The present invention relates generally to medical devices, and specifically to infusion pumps.
Various types of medical infusion pumps are known in the art. One common type of infusion pump is a peristaltic pump, in which fluid is made to flow through an elastic tube by external compression of the tube. Typically, a peristaltic mechanism, such as a set of cams or fingers, compresses the tube in a cyclic pattern at a sequence of locations along the length of the tube, so as to cause the fluid to flow through the tube at a desired volumetric rate. Peristaltic infusion pumps are described, for example, in U.S. Pat. Nos. 5,290,158, 5,395,320, and 5,807,322, whose disclosures are incorporated herein by reference, as well as in the above-mentioned PCT patent applications.
One advantage of peristaltic pumps in medical applications is that the pump mechanism is external to the flexible tube containing the fluid, thus preserving the sterility of the fluid flowing through the tube. The tube is typically part of a disposable infusion kit, while the pump itself (which may include the complete pumping mechanism, as well as a pressure sensor module) is reused many times. Embodiments of the present invention that are described hereinbelow provide devices and methods that simplify the task of attaching the infusion tube to the pump prior to use, while ensuring a secure, reliable mechanical connection between the pump mechanism and the tube.
There is therefore provided, in accordance with an embodiment of the present invention, a medical apparatus, including an infusion pump, which includes a pump body and a peristaltic mechanism, which protrudes from the pump body and is configured to exert a force on a flexible infusion tube so as to propel a fluid through the tube. A hinge receptacle is fixed to the pump body and defines a hinge axis, and a catch receptacle is also fixed to the pump body. A mechanical interface unit is configured to hold a portion of the tube, and includes a hinge insert, which is configured to engage the hinge receptacle. A catch insert is configured to lock onto the catch receptacle upon rotation of the mechanical interface unit about the hinge axis while the hinge insert engages the hinge receptacle, so as to bring the tube into engagement with the peristaltic mechanism.
In a disclosed embodiment, the peristaltic mechanism includes multiple fingers, which are driven to compress and release the tube in a predetermined cyclic pattern.
In some embodiments, the peristaltic mechanism has a linear configuration, and the mechanical interface has an elongated shape corresponding to the linear configuration of the peristaltic mechanism.
In one embodiment, the hinge receptacle includes an axle, and the hinge insert includes a saddle, which fits over the axle. The axle and saddle may be split so as to define a channel for receiving the portion of the tube. Additionally or alternatively, the catch insert includes a tooth, and the catch receptacle includes an elastic catch.
In some embodiments, the pump body includes a rim surrounding the peristaltic mechanism, and the mechanical interface unit includes collars, which are fixed to opposing ends of the portion of the tube and lodge against the rim. The infusion pump may include a door, which closes over the rim so as to enclose the peristaltic mechanism. The rim may have openings shaped to receive the tube so that the tube extends through the openings when the door is closed. Typically, the collars are configured to lodge inside the rim and have respective diameters that are larger than the openings so as to prevent axial motion of the tube after the door has been closed.
In a disclosed embodiment, the mechanical interface unit includes an anti-free-flow mechanism, which is configured to prevent flow of the fluid through the portion of the tube until the tube has been brought into the engagement with the peristaltic mechanism. Typically, the anti-free-flow mechanism can be opened manually prior to the engagement of the tube with the peristaltic mechanism, and the infusion pump includes a key, which is fixed to the pump body and is configured to release the anti-free-flow mechanism so as to prevent the flow of the fluid through the portion of the tube when mechanical interface unit is disengaged from the pump.
There is also provided, in accordance with an embodiment of the present invention, a medical device, including an interface unit body, which is configured to hold a portion of a flexible infusion tube. A hinge insert is fixed to the interface unit body and is configured to engage a hinge receptacle, which defines a hinge axis, on an infusion pump. A catch insert is fixed to the interface unit body and is configured to lock onto a catch receptacle on the infusion pump upon rotation of the mechanical interface unit about the hinge axis while the hinge insert engages the hinge receptacle, so as to bring the tube into engagement with a peristaltic mechanism of the infusion pump in order to enable the peristaltic mechanism to propel a fluid through the tube.
In a disclosed embodiment, the device includes collars, which are fixed to opposing ends of the portion of the tube and are configured to lodge against a rim surrounding the peristaltic mechanism on the infusion pump. The collars may include connectors, which connect the portion of the flexible infusion tube in the housing to upstream and downstream tube segments.
There is additionally provided, in accordance with an embodiment of the present invention, a method for infusion, including providing a mechanical interface unit, which holds a portion of a flexible infusion tube and includes a hinge insert and a catch insert. The hinge insert in inserted into a hinge receptacle, which defines a hinge axis, on an infusion pump. The mechanical interface unit is rotated about the hinge axis while the hinge insert engages the hinge receptacle, so as to bring the tube into engagement with a peristaltic mechanism of the infusion pump. The infusion pump is actuated while the tube is in engagement with the peristaltic mechanism so as to propel a fluid through the tube.
The housing of the invention preferably includes an antifree-flow mechanism to prevent the flow of fluid in the segment of the conduit in the housing when the conduit is not adjacent to the fingers. The antifree-flow has a non-obstructing position in which the antifree-flow device does not prevent flow in the conduit, and an obstructing position in which the antifree-flow device prevents flow in the conduit. The antifree-flow device is spring biased in the obstructing position, so that when the housing is swung away or detached from the body of the pump, the antifree-flow device spontaneously assumes its obstructing position. This prevents unintentional flow in the conduit when the housing is swung out or detached from the body of the pump. The antifree-flow device preferably includes an override mechanism that allows the antifree-flow device to be temporarily latched in its non-obstructing position when the housing is swung away or detached from the body in order to allow a segment of conduit to be introduced into the housing. As the housing is brought to its position in which it is attached to the pump, the antifree-flow device is brought to its unlatched non-obstructing position, regardless of whether it was previously in its obstructing position or its latched non-obstructing position. The antifree flow device may prevent flow in the conduit in both directions or only in one direction.
