T, Jennane R, Valery A, Harrar K, Delplanque M, Lelong C, et al.



Subchondral tibial bone texture analysis predicts knee osteoarthritis progression: data from the Osteoarthritis Initiative: Tibial bone texture & knee OA progression. Osteoarthritis Cartilage. 2017; 25: 259-266.

  • 29. Joseph G B, McCulloch C E, Nevitt M C, Neumann J, Gersing A S, Kretzschmar M, et al. Tool for osteoarthritis risk prediction (TOARP) over 8 years using baseline clinical data, X-ray, and MRI: Data from the osteoarthritis initiative. J Magn Reson Imaging. 2018; 47: 1517-1526.
  • 30. Halilaj E, Le Y, Hicks J L, Hastie T J, Delp S L. Modeling and predicting osteoarthritis progression: data from the osteoarthritis initiative. Osteoarthritis Cartilage. 2018; 26: 1643-1650.
  • 31. Fernandez-Moreno M, Soto-Hermida A, Oreiro N, Pértega S, Fenández-López C, Rego-Pérez I, et al. Mitochondrial haplogroups define two phenotypes of osteoarthritis. Front Physiol. 2012; 3: 129.
  • 32. Fernández-Moreno M, Soto-Hermida A, Vázquez-Mosquera M E, Cortés-Pereira E, Relaño S, Hermida-Gómez T, et al. Mitochondrial DNA haplogroups influence the risk of incident knee osteoarthritis in OAI and CHECK cohorts. A meta-analysis and functional study. Ann Rheum Dis. 2017; 76: 1114-1122.
  • 33. Soto-Hermida A, Fernández-Moreno M, Oreiro N, Fernández-López C, Pértega S, Cortés-Pereira E, et al. Mitochondrial DNA (mtDNA) haplogroups influence the progression of knee osteoarthritis. Data from the Osteoarthritis Initiative (OAI). PLoS One. 2014; 9: e112735.
  • 34. Aref-Eshghi E, Zhang Y, Liu M, Harper P E, Martin G, Furey A, et al. Genome-wide DNA methylation study of hip and knee cartilage reveals embryonic organ and skeletal system morphogenesis as major pathways involved in osteoarthritis. BMC Musculoskelet Disord. 2015; 16: 287.
  • 35. Zhang Y, Fukui N, Yahata M, Katsuragawa Y, Tashiro T, Ikegawa S, et al. Identification of DNA methylation changes associated with disease progression in subchondral bone with site-matched cartilage in knee osteoarthritis. Sci Rep. 2016; 6: 34460.
  • 36. Reynard L N. Analysis of genetics and DNA methylation in osteoarthritis: What have we learnt about the disease? Semin Cell Dev Biol. 2016. doi:10.1016/j.semcdb.2016.04.017
  • 37. Minogue B M, Richardson S M, Zeef L A, Freemont A J, Hoyland J A. Transcriptional profiling of bovine intervertebral disc cells: implications for identification of normal and degenerate human intervertebral disc cell phenotypes. Arthritis Res Ther. 2010; 12: R22.
  • 38. Lodewyckx L, Cailotto F, Thysen S, Luyten F P, Lories R J. Tight regulation of wingless-type signaling in the articular cartilage—subchondral bone biomechanical unit: transcriptomics in Frzb-knockout mice. Arthritis Res Ther. 2012; 14: R16.
  • 39. Lin Q, Weidner C I, Costa I G, Marioni R E, Ferreira M R P, Deary I J, et al. DNA methylation levels at individual age-associated CpG sites can be indicative for life expectancy. Aging. 2016; 8: 394-401.
  • 40. Inanir A, Yigit S, Tekcan A, Tural S, Kismali G. IL-4 and MTHFR gene polymorphism in rheumatoid arthritis and their effects. Immunol Lett. 2013; 152: 104-108.
