Peristaltic pump that is resistant to torques and vibrations

Information

  • Patent Grant
  • 8585379
  • Patent Number
    8,585,379
  • Date Filed
    Tuesday, June 22, 2010
    14 years ago
  • Date Issued
    Tuesday, November 19, 2013
    11 years ago
Abstract
A peristaltic pump for dispensing liquid includes a front casing portion, a rear casing snap-fitted together with the front casing portion, a rotor confined between the front casing portion and the rear casing portion, a plurality of rollers mounted in the rotor, and a flexible tube compressed at equally spaced intervals by the plurality of rollers. The pump is resistant to constant torques and vibrations caused by a machine to which it is attached so that the pump does not become loose and fall apart. In a first embodiment for low torque and low vibration operations, the pump is screwless. In a second embodiment for high torque and high vibration operations, two screws secure a synchronous gear motor to the pump.
Description
TECHNICAL FIELD OF THE INVENTION

The invention relates to peristaltic pumps, in particular to a small pump for dispensing liquid detergent into a dish washing machine.


BACKGROUND OF THE INVENTION

Peristaltic pumps are well known in the prior art and may be defined as pumps which produce pulse-like contractions that propel matter along inside a tube.


In FIG. 1, there is shown a prior art device that was manufactured by Knight Equipment International, Inc., of Costa Mesa, Calif., now Knight, Inc. of Northbrook, Ill.


Inside a casing 10, there is a pump 12 in which a triangular rotor 14 rotates to compress a flexible rubber tube 16 against a curved wall 30 at points A and B. These points A and B change along the length of the tube 16 as the rotor 14 rotates around its central axis 18. Three pins 20 hold three rollers 22 at tips X, Y and Z of the rotor 14 while four screws 24 hold front and back portions of the casing 10 together. The tube 16 has an inlet suction branch 16C and an outlet delivery branch 16D. Arrows I and 0 indicate the direction of flow of liquid detergent into and out of the tube 16. A clear, hard plastic cover 26 with a tab 28 allows a user to view and to have access to the interior of the casing 10 in order to replace or repair any parts of the pump 12 and the rotor 14 which may break.


One disadvantage of this prior art device is that the constant vibration of an industrial washing machine in which it is used tends over time to cause the screws 24 to work loose from the casing 10, thus causing the pump 12 inside to fail. Also, the constant vibration causes the pins 20 holding the rollers 22 in the rotor 14 to work loose and push up against the cover 26 until the cover 26 pops off. Once again the pump 12 fails. Thus, it is a problem in the prior art to develop a peristaltic pump which is resistant to constant vibrations that eventually caused earlier devices to become loose and fail.


SUMMARY OF THE INVENTION

The invention may be summarized as a small screwless peristaltic pump which is resistant to constant vibrations caused by a machine to which it is attached so that the pump does not become loose and fall apart.


A primary object of the invention is to hold the pump together without screws when the pump is used in low torque and low vibration operations.


A secondary object of the invention is to support a motor onto a rear casing portion of the housing.


A tertiary object of the invention is to make the pump, its internal rollers and a flexible tube impervious to deleterious ingredients contained in liquid detergent.


A key advantage of the present invention is that only a predetermined amount of the liquid detergent enters the pump because the synchronous motor, as controlled electronically, meters the detergent to prevent waste in the dish washing machine.





BRIEF DESCRIPTION OF THE DRAWINGS

The invention and its other advantages may be best understood by reference to the accompanying drawings and the subsequent detailed description of the preferred embodiments.



FIG. 1 is a front elevation view of a known prior art device.



FIG. 2 is an exploded front perspective view of a first embodiment of the invention.



FIG. 3 is an exploded front perspective view of a rotor and rollers inside the first embodiment.



FIG. 4 is a top end view of a front portion of a casing of the first embodiment.



FIG. 5 is a front inside elevational view of a back portion of the casing of the first embodiment.



FIG. 6 is an assembled perspective view of the first embodiment.



FIG. 7 is an exploded rear perspective view of a second embodiment of the invention.



FIG. 8 is an exploded front perspective view of a rotor and rollers inside the second embodiment.





DETAILED DESCRIPTION OF THE INVENTION

There are two basic preferred embodiments: a first embodiment for low torque and low vibration operations; and a second embodiment for high torque and high vibration operations.