The present invention will be more fully understood from the following detailed description of the embodiments thereof, taken together with the drawings in which:
Tube segments 26 and 28 are connected to a mechanical interface unit 32, which couples to pump 32 in a manner that is shown and explained below in greater detail. Unit 32 contains a tube portion (not shown in
As shown in detail in the figures that follow, mechanical interface unit 32 couples with pump 22 so as to bring the tube into engagement with the peristaltic mechanism of the pump. Typically, unit 32 is supplied as a pre-assembled, disposable kit, along with tube segments 26 and 28. Unit 32 is constructed so as to enable an operator 34 to connect the unit to pump 22 stably and reliably by fitting the unit against the pump and snapping it into place with only light pressure. Because the connection between unit 32 and pump 22 is self-aligning, operators are able to perform this operation with a single hand, after only minimal training. After use, unit 32 may be snapped off pump 22 and discarded together with the tube.
Reference is now made to
Mechanical interface unit 32 comprises a body 38, which hold a portion 58 of the flexible infusion tube. In the embodiment shown in the figures, portion 58 of the tube is connected to segments 26 and 28 by connectors 48 and 50, respectively. Body 38 has an elongated shape, corresponding to the linear configuration of mechanism 36. Mechanism 36 comprises multiple fingers 56, which move up and down to compress and release tube portion 58 in a predetermined cyclic pattern, so as to propel fluid downstream from tube segment 26 to tube segment 28. Details of the operation of this sort of multi-finger peristaltic mechanism are described in the above-mentioned U.S. patent application Ser. No. 11/791,599 and in PCT Patent Applications PCT/IL2007/001398 and PCT/IL2007/001400, filed Nov. 13, 2007, whose disclosures are incorporated herein by reference.
Unit 32 comprises a hinge insert 40 at one end of body 38 (in this case, the downstream end) and a catch insert 44 at the other (upstream) end. To assemble unit 32 onto pump 22, the operator first brings hinge insert 40 into engagement with a hinge receptacle 42 on a body 43 of the pump. In this position, unit 32 is aligned in a plane of peristaltic mechanism 36 (i.e., the plane of the page in
The rotational mode of assembly described above is advantageous in that it ensures accurate alignment of tube portion 58 with mechanism 36, even in one-handed operation. Consequently, good flow accuracy is achieved without the need for very careful insertion of the tube into the pump. The inventors have found that the combination of this sort of mechanical interface unit with the type of peristaltic pump described in the above-mentioned patent applications gives better than 2.5% accuracy in flow control over long periods of time.
The position of hinge receptacle 42 may be pre-adjusted so that interface unit 32, when engaged and locked onto pump 22, is properly located relative to fingers 56. For example, the hinge receptacle may be connected to pump body 43 by a single screw (not shown), which permits the receptacle to be moved and then tightened in place in a factory calibration procedure. Because the hinge receptacle is located on the downstream side of mechanism 36, this sort of calibration can be used to find the optimal balance between pressure buildup and energy consumption for propelling fluid at high pressure.
Furthermore, this mode of assembly gives the operator a mechanical advantage in closing the catch insert against the catch receptacle, so that relatively little force is needed to make a secure connection. In a clinical version of system 20, the inventor has found that less than 2 kg of force, typically about 1.2 kg, is sufficient for this purpose.
Another advantage of mechanical interface unit 32 and the mating structure on pump 22 is that they ensure that the tube will be assembled onto the pump in the proper direction: Because one type of mating connector is used at the upstream end of unit 32, and a different type of mating connector is used at the downstream end, it is impossible for the operator to accidentally attach the tube in the reverse direction.
In the embodiment pictured in the figures, hinge receptacle 42 has the form of a split axle, while hinge insert 40 has the form of a split saddle. At the other end of unit 32, catch insert 44 has the form of a split tooth, while catch receptacle 46 comprises a dual, concave catch. Tube portion 58 thus passes through the opening between the sides of insert 40, receptacle 42, insert 44 and receptacle 46. This particular configuration of the hinge and catch parts of pump 22 and unit 32 has been found to provide mechanical stability, durability and ease of assembly.
On the other hand, other configurations of the hinge and catch parts are also possible, as will be apparent to those skilled in the art, and are considered to be within the scope of the present invention. For example, the “male” and “female” elements on the interface unit and pump body may be reversed, so that the hinge and catch inserts on the interface unit have the form of an axle and elastic catch, while the hinge and catch receptacles on the pump have the form of a saddle and tooth. Other suitable hinge and catch arrangements are described in the above-mentioned U.S. patent application Ser. No. 11/791,599.
After assembly of interface unit 32 onto pump 22, a cover 54 may be closed against a rim 52 over the unit for added security. A locking mechanism 55 on the cover prevents accidental opening. Pump 22 may comprise a sensor (not shown) for detecting whether cover 54 is closed, such as a magnetic sensor, which detects the proximity of a magnet 57 attached to the cover. Until the operator is ready to close the cover, however, spring-loaded hinges 59 hold the cover open so that it does not interfere with handling of the interface unit.
Interface unit 32 also comprises an anti-free-flow mechanism 60, which closes off tube portion 58 until the interface unit has been securely connected to pump 22, in order to prevent uncontrolled flow of infusion fluid into the patient's body. Mechanism 60 may be opened manually if necessary, and opens automatically when the interface unit is mounted on the pump. A key 61 on the pump body (
Reference is now made to
Although the embodiment shown in the figures uses a particular type of linear finger-based mechanism, the principles of the present invention may similarly be applied to peristaltic pumps using other types of mechanisms, including cam-based mechanisms, as well as circular mechanisms. It will thus be appreciated that the embodiments described above are cited by way of example, and that the present invention is not limited to what has been particularly shown and described hereinabove. Rather, the scope of the present invention includes both combinations and subcombinations of the various features described hereinabove, as well as variations and modifications thereof which would occur to persons skilled in the art upon reading the foregoing description and which are not disclosed in the prior art.
