Field of the Invention
Embodiments of the invention relate to an artificial lift method and device describing a submersible peristaltic pump system and a method of its use. More specifically, embodiments of the invention relate to a peristaltic pump and method of its use.
Description of the Related Art
One method of producing hydrocarbon fluid from a well bore that lacks sufficient internal pressure for natural production is to utilize an artificial lift method. A string of tubing or pipe known as a production string suspends the submersible pumping device near the bottom of the well bore proximate to the producing formation. The submersible pumping device is operable to retrieve production zone fluid, impart a higher pressure into the fluid and discharge the pressurized production zone fluid into production tubing. Pressurized well bore fluid rises towards the surface motivated by difference in pressure.
A submersible pump system is installed during completion operations in a specifically designed well bore production zone. The production zone is a portion of the well bore in-between or below a packer or plug where hydrocarbons are produced for production. The packers and plugs isolate the portion of the well bore that is in fluid communication with the hydrocarbon-bearing formation from the remainder of the well bore. Fluid isolation of the production zone permits access, maintenance and even fluid isolation of the remainder of the well bore without disturbing the production zone.
However, the average run life of the current submersible pumping systems is about 3 years which is less than the average time such pumping systems are required to be used in a well. Since rig availability is an issue, many barrels produced fluids are deferred every year as a result of the months of waiting time to procure use of a rig for a submersible pump replacement.
The systems and methods of the invention of provide a longer lasting submersible pumping system with capabilities similar to conventional submersible pumping systems. Embodiments of this invention can be installed without the use of a rig. Therefore, embodiments of this invention have advantages both as the original pumping system to be installed in a well, or as a backup or replacement pump.
A system for displacing fluid inside of a tubular member can have one or more peristaltic pumps. Each peristaltic pump can have an elongated core member with a longitudinal axis located within the tubular member. A flexible member surrounds and is concentric to the elongated core member. The flexible member has a plurality of circular bands disposed along a length of the flexible member, each circular band being moveable between a contracted condition with a minimal radius and an expanded condition with a maximal radius. An outer membrane covers the circular bands and forms a fluid cavity between an outer surface of the outer membrane and an inner surface of the tubular member. The outer membrane operable to generate peristaltic waves in the fluid cavity in response to selectively moving each circular band between the contracted condition and the expanded condition.
In certain embodiments, the flexible member also has a plurality of generally longitudinal strips extending along the length of the flexible member. At least a portion of each generally longitudinal strip is moveable generally radially relative to the longitudinal axis of the elongated core member. A control conduit can be in signal communication with each circular band and each generally longitudinal strip for signaling each circular band to move from the contracted condition to the expanded condition, and for signaling at least a portion of each generally longitudinal strip to move generally radially relative to the longitudinal axis of the elongated core member. In embodiments where there are multiple peristaltic pumps, the control conduit can transmit control signals and electrical power to the flexible member of each peristaltic pump independent from the control signals and electric power being transmitted to each other peristaltic pump. The elongated core member can be the control conduit.
The circular bands of each peristaltic pump can be made of electroactive polymer, metal, elastomer, plastic, semiconductor, and piezoelectric material. In some embodiments, each peristaltic pump can have a magnetic linear actuator and the flexible member can have a second fluid cavity filled with a magnetic fluid. Each circular band of each peristaltic pump can have an actuator to cause such circular band to selectively move from the contracted condition to the expanded condition. The system can include a sensor that can sense conditions within the tubular member, such as temperature, pressure and density.
In other embodiments of the current invention, a submersible pump system for displacing fluids within a subterranean well includes production tubing with a central bore located within the subterranean well. An elongated core member with a longitudinal axis is located within the central bore of the production tubing. The flexible member surrounds and is concentric to the elongated core member, the flexible member having the plurality of circular bands disposed along the length of the flexible member, the plurality of generally longitudinal strips extending along the length of the flexible member, and the outer membrane covering the circular bands and generally longitudinal strips and forming the fluid cavity between the outer surface of the outer membrane and the inner surface of the central bore of the production tubing.
The system also includes the control conduit for transmitting signals to the flexible member to cause the outer membrane to generate peristaltic waves in the fluid cavity by selectively expanding and contracting the diameter of each circular band and moving at least a portion of each generally longitudinal strip in a direction generally radial to the longitudinal axis of the elongated core member. The control conduit can be a cable for transmitting electric power to the flexible member. The control conduit can be located within the production tubing. Alternatively, a lower portion of the control conduit can be located within the production tubing and an upper portion of the control conduit can be located outside of the production tubing.
In yet other embodiments, the system also includes a plurality of actuators, each actuator coupled to at least one circular band and operable to cause such at least one circular band to move from its contracted condition to its expanded condition.
