Tablet computing devices sometimes include alternative input devices, such as a stylus. Storing of a stylus, however, may create a couple of design challenges. There are two conventional solutions to this problem. In a first example, an internal slot is used to store and retain the stylus through friction or through a push-push type mechanism. This may create a problem where extra space and parts are required inside the device, thereby increasing the complexity of the device and may therefore hinder the user's experience with the device. In another example a lanyard and a pen cap are used. This conventional solution may also create problems. The lanyard, for instance, may operate somewhat as an uncontrolled appendage and therefore get caught on other objects, pen caps tend to let the pen fall out due to limitations of a retention force that may be used, and so on.
Peripheral device storage techniques are described. In one or more implementations, a computing device includes a housing and a power connection port that is configured to form a physical coupling to a peripheral device sufficient to retain the peripheral device against the housing and form an electrical coupling configured to receive power at the computing device from a power adapter.
In one or more implementations, a stylus includes a housing of a computing device configured to be grasped by a hand of a user and a protrusion disposed on the housing, the protrusion configured to form a physical coupling to a power connection port of the computing device that is sufficient to retain the housing against the computing device.
In one or more implementation, a system includes a device having a protrusion. The system also includes a computing device having a power connection port that is configured to form a magnetic physical coupling to the protrusion of the device sufficient to retain the stylus against the computing device and form an electrical coupling configured to receive power at the computing device from a power adapter.
This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter.
The detailed description is described with reference to the accompanying figures. In the figures, the left-most digit(s) of a reference number identifies the figure in which the reference number first appears. The use of the same reference numbers in different instances in the description and the figures may indicate similar or identical items. Entities represented in the figures may be indicative of one or more entities and thus reference may be made interchangeably to single or plural forms of the entities in the discussion.
Overview
Computing devices may employ a wide range of peripheral devices to support different types of user interaction with the device. This may include input devices that are configured to be used in addition to the computing device, an example of which is a stylus. However, conventional techniques that were utilized to store peripheral devices were often cumbersome and hindered a user's interaction with both the peripheral device and the computing device.
Computing device peripheral storage techniques are described. In one or more implementations, a computing device includes a power connection port. The power connection port is configured to be physically (e.g., through the use of magnetism) and electrically connected to a power adapter. In this way, the computing device may receive power to operate the computing device as well as charge a battery of the computing device.
The magnetism of the power connection port may also be leveraged for storage of a peripheral device, an example of which is a stylus. The stylus may include a protrusion that is configured to be received and retained within the power connection port. This may cause the stylus to be physically secured to the computing device for storage of the stylus. In this way, the power connection port of the computing device may be employed for a variety of functionality, thereby supporting a mobile form factor of the computing device. A variety of other features may also be supported, further discussion of which may be found in relation to the following sections.
In the following discussion, an example environment is first described that may employ the techniques described herein. Example procedures are then described which may be performed in the example environment as well as other environments. Consequently, performance of the example procedures is not limited to the example environment and the example environment is not limited to performance of the example procedures.
Example Environment
The computing device 102 may be configured in a variety of ways. For example, a computing device may be configured as a computer that is capable of communicating over a network, such as a desktop computer, a mobile station, an entertainment appliance, a set-top box communicatively coupled to a display device, a wireless phone, a game console, and so forth. Thus, the computing device 102 may range from full resource devices with substantial memory and processor resources (e.g., personal computers, game consoles) to a low-resource device with limited memory and/or processing resources (e.g., traditional set-top boxes, hand-held game consoles). Additionally, although a single computing device 102 is shown, the computing device 102 may be representative of a plurality of different devices, such as multiple servers utilized by a business to perform operations such as by a web service, a remote control and set-top box combination, an image capture device and a game console configured to capture gestures, and so on. Further discussion of different configurations that may be assumed by the computing device may be found in relation to
The computing device 102 is further illustrated as including an operating system 108. The operating system 108 is configured to abstract underlying functionality of the computing device 102 to applications 110 that are executable on the computing device 102. For example, the operating system 108 may abstract the processing system 104, memory 106, network, and/or display device 112 functionality of the computing device 102 such that the applications 110 may be written without knowing “how” this underlying functionality is implemented. The application 110, for instance, may provide data to the operating system 108 to be rendered and displayed by the display device 112 without understanding how this rendering will be performed. The operating system 108 may also represent a variety of other functionality, such as to manage a file system and user interface that is navigable by a user of the computing device 102.