Number | Date | Country | Kind |
---|---|---|---|
165365 | Nov 2004 | IL | national |
179228 | Nov 2006 | IL | national |
This application is a continuation-in-part of U.S. patent application Ser. No. 11/791,599, filed May 24, 2007, in the national phase of PCT/IL2005/001249, filed Nov. 24, 2005, and of PCT Patent Application PCT/IL2007/001399, filed Nov. 13, 2007. The disclosures of all of these related applications are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2056322 | Hoppe | Oct 1936 | A |
2393838 | Tarbox | Jan 1946 | A |
2743898 | King | May 1956 | A |
2981115 | Beguin | Apr 1961 | A |
3443585 | Reinicke | May 1969 | A |
3511583 | Brown | May 1970 | A |
3677667 | Morrison | Jul 1972 | A |
3778195 | Bamberg | Dec 1973 | A |
3982722 | Bernard | Sep 1976 | A |
3982725 | Clark | Sep 1976 | A |
4014318 | Dockum et al. | Mar 1977 | A |
4039269 | Pickering | Aug 1977 | A |
4155362 | Jess | May 1979 | A |
4178138 | Iles | Dec 1979 | A |
4236880 | Archibald | Dec 1980 | A |
4270532 | Franetzki et al. | Jun 1981 | A |
4290346 | Bujan | Sep 1981 | A |
4320781 | Bouvet et al. | Mar 1982 | A |
4373525 | Kobayashi | Feb 1983 | A |
4450375 | Siegal | May 1984 | A |
4479797 | Kobayashi et al. | Oct 1984 | A |
4489863 | Horchos et al. | Dec 1984 | A |
4493706 | Borsanyi et al. | Jan 1985 | A |
4650469 | Berg et al. | Mar 1987 | A |
4671792 | Borsanyi | Jun 1987 | A |
4682135 | Yamakawa | Jul 1987 | A |
4690673 | Bloomquist | Sep 1987 | A |
4725205 | Cannon et al. | Feb 1988 | A |
4728265 | Cannon | Mar 1988 | A |
4741736 | Brown | May 1988 | A |
4748003 | Riley | May 1988 | A |
4755168 | Romanelli et al. | Jul 1988 | A |
4836752 | Burkett | Jun 1989 | A |
4867744 | Borsanyi | Sep 1989 | A |
4893991 | Heminway et al. | Jan 1990 | A |
4927411 | Pastrone et al. | May 1990 | A |
4954046 | Irvin et al. | Sep 1990 | A |
4954256 | Degen et al. | Sep 1990 | A |
4978335 | Arthur, III | Dec 1990 | A |
5074756 | Davis | Dec 1991 | A |
5078683 | Sancoff et al. | Jan 1992 | A |
5088904 | Okada | Feb 1992 | A |
5096385 | Georgi et al. | Mar 1992 | A |
5103211 | Daoud et al. | Apr 1992 | A |
5151019 | Danby et al. | Sep 1992 | A |
5152680 | Okada | Oct 1992 | A |
5165874 | Sancoff et al. | Nov 1992 | A |
5213483 | Flaherty et al. | May 1993 | A |
5219327 | Okada | Jun 1993 | A |
5222946 | Kamen | Jun 1993 | A |
5246347 | Davis | Sep 1993 | A |
5257978 | Haber et al. | Nov 1993 | A |
5286176 | Bonin | Feb 1994 | A |
5290158 | Okada | Mar 1994 | A |
5308333 | Skakoon | May 1994 | A |
5338157 | Blomquist | Aug 1994 | A |
5395320 | Padda et al. | Mar 1995 | A |
5429485 | Dodge | Jul 1995 | A |
5485408 | Blomquist | Jan 1996 | A |
5499969 | Beuchat et al. | Mar 1996 | A |
5509439 | Tantardini | Apr 1996 | A |
5527295 | Wing | Jun 1996 | A |
5542826 | Warner | Aug 1996 | A |
5569188 | Mackool | Oct 1996 | A |
5575309 | Connell | Nov 1996 | A |
5575631 | Jester | Nov 1996 | A |
5577891 | Loughnane et al. | Nov 1996 | A |
5584667 | Davis | Dec 1996 | A |
5593134 | Steber et al. | Jan 1997 | A |
5601420 | Warner et al. | Feb 1997 | A |
5628619 | Wilson | May 1997 | A |
5658250 | Blomquist et al. | Aug 1997 | A |
5658252 | Johnson | Aug 1997 | A |
5660529 | Hill | Aug 1997 | A |
5669877 | Blomquist | Sep 1997 | A |
5683233 | Moubayed et al. | Nov 1997 | A |
5695473 | Olsen | Dec 1997 | A |
5704584 | Winterer et al. | Jan 1998 | A |
5742519 | McClendon et al. | Apr 1998 | A |
5782805 | Meinzer et al. | Jul 1998 | A |
5788669 | Peterson | Aug 1998 | A |
5791880 | Wilson | Aug 1998 | A |
5791881 | Moubayed et al. | Aug 1998 | A |
5803712 | Davis et al. | Sep 1998 | A |
5807322 | Lindsey et al. | Sep 1998 | A |
5810323 | Winterer et al. | Sep 1998 | A |
5853386 | Davis et al. | Dec 1998 | A |
5876370 | Blomquist | Mar 1999 | A |
5888052 | Hill | Mar 1999 | A |
5896076 | Van Namen | Apr 1999 | A |
5909724 | Nishimura et al. | Jun 1999 | A |
5924852 | Moubayed et al. | Jul 1999 | A |
5935099 | Peterson et al. | Aug 1999 | A |
5935106 | Olsen | Aug 1999 | A |
5943633 | Wilson et al. | Aug 1999 | A |
5954485 | Johnson et al. | Sep 1999 | A |
5980490 | Tsoukalis | Nov 1999 | A |
5996964 | Ben-Shalom | Dec 1999 | A |
6024539 | Blomquist | Feb 2000 | A |
6095189 | Ben-Shalom | Aug 2000 | A |
6110153 | Davis et al. | Aug 2000 | A |
6146109 | Davis et al. | Nov 2000 | A |
6164921 | Moubayed et al. | Dec 2000 | A |
6165874 | Powell et al. | Dec 2000 | A |
RE37074 | Danby et al. | Feb 2001 | E |
6203296 | Ray et al. | Mar 2001 | B1 |
6213723 | Danby et al. | Apr 2001 | B1 |
6213739 | Phallen et al. | Apr 2001 | B1 |
6234773 | Hill et al. | May 2001 | B1 |
6241704 | Peterson et al. | Jun 2001 | B1 |
6261262 | Briggs et al. | Jul 2001 | B1 |
6280408 | Sipin | Aug 2001 | B1 |
6312227 | Davis | Nov 2001 | B1 |
