1. Field of the Invention
The present invention relates to a micropump, and in particular a micropump working according to a peristaltic pumping principle.
2. Description of the Related Art
Micropumps working according to a peristaltic pumping principle are known from the prior art. The article “Design and simulation of an implantable medical drug delivery system using microelectromechanical systems technology”, by Li Cao et al., Sensors and Actuators, A94 (2001), pages 117 to 125, deals with a peristaltic micropump comprising an inlet, three pumping chambers, three silicon membranes, three normally closed active valves, three piezo-stack actuators of PZT, microchannels between the pumping chambers, and an outlet. The three pumping chambers are of the same size and are etched into a silicon wafer.
From WO 87/07218 a peristaltic micropump is also known, which has three membrane regions in a continuous substrate area. In a supporting layer supporting the substrate and an associated backing layer, a pumping channel is formed that is in connection with a fluid supply. In the pumping channel, in the region of an inlet valve and an outlet valve, a transverse rib is formed on which an associated membrane portion rests in the non-actuated state to close the inlet valve and the outlet valve in the non-actuated state. Between the separately actuatable membrane regions associated with the inlet valve and the outlet valve, the third membrane region, which may also be actuated separately, is arranged. By actuating the third membrane region, the chamber volume between the two valve regions is increased. Thus, by a corresponding timing of the three membrane regions, a peristaltic pumping effect between inlet valve and outlet valve may be achieved. According to WO 87/07218, the actor element consists of a composite of three elements comprising metal membrane, continuous ceramic layer, and segmented electrode arrangement. The ceramic layer has to be polarized in a segmented manner, which is technically difficult. Such a segmented piezo-bending element thus is expensive and allows only small stroke volumes, so that such a pump cannot work in a bubble-tolerant and self-priming manner.
From DE 19719862 A1, a micromembrane pump not working based on the peristaltic principle is known, wherein a pumping membrane adjoining a pumping chamber may be actuated by a piezo-actor. A fluid inlet and a fluid outlet of the pumping chamber are each provided with passive check valves. According to this document, the compression ratio of the micropump, i.e. the ratio of stroke volume of the pumping membrane to overall pumping chamber volume, is adjusted depending on the maximum pressure value depending on the valve geometry and the valve wetting, which is necessary to open the valves, to enable a bubble-tolerant, self-priming operation of the micromembrane pump there.
Apart from the above-mentioned piezo-actors, it would also be possible to realize micropumps using electrostatic actors, wherein electrostatic actors, however, only enable very small strokes. Alternatively, the realization of pneumatic drives would be possible, which, however, necessitates high expenditure regarding external pneumatics as well as the switching valves required for this. decreased by moving the second membrane region also towards the pump body.
Through this construction, the inventive peristaltic micropump enables the realization of bubble-tolerant, self-priming pumps, even if piezo-elements arranged on the membrane are used as piezo-actor. Alternatively, according to the invention, so-called piezo-stacks may also be used as piezo-actors, which are, however, disadvantageous as opposed to piezo-membrane converters in that they are large and expensive, provide problems with respect to the connection technique between stack and membrane and problems with the adjustment of the stacks, and are thus all in all connected with higher expenditure.
In order to ensure that the inventive peristaltic micropump can work in a bubble-tolerant and self-priming manner, it is preferably dimensioned such that the ratio of stroke volume and dead volume is greater than the ratio of delivery pressure (feed pressure) and atmospheric pressure, wherein the stroke volume is the volume displaceable by the pumping membrane, the dead volume is the volume remaining between inlet opening and outlet opening of the micropump, when the pumping membrane is actuated and one of the valves is closed and one is open, the atmospheric pressure is a maximum of about 1050 hPa (worst case consideration), and the delivery pressure is the pressure necessary in the fluid chamber region of the micropump, i.e. in the pressure chamber, to move a liquid/gas interface past a place representing a flow constriction (bottleneck) in the microperistaltic pump, i.e. between the pumping chamber and the passage opening of the first or the second valve, including this passage opening.
If the ratio of stroke volume and dead volume, which may be referred to as compression ratio, satisfies the above condition, it is ensured that the peristaltic micropump works in a bubble-tolerant and self-priming manner. This Pneumatic drives thus represent expensive, costly and space-intensive methods to implement membrane deflection.