The computing device 102 may support a variety of different interactions. For example, the computing device 102 may include one or more hardware devices that are manipulable by a user to interact with the device, which may include peripheral devices such as a keyboard, cursor control device (e.g., mouse), a stylus 114, and so on.
In the illustrated example, first and second hands 116, 118 of a user are shown. The first hand 116 of the user is shown as holding a housing 120 of the computing device 102. The second hand 118 of the user is illustrated as providing one or more inputs using the stylus 114 that are detected using touchscreen functionality of the display device 112 to perform an operation, such as to launch an application. Thus, recognition of the inputs may be leveraged to interact with a user interface output by the computing device 102, such as to interact with a game, an application, browse the internet, change one or more settings of the computing device 102, and so forth. Although a stylus 114 is shown, a variety of other peripheral devices are also contemplated, such as a mouse or other cursor control device, output device, and so on.
The computing device 102 is also illustrated as including a power connection port 122. The power connection port 122 is configured to form a physical and electrical coupling to a power adapter 124 to obtain operational power, which may including charging a battery 126 of the computing device 102. For example, the power connection port 122 may be configured to magnetically couple to a cord of the power adapter 124. Once coupled, the power connection port 122 may receive power of the power adapter 124 from an electrical wall socket. In this way, the computing device 102 may obtain power “from the grid” to operate. The power connection port 122 may also be leveraged for a variety of other purposes, such as to secure a peripheral device, further discussion of which may be found beginning in relation to the following figure.
For example, a magnet of the power connection port 122 may be configured to attract a ferrous connection portion of the power adapter 124 thus forming a physical connection between the two using magnetism. Further, this design may help protect against inadvertent contact with the power connection port 122, which may cause grounding, potential harm to a user, and so on. As previously described, the power connection port 122 may also be configured to support storage of a peripheral device, an example of which may be found in relation to the following figure. Although a power connection port 122 is described, other magnetic devices may also be leveraged of the computing device 102 to provide similar functionality. Further, the power connection port 122 itself may also support a variety of functionality, such as to also communicate data by provide a physical connection with a peripheral device.
The stylus 114 is illustrated as secured against the side surface 402 of the housing 120. Because the side surface 402 forms an angle, the stylus 114 is protected against inadvertent detachment from forces approaching from the top surface 404 of the housing. However, the stylus 114 may also be easily grasped by the fingers of a user's hand when approaching the stylus 114 from the rear surface 406 of the housing 120. In this way, both protection and ease of interaction with the secured peripheral device are promoted.
As previously described, the stylus 114 may be secured to the power connection portion 122 using magnetism. This may be performed by using a magnet 504 in the power connection portion 122 that is configured to form a magnetic coupling with a ferrous material of the protrusion 502. A variety of other examples are also contemplated, such as to form the protrusion 502 using a magnet, the power connection portion 122 from a ferrous material that is not magnetized, and so on.
The power connection portion 122 in this example includes a plurality of pins 506 that are configured to provide an electrical coupling between the computing device 102 and the power adapter 124, such as to charge the battery 126. In one or more implementations, the peripheral device (e.g., the stylus 114) is not configured to avail itself of power of the computing device 102. Accordingly, the protrusion 502 of the stylus 114 may include one or more indentions 508 such that the protrusion 502 does not contact the pins 506. Other examples are also contemplated, such as to support contact in situations in which the peripheral device (e.g., stylus 114) is to receive power from the computing device 102, such as to charge a battery of the peripheral device. For example, the stylus 112 may include a passive oscillating circuit to receive power from the computing device 102. Accordingly, the protrusion 502 may be formed in a variety of ways to support a variety of different functionality, examples of which may be found in relation to the following discussion and corresponding figure.