6339410 | Milner et al. | Jan 2002 | B1 |
6347553 | Morris et al. | Feb 2002 | B1 |
6371732 | Moubayed et al. | Apr 2002 | B1 |
6422057 | Anderson | Jul 2002 | B1 |
6450773 | Upton | Sep 2002 | B1 |
6475180 | Peterson et al. | Nov 2002 | B2 |
6519569 | White et al. | Feb 2003 | B1 |
6537244 | Paukovits et al. | Mar 2003 | B2 |
6544171 | Beetz et al. | Apr 2003 | B2 |
6558347 | Jhuboo et al. | May 2003 | B1 |
6572604 | Platt et al. | Jun 2003 | B1 |
6622542 | Derek et al. | Sep 2003 | B2 |
6648861 | Platt et al. | Nov 2003 | B2 |
6692241 | Watanabe et al. | Feb 2004 | B2 |
6733476 | Christenson et al. | May 2004 | B2 |
6742992 | Davis | Jun 2004 | B2 |
6749587 | Flaherty | Jun 2004 | B2 |
6768425 | Flaherty et al. | Jul 2004 | B2 |
6788199 | Crabtree et al. | Sep 2004 | B2 |
6790198 | White et al. | Sep 2004 | B1 |
6902549 | Marmaropoulos et al. | Jun 2005 | B2 |
6942473 | Abrahamson et al. | Sep 2005 | B2 |
7018361 | Gillespie, Jr. et al. | Mar 2006 | B2 |
7022075 | Grunwald et al. | Apr 2006 | B2 |
7048720 | Thorne, Jr. et al. | May 2006 | B1 |
7059840 | Corwin et al. | Jun 2006 | B2 |
7122026 | Rogers et al. | Oct 2006 | B2 |
7131966 | Tamari | Nov 2006 | B1 |
7163385 | Gharib et al. | Jan 2007 | B2 |
7347836 | Peterson et al. | Mar 2008 | B2 |
7525432 | Jackson | Apr 2009 | B2 |
7556481 | Moubayed | Jul 2009 | B2 |
7645258 | White et al. | Jan 2010 | B2 |
7654976 | Peterson et al. | Feb 2010 | B2 |
7695255 | Ben-Shalom et al. | Apr 2010 | B2 |
7698156 | Martucci et al. | Apr 2010 | B2 |
7704227 | Moberg et al. | Apr 2010 | B2 |
7762795 | Moubayed | Jul 2010 | B2 |
7840260 | Epley | Nov 2010 | B2 |
7892332 | Prisco et al. | Feb 2011 | B2 |
7896834 | Smisson, III et al. | Mar 2011 | B2 |
7935102 | Breznock et al. | May 2011 | B2 |
7938796 | Moubayed et al. | May 2011 | B2 |
7963946 | Moubayed et al. | Jun 2011 | B2 |
7998121 | Stringham | Aug 2011 | B2 |
8025634 | Moubayed et al. | Sep 2011 | B1 |
8029253 | Rotem et al. | Oct 2011 | B2 |
8142400 | Rotem et al. | Mar 2012 | B2 |
8182445 | Moubayed et al. | May 2012 | B2 |
8197235 | Davis | Jun 2012 | B2 |
8214231 | Martucci et al. | Jul 2012 | B2 |
8234128 | Martucci et al. | Jul 2012 | B2 |
8241018 | Harr | Aug 2012 | B2 |
8257654 | Maus et al. | Sep 2012 | B2 |
8308457 | Rotem et al. | Nov 2012 | B2 |
8334768 | Eaton et al. | Dec 2012 | B2 |
8337168 | Rotem et al. | Dec 2012 | B2 |
8343111 | Beck et al. | Jan 2013 | B2 |
8352290 | Bartz et al. | Jan 2013 | B2 |
8363583 | Jia et al. | Jan 2013 | B2 |
8371832 | Rotem et al. | Feb 2013 | B2 |
8444587 | Kelly et al. | May 2013 | B2 |
8489427 | Simpson et al. | Jul 2013 | B2 |
8535025 | Rotem et al. | Sep 2013 | B2 |
8579816 | Kamath et al. | Nov 2013 | B2 |
8666367 | Sharp et al. | Mar 2014 | B2 |
8672875 | Vanderveen et al. | Mar 2014 | B2 |
8678793 | Goldor et al. | Mar 2014 | B2 |
8920144 | Rotem et al. | Dec 2014 | B2 |
9056160 | Rotem et al. | Jun 2015 | B2 |
20010029321 | Beetz et al. | Oct 2001 | A1 |
20020056675 | Hegde | May 2002 | A1 |
20020094287 | Davis | Jul 2002 | A1 |
20020156402 | Woog et al. | Oct 2002 | A1 |
20020165503 | Morris et al. | Nov 2002 | A1 |
20030034887 | Crabtree et al. | Feb 2003 | A1 |
20030040700 | Hickle et al. | Feb 2003 | A1 |
20030065536 | Hansen et al. | Apr 2003 | A1 |
20030109988 | Geissler et al. | Jun 2003 | A1 |
20030140928 | Bui et al. | Jul 2003 | A1 |
20030141981 | Bui et al. | Jul 2003 | A1 |
20030182586 | Numano | Sep 2003 | A1 |
20040167804 | Simpson et al. | Aug 2004 | A1 |
20040172222 | Simpson et al. | Sep 2004 | A1 |
20040181314 | Zaleski | Sep 2004 | A1 |
20040191112 | Hill et al. | Sep 2004 | A1 |
20040204673 | Flaherty | Oct 2004 | A1 |
20040204685 | Wright et al. | Oct 2004 | A1 |
20040235446 | Flaherty et al. | Nov 2004 | A1 |
20050001369 | Cross | Jan 2005 | A1 |
20050022274 | Campbell et al. | Jan 2005 | A1 |
20050055242 | Bello et al. | Mar 2005 | A1 |
20050088409 | Van Berkel | Apr 2005 | A1 |
20050112001 | Bahnen et al. | May 2005 | A1 |
20050171501 | Kelly | Aug 2005 | A1 |
20050191196 | Tanner et al. | Sep 2005 | A1 |
20050214146 | Corwin et al. | Sep 2005 | A1 |
20060051218 | Harttig | Mar 2006 | A1 |
20060083644 | Zumbrum et al. | Apr 2006 | A1 |
20060173419 | Malcolm | Aug 2006 | A1 |
20060213249 | Uram et al. | Sep 2006 | A1 |
20070032098 | Bowles et al. | Feb 2007 | A1 |
20070048161 | Moubayed | Mar 2007 | A1 |
20070060872 | Hall et al. | Mar 2007 | A1 |
20070118405 | Campbell et al. | May 2007 | A1 |
20070135866 | Baker et al. | Jun 2007 | A1 |
20070154336 | Miyazaki et al. | Jul 2007 | A1 |
20070217931 | Estes et al. | Sep 2007 | A1 |
20070269324 | Goldor et al. | Nov 2007 | A1 |
20080015506 | Davis | Jan 2008 | A1 |
20080065007 | Peterson et al. | Mar 2008 | A1 |
20080065016 | Peterson et al. | Mar 2008 | A1 |