It is the object of the present invention to provide a peristaltic micromembrane pump which is easily constructed and which enables a bubble-tolerant self-priming operation.
In accordance with a first aspect, the present invention provides a peristaltic micropump, having a first membrane region with a first piezo-actor for actuating the first membrane region; a second membrane region with a second piezo-actor for actuating the second membrane region; a third membrane region with a third piezo-actor for actuating the third membrane region; and a pump body, wherein the pump body forms, together with the first membrane region, a first valve whose passage opening is open in the non-actuated state of the first membrane region and whose passage opening may be closed by actuating the first membrane region, wherein the pump body forms, together with the second membrane region, a pumping chamber whose volume may be decreased by actuating the second membrane region, and wherein the pump body forms, together with the third membrane region, a second valve whose passage opening is open in the non-actuated state of the third membrane region and whose passage opening may be closed by actuating the third membrane region, wherein the first and second valves are fluidically connected to the pumping chamber.
The present invention thus provides a peristaltic micropump, wherein the first and second valves are open in the non-actuated state, and wherein the first and second valves may be closed by moving the membrane towards the pump body, whereas the volume of the pumping chamber may be applies for both employment of the peristaltic micropump for conveying fluids, when a gas bubble, normally an air bubble, reaches the fluid region of the pump, and the employment of the inventive micropump as a gas pump, when moisture unintentionally condenses from the gas to be conveyed, and thus a gas/liquid interface may occur in the fluid region of the pump.
Compression ratios satisfying the above condition may for example be inventively realized by embodying the volume of the pumping chamber greater than that of valve chambers formed between the respective valve membrane regions and opposing pump body sections. In preferred embodiments, this may be realized by the distance between membrane and surface and pump chamber surface in the region of the pumping chamber being greater than in the region of the valve chambers.
A further increase of the compression ratio of an inventive peristaltic micropump may be achieved by adapting the contour of a pumping chamber structured in the pump body to the bend line of the pumping membrane, i.e. the bend contour thereof in the actuated state, so that the pumping membrane may substantially displace the entire volume of the pumping chamber in the actuated state. Furthermore, the contours of valve chambers formed in the pump body may also be correspondingly adapted to the bend line of the respective opposing membrane sections, so that in the optimum case the actuated membrane region substantially displaces the entire valve chamber volume in the closed state.
These and other objects and features of the present invention will become clear from the following description taken in conjunction with the accompanying drawings, in which:
a to 2f are schematic illustrations for the explanation of a piezo-membrane converter;
a to 3c are schematic cross-sectional illustrations for the explanation of the terms stroke volume and dead volume;
a to 5c are schematic illustrations for the explanation of the term delivery pressure;
a to 6c are schematic views of an alternative embodiment of an inventive micropump;
a, 9b and 9c are schematic illustrations of possible pumping chamber designs;
a and 10b are schematic illustrations of an alternative embodiment of an inventive micropump;
A first embodiment of an inventive peristaltic micropump integrated in a fluid system is shown in
The membrane element is circumferentially joint to a pump body 30 at outer regions thereof, so that there is a fluid-tight connection between them. In the pump body 30 two fluid passages 32 and 34 are formed, one of which, according to pumping direction, represents a fluid inlet and the other a fluid outlet. In the embodiment shown in
Furthermore, in the embodiment shown in
In the embodiment shown, both the membrane element 10 and the pump body 30 are each implemented in a silicon disc, so that they may for example be joined to each other by silicon fusion bonding. As can be seen from
By the piezo-elements or piezo-ceramics 22, 24, and 26, the membrane sections 12, 14, and 16 may each be actuated in a direction toward the pump body 30, so that the membrane section 12 together with the fluid passage 32 represents an inlet valve 62, which may be closed by actuating the membrane section 12. Likewise, the membrane section 16 and the fluid passage 34 together represent an outlet valve 64, which may be closed by actuating the membrane section 16 by means of the piezo-element 26. Finally, by actuating the piezo-element 24, the volume of the pumping chamber region 42 arranged between the valves can be reduced.
