The present invention relates generally to peristaltic pumps and, more particularly, to a pump that facilitates loading of a fluid carrying tube in the pump.
Peristaltic pumps are typically used to pump clean/sterile or aggressive fluids, because cross contamination cannot occur. Some common applications include pumping IV fluids through an infusion device, aggressive chemicals, high solids slurries and other materials where isolation of the product from the environment, and the environment from the product, are critical. The peristaltic pump is the standard method for introducing liquids into the nebulizer on an inductively coupled plasma mass spectrometry (ICP-MS) unit.
Rotary peristaltic pumps typically move liquids through flexible tubing. A typical peristaltic pump has a rotor assembly with pinch rollers that apply pressure to the flexible tubing at spaced locations to provide a squeezing action on the tubing against an occlusion bed. The occlusion of the tubing creates increased pressure ahead of the squeezed area and reduced pressure behind that area, thereby forcing a liquid through the tubing as the rotor assembly moves the pinch rollers along the tubing.
For high pressure peristaltic pumps, where pressures may exceed, for example, approximately 100 psi, very thick, stiff walled tubing is required to accommodate the elevated pressures. This relatively stiff nature of this high pressure tubing poses design challenges for both the loading and occluding operations of the pump.
Accordingly, there is a need for a pump and a tube retaining system that can accommodate the stiffer tubing needed for high pressure applications in both the loading of the tubing into the pump and the occlusion of the tubing during the operation of the pump.
A peristaltic pump is provided having a housing and a rotor assembly supported by the housing. An occlusion bed is slideably mounted within the housing. A door is pivotable with respect to the housing. A pinion gear is configured to rotate as the door pivots. A rack associated with the occlusion bed engages the pinion gear. Rotation of the pinion gear against the rack causes the occlusion bed to slide toward or away from the rotor assembly.
The peristaltic pump may also include a shaft supported by the housing. The door pivots about the shaft and the pinion gear is coupled to the shaft. Rotation of the shaft causes rotation of the pinion gear. In some embodiments, the peristaltic pump may also include an open portion of a tube retaining system associated with the housing and a clamping portion of the tube retaining system associated with the door. The flexible tubing is able to float in the open portion of the tube retaining system. The open portion and the clamping portion of the tube retaining system are configured to secure flexible tubing therebetween when the door is in a closed position. In an alternate embodiment of the tube retaining system, the open portion of the tube retaining system includes a roller and the clamping portion of the tube retaining system includes a roller. In this embodiment, the roller of the open portion and the roller of the clamping portion allow the clamping portion to pass by the flexible tubing in the open portion and gently squeeze the flexible tubing into a secured position.
Some embodiments of the peristaltic pump include a sensor. The sensor is configured to sense an open door condition and disable the peristaltic pump when the condition is sensed.
A method of loading a peristaltic pump is also provided. The door of the peristaltic pump is opened causing the occlusion bed to slide away from the rotor. The flexible tubing is loaded between the rotor and the occlusion bed. The door of the peristaltic pump is then closed causing the occlusion bed to slide toward the rotor and compress the flexible tubing against the rotor.
In some embodiments, the rotor is oriented in a predetermined rotational position to facilitate loading of flexible tubing. Loading of the flexible tubing may also include placing the flexible tubing in an open portion of a tube retaining system associated with a housing of the peristaltic pump. The flexible tubing is engaged between the open portion of the tube retaining system and a clamping portion of the tube retaining system associated with the door when the door is closed, securing the tubing.
In some embodiments, a recess in the housing of the peristaltic pump is engaged with a ball detent on the door to hold the door in a closed position. An inductive sensor may also be used to sense a position of the door. In response to sensing a door open position, the peristaltic pump is disabled.
In some embodiments, a rack is coupled to the occlusion bed. The rack engages a pinion gear. The pinion gear rotates when the door opens and closes. The rotation of the pinion gear causes the rack to move, sliding the occlusion bed toward or away from the rotor. In some embodiments, the rotor may be replaced prior to loading the flexible tubing to accommodate a change in size of the flexible tubing.