20080067462 | Miller et al. | Mar 2008 | A1 |
20080071251 | Moubayed et al. | Mar 2008 | A1 |
20080095649 | Ben-Shalom et al. | Apr 2008 | A1 |
20080144560 | Jia et al. | Jun 2008 | A1 |
20080145249 | Smisson et al. | Jun 2008 | A1 |
20080146995 | Smisson et al. | Jun 2008 | A1 |
20080275307 | Poschmann | Nov 2008 | A1 |
20090088675 | Kelly et al. | Apr 2009 | A1 |
20090163864 | Breznock et al. | Jun 2009 | A1 |
20090203329 | White et al. | Aug 2009 | A1 |
20090221964 | Rotem et al. | Sep 2009 | A1 |
20090240201 | Rotem et al. | Sep 2009 | A1 |
20090270810 | DeBelser et al. | Oct 2009 | A1 |
20090300507 | Raghavan et al. | Dec 2009 | A1 |
20090317268 | Rotem et al. | Dec 2009 | A1 |
20100016781 | Nakayama et al. | Jan 2010 | A1 |
20100036322 | Rotem | Feb 2010 | A1 |
20100082001 | Beck et al. | Apr 2010 | A1 |
20100168545 | Kamath et al. | Jul 2010 | A1 |
20100211002 | Davis | Aug 2010 | A1 |
20100228223 | Williams et al. | Sep 2010 | A1 |
20100234708 | Buck et al. | Sep 2010 | A1 |
20100279652 | Sharp et al. | Nov 2010 | A1 |
20110148624 | Eaton et al. | Jun 2011 | A1 |
20110152772 | Rotem et al. | Jun 2011 | A1 |
20110152831 | Rotem et al. | Jun 2011 | A1 |
20110167133 | Jain | Jul 2011 | A1 |
20110251856 | Maus et al. | Oct 2011 | A1 |
20110264043 | Kotnik et al. | Oct 2011 | A1 |
20110276000 | Stringham | Nov 2011 | A1 |
20110282291 | Ciccone | Nov 2011 | A1 |
20110318208 | Goldor et al. | Dec 2011 | A1 |
20120059389 | Larson et al. | Mar 2012 | A1 |
20120062387 | Vik et al. | Mar 2012 | A1 |
20120136305 | Gagliardoni et al. | May 2012 | A1 |
20120241525 | Borges et al. | Sep 2012 | A1 |
20130006666 | Schneider et al. | Jan 2013 | A1 |
20130046508 | Sur et al. | Feb 2013 | A1 |
20130116620 | Rotem et al. | May 2013 | A1 |
20130116623 | Rotem et al. | May 2013 | A1 |
20130142670 | Rotem et al. | Jun 2013 | A1 |
20130209275 | Rotem et al. | Aug 2013 | A1 |
20130279370 | Eitan et al. | Oct 2013 | A1 |
20130345623 | Kopperschmidt et al. | Dec 2013 | A1 |
20140005631 | Rotem et al. | Jan 2014 | A1 |
20140119954 | Schweitzer et al. | May 2014 | A1 |
20140197824 | Gillespie et al. | Jul 2014 | A1 |
20140222377 | Bitan et al. | Aug 2014 | A1 |
20140276564 | Schneider | Sep 2014 | A1 |
20140369872 | Goldor et al. | Dec 2014 | A1 |
20140378901 | Rotem et al. | Dec 2014 | A1 |
20150038187 | Ho et al. | Feb 2015 | A1 |
20150073338 | Waldhoff et al. | Mar 2015 | A1 |
20150105726 | Qi et al. | Apr 2015 | A1 |
20150137988 | Gravenstein et al. | May 2015 | A1 |
20150141955 | Ruchti et al. | May 2015 | A1 |
20150172921 | Wang et al. | Jun 2015 | A1 |
20150182694 | Rosinko | Jul 2015 | A1 |
20150192120 | Rotem et al. | Jul 2015 | A1 |
Number | Date | Country |
---|---|---|
10118086 | Jul 2002 | DE |
0215249 | Mar 1987 | EP |
0225158 | Jun 1987 | EP |
0315312 | May 1989 | EP |
0429866 | Jun 1991 | EP |
0483794 | May 1992 | EP |
0858812 | Aug 1998 | EP |
1031358 | Aug 2000 | EP |
1350955 | Oct 2003 | EP |
1557186 | Jul 2005 | EP |
1611834 | Jan 2006 | EP |
1485149 | Jul 2008 | EP |
2632529 | Dec 1989 | FR |
2753236 | Mar 1998 | FR |
60043188 | Mar 1985 | JP |
6-169992 | Jun 1994 | JP |
2002-57738 | Feb 2002 | JP |
2004141418 | May 2004 | JP |
8400691 | Mar 1984 | WO |
9116933 | Nov 1991 | WO |
9325816 | Dec 1993 | WO |
9408647 | Apr 1994 | WO |
9603168 | Feb 1996 | WO |
9630679 | Oct 1996 | WO |
9734084 | Sep 1997 | WO |
9804301 | Feb 1998 | WO |
9813080 | Apr 1998 | WO |
9847551 | Oct 1998 | WO |
9958178 | Nov 1999 | WO |
0139816 | Jun 2001 | WO |
0165232 | Sep 2001 | WO |
0236044 | May 2002 | WO |
0238204 | May 2002 | WO |
0249509 | Jun 2002 | WO |
02068015 | Sep 2002 | WO |
03027503 | Apr 2003 | WO |
03080158 | Oct 2003 | WO |
2004070548 | Aug 2004 | WO |
2004093648 | Nov 2004 | WO |
2005089263 | Sep 2005 | WO |
2006056986 | Jun 2006 | WO |
2007133259 | Nov 2007 | WO |
2008036658 | Mar 2008 | WO |
2008059492 | May 2008 | WO |
2008059493 | May 2008 | WO |
2008059494 | May 2008 | WO |
2008059495 | May 2008 | WO |
2008059496 | May 2008 | WO |
2008059498 | May 2008 | WO |
2008059499 | May 2008 | WO |
2008130644 | Oct 2008 | WO |
2010053702 | May 2010 | WO |
2010053703 | May 2010 | WO |
2010091313 | Aug 2010 | WO |
2011128850 | Oct 2011 | WO |
2012095827 | Jul 2012 | WO |
2012095829 | Jul 2012 | WO |
2013001425 | Jan 2013 | WO |
2013028704 | Feb 2013 | WO |
2013090748 | Jun 2013 | WO |
Entry |
---|
Honeywell Sensing and Control, “FSSI500NSB force sensor”, Golden Valley, Minnesota, USA, 1998-2004 http://sccatalog.honeywell.com/imc/printfriendly.asp?FAM˜force&PN˜FSSI500NSB (5 pages). |
International Application PCT/IL2007/001398 Search Report dated Jun. 11, 2008 (2 pages). |
International Application PCT/IL2007/001398 Patentability Report dated May 19, 2009 (6 pages). |
International Application PCT/IL2007/001399 Search Report dated Jun. 4, 2008 (3 pages). |