In FIG. 2, the first embodiment is illustrated. There is a small plastic peristaltic pump 112 contained in a main housing which has a front casing portion 100 and a cover or a rear casing portion 110. The front casing portion 100 and the rear casing portion 110 are snap-fitted together in a manner described below. A bracket 164 is formed integrally with a side of the front casing portion 100. This bracket 164 attaches the main housing containing the pump 112 to a dish washing machine (not shown). An electrical plug 174 allows alternating current to be carried through wires 176 from an activator (not shown) when it is switched on by a user who desires to wash a load of dishes. Upon activation, an inlet suction branch 106 brings a predetermined amount of liquid detergent flowing from a reservoir (not shown) in a direction I into a flexible rubber U-shaped tube 116 held in place at an inlet to the pump 112 by a U-shaped inlet channel 104 integrally formed on a top surface of the front casing portion 100. Inside the pump 112, there is a plurality of plastic rollers 122 on tips X, Y and Z of a triangular plastic rotor 114 confined between the front casing portion 100 and the rear casing portion 110. The rollers 122 compress the flexible tube 116 at equally spaced intervals against an interior side of a curved wall 130. Although three rollers 122 are shown, a manufacturer may choose to use more or less rollers, for example, four or two rollers instead. Nevertheless, three rollers 122 are preferred. The rollers 122 are rolled along the flexible tube 116 as they are rotated by the rotor 114 which is turned by an output shaft 118 extending from a synchronous gear motor 132. Ears 166 project from opposite sides of the motor 132. Bosses 142 on an outer periphery of the front casing portion 100 extend through hollow cylindrical sleeves 144 into upper and lower holes in the ears 166 and are ultrasonically heated until they melt to spot weld the motor 132 to the rear casing portion 110.


As seen in FIG. 2, only a predetermined amount of the liquid detergent enters the pump 112 because the synchronous motor 132 meters the detergent to prevent waste in the dish washing machine. The amount of liquid is predetermined by the signal sent to the motor 132 which then turns its shaft 118 and the rotor 114 mounted thereon a predetermined number of times.


The motor 132 is rated at 120 volts of alternating current (AC) at 60 hertz (Hz). The rated current is 0.05 amps and the rated speed is 20 revolutions per minute (rpm), plus or minus 10%.


Pulse-like contractions are produced inside the flexible tube 116. These contractions propel the liquid detergent in spurts along the inside of the flexible tube 116 held in place at an outlet from the pump 112 by a U-shaped outlet channel 108 until the liquid detergent is dispensed by being squirted out of an outlet delivery branch 160 in a direction 0 into the dish washing machine (not shown). The U-shaped outlet channel 108 is formed integrally on a top surface of the front casing portion 100.


Instead of the metal pins used in the prior art device shown in FIG. 1, the pump 112 in FIG. 2 is secured together against the constant vibrations of the dish washing machine by three types of plastic devices for snap-fitting the front casing portion 100 together with the cover or rear casing portion 110. The first type is a C-shaped groove (not shown) in a circular recess 135 into which a C-shaped tongue 136 is inserted. In an alternate embodiment, at least a pair of straight grooves and a mating pair of straight tongues 136 may be used. The second type of plastic device is a trio of square, open-ended boxes 138 into which a trio of springy, plastic clip pairs 140 are inserted. At least two of these boxes 138 and clip pairs 140 are needed for the front casing portion 100 and the rear casing portion 110 to be snap-fitted together. The third type of plastic device is the pair of bosses 142 on each side of the front casing portion 100. The bosses 142 are inserted through the pair of hollow cylindrical sleeves 144. In an alternate embodiment, only one boss 142 and one sleeve 144 may be used. Note that the groove in the recess 135, the boxes 138 and the bosses 142 are positioned on an outer periphery of the front casing portion 100 while the tongue 136, the clip pairs 140 and the sleeves 144 are positioned on an outer periphery of an interior wall of the rear casing portion 110. However, in an alternate embodiment, the groove in the recess 135, the boxes 138 and the bosses 142 may be positioned on the rear casing portion 110 while the tongue 136, the clip pairs 140 and the sleeves 144 may be positioned on the front casing portion 100. An ultrasonic welding rod (not shown) is applied to three areas on an exterior wall of the rear casing portion 110 where the bosses 142 are inserted through the sleeves 144 into the ears 166 in order to heat and melt each boss 142 into its aligned sleeve 144 and ear 166 so that the boss 142, the sleeve 144 and the ear 166 are fused together. Thus, the pump 112 is not jarred apart by the constant vibrations caused by the dish washing machine.