In the second example 604, the protrusion includes a series of dimples, each formed to avoid contact with a respective one of the pins 506 of the power connection portion 122. In the third example 606, a channel having bound ends is shown. Other examples are also contemplated in which contact is desired, one example of which is illustrated in the fourth example 608. It should be readily apparent that a wide variety of other designs of the protrusion are also contemplated without departing from the spirit and scope thereof.
The protrusion may also be leveraged to support functionality in addition to attachment to the computing device 102. The protrusion, for instance, may be configured to support an input to be provided to the computing device, such as through wireless functionality. For example, the protrusion may be configured to act as a selection input (e.g., a “click”) of a cursor control device, such as a “right click” or “left click.” In this way, the protrusion may also serve to support a variety of functionality in an efficient manner. Although a stylus 114 was described in the above examples, it should be apparent that other peripheral devices are also contemplated, such as cursor control devices (e.g., a mouse) or other input or output devices that may be configured to support use of the power connection port 122 to secure the device.
Example System and Device
The example computing device 702 as illustrated includes a processing system 704, one or more computer-readable media 706, and one or more I/O interface 708 that are communicatively coupled, one to another. Although not shown, the computing device 702 may further include a system bus or other data and command transfer system that couples the various components, one to another. A system bus can include any one or combination of different bus structures, such as a memory bus or memory controller, a peripheral bus, a universal serial bus, and/or a processor or local bus that utilizes any of a variety of bus architectures. A variety of other examples are also contemplated, such as control and data lines.
The processing system 704 is representative of functionality to perform one or more operations using hardware. Accordingly, the processing system 704 is illustrated as including hardware element 710 that may be configured as processors, functional blocks, and so forth. This may include implementation in hardware as an application specific integrated circuit or other logic device formed using one or more semiconductors. The hardware elements 710 are not limited by the materials from which they are formed or the processing mechanisms employed therein. For example, processors may be comprised of semiconductor(s) and/or transistors (e.g., electronic integrated circuits (ICs)). In such a context, processor-executable instructions may be electronically-executable instructions.
The computer-readable storage media 706 is illustrated as including memory/storage 712. The memory/storage 712 represents memory/storage capacity associated with one or more computer-readable media. The memory/storage component 712 may include volatile media (such as random access memory (RAM)) and/or nonvolatile media (such as read only memory (ROM), Flash memory, optical disks, magnetic disks, and so forth). The memory/storage component 712 may include fixed media (e.g., RAM, ROM, a fixed hard drive, and so on) as well as removable media (e.g., Flash memory, a removable hard drive, an optical disc, and so forth). The computer-readable media 706 may be configured in a variety of other ways as further described below.
Input/output interface(s) 708 are representative of functionality to allow a user to enter commands and information to computing device 702, and also allow information to be presented to the user and/or other components or devices using various input/output devices. Examples of input devices include a keyboard, a cursor control device (e.g., a mouse), a microphone, a scanner, touch functionality (e.g., capacitive or other sensors that are configured to detect physical touch), a camera (e.g., which may employ visible or non-visible wavelengths such as infrared frequencies to recognize movement as gestures that do not involve touch), and so forth. Examples of output devices include a display device (e.g., a monitor or projector), speakers, a printer, a network card, tactile-response device, and so forth. Thus, the computing device 702 may be configured in a variety of ways to support user interaction.
The computing device 702 is further illustrated as being physically coupled to a peripheral device 714 that is physically removable from the computing device 702, e.g., using magnetism. In this way, a variety of different input devices may be coupled to the computing device 702 having a wide variety of configurations to support a wide variety of functionality.