In yet other alternative embodiments of the current invention, a method for displacing fluids in a tubular member includes the step of inserting a submersible pump within the tubular member. The submersible pump includes: the elongated core member with the longitudinal axis, the tubular flexible member surrounding and concentric to the elongated core member, the flexible member comprising the plurality of circular bands disposed along the length of the flexible member; and the outer membrane covering the circular bands. Peristaltic waves can be generated within the tubular member by selectively moving each circular band between the contracted condition with the minimal radius and the expanded condition with the maximal radius, to displace the fluids within the tubular member along the length of the tubular member.
The peristaltic waves can be generated in a first fluid cavity formed between the outer surface of the outer membrane and the inner surface of the tubular member. Alternatively, the peristaltic waves can be generated in the second fluid cavity formed between the inner surface of the outer membrane and the outer surface of the elongated core member, or can be generated in both the first fluid cavity and the second fluid cavity.
In order to install the submersible pump, the submersible pump can be located within the tubular member proximal to an upper end of the tubular member. Selectively moving each circular band between the contracted condition and an expanded condition can cause the submersible pump to move itself along the length of the tubular member. The submersible pump can then be secured in a desired final location within the tubular member.
A control signal can be transmitted along the control conduit to cause each circular band to selectively move between the contracted condition and the expanded condition. Alternatively, the signal can be transmitted to actuators which in turn cause each circular band to selectively move between the contracted condition and the expanded condition. In some embodiments, the submersible pump also includes the plurality of generally longitudinal strips extending along the length of the flexible member and the control signal is transmitted along the control conduit to cause at least a portion of each generally longitudinal strip to move radially to generating peristaltic waves in the fluid cavity. The sensor can sense the temperature, pressure, and density within the tubular member.
In some embodiments, the second fluid cavity is filled with the magnetic fluid and each circular band can be selectively moved between the contracted condition and the expanded condition with the magnetic linear actuator.
So that the manner in which the above-recited features, aspects and advantages of the invention, as well as others that will become apparent, are attained and can be understood in detail, a more particular description of the invention briefly summarized above may be had by reference to the embodiments thereof that are illustrated in the drawings that form a part of this specification. It is to be noted, however, that the appended drawings illustrate only preferred embodiments of the invention and are, therefore, not to be considered limiting of the invention's scope, for the invention may admit to other equally effective embodiments.
The present invention will now be described more fully hereinafter with reference to the accompanying drawings, which illustrate embodiments of the invention. This invention may, however, be embodied in many different forms and should not be construed as limited to the illustrated embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. Like numbers refer to like elements throughout.
Turning to
Elongated core member 16 with longitudinal axis 18 is located within tubular member 12. Flexible member 20 surrounds elongated core member 16. Flexible member 20 is located around and concentric to elongated core member 16. Elongated core member 16 is an elongated member that can be rigid or semi rigid and can be used as structural member to support flexible member 20.
As can be seen in
The circular bands 22 and generally longitudinal strips 24 act as both strength members, to provide mechanical structure flexible member 20, and as actuators with the ability to expand, contract or move radially at command. It is the movement of circular bands 22 and generally longitudinal strips 24 which generate the peristaltic waves, as will be discussed in further detail below. Circular bands 22 and generally longitudinal strips 24 can be passive, relying on external electrical, hydraulic or mechanical actuators 58 to cause their movement. Alternatively, circular bands 22 and generally longitudinal strips 24 can be active, acting as both strength members and actuators at the same time, being capable of movement themselves.
The circular bands 22 and generally longitudinal strips 24 are surrounded by an outer membrane 26. Outer membrane 26 isolates and protects the internal elements of flexible member 20. Outer membrane 26 can be made of a variety of elastic flexible material including elastomers, plastics, and metals. Outer membrane 26 could also be a semiconductor. Outer membrane 26 has an inner surface 28 and an outer surface 30. Generally longitudinal strips 24, circular bands 22 and outer membrane 26 can each be formed from a variety of materials, including metals, elastomers, and plastics. Generally longitudinal strips 24, circular bands 22 and outer membrane 26 can also be formed of electroactive polymers or piezoelectric material or can be semiconductors.
Returning to
Each peristaltic pump can also have at least one sensor 40 one or more sensors 40 for monitoring conditions within tubular member 12. Sensors 40 may measure, for example, pressure, temperature, or density. With the use of multiple sensors 40, the peristaltic pump system can be used as a distributed sensing array. As can also be seen in
Peristaltic waves are produced by sequentially changing the outer diameter of flexible member 20 along its length. The fluids trapped between the crests (or the depressions) of two consecutive waves is displaced in the same direction of movement of the peristaltic waves. Turning now to
Crest 56 of first wave 46 can be formed by selectively expanding certain circular bands 22 in the vicinity of crest 56, for example, by moving such circular band 22 to an expanded condition with maximal radius 50. In some embodiments, at least a portion of each generally longitudinal strip 24 can also be moved outward in a direction generally radial to longitudinal axis 18 of elongated core member 16.