In FIG. 3, the triangular rotor 114 for low torque and low vibration operations is illustrated. The rotor 114 and its rollers 122 are exploded apart to show how they are connected together. A front face 146 of the rotor 114 has formed integrally on its inner side three stepped male inserts 148. A rear face 150 has formed integrally on its inner side three aligned cylindrical barrels 152 with which the male inserts 148 mate. Each roller 122 has a cylindrical bore 156 through its center along its longitudinal axis 158. Note that a dowel 154 is mounted inside the rotor 114 and aligns the plurality of mated inserts 148 and barrels 152 around a central D-shaped bore 172. A single central large cylindrical barrel 170 carries the dowel 154 and surrounds the D-shaped bore 172 through which the shaft 118 of FIG. 2 with its D-shaped cross section passes in order to rotate the rotor 114.


In FIG. 3, the rotor 114 is assembled in the following manner. First, the rollers 122 are slipped onto the barrels 152. Second, the inserts 148 are plugged into the bores 156 of the barrels 152 so that the mated inserts 148 and the barrels 152 carry the rollers 122. Simultaneously, the dowel 154 is inserted into a bore (not shown) made in the inner side of the front face 146. An ultrasonic welding rod (not shown) is applied to three areas on an outer side of the rear face 150 where the inserts 148 are plugged into the barrels 152 so that the inserts 148 and the barrels 152 are fused together. However, care must be taken so that too much heat is not applied in order to prevent the rollers 122 on the barrels 152 from being deformed.


In FIG. 4, there is shown a top end view of the front casing portion 100 which functions as part of the main housing for both the first and second embodiments. The U-shaped inlet channel 104 secures an entrance for the flexible tube (not shown) while the U-shaped outlet channel 108 secures an exit for the flexible tube. A top of one box 138 is also seen. In the first embodiment for low torque and low vibration operations, a pair of bosses 142 on each side, of which only the top boss 142 is seen, is insertable through the pair of hollow cylindrical sleeves 144 on each side shown in FIG. 5 on the interior wall of the rear casing portion 110. In FIG. 4, the bracket 164 attaches the front casing portion 100 to the dish washing machine (not shown). The front casing portion 100 is also secured to the rear casing portion 110 of FIG. 5 by the trio of clip pairs 140 which are inserted into the boxes 138 of FIG. 4, of which only one box 138 is shown in FIG. 4. Likewise, in FIG. 5, the circular tongue 136 arranged on the interior wall of the rear casing portion 110 is inserted into the groove (not shown in FIG. 4, but see the back of the groove in the recess 135 illustrated in FIG. 2). In FIG. 5, an opening 162 through the center of the rear casing portion 110 allows the output shaft 118 seen in FIG. 2 to extend therethrough to engage with and drive the rotor 114 of FIG. 3.


In FIG. 6, the pump 112 is shown to be assembled with the motor 132. The operation of the pump 112 and the motor 132 in this first embodiment may be understood by following the path of movement of the liquid therethrough. Note that the liquid may be other than a detergent. Initially, the motor 132 is turned on when it receives a signal through the wires 176 of the plug 174 to meter the flow of liquid in the direction I into the inlet suction branch 106 which leads to the flexible tube 116 that is held securely by the U-shaped inlet channel 104. To prevent waste of liquid detergent in the dish washing machine, the signal energizes the motor 132 to turn its shaft 118 seen in FIG. 2 a predetermined number of times depending upon whether a small, medium or large amount of detergent is needed to clean the load in the dish washing machine. A predetermined amount of the liquid then enters the pump 112 where the rollers 122 of FIGS. 2 and 3 intermittently compress the flexible tube 116 so that the even flow of liquid is converted into pulses of liquid. These liquid pulses exit the pump 112 through the flexible tube 116 that is held securely by the U-shaped outlet channel 108. The liquid is then squirted out of the outlet delivery branch 160 in the direction 0 into the dish washing machine (not shown). While the rotor 114 of FIGS. 2 and 3 is driven by the motor 132, the pump 112 is seen in FIG. 6 to be held together by the front casing portion 100 and the rear casing portion 110 which are secured by the two clip pairs 140 in the two boxes 138. Another clip pair 140 in its box 138 is hidden from view. The pairs of sleeves 144 on the rear casing portion 110 and the pairs of bosses 142 on the front casing portion 100 stuck therein are also hidden from view. In this first embodiment for low torque and low vibration operations, the groove in the recess 135 and its mating tongue 136 of FIG. 2 are not illustrated in FIG. 6 because they are hidden inside the front casing portion 100 and the rear casing portion 110, respectively. The bracket 164 is shown for attaching the entire assembly to the dish washing machine (not shown).