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and, together with a general description of the invention given above, and the detailed description given below, serve to explain the invention.
It should be understood that the appended drawings are not necessarily to scale, presenting a somewhat simplified representation of various features illustrative of the basic principles of the invention. The specific design features of the sequence of operations as disclosed herein, including, for example, specific dimensions, orientations, locations, and shapes of various illustrated components, will be determined in part by the particular intended application and use environment. Certain features of the illustrated embodiments have been enlarged or distorted relative to others to facilitate visualization and clear understanding. In particular, thin features may be thickened, for example, for clarity or illustration.
Turning to the drawings, wherein like numbers denote like parts throughout the several views,
When the door 16 is opened, power is supplied, or the pump 10 is halted, a rotor sensor 27 orients the rotor assembly 14 to a predetermined rotational position, such as shown in
The rack 32 and pinion 30 are configured such that as the door closes, the linear movement 34 of the rack 32 causes the occlusion bed 20 to move toward the rotor assembly 14. With the door 16 in the open position (
As seen in
Leverage supplied by the door 16 through the rack 32 and pinion 30 allows a user of the pump 10 to easily occlude the stiff tubing 28 required for high pressure applications. As described above, this arrangement also allows the door 16 to remain in a closed position with a simple latch mechanism, such as the ball detents 22 and recesses 24. Additionally, the rack 32 and pinion 30 design allows for a more precise occlusion tolerance, allowing the occlusion to be set to the proper position prior to door 16 being closed. Once the proper occlusion distance is achieved the door 16 is moved to the closed position to assure the occlusion location during operation. Then the tube retention and clamping systems 36 or 42 are engaged with the door 16 in the closed position to retain the proper occlusion position during operation and to slide the occlusion bed 20 back when the door 16 is open. This configuration may accommodate tubing 28 of different diameters that have similar wall thicknesses. The rotor assembly 14 and/or rollers 52 may be changed out to accommodate tubing 28 having thicker or thinner walls.
Because the retainer system is built into the door 16 closing operation, embodiments of the pump 10 may be easier to use. Many prior art pumps require the user to load the tubing, secure or latch the tubing, close the door, and then latch the door. Embodiments of the pump 10 have the user of the pump 10 simply load the tubing 28 then close the door 16, thus eliminating steps during loading.
While the present invention has been illustrated by a description of one or more embodiments thereof and while these embodiments have been described in considerable detail, they are not intended to restrict or in any way limit the scope of the appended claims to such detail. Additional advantages and modifications will readily appear to those skilled in the art. The invention in its broader aspects is therefore not limited to the specific details, representative apparatus and method, and illustrative examples shown and described. Accordingly, departures may be made from such details without departing from the scope of the general inventive concept.
This application claims the filing benefit of co-pending U.S. Ser. No. 60/980,951, filed Oct. 18, 2007, the disclosure of which is hereby incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4138205 | Wallach | Feb 1979 | A |
4558996 | Becker | Dec 1985 | A |
4631008 | Stenner | Dec 1986 | A |
4813855 | Leveen | Mar 1989 | A |
4925376 | Kahler | May 1990 | A |
4976590 | Baldwin | Dec 1990 | A |
5082429 | Soderquist | Jan 1992 | A |
5388972 | Calhoun | Feb 1995 | A |
5433588 | Monk et al. | Jul 1995 | A |
6019582 | Green | Feb 2000 | A |
6494692 | Green | Dec 2002 | B1 |
7478999 | Limoges | Jan 2009 | B2 |
Number | Date | Country |
---|---|---|
0019205 | Nov 1980 | EP |
0825345 | Jul 1996 | EP |
0731275 | Nov 1996 | EP |
0834653 | Apr 1998 | EP |
1048848 | Nov 2000 | EP |
1291027 | Aug 2002 | EP |
Number | Date | Country | |
---|---|---|---|
20090129944 A1 | May 2009 | US |
Number | Date | Country | |
---|---|---|---|
60980951 | Oct 2007 | US |