Before going into the functioning of the peristaltic micropump shown in
For the description of a peristaltic pumping cycle of the pump shown in
Starting from this state, the outlet valve 64 is closed and the inlet valve 62 is opened. Then the pumping membrane 14 is moved upward by ending the actuation of the piezo-element 24. The pumping chamber, which thereby expands, leads to a negative pressure in the pumping chamber, which again results in sucking in fluid through the open inlet valve 62. Then the inlet valve 62 is closed and the outlet valve 64 opened so that the above-mentioned initial state is again achieved. By the described pumping cycle, a fluid volume substantially corresponding to the stroke volume of the membrane section 14 would thus be pumped from the fluid channel 54 to the fluid channel 56.
According to the invention, preferably piezo-membrane converters or piezo-bending converters are used as piezo-actors. Such a bending converter makes an optimum stroke when the lateral dimensions of the piezo-ceramic correspond to about 80% of the underlying membrane. According to lateral dimensions of the membrane, which may typically comprise side lengths of 4 mm to 12 mm, deflections of several 10 μm stroke and thus volume strokes ranging from 0.1 μl to 10 μl may be achieved. Preferred embodiments of the present invention comprise volume strokes at least in such a range, since, in such a volume stroke, bubble-tolerant peristaltic pumps may advantageously be realized.
With piezo-membrane converters it is to be noted that these only enable an effective stroke downward, i.e. toward the pump body. In this respect, it is referred to the schematic illustration of
For the production of a piezo-membrane converter, the piezo-ceramic 100 shown in
If a positive voltage, i.e. a voltage in polarization direction, U>0 is applied to the piezo-ceramic, the piezo-ceramic contracts, see
In order to cause an upward movement of the membrane, a negative voltage, i.e. a voltage opposing the polarization direction, would have to be applied to the piezo-ceramic, as shown in
Despite this disadvantage in that, due to the unsymmetrical nature of the piezo-effect with the two-layer silicon piezo-bending converter, i.e. the piezo-membrane converter, only an active downward movement, i.e. in direction toward the pump body, can be realized, the use of such a bending converter represents a preferred embodiment of the present invention, because this form of converter has numerous advantages. For one part, they have a quick response performance in the order of about 1 millisecond at low energy consumption. Furthermore, scaling with dimensions of piezo-ceramic and membrane is possible across large ranges, so that a large stroke (10 . . . 200 μm) and a large force (switching pressures 104 Pa to 106 Pa) are possible, wherein at a larger stroke the achievable force decreases, and vice versa. Furthermore, the medium to be switched is separated from the piezo-ceramic by the membrane.
If the inventive peristaltic micropumps are to be employed in applications in which a bubble-tolerant, self-priming performance is required, the microperistaltic pumps must be designed to satisfy a design rule regarding the compression ratio defining the ratio of stroke volume to dead volume. For the definition of the terms stroke volume ΔV and dead volume V0, reference is at first made to
a schematically shows a pump body 200 with a top surface thereof, in which a pumping chamber 202 is structured. Above the pump body 200 a membrane 204 is schematically shown, which is provided with an inlet valve piezo-actor 206, a pumping chamber piezo-actor 208 and an outlet valve piezo-actor 210. By the piezo-actors 206, 208, and 210, respective regions of the membrane 204 may be moved downward, i.e. in direction toward the pump body 200, as shown by arrows in
According to
In
At this point it is to be noted that the respective dead volume is defined from the respective closed valve to the passage opening, at which in the moment of a respective volume change in the pumping chamber a substantial pressure drop takes place. With a symmetrical construction of inlet and outlet valves, as is preferred for a bi-directional pump, the dead volumes V0 for the delivery stroke and the suction stroke are identical. If different dead volumes result due to an asymmetry for a delivery stroke and a suction stroke, in the following it is to be started, in terms of a worst-case consideration, from the fact that the larger one of both dead volumes is used for ascertaining the respective compression ratio.