Note in FIG. 2 that there are no screws holding the pump 112 together with its housing which includes the front casing portion 100 and the rear casing portion 110. Also, in this first embodiment for low torque and low vibration operations, there are no screws supporting the motor 132 onto the exterior wall of the rear casing portion 110. Note further that the pump 112, the rollers 122 and the tube 116 are all impervious to deleterious ingredients contained in the liquid detergent.


In FIG. 7, the second embodiment for high torque and high vibration operations is illustrated. The pump 112 is contained in the main housing which has the front casing portion 100 and the cover or rear casing portion 110. The front casing portion 100 and the rear casing portion 110 are snap-fitted together in the manner described below. The bracket 164 is formed integrally with a side of the front casing portion 100 and attaches the main housing containing the pump 112 to the dish washing machine (not shown). The electrical plug 174 allows alternating current to be carried through the wires 176 from the activator (not shown) when it is switched on by a user. Upon activation, the inlet suction branch 106 brings a predetermined amount of liquid detergent flowing from a reservoir (not shown) in the direction I into the flexible tube 116 held in place at the inlet to the pump 112 by the U-shaped channel 104 integrally formed on the top surface of the front casing portion 100. Inside the pump 112, there is a plurality of rollers 122 on tips X, Y and Z of the rotor 114 confined between the front casing portion 100 and the rear casing portion 110. The rollers 122 compress the flexible tube 116 at equally spaced intervals against the interior side of the curved wall 130. The rollers 122 are rolled along the flexible tube 116 as they are rotated by the rotor 114 which is turned by the output shaft 118 (not shown but see FIG. 2) extending from the motor 132. Ears 166 of which only one is seen in FIG. 7, project from opposite sides of the motor 132. Screws 168 are inserted into upper holes in the ears 166, extend through the upper sleeves 144 on the rear casing portion 110 and pass through bores 178 in the front casing portion 100 where the screws 168 are secured at their ends by bolts 182 of which only one is shown. The bosses 142 extend from the front casing portion 100 through the lower sleeves 144 into the lower holes in the ears 166 and are ultrasonically heated until they melt to spot weld the motor 132 to the rear casing portion 110. Of course, in an alternate embodiment, the screws 168 may be inserted into the lower holes in the ears 166 and the bosses 142 may be extended through the upper holes in the ears 166 to achieve the same result. Note that this combination of screws 168 and bosses 142 is intended for high torque and high vibration operations.


Pulse-like contractions are produced inside the flexible tube 116 as the rotor 114 rotates the rollers 122 along the curved wall 130 to compress the tube 116. These contractions propel the liquid detergent in spurts along the inside of the tube 116 which is held in place at the outlet from the pump 112 by the U-shaped channel 108 until the liquid detergent is dispensed by being squirted out of the delivery branch 160 in the direction 0 into the dish washing machine (not shown). The channel 108 is formed integrally on a top surface of the front casing portion 100.


