The present invention relates to peristaltic pumps, and more particularly to the controlled stopping of peristaltic pumps
Peristaltic pumps are used in a wide variety of applications to move fluid through tubing. In such applications, the flexible tubing may be installed into the pump (or tubing may be connected to a section of tubing already installed in the pump) and a rotor with a number of rollers or similar structures (e.g., lobes, wipers, etc.) compress the flexible tube. As the rotor turns, the rollers occlude the tubing and force the fluid through the tubing. To that end, the pumps are typically designed to have one roller engage and occlude the tubing before the other roller disengages. However, in some instances, the tolerances of the tubing, the geometry of the pump housing, and the position of the rollers may allow flow to bypass the rollers when the pump is stopped.
In accordance with one embodiment of the invention, a peristaltic pump includes a pump body configured to receive a section of tubing, and a rotor configured to rotate about an axis. The pump may also include a first roller mounted on a first end of the rotor and a second roller mounted on a second end of the rotor. The first roller may rotate between a disengaged, initially engaged and a fully engaged position with respect to the section of tubing as the rotor rotates. The first roller may start to occlude the section of tubing when in the initially engaged positon and fully occlude the section of tubing when in the fully engaged position. The second roller may also rotate between a disengaged, initially engaged and a fully engaged position with respect to the section of tubing as the rotor rotates. The second roller may start to occlude the section of tubing when in the initially engaged positon and fully occlude the section of tubing when in the fully engaged position.
The pump may also include an encoder and a rotor controller. The encoder may be located on the rotor and may monitor the position of the first and second rollers as the rotor rotates about the axis. The rotor controller may be in electrical communication with the encoder and may control the operation of the pump and rotor. The rotor controller may be configured to stop the rotation of the rotor in response to a stop command and based upon the monitored position of the first and second rollers such that either the first or second roller remains in the fully engaged positon. The first roller may rotate about a first roller axis as the first roller transitions between the initially engaged, fully engaged and disengaged positions. The second roller may rotate about a second roller axis as the second roller transitions between the initially engaged, fully engaged and disengaged positions.
In some embodiments, the pump may include a platen, and at least a portion of the section of tubing may be located between the platen and the first roller when the first roller is in the initially engaged and fully engaged positions. The first roller may press the section of tubing against the platen to fully occlude the tubing when the first roller is in the fully engaged position. Additionally or alternatively, a portion of the section of tubing may be located between the platen and the second roller when the second roller is in the initially engaged and fully engaged positions. The second roller may press the section of tubing against the platen to fully occlude the tubing when the second roller is in the fully engaged position.
The second roller may be in the disengaged position when the first roller is in the fully engaged position, and/or the first roller may be in the disengaged position when the second roller is in the fully engaged position. Additionally or alternatively, the first roller may be in an initially disengaged position when the second roller is in the initially engaged position, and/or the second roller may be in an initially disengaged position when the first roller is in the initially engaged position. The rotor may include a driving shaft, and the encoder may be located on the driving shaft.
In accordance with further embodiments, a method may include providing a peristaltic pump. The peristaltic pump may have a pump body, a rotor configured to rotate about an axis, a first roller mounted on a first end of the rotor, and a second roller mounted on a second end of the rotor. The method may also include inserting a section of tubing into the peristaltic pump, and rotating the rotor about the axis. The rotation of the rotor may cause the first and second rollers to transition between a disengaged, initially engaged and a fully engaged position with respect to the section of tubing. The method may then (1) receive, in a pump controller, a stop command instructing the pump controller to stop the pump, and (2) monitor, using an encoder located on the rotor, the position of the first and second rollers as the rotor rotates about the axis. The method may then stop the pump, using the pump controller, based upon the position of the first and second rollers such that either the first or second roller remains in the fully engaged positon.
In some embodiments, the first roller may rotate about a first roller axis as the first roller transitions between the initially engaged, fully engaged and disengaged positions. Similarly, the second roller may rotate about a second roller axis as the second roller transitions between the initially engaged, fully engaged and disengaged positions. The pump may also include a platen, and at least a portion of the section of tubing may be located between the platen and the first or second roller when the first or second roller is in the initially engaged and fully engaged positions. The first and/or second rollers may press the section of tubing against the platen to occlude the tubing when the first/second roller is in the fully engaged position. In further embodiments, the second roller may be in the disengaged position when the first roller is in the fully engaged position and/or the first roller may be in the disengaged position when the second roller is in the fully engaged position.