The compression ratio of the microperistaltic pump is calculated from the stroke volume ΔV and the dead volume v0 as follows:
ε=ΔV/V0. Eq. 1
In the following it will be started from a worst-case consideration, in which the entire pump region is filled with a compressible fluid (gas). The volume/pressure states occurring in a peristaltic pumping cycle, as it has been described above, in the peristaltic pump are shown in the diagram of
At the beginning of a delivery stroke, there is a pressure p0 in the fluid region existing between inlet valve and outlet valve, while this region has a volume V0+ΔV. Starting from this state, the pressure membrane moves downward during the delivery stroke by the stroke volume ΔV, whereby a positive pressure pp forms in the fluid region, i.e. the pumping chamber, so that there is a pressure of p0+pp at a volume of V0. The positive pressure in the pumping chamber degrades by the air volume ΔV being conveyed through the outlet until pressure compensation has taken place. This streaming out of fluid from the outlet corresponds to a jump from the upper curve to the lower curve in
In the above general state considerations serving for the general explanation of the invention, the volume displacements of the inlet valve and outlet valve between the respective suction strokes and delivery strokes have been neglected.
In order to be able to achieve bubble tolerance, the positive pressure pp at the delivery stroke and the negative pressure pn at the suction stroke have to exceed a minimum value at the delivery stroke and fall short of it at the suction stroke, respectively. In other words, the pressure magnitude at the delivery stroke and at the suction stroke have to exceed a minimum value, which can be designated as delivery pressure pF. This delivery pressure is the pressure in the pressure chamber that has at least to exist to move a liquid/gas interface past a place representing a flow constriction between the pumping chamber and the passage opening of the first or second valve, including this passage opening. This delivery pressure may be ascertained depending on the size of this flow constriction as follows.
Capillary forces have to be overcome when free surfaces, such as in form of gas bubbles (for example air bubbles) are moved in the fluid regions within the pump. The pressure that has to be applied to overcome such capillary forces depends on the surface tension of the liquid at the liquid/gas interface and the maximum radius of curvature r1 and the minimum radius of curvature r2 of the meniscus of this interface:
The delivery pressure to be produced is defined by equation 2, namely at the place of the flow path of the microperistaltic pump at which the sum of the inverse radii of curvature r1 and r2 of a liquid/gas interface at a given surface tension is maximal. This place corresponds to the flow constriction.
For illustration, for example a channel 220 (
According to
If such a channel represents the region of a fluid system at which the greatest capillary force has to be overcome, the required pressure in this special case with r1=r2=r=d/2, is:
In microperistaltic pumps of the inventive kind, this pressure barrier is not to be neglected due to the small geometry dimensions, when such -a channel represents the constriction of the pump. With a line diameter of for example d=50 μm and a surface tension air/water of σwa=0.075 N/m, the pressure barrier is Δpb=60 hPa, wherein with a channel diameter d=25 μm the pressure barrier is Δpb=120 hPa.
With microperistaltic pumps of the inventive kind, the constriction mentioned, however, will usually be defined by the distance between valve membrane and opposing region of the pump body (for example a sealing lip) at opened valve. This constriction represents a slit having infinite width as opposed to the height, i.e. r1=r and r2=infinite.
From the above equation 2, for such a channel the following results:
In general, the connection between the smallest radius of curvature and the smallest wall distance d is given by the following relationship:
wherein Θ represents the wetting angle and Γ the tilt between the two walls.
The worst case, i.e. the smallest radius of curvature independent of tilt angle and wetting angle, is given when the sine function becomes maximal, i.e. sin(90°+Γ−Θ)=1. This occurs for example at abrupt cross-sectional changes, as they are shown in
The half of the smallest occurring wall distance may thus be considered the smallest occurring radius of curvature, independent of the tilt angle Γ, wetting angle Θ or abrupt cross-sectional changes.
On the one hand, in a peristaltic pump, fluid connections exist between the chambers with a given channel geometry and a constriction defining the lowest passage dimension d. For such a channel the following applies:
On the other hand, the peristaltic pump has a constriction at the inlet or outlet valve, which is defined by the slit geometry dependent on the valve stroke. For this the following applies:
The respective constriction (channel constriction or valve constriction in the open state) at which greater capillary forces have to be overcome may be regarded as flow constriction of the microperistaltic pump.
In preferred embodiments of the present invention, connection channels within the peristaltic pump are thus designed such that the diameter of the channel exceeds at least double the valve constriction, i.e. the distance between membrane and pump body in the opened valve state. In such a case, the valve slit represents the flow constriction of the microperistaltic pump. For example, with a valve stroke of 20 μm, connections channels with a smallest dimension, i.e. constriction, of 50 μm may be provided. The upper limit of the channel diameter is determined by the dead volume of the channel.