International Application PCT/IL2007/001399 Patentability Report dated May 19, 2009 (9 pages). |
International Application PCT/IL2007/001400 Search Report dated Jul. 15, 2008 (3 pages). |
International Application PCT/IL2007/001400 Patentability Report dated May 19, 2009 (10 pages). |
International Application PCT/IL2007/001401 Search Report dated Sep. 24, 2008 (2 pages). |
International Application PCT/IL2007/001401 Patentability Report dated May 19, 2009 (11 pages). |
International Application PCT/IL2007/001402 Search Report dated Jun. 20, 2008 (3 pages). |
International Application PCT/IL2007/001402 Patentability Report dated May 19, 2009 (4 pages). |
International Application PCT/IL2007/001404 Search Report dated Jul. 14, 2008 (2 pages). |
International Application PCT/IL2007/001404 Patentability Report dated May 19, 2009 (7 pages). |
International Application PCT/IL2007/001405 Search Report dated Jul. 21, 2008 (4 pages). |
International Application PCT/IL2007/001405 Patentability Report dated May 19, 2009 (7 pages). |
International Application PCT/IL2005/001249 Search Report dated Apr. 5, 2006 (18 pages). |
International Application PCT/IL1997/000289 Search report dated Jan. 27, 1998 (18 pages). |
International Application PCT/IL1997/000290 Search Report dated Jan. 27, 1998 (18 pages). |
International Application PCT/IL2003/000947 Search Report dated Mar. 3, 2004 (43 pages). |
International Application PCT/IB2011/051586 Search Report dated Oct. 27, 2011 (3 pages). |
International Application PCT/IB2011/051586 Patentability Report dated Oct. 16, 2012 (9 pages). |
International Application PCT/IB2012/050192 Search Report dated Aug. 17, 2012 (2 pages). |
International Application PCT/IB2012/050192 Patentability Report dated Jul. 16, 2013 (6 pages). |
International Application PCT/IB2012/050189 Search Report dated May 30, 2012 (2 pages). |
International Application PCT/IB2012/050189 Patentability Report dated Jul. 16, 2013 (5 pages). |
International Application PCT/IB2012/053149 Search Report dated Jan. 15, 2013 (2 pages). |
U.S. Appl. No. 09/125,438 Official Action dated May 3, 1999 (4 pages). |
U.S. Appl. No. 09/125,438 Official Action dated Jul. 15, 1999 (7 pages). |
U.S. Appl. No. 10/535,103 Official Action dated Feb. 2, 2009 (9 pages). |
European Application No. 05810500.8 Official Action dated Jul. 6, 2009 (5 pages). |
European Application No. 05810500.8 Response to Official Action dated Jul. 6, 2009, submitted Oct. 15, 2009 (8 pages). |
European Application No. 05810500.8 Official Action dated Jan. 23, 2012 (4 pages). |
European Application No. 05810500.8 Response to Official Action dated Jan. 23, 2012, submitted May 22, 2012 (6 pages). |
U.S. Appl. No. 11/791,599 Official Action (Non-Final) dated Aug. 19, 2010 (16 pages). |
U.S. Appl. No. 11/791,599 Response to Official Action (Non-Final) dated Aug. 19, 2010, submitted Jan. 11, 2011 (8 pages). |
U.S. Appl. No. 11/791,599 Official Action (Final) dated Mar. 31, 2011 (13 pages). |
U.S. Appl. No. 11/791,599 Response to Official Action (Final) dated Mar. 31, 2011, submitted May 23, 2011 (7 pages). |
U.S. Appl. No. 11/791,599 Notice of Allowance issued Jun. 14, 2011 (5 pages). |
U.S. Appl. No. 13/229,798 Official Action (Non-Final) dated Dec. 26, 2012 (10 pages). |
U.S. Appl. No. 13/229,798 Response to Official Action (Non-Final) dated Dec. 26, 2012, submitted Mar. 21, 2013 (13 pages). |
U.S. Appl. No. 13/229,798 Notice of Allowance issued Apr. 19, 2013 (6 pages). |
U.S. Appl. No. 13/229,798 Notice of Withdrawal from Issue dated May 13, 2013 (1 page). |
U.S. Appl. No. 13/229,798 Official Action (Non-Final) dated Jun. 21, 2013 (6 pages). |
Chinese Patent Application No. 200580045471.3 “Finger-type peristaltic pump” Official Action dated Jul. 18, 2008 and English translation thereof (7 pages). |
Chinese Patent Application No. 200780041966.8 Official Action dated Jul. 13, 2010 (7 pages). |
Chinese Patent Application No. 200780041966.8 Response to Official Action dated Jul. 13, 2010, as submitted (6 pages). |
Chinese Patent Application No. 200780041966.8, translation of Notification of Grant, issued Jan. 28, 2011 (2 pages). |
U.S. Appl. No. 12/464,202 Official Action (Non-Final) dated Oct. 3, 2011 (7 pages). |
U.S. Appl. No. 12/464,202 Response to Official Action (Non-Final) dated Oct. 3, 2011, submitted Feb. 12, 2012 (12 pages). |
U.S. Appl. No. 12/464,202 Notice of Allowance issued Jul. 11, 2012 (5 pages). |
U.S. Appl. No. 12/463,399 Official Action (Non-Final) dated Jul. 21, 2011 (15 pages). |
U.S. Appl. No. 12/463,399 Response to Official Action (Non-Final) dated Jul. 21, 2011, submitted Oct. 21, 2011 (5 pages). |
U.S. Appl. No. 12/463,399 Official Action (Final) dated Dec. 13, 2011 (7 pages). |