  • 41. Inanir A, Yigit S, Tural S, Cecen O, Yildirim E. MTHFR gene C677T mutation and ACE gene I/D polymorphism in Turkish patients with osteoarthritis. Dis Markers. 2013; 34: 17-22.
  • 42. Dong Y, Wu G, Zhu T, Chen H, Zhu Y, Zhu G, et al. VEGF promotes cartilage angiogenesis by phospho-ERK1/2 activation of D114 signaling in temporomandibular joint osteoarthritis caused by chronic sleep disturbance in Wistar rats. Oncotarget. 2017; 8: 17849.
  • 43. Yang Q, Guo X-P, Cheng Y-L, Wang Y. MicroRNA-143-5p targeting eEF2 gene mediates intervertebral disc degeneration through the AMPK signaling pathway. Arthritis Res Ther. 2019; 21: 97.
  • 44. Zhou S, Lu W, Chen L, Ge Q, Chen D, Xu Z, et al. AMPK deficiency in chondrocytes accelerated the progression of instability-induced and ageing-associated osteoarthritis in adult mice. Sci Rep. 2017; 7: 43245.
  • 45. Wang L, Shan H, Wang B, Wang N, Zhou Z, Pan C, et al. Puerarin Attenuates Osteoarthritis via Upregulating AMP-Activated Protein Kinase/Proliferator-Activated Receptor-γCoactivator-1 Signaling Pathway in Osteoarthritis Rats. Pharmacology. 2018. pp. 117-125. doi:10.1159/000490418
  • 46. Richardson D, Pearson R G, Kurian N, Latif M L, Garle M J, Barrett D A, et al. Characterisation of the cannabinoid receptor system in synovial tissue and fluid in patients with osteoarthritis and rheumatoid arthritis. Arthritis Res Ther. 2008; 10: R43.
  • 47. Meulenbelt I, Bos S D. Faculty of 1000 evaluation for Autophagy is a protective mechanism in normal cartilage, and its aging-related loss is linked with cell death and osteoarthritis. F1000—Post-publication peer review of the biomedical literature. 2010. doi:10.3410/f.2687957.2351056
  • 48. Caramés B, Taniguchi N, Otsuki S, Blanco F J, Lotz M. Autophagy is a protective mechanism in normal cartilage, and its aging-related loss is linked with cell death and osteoarthritis. Arthritis & Rheumatism. 2010. pp. 791-801. doi:10.1002/art.27305
  • 49. Zhang Y, Vasheghani F, Li Y-H, Blati M, Simeone K, Fahmi H, et al. Cartilage-specific deletion of mTOR upregulates autophagy and protects mice from osteoarthritis. Ann Rheum Dis. 2015; 74: 1432-1440.
  • 50. Tornero-Esteban P, Peralta-Sastre A, Herranz E, Rodriguez-Rodriguez L, Mucientes A, Abásolo L, et al. Altered Expression of Wnt Signaling Pathway Components in Osteogenesis of Mesenchymal Stem Cells in Osteoarthritis Patients. PLoS One. 2015; 10: e0137170.
  • 51. Park S, Oh J, Kim Y-I, Choe S-K, Chun C-H, Jin E-J. Suppression of ABCD2 dysregulates lipid metabolism via dysregulation of miR-141:ACSL4 in human osteoarthritis. Cell Biochemistry and Function. 2018. pp. 366-376. doi:10.1002/cbf.3356
  • 52. Chen Q, Liu W, Sinha K M, Yasuda H, de Crombrugghe B. Identification and characterization of microRNAs controlled by the osteoblast-specific transcription factor Osterix. PLoS One. 2013; 8: e58104.
  • 53. Jones S W, Watkins G, Le Good N, Roberts S, Murphy C L, Brockbank S M V, et al. The identification of differentially expressed microRNA in osteoarthritic tissue that modulate the production of TNF-alpha and MMP13. Osteoarthritis Cartilage. 2009; 17: 464-472.