The capillary force to be overcome depends on the surface tension at the liquid/gas interface. This surface tension again depends on the partners involved. For a water/air interface, the surface tension is about 0.075 N/m and slightly varies with the temperature. organic solvents usually have a significantly lower surface tension, whereas the surface tension at a mercury/air interface is for example about 0.475 N/m. A peristaltic pump designed to overcome the capillary force at a surface tension of 0.1 N/m is thus suited to pump almost all known liquids and gasses in a bubble-tolerant and self-priming manner. Alternatively, the compression ratio of an inventive microperistaltic pump may be made correspondingly higher to enable such pumping for example also for mercury.
The design rules discussed subsequently hold for the conveyance of gases and incompressible liquids, wherein, in the conveyance of liquids, it has to be started from the fact that in the worst case air bubbles fill the entire pumping chamber volume. In the conveyance of gases it has to be reckoned with the fact that, due to condensation, liquid may reach the pump. In the following it is started from the fact that the piezo-actor is designed so that all required negative pressures and positive pressures may be achieved.
At first, a delivery stroke is to be considered. During the expulsion process, the actor membrane compresses the gas volume, or air volume. The maximum positive pressure in the pumping chamber pp is then determined by the pressure in the air bubble. It is calculated from the state equation of the air bubble.
p0(V0+ΔV)γ
The variables p0, V0, ΔV and pp have been explained above with reference to
pp>pF Eq. 10
Now, a suction stroke is to be considered. The suction stroke differs by the starting location of the volumes. After the expansion the negative pressure pn develops in the pumping chamber, i.e. pn is negative:
p0V0γ
The left side of equation 11 reflects the state before the expansion, whereas the right side reflects the state after the expansion. The negative pressure pn at the delivery stroke has to be smaller than the required negative delivery pressure pF. It is to be noted that the delivery pressure pF is positive in magnitude considering the delivery stroke, negative in magnitude considering the suction stroke. It follows:
Pn<pF Eq. 12
From the above equations the following results for the minimum compression ratio necessary of bubble-tolerant microperistaltic pumps for the delivery stroke:
The following compression ratio results for the suction stroke:
If the delivery pressure pF is small as opposed to the atmospheric pressure p0, the previous equations may be simplified as follows, which corresponds to a linearization about the point p0, V0:
The following results as valid equation for the suction stroke and the delivery stroke.
With quick changes of state, the conditions are adiabatic, i.e. γA=1.4 for air. With slow changes of state, the conditions are isothermal, i.e. γA=1. With a consequent application of the worst-case assumption, a criterion with γA=1 is used in the following. Thus, as design rule for the necessary compression ratio of bubble-tolerant microperistaltic pumps, it may be stated that the compression ratio has to be greater than the ratio of the delivery pressure to the atmospheric pressure, i.e.:
Or with the volumes mentioned:
The above-indicated simple linear design rule corresponds to the tangent on the isothermal state equation of
Preferred embodiments of inventive microperistaltic pumps are thus designed such that the compression ratio satisfies the above condition, wherein the minimum necessary delivery pressure corresponds to the pressure defined in equation 8 when channel constrictions occurring in the peristaltic pump have minimum dimensions at least double the size of the valve slit. Alternatively, the minimum required delivery pressure may correspond to the pressure defined in equation 3 or equation 7, when the flow constriction of the microperistaltic pump is not defined by a slit but a channel.
If an inventive microperistaltic pump is to be employed when pressure boundary conditions of a negative pressure pi at the inlet or a back pressure p2 at the outlet exist, the compression ratio of a microperistaltic pump has to be correspondingly greater to enable pumping against these inlet pressures or outlet pressures. The pressure boundary conditions are defined by the provided application of the microperistaltic pump and may range between few hPa to several 1000 hPa. For such cases, the positive pressure pp or negative pressure pn occurring in the pumping chamber has to at least achieve these back pressures so that a pumping action occurs. For example, the height difference of a possible inlet vessel or outlet vessel of 50 cm alone leads to back pressures of 50 hPa with water.