Various techniques may be described herein in the general context of software, hardware elements, or program modules. Generally, such modules include routines, programs, objects, elements, components, data structures, and so forth that perform particular tasks or implement particular abstract data types. The terms “module,” “functionality,” and “component” as used herein generally represent software, firmware, hardware, or a combination thereof. The features of the techniques described herein are platform-independent, meaning that the techniques may be implemented on a variety of commercial computing platforms having a variety of processors.
An implementation of the described modules and techniques may be stored on or transmitted across some form of computer-readable media. The computer-readable media may include a variety of media that may be accessed by the computing device 702. By way of example, and not limitation, computer-readable media may include “computer-readable storage media” and “computer-readable signal media.”
“Computer-readable storage media” may refer to media and/or devices that enable persistent and/or non-transitory storage of information in contrast to mere signal transmission, carrier waves, or signals per se. Thus, computer-readable storage media refers to non-signal bearing media. The computer-readable storage media includes hardware such as volatile and non-volatile, removable and non-removable media and/or storage devices implemented in a method or technology suitable for storage of information such as computer readable instructions, data structures, program modules, logic elements/circuits, or other data. Examples of computer-readable storage media may include, but are not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disks (DVD) or other optical storage, hard disks, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or other storage device, tangible media, or article of manufacture suitable to store the desired information and which may be accessed by a computer.
“Computer-readable signal media” may refer to a signal-bearing medium that is configured to transmit instructions to the hardware of the computing device 702, such as via a network. Signal media typically may embody computer readable instructions, data structures, program modules, or other data in a modulated data signal, such as carrier waves, data signals, or other transport mechanism. Signal media also include any information delivery media. The term “modulated data signal” means a signal that has one or more of its characteristics set or changed in such a manner as to encode information in the signal. By way of example, and not limitation, communication media include wired media such as a wired network or direct-wired connection, and wireless media such as acoustic, RF, infrared, and other wireless media.
As previously described, hardware elements 710 and computer-readable media 706 are representative of modules, programmable device logic and/or fixed device logic implemented in a hardware form that may be employed in some embodiments to implement at least some aspects of the techniques described herein, such as to perform one or more instructions. Hardware may include components of an integrated circuit or on-chip system, an application-specific integrated circuit (ASIC), a field-programmable gate array (FPGA), a complex programmable logic device (CPLD), and other implementations in silicon or other hardware. In this context, hardware may operate as a processing device that performs program tasks defined by instructions and/or logic embodied by the hardware as well as a hardware utilized to store instructions for execution, e.g., the computer-readable storage media described previously.
Combinations of the foregoing may also be employed to implement various techniques described herein. Accordingly, software, hardware, or executable modules may be implemented as one or more instructions and/or logic embodied on some form of computer-readable storage media and/or by one or more hardware elements 710. The computing device 702 may be configured to implement particular instructions and/or functions corresponding to the software and/or hardware modules. Accordingly, implementation of a module that is executable by the computing device 702 as software may be achieved at least partially in hardware, e.g., through use of computer-readable storage media and/or hardware elements 710 of the processing system 704. The instructions and/or functions may be executable/operable by one or more articles of manufacture (for example, one or more computing devices 702 and/or processing systems 704) to implement techniques, modules, and examples described herein.
Although the example implementations have been described in language specific to structural features and/or methodological acts, it is to be understood that the implementations defined in the appended claims is not necessarily limited to the specific features or acts described. Rather, the specific features and acts are disclosed as example forms of implementing the claimed features.