  • 54. Zhang H, Song B, Pan Z. Downregulation of microRNA-9 increases matrix metalloproteinase-13 expression levels and facilitates osteoarthritis onset. Mol Med Rep. 2018; 17: 3708-3714.
  • 55. Zhang Y, Xie R-L, Croce C M, Stein J L, Lian J B, van Wijnen A J, et al. A program of microRNAs controls osteogenic lineage progression by targeting transcription factor Runx2. Proc Natl Acad Sci USA. 2011; 108: 9863-9868.
  • 56. Davidson E, Vitters E L, van Lent P L, van de Loo F A J, van den Berg W B, van der Kraan P M. Elevated extracellular matrix production and degradation upon bone morphogenetic protein-2 (BMP-2) stimulation point toward a role for BMP-2 in cartilage repair and remodeling. Arthritis Research & Therapy. 2007. p. R102. doi:10.1186/ar2305
  • 57. Wang C, Silverman R M, Shen J, O'Keefe R J. Distinct metabolic programs induced by TGF-β1 and BMP2 in human articular chondrocytes with osteoarthritis. J Orthop Translat. 2018; 12: 66-73.
  • 58. Hicks J J, Rocha J L, Li H, Huard J, Wang Y, Hogan M V. Sustained Release of Bone Morphogenetic Protein 2 via Coacervate improves Muscle Derived Stem Cell Mediated Cartilage Regeneration in MIA-induced Osteoarthritis. Orthopaedic Journal of Sports Medicine. 2016. p. 2325967116S0015. doi:10.1177/2325967116s00152
  • 59. Wirth W, Duryea J, Hellio Le Graverand M-P, John M R, Nevitt M, Buck R J, et al. Direct comparison of fixed flexion, radiography and MRI in knee osteoarthritis: responsiveness data from the Osteoarthritis Initiative. Osteoarthritis Cartilage. 2013; 21: 117-125.
  • 60. Eckstein F, Collins J E, Nevitt M C, Lynch J A, Kraus V B, Katz J N, et al. Brief Report: Cartilage Thickness Change as an Imaging Biomarker of Knee Osteoarthritis Progression: Data From the Foundation for the National Institutes of Health Osteoarthritis Biomarkers Consortium. Arthritis Rheumatol. 2015; 67: 3184-3189.
  • 61. Ruhdorfer A, Haniel F, Petersohn T, Dörrenberg J, Wirth W, Dannhauer T, et al. Between-group differences in infra-patellar fat pad size and signal in symptomatic and radiographic progression of knee osteoarthritis vs non-progressive controls and healthy knees—data from the FNIH Biomarkers Consortium Study and the Osteoarthritis Initiative. Osteoarthritis Cartilage. 2017; 25: 1114-1121.
  • 62. Wirth W, Hunter D J, Nevitt M C, Sharma L, Kwoh C K, Ladel C, et al. Predictive and concurrent validity of cartilage thickness change as a marker of knee osteoarthritis progression: data from the Osteoarthritis Initiative. Osteoarthritis Cartilage. 2017; 25: 2063-2071.
  • 63. Kraus V B, McDaniel G, Huebner J L, Stabler T V, Pieper C F, Shipes S W, et al. Direct in vivo evidence of activated macrophages in human osteoarthritis. Osteoarthritis Cartilage. 2016. doi:10.1016/j.joca.2016.04.010
  • 64. Daghestani H N, Pieper C F, Kraus V B. Soluble macrophage biomarkers indicate inflammatory phenotypes in patients with knee osteoarthritis. Arthritis Rheumatol. 2015; 67: 956-965.
  • 65. Zhang L, Xing R, Huang Z, Zhang N, Zhang L, Li X, et al. Inhibition of Synovial Macrophage Pyroptosis Alleviates Synovitis and Fibrosis in Knee Osteoarthritis. Mediators Inflamm. 2019; 2019: 2165918.
  • 66. Kraus V B, Burnett B, Coindreau J, Cottrell S, Eyre D, Gendreau M, et al.