Furthermore, the desired conveyance rate represents a boundary condition posing additional requirements. With a given stroke volume ΔV, the conveyance rate Q is defined by the operational frequency f of the repeating peristaltic cycle: Q=ΔV·f. Within the period duration T=1/f, both the suction stroke and the delivery stroke of the peristaltic pump have to be performed, in particular the stroke volume ΔV has to be shifted. The time available thus is a maximum of T/2 for suction stroke and delivery stroke. The required time to convey the stroke volume through the pumping chamber feed line and the valve constriction depends on the one hand on the flow resistance, on the other on the pressure amplitude in the pumping chamber.
If foam-like substances are to be pumped with an inventive microperistaltic pump, it may be necessary to overcome a plurality of capillary forces, as they are described above, since several corresponding liquid/gas interfaces occur. In such a case, the microperistaltic pump has to be designed to have a compression ratio to be able to produce correspondingly higher delivery pressures.
In summary, it may be stated that the compression ratio of an inventive microperistaltic pump has to be chosen correspondingly higher, when the delivery pressure pF necessary in the microperistaltic pump, apart from the mentioned capillary forces, is further dependent on the boundary conditions of the application. It should be noted that here the delivery pressure relative to the atmospheric pressure is considered, a positive delivery pressure pF being assumed in the delivery stroke, wherein a negative delivery pressure pF is assumed in the suction stroke. As a technically sensible value for robust operation, thus a magnitude of the delivery pressure of at least pF=100 hPa may be assumed for a suction stroke and a delivery stroke.
Considering a back pressure of for example 3000 hPa at the pump outlet, against which it has to be pumped, a compression ratio of ε>3 results according to the above equation 13, wherein an atmospheric pressure of 1013 hPa is assumed.
If the microperistaltic pump has to suck against a great negative pressure, for example a negative pressure of −900 hPa, according to the above equation 14, a compression ratio of ε>9 is to be met to enable pumping against such a negative pressure.
Examples of peristaltic micropumps enabling the realization of such compression ratios are subsequently explained in greater detail.
b shows a schematic cross-sectional view of a peristaltic micropump with membrane element 300 and pump body 302 along the line b—b of
In the embodiment shown in
Further increase of the pumping chamber volume as opposed to the valve chamber volume is achieved in the embodiment shown in
In order to reduce the flow resistance between the valve chambers 308 and 310 and the pumping chamber 304, the feeding channels 306 are structured in the surface of the pump body 302. These fluid channels 306 provide a reduced flow resistance without significantly degrading the compression ratio of the peristaltic micropump.
Alternatively to the embodiment shown in
Exemplary dimensions of the embodiment shown in
An enlarged illustration of the left part of the cross-sectional illustration shown in
As explained above, in the regions of the fluid system in which a pumping action is required, the compression ratio of a peristaltic pump has to be chosen large by forming a pumping chamber volume of a peristaltic pump, to guarantee self-priming performance and robust operation with reference to bubble tolerance. In order to achieve this, it is preferred to keep the dead volumes small, which may be supported by adapting the contour or shape of the pumping chamber to the bend line of the pumping membrane in the deflected state.