This application claims priority under 35 U.S.C. §119(e) to U.S. Provisional Application No. 61/659,342, filed Jun. 13, 2012, and titled “Stylus Storage,” the entire disclosure of which is hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
4279021 | See et al. | Jul 1981 | A |
4326193 | Markley et al. | Apr 1982 | A |
5510783 | Findlater et al. | Apr 1996 | A |
5576981 | Parker et al. | Nov 1996 | A |
6147859 | Abboud | Nov 2000 | A |
6266685 | Danielson et al. | Jul 2001 | B1 |
6442764 | Badillo et al. | Sep 2002 | B1 |
6738049 | Kiser et al. | May 2004 | B2 |
6864573 | Robertson et al. | Mar 2005 | B2 |
7091955 | Kramer | Aug 2006 | B2 |
7095404 | Vincent et al. | Aug 2006 | B2 |
7116309 | Kimura et al. | Oct 2006 | B1 |
7202837 | Ihara | Apr 2007 | B2 |
7401992 | Lin | Jul 2008 | B1 |
7423557 | Kang | Sep 2008 | B2 |
7622907 | Vranish | Nov 2009 | B2 |
7623121 | Dodge | Nov 2009 | B2 |
7639876 | Clary et al. | Dec 2009 | B2 |
7817428 | Greer, Jr. et al. | Oct 2010 | B2 |
7907394 | Richardson et al. | Mar 2011 | B2 |
8269093 | Naik et al. | Sep 2012 | B2 |
8363036 | Liang | Jan 2013 | B2 |
20010035859 | Kiser | Nov 2001 | A1 |
20020000977 | Vranish | Jan 2002 | A1 |
20020126445 | Minaguchi et al. | Sep 2002 | A1 |
20020154099 | Oh | Oct 2002 | A1 |
20020188721 | Lemel et al. | Dec 2002 | A1 |
20030016282 | Koizumi | Jan 2003 | A1 |
20030044215 | Monney et al. | Mar 2003 | A1 |
20030132916 | Kramer | Jul 2003 | A1 |
20040005184 | Kim et al. | Jan 2004 | A1 |
20040100457 | Mandle | May 2004 | A1 |
20040174670 | Huang et al. | Sep 2004 | A1 |
20040190239 | Weng et al. | Sep 2004 | A1 |
20040212598 | Kraus et al. | Oct 2004 | A1 |
20050057521 | Aull et al. | Mar 2005 | A1 |
20050190159 | Skarine | Sep 2005 | A1 |
20050240949 | Liu et al. | Oct 2005 | A1 |
20060082973 | Egbert et al. | Apr 2006 | A1 |
20060103633 | Gioeli | May 2006 | A1 |
20060181521 | Perreault et al. | Aug 2006 | A1 |
20060197755 | Bawany | Sep 2006 | A1 |
20060238510 | Panotopoulos et al. | Oct 2006 | A1 |
20070051766 | Spencer | Mar 2007 | A1 |
20070051792 | Wheeler et al. | Mar 2007 | A1 |
20070247338 | Marchetto | Oct 2007 | A1 |
20070257821 | Son et al. | Nov 2007 | A1 |
20080018611 | Serban et al. | Jan 2008 | A1 |
20080180411 | Solomon et al. | Jul 2008 | A1 |
20080232061 | Wang et al. | Sep 2008 | A1 |
20080297878 | Brown et al. | Dec 2008 | A1 |
20080309636 | Feng et al. | Dec 2008 | A1 |
20090002218 | Rigazio et al. | Jan 2009 | A1 |
20090007001 | Morin et al. | Jan 2009 | A1 |
20090046416 | Daley, III | Feb 2009 | A1 |
20090049979 | Naik et al. | Feb 2009 | A1 |
20090065267 | Sato | Mar 2009 | A1 |
20090135142 | Fu et al. | May 2009 | A1 |
20090182901 | Callaghan et al. | Jul 2009 | A1 |
20090219250 | Ure | Sep 2009 | A1 |
20100001963 | Doray et al. | Jan 2010 | A1 |
20100021022 | Pittel et al. | Jan 2010 | A1 |
20100075517 | Ni et al. | Mar 2010 | A1 |
20100103131 | Segal et al. | Apr 2010 | A1 |