Application of biomarkers in the development of drugs intended for the treatment of osteoarthritis. Osteoarthritis Cartilage. 2011; 19: 515-542.

  • 67. Ornetti P, Brandt K, Hellio-Le Graverand M-P, Hochberg M, Hunter D J, Kloppenburg M, et al. OARSI-OMERACT definition of relevant radiological progression in hip/knee osteoarthritis. Osteoarthritis Cartilage. 2009; 17: 856-863.
  • 68. McGregor K, Bernatsky S, Colmegna I, Hudson M, Pastinen T, Labbe A, et al. An evaluation of methods correcting for cell type heterogeneity in DNA methylation studies. doi:10.1101/032185
  • 69. Krstajic D, Buturovic L J, Leahy D E, Thomas S. Cross-validation pitfalls when selecting and assessing regression and classification models. J Cheminform. 2014; 6: 10.

Claims
  • 1. A method for determining whether a subject diagnosed with osteoarthritis is at increased risk for progression to severe osteoarthritis within 12-24 months, the method comprising the steps of: (a) preparing a blood sample;(b) measuring in the blood sample prepared in step (a) a level of DNA methylation;(c) comparing the DNA methylation level(s) measured in step (b) to a control blood sample level(s) of DNA methylation in a subject without osteoarthritis; and(d) identifying the subject as being at increased risk for progression to severe osteoarthritis within 12-24 months when the DNA methylation is increased by at least 2 fold as compared to the control blood level(s) of DNA methylation.
  • 2. The method of claim 1, wherein the blood sample comprises peripheral blood mononuclear cells or cell-free DNA.
  • 3. The method of claim 1, further comprising the step of preprocessing the array data by: excluding from analysis CpG probes located on sex chromosomes, probes with known single nucleotide polymorphisms (SNPs) with minor allele frequency of ≥5%, and probes not detected in all samples.
  • 4. The method of claim 3, wherein the control subject (i) is matched to the tested subject by at least one of: age category, sex, BMI category, ethnicity, or baseline KL radiographic grade; and (ii) does not have osteoarthritis as determined by both radiographic and symptomatic examination.
  • 5. The method of claim 1, wherein the control blood level of the DNA methylation is a predetermined standard.
  • 6. The method of claim 1, wherein the DNA methylation is determined with a 450k, or 850k array, or CpG sites associates with at least one of: an antigen presentation pathway, adenosine monophosphate kinase (AMPK) signaling pathway, or a sonic hedgehog signaling pathway, or one or more top upstream regulators identified by IPA selected from transcription factor PITX2, histone H3, histone H4, miR-141, miR-9, miR-137, bone morphogenic protein 2, a TGF-β superfamily member, or 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, or 13 markers selected from cg04195161, cg22064129, cg04985016, cg12692919, cg04043957, cg08872579, cg02019955, cg01333532, cg23705082, cg05042110, cg00715363, cg01307007 and cg09239099.
  • 7. The method of claim 1, wherein the subject is human.
  • 8. The method of claim 1, wherein the osteoarthritis is a knee osteoarthritis.
  • 9. The method of claim 8, wherein the subject has a Kellgren-Lawrence (KL) score of 1-3 in at least one knee.
  • 10. The method of claim 1, further comprising the step of treating the osteoarthritis wherein the treatment is at least one of acetaminophen, steroids, hyaluronic acid, nonsteroidal anti-inflammatory drugs (NSAIDs), or Duloxetine.
  • 11. A method for treating osteoarthritis in a subject, wherein the subject has been diagnosed with osteoarthritis but does not have severe osteoarthritis, the method comprising the steps of: (a) measuring in a blood plasma sample obtained from the subject the plasma level of DNA methylation; and(b) if the plasma level DNA methylation is increased by at least 2 fold as compared to a control plasma level(s) of the DNA methylation in a subject without osteoarthritis, administering an osteoarthritis treatment to the subject.
  • 12. The method of claim 11, wherein the subject has been diagnosed with knee osteoarthritis and has a Kellgren-Lawrence (KL) score of 1-3 in at least one knee.
  • 13. The method of claim 11, wherein the subject is human.
  • 14. The method of claim 11, wherein the blood plasma sample obtained from the subject has been prepared in the presence of heparin.
  • 15. The method of claim 11, wherein the DNA methylation is determined with a 450k, or 850k array, or CpG sites associates with at least one of: an antigen presentation pathway, adenosine monophosphate kinase (AMPK) signaling pathway, or a sonic hedgehog signaling pathway, or one or more top upstream regulators identified by IPA selected from transcription factor PITX2, histone H3, histone H4, miR-141, miR-9, miR-137, bone morphogenic protein 2, a TGF-β superfamily member, or 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, or 13 markers selected from cg04195161, cg22064129, cg04985016, cg12692919, cg04043957, cg08872579, cg02019955, cg01333532, cg23705082, cg05042110, cg00715363, cg01307007 and cg09239099.
  • 16. The method of claim 11, wherein the control blood level of the DNA methylation is a level of DNA methylation in a similarly processed blood sample from a control subject or a mean level of several control subjects.
  • 17. The method of claim 16, wherein the control subject (i) is matched to the tested subject by at least one of: age category, sex, BMI category, ethnicity, or baseline KL radiographic grade; and (ii) does not have osteoarthritis as determined by both radiographic and symptomatic examination.
  • 18. The method of claim 11, wherein the control plasma level of the DNA methylation is a predetermined standard.
  • 19. The method of claim 11, wherein the osteoarthritis treatment is at least one of acetaminophen, steroids, hyaluronic acid, nonsteroidal anti-inflammatory drugs (NSAIDs), or Duloxetine.
  • 20. A method for treating osteoarthritis in a subject, the method comprising administering an osteoarthritis treatment to a subject with elevated plasma levels of DNA methylation, wherein the subject does not have severe osteoarthritis.
  • 21. The method of claim 20, wherein the subject has been diagnosed with knee osteoarthritis and has a Kellgren-Lawrence (KL) score of 1-3 in at least one knee.
  • 22. The method of claim 20, wherein the subject is human.
  • 23. The method of claim 20, wherein the osteoarthritis treatment is at least one of acetaminophen, steroids, hyaluronic acid, nonsteroidal anti-inflammatory drugs (NSAIDs), or Duloxetine.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority based on U.S. Provisional Application No. 63/112,973, filed Nov. 12, 2021. The contents of which is incorporated by reference in its entirety.

STATEMENT OF FEDERALLY FUNDED RESEARCH

This invention was made with government support under K08-AR070891 and P30-AR053483 awarded by the National Institutes of Health. The government has certain rights in the invention.

Provisional Applications (1)
Number Date Country
63112973 Nov 2020 US