Instead of the metal pins used in the prior art device shown in FIG. 1, the pump 112 in FIG. 7 is secured together against the constant vibrations of the dish washing machine by three types of plastic devices for snap-fitting the front casing portion 100 together with the cover or rear casing portion 110. The first type is the C-shaped groove 134 into which the C-shaped tongue 136 is inserted. The tongue 136 is not shown in FIG. 7, but see FIG. 2. In an alternate embodiment, at least a pair of straight grooves 134 and a mating pair of straight tongues 136 may be used. The second type of plastic device is the trio of square boxes 138 into which a trio of springy clip pairs 140 are inserted. Only one pair of the clips 140 is seen in FIG. 7. At least two of these boxes 138 and clip pairs 140 are needed for the front casing portion 100 and the rear casing portion 110 to be snap-fitted together. The third type of plastic device is the pair of bosses 142, one on each side of the front casing portion 100. The bosses 142 are inserted through the lower sleeves 144 into the lower ears 166 on the motor 132. Note that the groove 134, the boxes 138 and the bosses 142 are positioned on an outer periphery of the front casing portion 100 while the tongue 136 (not shown in FIG. 7 but see FIG. 2), the clip pairs 140 and the sleeves 144 are positioned on an outer periphery of an interior wall of the rear casing portion 110. However, in an alternate embodiment, the groove 134, the boxes 138 and the bosses 142 may be positioned on the rear casing portion while the tongue 136 of FIG. 2, the clip pairs 140 and the sleeves 144 may be positioned on the front casing portion 100. An ultrasonic welding rod (not shown) is applied to three areas on the exterior wall of the rear casing portion 110 where the bosses 142 are inserted through the lower sleeves 144 into the lower holes in the ears 166 in order to heat and melt each boss 142 into its aligned lower sleeve 144 and lower hole of the ear 166 so that the boss 142, the sleeve 144 and the ear 166 are fused together. Thus, the pump 112 is not jarred apart by the constant vibrations caused by the dish washing machine.


In this second embodiment shown in FIG. 7, there is a skirt 180 at least partially surrounding the sleeves 144 on each side of the rear casing portion 110 to form a recessed area into which the ears 166 may fit so as to prevent wobbling of the motor 132 when it is activated. There are also skirts 180 in the first embodiment for low torque and low vibration operations. However, the skirts 180 are not seen in the first embodiment because FIG. 2 is a front perspective view which hides the skirts 180.


In FIG. 8, the triangular rotor 114 for high torque and high vibration operations is illustrated. Three T-shaped supports 184 reinforce the rotor 114 against high torque and high vibrations. In the first embodiment shown in FIG. 3 for low torque and low vibration operations, there are no T-shaped supports 184 reinforcing the rotor 114.


In FIG. 8, the rotor 114 and its rollers 122 are exploded apart to show how they are connected together. The front face 146 of the rotor 114 has formed integrally on its inner side three stepped male inserts 148. The rear face 150 has formed integrally on its inner side three aligned cylindrical barrels 152 with which the male inserts 148 mate. Each roller 122 has a cylindrical bore 156 through its center along its longitudinal axis 158. The dowel 154 is mounted inside the rotor 114 and aligns the plurality of mated inserts 148 and barrels 152 around the central D-shaped bore 172. The single central large cylindrical barrel 170 carries the dowel 154 and surrounds the D-shaped bore 172 through which the shaft 118 of FIG. 2 with its D-shaped cross section passes in order to rotate the rotor 114.


In FIG. 8, the rotor 114 is assembled in the following manner. First, the rollers 122 are slipped onto the barrels 152. Second, the inserts 148 are plugged into the bores 156 of the barrels 152 so that the mated inserts 148 and the barrels 152 carry the rollers 122. Simultaneously, the dowel 154 is inserted into a bore (not shown) made in the inner side of the front face 146. The ultrasonic welding rod (not shown) is applied to three areas on the outer side of the rear face 150 where the inserts 148 are plugged into the barrels 152 so that the inserts 148 and the barrels 152 are fused together. However, care must be taken so that too much heat is not applied in order to prevent the rollers 122 on the barrels 152 from being deformed.


Although the present invention has been described by way of two preferred embodiments, other modifications will be realized by those persons skilled in this particular technology after reading this disclosure. However, these modifications may be considered within the scope of the appended claims if such modifications do not depart from the spirit of this invention.