Turning to
A second wave 60 is formed behind first wave 46 in a similar manner as described above and the waving make process can continue indefinitely as additional sequential waves are generated. It should be understood that flexible member 20 does not move axially relative to axis longitudinal during this process. Rather troughs 44 and crests 56 are created sequentially along the length of flexible member 20 in a direction from first end 52 to second end 54 of flexible member 20 by radially displacing outer membrane 26 by radial movement of circular bands 22 and generally longitudinal strips 24. This process creates the peristaltic wave in the same direction.
An alternative embodiment is shown in
Turning back to
In alternative embodiments, each peristaltic pump 10 could propel itself through tubular member 12. In such an embodiment, peristaltic pump 10 would be located within tubular member 12 proximal to an accessible end of tubular member 12. Each circular band 22 could then be moved between the contracted condition and the expanded condition to generate the peristaltic wave and cause peristaltic pump 10 to move itself along tubular member 12. In embodiments where peristaltic pump 10 has generally longitudinal strips 24, selective radial movement of portions of generally longitudinal strips 24 would be coordinated with movement of circular bands 22 to generate the peristaltic waves. In an ideal embodiment, the peristaltic movement is initiated by circular bands 22 contracting followed by a radial movement of a portion of flexible members 20 which pushes peristaltic pump 10 forward. This is conceptually similar to how earthworms drive their locomotion. This embodiment is particularly suitable for retrofitting naturally flowing wells with artificial lift and for allowing for rigless, self-deployment and intervention.
Regardless of the method of locating each peristaltic pump 10 in tubular member 12, once peristaltic pump 10 reaches its desired location within tubular member 12, it could be secured in place, for example, by the use of anchors or tubing profiles designed for that purpose and pumping operations can begin by generating peristaltic waves within tubular member 12. In order to generate the peristaltic waves, circular band 22 can be selectively and successively moved between the contracted condition with a minimal radius 48 and an expanded condition with maximal radius 50, to displace the fluids within tubular member 12 along a length of tubular member 12. In embodiments where flexible member 20 has generally longitudinal strips 24, at least a portion of each generally longitudinal strip 24 can be selectively moved radially to assist in generating the peristaltic waves. The fluids can be displaced either within first fluid cavity 32, second fluid cavity 36, or within both fluid cavities 32, 36.
A control conduit 66 is in signal communication with each circular band 22 and each generally longitudinal strip 24 for controlling each circular band 22 and causing each circular band 22 to move from the contracted condition to the expanded condition. Control conduit 66 can be elongated core member 16. Elongated core member 16 can be capable of transmitting control signals itself, or elongated core member 16 can contain cables within internal bore 68 of elongated core member 16. Alternatively, cables may be otherwise secured to elongated core member 16. Control conduit 66 can also provide a signal to control at least a portion of each generally longitudinal strip 24 to cause the portion of each generally longitudinal strip 24 to move generally radially relative to longitudinal axis 18 of elongated core member 16. Control conduit 66 can also transmit electrical power to each peristaltic pump 10 and can collect and transmit data, such as temperature, pressure and density, from sensors 40. Therefore, in embodiments of this disclosure, control conduit 66, which can provide control signals and power, is a self-contained element of peristaltic pump 10. The self-contained system of peristaltic pump 10 can be manufactured as an elongated tubular member and coiled around a spool to provide peristaltic pump 10 as a roll, in a manner similar to traditional coiled tubing, for ease of shipping and deployment.
In some embodiments, a number of peristaltic pumps 10 can be located within tubular member 12. Peristaltic pumps 10 can be spaced apart within tubular member 12, or peristaltic pumps 10 can abut each other. Control conduit 66 can transmit control signals and electrical power to flexible member 20 of each peristaltic pump 10 independent from the control signals and electric power being transmitted to each other peristaltic pump 10. An operator can control the operation of each peristaltic pump 10 independently. If one peristaltic pump 10 was to fail, that peristaltic pump 10 can be isolated from the rest.
In embodiments where circular bands 22 and generally longitudinal strips 24 are passive, external electrical, hydraulic or mechanical actuators 58 can be signaled to actuate and cause movement of circular bands 22 and generally longitudinal strips 24. Each peristaltic pump 10 can have a plurality of actuators 58. Each actuator 58 can be coupled to at least one circular band 22 and can be actuated to cause such circular bands 22 to move from their contracted condition to their expanded condition. Some actuators 58 can alternatively be coupled to at least one generally longitudinal strip 24 and be actuated to cause a portion of such generally longitudinal strips 24 to move in a direction generally radial to longitudinal axis 18 of elongated core member 16. In embodiments where second fluid cavity 36 is filled with a separate fluid, this fluid can be a magnetic fluid and actuators 58 can be magnetic linear actuators.