20100162109 | Chatterjee et al. | Jun 2010 | A1 |
20100188338 | Longe | Jul 2010 | A1 |
20100231556 | Mines et al. | Sep 2010 | A1 |
20100238119 | Dubrovsky et al. | Sep 2010 | A1 |
20100245221 | Khan | Sep 2010 | A1 |
20100321301 | Casparian et al. | Dec 2010 | A1 |
20110007008 | Algreatly | Jan 2011 | A1 |
20110050587 | Natanzon et al. | Mar 2011 | A1 |
20110057899 | Sleeman et al. | Mar 2011 | A1 |
20110095994 | Birnbaum | Apr 2011 | A1 |
20110096513 | Kim | Apr 2011 | A1 |
20110234502 | Yun et al. | Sep 2011 | A1 |
20110248941 | Abdo et al. | Oct 2011 | A1 |
20110267300 | Serban et al. | Nov 2011 | A1 |
20110304962 | Su | Dec 2011 | A1 |
20120068933 | Larsen | Mar 2012 | A1 |
20120072167 | Cretella, Jr. et al. | Mar 2012 | A1 |
20120087078 | Medica et al. | Apr 2012 | A1 |
20120099263 | Lin | Apr 2012 | A1 |
20120106082 | Wu et al. | May 2012 | A1 |
20120155015 | Govindasamy et al. | Jun 2012 | A1 |
20120235921 | Laubach | Sep 2012 | A1 |
20120287562 | Wu et al. | Nov 2012 | A1 |
20120328349 | Isaac et al. | Dec 2012 | A1 |
20130050922 | Lee et al. | Feb 2013 | A1 |
20130107144 | Marhefka et al. | May 2013 | A1 |
20130229386 | Bathiche | Sep 2013 | A1 |
20130278552 | Kamin-Lyndgaard | Oct 2013 | A1 |
20130335330 | Lane | Dec 2013 | A1 |
20130335902 | Campbell | Dec 2013 | A1 |
20130342464 | Bathiche et al. | Dec 2013 | A1 |
20130342465 | Bathiche | Dec 2013 | A1 |
20130346636 | Bathiche | Dec 2013 | A1 |
Number | Date | Country |
---|---|---|
2178570 | Feb 1987 | GB |
11345041 | Dec 1999 | JP |
1038411 | May 2012 | NL |
WO-2010011983 | Jan 2010 | WO |
WO-2012036717 | Mar 2012 | WO |
Entry |
---|
“Cholesteric Liquid Crystal”, Retrieved from: <http://en.wikipedia.org/wiki/Cholesteric—liquid—crystal> on Aug. 6, 2012,(Jun. 10, 2012), 2 pages. |
“i-Interactor electronic pen”, Retrieved from: <http://www.alibaba.com/product-gs/331004878/i—Interactor—electronic—pen.html> on Jun. 19, 2012, 5 pages. |
“MPC Fly Music Production Controller”, AKAI Professional, Retrieved from: <http://www.akaiprompc.com/mpc-fly> on Jul. 9, 2012, 4 pages. |
“Reflex LCD Writing Tablets”, retrieved from <http://www.kentdisplays.com/products/lcdwritingtablets.html> on Jun. 27, 2012, 3 pages. |
“Smart Board™ Interactive Display Frame Pencil Pack”, Available at <http://downloads01.smarttech.com/media/sitecore/en/support/product/sbfpd/400series(interactivedisplayframes)/guides/smartboardinteractivedisplayframepencilpackv12mar09.pdf>,(2009), 2 pages. |
Qin, Yongqiang et al., “pPen: Enabling Authenticated Pen and Touch Interaction on Tabletop Surfaces”, In Proceedings of ITS 2010, Available at <http://www.dfki.de/its2010/papers/pdf/po172.pdf>,(Nov. 2010), pp. 283-284. |
Sumimoto, Mark “Touch & Write: Surface Computing With Touch and Pen Input”, Retrieved from: <http://www.gottabemobile.com/2009/08/07/touch-write-surface-computing-with-touch-and-pen-input/> on Jun. 19, 2012,(Aug. 7, 2009), 4 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2013/044871, (Aug. 14, 2013), 12 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2013/045049, (Sep. 16, 2013), 9 pages. |