A first possibility to realize such an adaptation consists in implementing a round pumping chamber, i.e. a pumping chamber whose circumferential shape is adapted to the deflection of the pumping membrane. A schematic top view on the pumping chamber and fluid channel section of a pump body with such a pumping chamber is shown in
In order to be able to achieve a further reduction of the dead volume, and thus a further increase of the compression ratio, the pumping chamber below the pumping membrane may be designed so that its contour facing the pumping-membrane fittingly follows the bend line of the pumping membrane. Such a contour of the pumping chamber may for example be achieved by a correspondingly formed injection molding tool or by an embossing stamp. A schematic top view on a pump body 340, in which such a fluid chamber 342 following the bend line of the actor membrane is structured, is shown in
An embodiment of a peristaltic micropump, in which both the pumping chamber 342 and the valve chambers 360 are adapted to the bend lines of the respectively associated membrane sections 12, 14, and 16, is shown in
As is shown in
The connection channels 344b and 344c between the actor chambers are switched so that they contain a small dead volume in comparison with the stroke volume. At the same time these fluid channels significantly decrease the flow resistance between the actor chambers so that also greater pumping frequencies, and thus greater conveyance flows, wherein such a flow is again indicated by arrows 350 in
An alternative embodiment of a valve chamber 360 is shown in
In order to achieve a valve sealing in the closed state, which satisfies default pressure requirements, it may be preferred to provide a ridge 390a in the valve chamber 360, which does not replicate the maximum possible bend line of the actor element, i.e. the membrane section 12, together with the piezo-actor 22, as shown in
In practical realizations, the bend line of the membrane will often not be perfectly concentric to the membrane center, for example due to mounting tolerances of the piezo-ceramics and due to inhomogeneities of the glue application, by which the piezo-ceramics are attached to the membranes. Therefore, the region of the ridge sealing may be slightly, for example by about 5 to 20 μm, increased as opposed to the rest of the fluid chamber, depending on the stroke of the actor, to guarantee secure contact of the membrane with the ridge, and thus secure sealing. This also corresponds to the situation shown in
Alternatively to the mentioned possibilities, a plastically deformable material, such as silicon, may be used as fluid chamber material at least in the region below the movable membrane. By actor forces, which are designed correspondingly great, inhomogeneities may then be balanced. In such a case, no hard-hard seal is present any more, so that there is a certain tolerance against particles and deposits.
In the following, an exemplary dimensioning of a peristaltic pump, as it is shown in
By the adaptation of the fluid chamber design to the bend line of the membrane, the dead volume of the three fluid chambers required for the peristaltic pump ceases to exist, so that only the connection channels connecting the valve chamber to the pumping chamber remain. If connection channels with a depth of 100 μm, a width of 100 μm, and a length of 10 mm each are used, so that an overall length for the fluid channels 344b and 344c of 20 mm results, this results in a pumping chamber dead volume of 0.2 μl. Therefrom a compression ratio ε=ΔV/V=4 μl/0.2 μl=20 may be ascertained.
With such a great compression ratio of up to 20, such fluid modules are bubble-tolerant and self-priming and can convey both liquids and gases. In principle , such fluid pumps may further build up several bars of pressure for compressible and liquid media, depending on the design of the piezo-actor. With such a micropump, the maximum producible pressure is no longer limited by the compression ratio, but defined by the maximum force of the drive element and by the tightness of the valves. In spite of these properties, several ml/min may be conveyed by suitable channel dimensioning with a low flow resistance.
In the above-described embodiment, all fluid channels, i.e. also the inlet fluid channel 344a and the outlet fluid channel 344d, are guided laterally, i.e. the fluid channels pass in the same plane as the fluid chambers. As set forth above, in such a course, the sealing of the channels may be difficult. It is, however, advantageous in the lateral course of the fluid channels that the entire fluid system, including reservoirs connected to the inlet channel 344a and/or the outlet channel 344d, may be shaped with one production step, such as with injection molding or embossing.
In
The inventive peristaltic micropumps are preferably controlled by the membrane, for example the metal membrane or the semiconductor membrane, lying on a ground potential, whereas the piezo-ceramics are moved by a typical peristaltic cycle, by corresponding voltages each being applied to the piezo-ceramics.
Apart from the above-described microperistaltic pump using three fluid chambers 342, 360, and 362, an inventive peristaltic micropump may comprise further fluid chambers, for example a further fluid chamber 420 connected to the pumping chamber 342 via a fluid channel 422. Such a structure is schematically shown in
A structure with four fluid chambers, as it is shown in
Apart from the embodiments shown, fluid chambers may be arbitrarily interleaved in a plane. Thus, a micro-peristaltic pump each may be associated with different reservoirs, which then for example supply reagents to a chemical reaction (for example in a fuel cell) or perform a calibration sequence for an analysis system, for example in a water analysis.
For the creation of a piezo-membrane converter, the piezo-ceramic may for example be glued on the respective membrane sections. Alternatively, the piezo-ceramics, for example PZT, may be directly applied in thick film technique, for example by screen-printing methods with suitable intermediate layers.