U.S. Appl. No. 12/463,399 Response to Official Action (Final) dated Dec. 13, 2011, submitted Feb. 12, 2012 (10 pages). |
U.S. Appl. No. 12/463,399 Advisory Action and Applicant Initiated Interview Summary dated Mar. 8, 2012 (8 pages). |
U.S. Appl. No. 12/463,399 Response to Official Action (Final) dated Dec. 13, 2011, submitted Mar. 26, 2012 with Request for Continued Examination (13 pages). |
U.S. Appl. No. 12/463,399 Notice of Allowance issued Apr. 29, 2013 (14 pages). |
U.S. Appl. No. 12/514,310 Official Action (Non-Final) dated Jul. 21, 2011 (8 pages). |
U.S. Appl. No. 12/514,310 Response to Official Action (Non-Final) dated Jul. 21, 2011, submitted Oct. 21, 2011 (8 pages). |
U.S. Appl. No. 12/514,310 Official Action (Final) dated Jan. 20, 2012 (10 pages). |
U.S. Appl. No. 12/514,310 Response to Official Action (Final) dated Jan. 20, 2012, submitted Apr. 25, 2012 with Request for Continued Examination (11 pages). |
U.S. Appl. No. 12/514,310 Official Action (Non-Final) dated May 25, 2012 (7 pages). |
U.S. Appl. No. 12/514,310 Response to Official Action (Non-Final) dated May 25, 2012, submitted Jun. 28, 2012 (6 pages). |
U.S. Appl. No. 12/514,310 Notice of Allowance issued Aug. 22, 2012 (7 pages). |
U.S. Appl. No. 12/514,311 Official Action (Non-Final) dated Sep. 16, 2010 (10 pages). |
U.S. Appl. No. 12/514,311 Response to Official Action (Non-Final) dated Sep. 16, 2010, submitted Dec. 9, 2010 (23 pages). |
U.S. Appl. No. 12/514,311 Official Action (Final) dated Feb. 18, 2011 (7 pages). |
U.S. Appl. No. 12/514,311 Examiner Interview Summary Record dated Mar. 4, 2011 (4 pages). |
U.S. Appl. No. 12/514,311 Response to Official Action (Final) dated Feb. 18, 2011, submitted Mar. 31, 2011 with Request for Continued Examination (9 pages). |
European Patent Application No. 10192477.7 Search Report dated May 10, 2011 (5 pages). |
European Patent Application No. 10192477.7 Response to Search Report dated May 10, 2011, submitted Dec. 28, 2011. |
U.S. Appl. No. 12/644,026 Official Action (Non-Final) dated Apr. 6, 2012 (12 pages). |
U.S. Appl. No. 12/644,026 Response to Official Action (Non-Final) dated Apr. 6, 2012, submitted Jul. 5, 2012 (11 pages). |
U.S. Appl. No. 12/644,026 Notice of Allowance issued Oct. 11, 2012 (10 pages). |
U.S. Appl. No. 13/742,454 Official Action (Non-Final) dated Oct. 7, 2013 (13 pages). |
U.S. Appl. No. 12/644,027 Official Action (Non-Final) dated Apr. 28, 2011 (7 pages). |
U.S. Appl. No. 12/644,027 Response to Official Action (Non-Final) dated Apr. 28, 2011, submitted Jul. 21, 2011 (10 pages). |
U.S. Appl. No. 12/644,027 Notice of Allowance issued Nov. 17, 2011 (5 pages). |
U.S. Appl. No. 13/229,798 Response to Official Action (Non-Final) dated Jun. 21, 2013, submitted Oct. 21, 2013 (3 pages). |
U.S. Appl. No. 13/229,798 Notice of Allowance issued Nov. 14, 2013 (54 pages). |
U.S. Appl. No. 13/651,420 Official Action (Non-Final) dated Nov. 4, 2013 (8 pages). |
U.S. Appl. No. 13/651,420 Response to Official Action (Non-Final) dated Nov. 4, 2013, submitted Nov. 21, 2013 (2 pages). |
U.S. Appl. No. 13/681,440 Official Action (Non-Final) dated Oct. 24, 2013 (11 pages). |
U.S. Appl. No. 13/651,420 Official Action (Non-Final) dated Jan. 6, 2014 (8 pages). |
U.S. Appl. No. 13/651,420 Response to Official Action (Non-Final) dated Jan. 6, 2014, submitted Mar. 5, 2014 (9 pages). |
U.S. Appl. No. 13/651,420 Official Action (Final) dated Apr. 24, 2014 (8 pages). |
U.S. Appl. No. 13/651,420 Response to Official Action (Final) dated Apr. 24, 2014, submitted Jul. 22, 2014 with Request for Continued Examination (15 pages). |
U.S. Appl. No. 13/651,420 Official Action (Non-Final) dated Aug. 19, 2014 (10 pages). |
U.S. Appl. No. 13/651,420 Response to Official Action (Non-Final) dated Aug. 19, 2014, submitted Dec. 18, 2014 (7 pages). |
U.S. Appl. No. 14/016,105 Official Action (Non-Final) dated Oct. 15, 2014 (10 pages). |
U.S. Appl. No. 13/681,440 Response to Official Action (Non-Final) dated Oct. 24, 2013, submitted Jan. 20, 2014 (10 pages). |
U.S. Appl. No. 13/681,440 Official Action (Final) dated Feb. 14, 2014 (14 pages). |
U.S. Appl. No. 13/681,440 Response to Official Action (Final) dated Feb. 14, 2014, submitted Jul. 14, 2014 with Request for Continued Examination (14 pages). |
U.S. Appl. No. 13/681,440 Official Action (Non-Final) dated Sep. 2, 2014 (19 pages). |
U.S. Appl. No. 12/514,311 Official Action (Non-Final) dated Oct. 7, 2014 (11 pages). |
U.S. Appl. No. 13/742,454 Response to Official Action (Non-Final) dated Oct. 7, 2013, submitted Jan. 6, 2014 (7 pages). |
U.S. Appl. No. 13/742,454 Official Action (Final) dated Mar. 28, 2014 (14 pages). |
U.S. Appl. No. 13/742,454 Response to Official Action (Final) dated Mar. 28, 2014, submitted Jun. 29, 2014 with Request for Continued Examination (10 pages). |