Claims
  • 1. A peristaltic pump for dispensing liquid, comprising: a front casing portion;a rear casing portion snap-fitted together with the front casing portion, the front casing portion having a plurality of first snap-fit portions spaced apart from each other and the rear casing portion having a plurality of second snap-fit portions spaced apart from each other, each one of the first snap-fit portions being snap-fitted with a corresponding one of the second snap-fit portions;at least three different types of securing devices for securing and snap-fitting the front casing portion with the rear casing portion, each device positioned at a different location on the front casing portion the rear casing portion;wherein one of the at least three different types of securing devices comprises a boss on the front casing portion, the boss having a first cylindrical portion with a first diameter and an adjacent second cylindrical portion with a second diameter smaller than the first diameter, a first hole on the rear casing portion and a second hole in a motor flange;wherein the first diameter of the first cylindrical portion is substantially the same as the diameter of the first hole;wherein the second diameter of the second cylindrical portion is substantially the same as the second hole;wherein the boss is inserted through the first hole into the second hole;a rotor confined between the front casing portion and the rear casing portion and rotatable around an axis, the rotor having a triangular-shaped front face having three tips and a triangular-shaped rear face having three tips, each tip of the three tips of the front face aligned with a corresponding tip of the rear face, the rotor having three rollers with one roller each mounted at each of the three aligned front and rear face tips; anda flexible tube having a portion housed within the front casing portion and the rear casing portion and compressed therein by the rollers;wherein the peristaltic pump is resistant to torques and vibrations.
  • 2. The peristaltic pump for dispensing liquid according to claim 1, wherein one of the securing devices comprises at least a pair of open-ended boxes and spring clip pairs configured to snap-fit together the front casing portion and the rear casing portion.
  • 3. The peristaltic pump for dispensing liquid according to claim 1, wherein one of the securing devices comprises a tongue in a recess and a mating groove configured to snap-fit together the front casing portion and the rear casing portion.
  • 4. The peristaltic pump for dispensing liquid according to claim 1, further comprising a bracket formed integrally with the front casing portion.
  • 5. The peristaltic pump for dispensing liquid according to claim 1, wherein the boss and holes are aligned and fused together by ultrasonic welding.
  • 6. The peristaltic pump for dispensing liquid according to claim 5, further comprising a skirt at least partially surrounding the hole on the rear casing portion.
  • 7. The peristaltic pump for dispensing liquid according to claim 1, further comprising a synchronous gear motor having the motor flange with the second hole and being attached there through by ultrasonic welding to the rear casing portion.
  • 8. The peristaltic pump for dispensing liquid according to claim 7, further comprising an output shaft extending from the motor and rotating the rotor.
  • 9. The peristaltic pump for dispensing liquid according to claim 1, further comprising an inlet channel formed integrally on the front casing portion and configured to hold the flexible tube in place.
  • 10. The peristaltic pump for dispensing liquid according to claim 1, further comprising an outlet channel formed integrally on the front casing portion and configured to hold the flexible tube in place.
  • 11. The peristaltic pump for dispensing liquid according to claim 1, further comprising an inlet suction branch configured to bring the liquid flowing into the flexible tube.
  • 12. The peristaltic pump for dispensing liquid according to claim 1, further comprising a plurality of mated inserts and barrels formed integrally on the rotor and configured to carry the plurality of rollers.
  • 13. The peristaltic pump for dispensing liquid according to claim 12, further comprising a dowel mounted inside the rotor and configured to align the plurality of mated inserts and barrels.
  • 14. The peristaltic pump for dispensing liquid according to claim 1, further comprising T-shaped supports configured to reinforce the rotor.
  • 15. The peristaltic pump for dispensing liquid according to claim 1, wherein the flexible tube is continually compressed by at least two rollers.
  • 16. The peristaltic pump for dispensing liquid according to claim 1, wherein the front and rear casing portions are free from being structurally attached to each other during use of the peristaltic pump other than the snap-fit at the three or more locations around the axis.
  • 17. A screw-less peristaltic pump assembly for dispensing liquid, comprising: a front casing portion;a rear casing portion having a first hole;a gear motor with a flange having a second hole;a plurality of different types of devices for securing and snap-fitting the front casing portion and the rear casing portion together without screws, the devices including:a pair of bosses, the bosses having a first cylindrical portion with a first diameter and an adjacent second cylindrical portion with a second diameter smaller than the first diameter;wherein the first diameter of the first cylindrical portion is substantially the same as the diameter of the first hole in the rear casing portion;wherein the second diameter of the second cylindrical portion is substantially the same as the second hole in the flange;wherein the boss is inserted through the first hole into the second hole;a pair of open-ended boxes and spring clip pairs configured to snap-fit together the front casing portion and the rear casing portion; and,a recess and a mating groove configured to snap-fit together the front casing portion and the rear casing portion;a rotor confined between the front casing portion and the rear casing portion;a plurality of rollers mounted in the rotor; anda flexible tube compressed at equally spaced intervals by the plurality of rollers;wherein the pump assembly is resistant to torques and vibrations.
  • 18. The screw-less peristaltic pump assembly for dispensing liquid according to claim 17, wherein the gear motor is attached by ultrasonic welding the boss to the rear casing portion.
  • 19. The screw-less peristaltic pump assembly for dispensing liquid according to claim 18, wherein the motor further comprises a skirt at least partially surrounding the holes, the skirt further including a recessed area for engaging and securing the flange of the motor.
  • 20. A screw-less peristaltic pump assembly for dispensing liquid, comprising: a front casing portion;a rear casing portion;a plurality of different snap-fitting devices for securing and snap-fitting the front casing portion and the rear casing portion together without screws, the devices including:a boss, the boss having a first cylindrical portion with a first diameter and an adjacent second cylindrical portion with a second diameter smaller than the first diameter, a first sleeve in the rear casing portion, and a second sleeve in a motor flange, wherein the first diameter of the first cylindrical portion is substantially the same as the diameter of the first sleeve in the rear casing portion;wherein the second diameter of the second cylindrical portion is substantially the same as the second sleeve in the motor flange;wherein the boss is inserted through the first sleeve into the second sleeve and heat welded together;a pair of open-ended boxes and spring clip pairs configured to snap-fit together the front casing portion and the rear casing portion; and,a C-shaped groove in a circular recess and a c-shaped tongue configured to form a seal between the front casing portion and the rear casing portion;a rotor confined between the front casing portion and the rear casing portion, the rotor including reinforcing supports;a plurality of rollers mounted in the rotor; anda flexible tube compressed at equally spaced intervals by the plurality of rollers; wherein the pump assembly is resistant to torques and vibrations.
RELATED APPLICATIONS