The rotor may include a driving shaft and the encoder may be located on the driving shaft. The first roller may be in an initially disengaged position when the second roller is in the initially engaged position, or the second roller may be in an initially disengaged position when the first roller is in the initially engaged position. The first and second rollers start to occlude the section of tubing when in the initially engaged positon and fully occlude the section of tubing when in the fully engaged position.
In accordance with still further embodiments, a peristaltic pump may include a pump body configured to receive a section of tubing, a rotor configured to rotate about an axis, a first roller and a second roller. The first roller may be mounted on a first end of the rotor and may rotate about a first roller axis. The first roller may selectively engage and disengage the section of tubing and roll along the surface of the tubing as the rotor rotates. The second roller may be mounted on a second end of the rotor and may rotate about a second roller axis. The second roller may selectively engage and disengage the section of tubing and roll along the surface of the tubing as the rotor rotates.
The pump may also include an encoder and a rotor controller. The encoder may be located on the rotor (e.g., on a driving shaft of the rotor) and may monitor the position of the first and second rollers as the rotor rotates about the axis. The rotor controller may be in electrical communication with the encoder and may control the operation of the pump and rotor. For example, to prevent fluid bypass, the rotor controller may stop the rotation of the rotor based upon the monitored position of the first and second rollers such that the first or second roller engages and fully occludes the section of tubing.
The pump may also include a platen, and the section of tubing may be located between the platen and the first roller when the first roller engages the section of tubing and/or between the platen and the second roller when the second roller engages the section of tubing. The first roller may press the section of tubing against the platen to occlude the tubing as first roller rolls along the surface of the tubing. Similarly, the second roller may press the section of tube against the platen to occlude the tubing as second roller rolls along the surface of the tubing.
The foregoing features of embodiments will be more readily understood by reference to the following detailed description, taken with reference to the accompanying drawings, in which:
In illustrative embodiments, a peristaltic pump with controlled stop may have a rotor with a roller or similar structure at either end of the rotor. During operation of the pump, the rotor may rotate about an axis to selectively engage and disengage the rollers with the tubing, causing the tubing to become occluded. To prevent liquid bypass when the pump is stopped, various embodiment of the present invention may monitor the location of the rollers prior to stopping the pump to ensure that at least one of the rollers fully occludes the tubing.
To facilitate the rotation of the rotor 110 and the operation of the pump 100, the pump 100 may include a rotor motor 150 that is mechanically connected/coupled to the rotor 110 via a drive shaft 160. To that end, as the motor 150 energizes, the rotational force from the motor 150 will be translated to the rotor 110 via the drive shaft 160. This, in turn, will cause the rotor 110 to rotate, bringing the rollers 140A/B into and out of engagement with the tubing 120 as the rotor 110 rotates.
It should be noted that the friction created between the rollers 140A/B and the tubing 120 when the rollers 140A/B engage with the tubing may be problematic. For example, the friction may cause the rollers 140A/B to pull/tug on the tubing 120 and increase the force required for the rollers 140A/B to move over the tubing 120. To that end, the rollers 140A/B can independently rotate about their respective roller axes (e.g. about points 142A/B in
As mentioned above, as the rotor 130 rotates and the rollers 140A/B engage the tubing 120, the rollers 140A/B occlude the tubing 120 to create the peristalsis required for pump operation. To provide a solid/rigid surface against which the rollers 140A/B can deform the tubing 120 (e.g., to occlude the tubing 120), the pump 100 may include a platen 170. As best shown in
The operation of the pump 100 may be controlled by a pump controller 180. For example, the pump controller 180 may be in communication with the motor 160 and start and stop the motor 160 (and therefore the pump) upon receipt of a start command and stop command, respectively. Alternatively, if the pump 100 is used in conjunction with an additional piece of equipment, the operation of the pump may be controlled the additional equipment. For example, if the pump 100 is part of a blood processing system (e.g., if the pump is used to control the flow of whole blood, blood components, anticoagulant, etc. through the blood processing system), a controller within the blood processing system may control the operation of the pump 100 and act as the pump controller.