“Write & Learn Spellboard Advanced”, Available at <http://somemanuals.com/VTECH,WRITE%2526LEARN--SPELLBOARD--ADV--71000,JIDFHE.PDF>, (2006) 22 pages. |
Bathiche, Steven N., et al., “Input Device with Interchangeable Surface”, U.S. Appl. No. 13/974,749, (Aug. 23, 2013), 51 pages. |
Lance, David M., et al., “Media Processing Input Device”, U.S. Appl. No. 13/655,065, (Oct. 18, 2012), 43 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2013/044873, Nov. 22, 2013, 9 pages. |
Van “Lenovo Thinkpad Tablet 2 Review”, Retrieved from: <http://www.digitaltrends.com/tablet-reviews/lenovo-thinkpad-tablet-2-review/> Jan. 29, 2014, Feb. 12, 2013, 7 Pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2013/045283, Mar. 12, 2014, 19 pages. |
“Microsoft Tablet PC”, Retrieved from <http://web.archive.org/web/20120622064335/https://en.wikipedia.org/wiki/Microsoft—Tablet—PC> on Jun. 4, 2014, Jun. 21, 2012, 9 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/599,763, May 28, 2014, 6 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/655,065, Apr. 24, 2014, 16 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/974,994, Jun. 4, 2014, 24 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/975,087, May 8, 2014, 18 pages. |
“Ex Parte Quayle Action”, U.S. Appl. No. 13/599,763, Nov. 14, 2014, 6 pages. |
“Final Office Action”, U.S. Appl. No. 13/655,065, Aug. 8, 2014, 20 pages. |
“Final Office Action”, U.S. Appl. No. 13/974,994, Oct. 6, 2014, 26 pages. |
“Final Office Action”, U.S. Appl. No. 13/975,087, Sep. 10, 2014, 19 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/647,479, Jul. 3, 2014, 10 pages. |
“Final Office Action”, U.S. Appl. No. 13/647,479, filed Dec. 12, 2014, 12 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/655,065, filed Dec. 19, 2014, 24 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/974,994, filed Jan. 23, 2015, 26 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/975,087, filed Feb. 27, 2015, 20 pages. |
“Notice of Allowance”, U.S. Appl. No. 13/599,763, filed Feb. 18, 2015, 4 pages. |
“Snugg iPad 3 Keyboard Case—Cover Ultra Slim Bluetooth Keyboard Case for the iPad 3 & iPad 2”, Retrieved from <https://web.archive.org/web/20120810202056/http://www.amazon.com/Snugg-iPad-Keyboard-Case-Bluetooth/dp/B008CCHXJE> on Jan. 23, 2015, Aug. 10, 2012, 4 pages. |
“Writer 1 for iPad 1 keyboard + Case (Aluminum Bluetooth Keyboard, Quick Eject and Easy Angle Function!)”, Retrieved from <https://web.archive.org/web/20120817053825/http://www.amazon.com/keyboard-Aluminum-Bluetooth-Keyboard-Function/dp/B004OQLSLG> on Jan. 23, 2015, Aug. 17, 2012, 5 pages. |
“Final Office Action”, U.S. Appl. No. 13/655,065, Apr. 2, 2015, 23 pages. |
Number | Date | Country | |
---|---|---|---|
20130335903 A1 | Dec 2013 | US |
Number | Date | Country | |
---|---|---|---|
61659342 | Jun 2012 | US |