The present application is a continuation-in-part and claims the filing benefit of U.S. patent application Ser. No. 12/283,930 entitled “Fluid Pump Systems” filed on Sep. 17, 2008, which is a continuation-in-part of U.S. patent application Ser. No. 11/197,381 entitled “Peristaltic Pump” filed on Aug. 5, 2005. The '930 application and the '381 application are both incorporated herein by reference.

US Referenced Citations (34)
Number Name Date Kind
3217963 Alsman Nov 1965 A
3549279 Grach Dec 1970 A
3601306 Martens et al. Aug 1971 A
3756752 Stenner Sep 1973 A
3942915 Thomas Mar 1976 A
4365728 Tokorozawa et al. Dec 1982 A
4392790 Shibata et al. Jul 1983 A
4496295 King Jan 1985 A
4513796 Miller et al. Apr 1985 A
4515584 Abe et al. May 1985 A
4540350 Streicher Sep 1985 A
4573887 Smith Mar 1986 A
4631008 Stenner Dec 1986 A
4661045 Winston et al. Apr 1987 A
4755109 Botts Jul 1988 A
5031258 Shaw Jul 1991 A
5054947 Frank et al. Oct 1991 A
5281111 Plambeck et al. Jan 1994 A
5326236 Kramer et al. Jul 1994 A
5356267 Fulmer Oct 1994 A
5390385 Beldham Feb 1995 A
5403277 Dodge et al. Apr 1995 A
5551850 Williamson et al. Sep 1996 A
5628731 Dodge et al. May 1997 A
5781942 Allen et al. Jul 1998 A
5981289 Wright et al. Nov 1999 A
6077246 Kullas et al. Jun 2000 A
6210101 Homg Apr 2001 B1
6386844 Chen et al. May 2002 B1
6436072 Kullas et al. Aug 2002 B1
6557729 Gauthier May 2003 B2
6857295 Hansen et al. Feb 2005 B2
20020195069 Herke et al. Dec 2002 A1
20050127104 Tu Jun 2005 A1
Related Publications (1)
Number Date Country
20110150679 A1 Jun 2011 US
Continuation in Parts (2)
Number Date Country
Parent 12283930 Sep 2008 US
Child 12820307 US
Parent 11197381 Aug 2005 US
Child 12283930 US