An alternative embodiment of an inventive micro-peristaltic pump with sunk inlet fluid channel 412 and sunk outlet fluid channel 414 is shown in
Piezo-stack actors are advantageous in that they do not have to be fixedly connected to the membrane element, so that they enable a modular construction. In such not fixedly connected piezo-stack actors, the actors do not actively pull back a membrane section, when an actuation thereof is ended. A reverse movement of the membrane section can rather only take place by the return force of the elastic membrane itself.
The inventive peristaltic micropumps may be fabricated using most varied production materials and production techniques. The pump body may for example be produced from silicon, fabricated from plastics by injection molding, or produced by precision-engineering cutting. The membrane element forming the drive membrane for the two valves and the pumping chamber may be produced from silicon, may be formed by a metal foil, for example stainless steel or titanium, may be formed by a plastic membrane fabricated in two-component injection molding technique provided with conductive coatings, or may be realized by an elastomer membrane.
The connection of membrane element and pump body is an important issue, because at this connection high shear forces may occur in the operation of the peristaltic pump. For this connection, the following requirements are to be made:
In the case of silicon as basic structure and membrane element, silicon fusion bonding without joining layer may take place. In the case of a silicon glass combination, anodic bonding may preferably be used. Further possibilities are eutectic wafer bonding or wafer gluing.
If the basic structure consists of plastic, and the membrane element is a metal foil, laminating may be performed, when a primer is used between membrane element and basic structure. Alternatively, gluing with a glue of high shear strength may take place, wherein then preferably capillary stop trenches are formed in the basic structure to avoid intrusion of glue in the fluid structure.
If both membrane element and pump body consist of plastic, ultrasound welding may be used for the connection thereof. If one of the two structures is optically transparent, alternatively laser welding may take place. In the case of an elastomer membrane, the sealing properties of the membrane may further be used to guarantee sealing by clamping.
In the following it will be briefly explained how a possible mounting of the membrane to the pump body may take place in an inventive microperistaltic pump. In the inventive micropump, if the membrane is glued to the pump body, it should be noted that the dosage of joining layer materials (e.g. glue) is critical, because on the one hand the membrane has to be tight all round (i.e. sufficient glue has to be applied) and on the other hand an intrusion of excess glue in the fluid chambers is to be avoided.
The joining layer material, which may be a glue or an adhesive, is applied on the joining layer e.g. by dispensing or by a correspondingly shaped stamp. After the application of the joining layer material, the membrane is loaded on the basic body. Possible burrs, which may e.g. be at the edge of the membrane when dicing, find space in a corresponding receptacle for the burr, so that a defined location of the membrane is ensured, in particular in the direction perpendicular to the surface thereof, which is important with reference to the dead volume and tightness.
Then it is pressed on the pump body with a stamp so that the glue layer remains as thin and defined as possible. In order to accommodate excess glue, a capillary stop trench may be provided surrounding the fluid areas formed in the pump body. Thus, such excess glue cannot reach the fluid chambers. Under these conditions, the glue may cure in a defined and thin manner. The curing may take place at room temperature or in an accelerated manner in the oven or by UV radiation using UV-curing glues.
Alternatively to the gluing technique described, partially solving the basic body or pump body by suitable solvents and joining of a plastic membrane to the basic body may take place as connection technique.
While this invention has been described in terms of several preferred embodiments, there are alterations, permutations, and equivalents which fall within the scope of this invention. It should also be noted that there are many alternative ways of implementing the methods and compositions of the present invention. It is therefore intended that the following appended claims be interpreted as including all such alterations, permutations, and equivalents as fall within the true spirit and scope of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
102 38 600 | Aug 2002 | DE | national |
This application is a continuation of co-pending International Application No. PCT/EP03/09352, filed Aug. 22, 2003, which designated the United States and was not published in English and is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
5259737 | Kamisuki et al. | Nov 1993 | A |
5593290 | Greisch et al. | Jan 1997 | A |
6074178 | Bishop et al. | Jun 2000 | A |
Number | Date | Country |
---|---|---|
196 37 928 | Sep 1996 | DE |
197 19 862 | May 1997 | DE |
949 418 | Oct 1999 | EP |
WO 8707218 | Dec 1987 | WO |
WO 0028213 | May 2000 | WO |
Number | Date | Country | |
---|---|---|---|
20050123420 A1 | Jun 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/EP03/09352 | Aug 2003 | US |
Child | 10960549 | US |