U.S. Appl. No. 13/742,454 Notice of Allowance issued Aug. 21, 2014 (10 pages). |
U.S. Appl. No. 13/640,519 Official Action (Non-Final) dated Dec. 24, 2013 (7 pages). |
U.S. Appl. No. 13/640,519 Response to Official Action (Non-Final) dated Dec. 24, 2013, submitted Jan. 16, 2014 (2 pages). |
U.S. Appl. No. 13/640,519 Official Action (Non-Final) dated Mar. 20, 2014 (15 pages). |
U.S. Appl. No. 13/640,519 Response to Official Action (Non-Final) dated Mar. 20, 2014, submitted Jun. 17, 2014 (14 pages). |
U.S. Appl. No. 13/640,519 Official Action (Final) dated Oct. 1, 2014 (11 pages). |
U.S. Appl. No. 13/924,572 Official Action (Non-Final) dated Dec. 2, 2014 (13 pages). |
European Application No. 11768544.6 Supplementary Partial European Search Report dated Nov. 13, 2014 (7 pages). |
European Application No. 12734200.4 Supplementary European Search Report dated Aug. 18, 2014 (6 pages). |
European Application No. 05810500.8 Official Action dated Nov. 3, 2014 (5 pages). |
European Application No. 05810500.8 Response to Official Action dated Nov. 3, 2014, submitted Mar. 9, 2015 (31 pages). |
Indian Patent Application No. 2344KOLNP2007 Office Action dated Dec. 31, 2014 (2 pages). |
Indian Patent Application No. 2344KOLNP2007 Response to Office Action dated Dec. 31, 2014, submitted Aug. 7, 2015 (19 pages). |
U.S. Appl. No. 14/181,673 Official Action (Non-Final) dated Jun. 3, 2015 (12 pages). |
U.S. Appl. No. 13/651,420 Official Action (Final) dated Mar. 16, 2015 (6 pages). |
U.S. Appl. No. 13/651,420 Response to Official Action (Final) dated Mar. 16, 2015, submitted May 14, 2015 (5 pages). |
U.S. Appl. No. 13/651,420 Official Action (Final) dated Jun. 9, 2015 (9 pages). |
U.S. Appl. No. 14/016,105 Response to Official Action (Non-Final) dated Oct. 15, 2014, submitted Jan. 14, 2015 (7 pages). |
U.S. Appl. No. 14/016,105 Notice of Allowance dated Feb. 17, 2015 (14 pages). |
U.S. Appl. No. 13/681,440 Response to Official Action (Non-Final) dated Sep. 2, 2014, submitted Feb. 25, 2015 (12 pages). |
U.S. Appl. No. 13/681,440 Official Action (Final) dated Apr. 24, 2015 (21 pages). |
U.S. Appl. No. 12/514,311 Response to Official Action (Non-Final) dated Oct. 7, 2014, submitted Jan. 7, 2015 (5 pages). |
U.S. Appl. No. 12/514,311 Official Action (Final) dated Apr. 20, 2015 (12 pages). |
U.S. Appl. No. 12/514,311 Response to Official Action (Final) dated Apr. 20, 2015, submitted Jun. 21, 2015 (10 pages). |
U.S. Appl. No. 12/514,311 Official Action (Advisory Action) dated Jul. 1, 2015 (8 pages). |
U.S. Appl. No. 12/514,311 Response to Official Action (Advisory Action) dated Jul. 1, 2015, submitted Jul. 20, 2015 (8 pages). |
U.S. Appl. No. 12/514,311 Official Action (Advisory Action) dated Aug. 5, 2015 (6 pages). |
European Application No. 10192477.7 Official Action dated Jul. 6, 2015 (5 pages). |
European Application No. 11768544.6 Response to Official Action dated Dec. 2, 2014, submitted May 29, 2015 (12 pages). |
U.S. Appl. No. 13/640,519 Response to Official Action (Final) dated Oct. 1, 2014, submitted Dec. 28, 2014 (15 pages). |
U.S. Appl. No. 13/640,519 Official Action (Non-Final) dated May 6, 2015 (13 pages). |
European Application No. 12734200.4 Response to Official Communication dated Sep. 4, 2014, submitted Mar. 4, 2015 (16 pages). |
U.S. Appl. No. 13/978,538 Official Action (Non-Final) dated Jan. 23, 2015 (24 pages). |
U.S. Appl. No. 13/978,538 Response to Official Action (Non-Final) dated Jan. 23, 2015, submitted May 21, 2015 (13 pages). |
U.S. Appl. No. 13/978,538 Official Action (Non-Final) dated Jul. 24, 2015 (16 pages). |
European Application No. 12805094.5 Supplementary Partial European Search Report dated Feb. 23, 2015 (8 pages). |
European Application No. 12805094.5 Response to Supplementary Partial European Search Report submitted Apr. 2, 2015 (1 page). |
European Application No. 12805094.5 Supplementary European Search Report dated Jun. 30, 2015 (14 pages). |
U.S. Appl. No. 13/924,572 Response to Official Action (Non-Final) dated Dec. 2, 2014, submitted Mar. 26, 2015 (11 pages). |
U.S. Appl. No. 13/924,572 Official Action (Non-Final) dated May 14, 2015 (12 pages). |
PCT Appl. No. PCT/IB14/62106 International Search Report and Written Opinion dated Feb. 24, 2015 (8 pages). |
PCT Appl. No. PCT/IB15/50873 International Search Report and Written Opinion dated Jun. 25, 2015 (8 pages). |
Number | Date | Country | |
---|---|---|---|
20130116623 A1 | May 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12464202 | May 2009 | US |
Child | 13651420 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11791599 | US | |
Child | 12464202 | US | |
Parent | 12464202 | US | |
Child | 12464202 | US | |
Parent | PCT/IL2007/001399 | Nov 2007 | US |
Child | 12464202 | US |