During operation and as the rotor 130 rotates, each of the rollers 140A/B will engage and disengage the tubing 120. For example, as the rotor 130 rotates, the rollers 140A/B will initially engage the tubing 120 when they first reach the platen 170 and begin to compress/occlude the tubing 120 against the platen 170 (e.g., roller 140B in
It should be noted that, although the dimensions and tolerances of the platen geometry, roller 140A/B rotation, and tubing 120 size are tightly controlled for many applications (including blood processing applications), in some instances, the rollers 140A/B may not fully occlude the tubing 120 when they initially engage and/or initially disengage from the tubing 120. Therefore, if the pump 120 happens to stop when in this position (e.g., in the configuration shown in
To prevent the bypass discussed above, some embodiments of the present invention may control the stoppage of the pump 100 to ensure that at least one of the rollers 140A/B is fully engaged with and fully occludes the tubing 120. To that end, some embodiments of the present invention may include a position sensor (e.g., an encoder 190;
It should be noted that, although the position sensor (e.g., the encoder 190) is discussed above as being located on the drive shaft 160, the encoder 190 may be located anywhere in the system that allows the encoder 190 to monitor the position of each of the rollers 140A/B as they rotate. For example, the encoder 190 may be located on/within the motor 150 (e.g., it may be part of the motor 150). Additionally or alternatively, the encoder may be located on rotor 130.
As mentioned above, the encoder 190 monitors the positions of the rollers 140A/B during pump operation and helps to ensure that the pump stops when at least one of the rollers 140A/B is fully engaged with and fully occludes the tubing 120. Therefore, once the pump 100 receives the stop command, the pump 100 (e.g., the pump controller 180 and encoder 190) monitors the position of the rollers 140A/B with respect to the tubing 120 (Step 220) and determines if at least one of the rollers 140A/B is fully engaged and fully occludes the tubing 120 (Step 230). If at least one of the rollers 140A/B is fully engaged with the tubing 120, the controller 180 will stop the pump 120 (Step 240). If neither roller 140A/B is fully engaged with tubing 120 (e.g., they are fully disengaged, initially engaged or initially disengaged), the controller 180 will keep the pump running and will continue to monitor the positions of the rollers 140A/B until at least one of the rollers 140A/B is fully engaged. The controller 180 will then stop the pump 100.
It should be noted that, although pumps 100 having two rollers 140A/B are discussed above, embodiments of the present invention can have more than two rollers 140A/B. For example, some embodiments of the present invention may have three or more rollers located on the rotor 130. Additionally or alternatively, instead of rollers 140A/B, some embodiments may utilize lobes, wipers, etc. to engage with and occlude the tubing 120 during pump operation. In such embodiments, the controller 180 will keep the pump running and will monitor the position of the rollers, lobes, wipers, etc. until one of the rollers, lobes, wipers, etc. fully engages and occludes the tubing 120.
The embodiments of the invention described above are intended to be merely exemplary; numerous variations and modifications will be apparent to those skilled in the art. All such variations and modifications are intended to be within the scope of the present invention as defined in any appended claims.
This patent application claims priority from United States Provisional Application Ser. No. 62/244,405, filed Oct. 21, 2015, entitled “Peristaltic Pump with Controlled Stop,”, and naming Gary Stacey and Edward Kaleskas as inventors, the disclosure of which is incorporated herein, in its entirety by reference.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2016/058177 | 10/21/2016 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2017/070508 | 4/27/2017 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3138104 | Theodore | Jun 1964 | A |
3542491 | Newman | Nov 1970 | A |
4564342 | Weber et al. | Jan 1986 | A |
4715786 | Wolff et al. | Dec 1987 | A |
5003239 | Matthews | Mar 1991 | A |
5215450 | Tamari | Jun 1993 | A |
5263831 | Kappus | Nov 1993 | A |
5649808 | Gruszecki et al. | Jul 1997 | A |
6102678 | Peclat | Aug 2000 | A |
6749410 | Burch | Jun 2004 | B1 |
20050019185 | Otis | Jan 2005 | A1 |
20050047925 | Davis | Mar 2005 | A1 |
20100036486 | Mazur | Feb 2010 | A1 |
20110200458 | Baruzzi | Aug 2011 | A1 |
20130189120 | Nelson et al. | Jul 2013 | A1 |
Number | Date | Country |
---|---|---|
2 425 471 | Nov 2006 | GB |
2 435 596 | Aug 2007 | GB |
WO 9415658 | Jul 1994 | WO |
WO 0118394 | Mar 2001 | WO |
WO 2009105436 | Aug 2009 | WO |
Entry |
---|
USPTO as the International Searching Authority, Authorized Officer: Shane Thomas, International Search Report and Written Opinion of the International Searching Authority, PCT/US16/58177, dated Jan. 13, 2017, 15 pages. |
European Patent Office, Extended European Search Report, application No. 16858319.3, dated Apr. 29, 2019, 10 pages. |
European Patent Office, European Examination Report, application No. 16858319.3, dated Mar. 12, 2020, 5 pages. |
Number | Date | Country | |
---|---|---|---|
20180313348 A1 | Nov 2018 | US |
Number | Date | Country | |
---|---|---|---|
62244405 | Oct 2015 | US |