Alternatively, where circular bands 22 and generally longitudinal strips 24 are active, circular bands 22 and generally longitudinal strips 24 can be signaled directly. In some embodiments, outer membrane 26 may itself be capable of independent movement and in such embodiment, a signal would also be sent to outer membrane 26. In embodiments where circular bands 22 and generally longitudinal strips 24 are active, circular bands 22 and generally longitudinal strips 24, as well as outer membrane 26 can be made out of electroactive polymers. These materials exhibit deformation response to an applied electric field. This deformation property can be used to control the movement of flexible member 20.
If desired, the operator can also use peristaltic pump 10, as a fluid control device when peristaltic pump 10 is shut in. By signaling each elongated core member 16 to move to an expanded condition and signaling each flexible member 20 to move radially outward relative to longitudinal axis 18, outer surface 30 of outer membrane 26 will be in contact with inner surface 34 of tubular member 12 along the length of peristaltic pump 10. In this static expanded condition, flexible member 20 creates a fluid barrier within tubular member 12 with a pressure rating proportional to the number of sub-cavities 70 or the length of flexible member 20.
The fluid flow rate of peristaltic pump 10 is proportional to the volume of first fluid cavity 32 volume (where the pumped fluid is located in the first fluid cavities 32) and the frequency of the peristaltic waves. Because peristaltic pump 10 is a linear positive displacement pump, there is little disturbance is created in the pumped fluid, preventing the possibility of change of the flow regime, formation of emulsions or triggering the formation of scales. Peristaltic pump 10 can generate high pressure even at low rates and it is intrinsically more efficient than current other artificial lift systems
The pressure rating of peristaltic pump 10 is directly proportional to the number of sub-cavities 70. Increasing the number of sub-cavities 70 reduces the possibility of fluid slippage. Because the expansion and contraction movements of flexible member 20 are radial, there is no axial displacement of flexible member 20 during the pumping cycle. This means that there is near zero mechanical friction losses between flexible member 20 and tubular member 12, reducing or eliminating the wear of flexible member 20 and peristaltic pump 10 is able to handle a relatively high amount of fines or abrasives.
The systems and methods of this disclosure are suitable to operate inside in highly deviated wells at any inclination and can operate inside deformed tubular members. The system and method of this disclosure has similar capabilities to conventional submersible pumping systems but its simpler design and the lifting methodology makes it intrinsically more reliable. In addition to this, the design of the proposed system of this disclosure is inherently suitable for alternative deployment methods eliminating the dependency on rig availability. In addition to its use for pumping fluids in subterranean fluids, the system and methods described in this disclosure may also be applied in other pumping applications, such as for various industrial and medical uses.
The present invention described herein, therefore, is well adapted to carry out the objects and attain the ends and advantages mentioned, as well as others inherent therein. While a presently preferred embodiment of the invention has been given for purposes of disclosure, numerous changes exist in the details of procedures for accomplishing the desired results. These and other similar modifications will readily suggest themselves to those skilled in the art, and are intended to be encompassed within the spirit of the present invention disclosed herein and the scope of the appended claims.
This application claims priority to and the benefit of co-pending U.S. Provisional Application Ser. No. 61/885,785, filed Oct. 2, 2013, titled “Peristaltic Submersible Pump,” the full disclosure of which is hereby incorporated herein by reference in its entirety for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
2931309 | Bower | Apr 1960 | A |
3039309 | Vesper | Jun 1962 | A |
3418940 | Martin | Dec 1968 | A |
3511583 | Brown | May 1970 | A |
3526223 | Curtis | Sep 1970 | A |
3677667 | Morrison | Jul 1972 | A |
4115036 | Paterson | Sep 1978 | A |
4395719 | Majewski | Jul 1983 | A |
4432699 | Beckman | Feb 1984 | A |
4449893 | Beckman | May 1984 | A |
4451209 | Phillips | May 1984 | A |
4482347 | Borsanyi | Nov 1984 | A |
4580952 | Eberle | Apr 1986 | A |
4854836 | Borsanyi | Aug 1989 | A |
4886432 | Kimberlin | Dec 1989 | A |
4961689 | Avramidis | Oct 1990 | A |
4974674 | Wells | Dec 1990 | A |
5040955 | Knutson | Aug 1991 | A |
6015266 | Swatek | Jan 2000 | A |
6017198 | Traylor | Jan 2000 | A |
6071088 | Bishop | Jun 2000 | A |
6074179 | Jokela | Jun 2000 | A |
6357552 | Eitler | Mar 2002 | B1 |
6435840 | Sharma | Aug 2002 | B1 |
7150325 | Ireland et al. | Dec 2006 | B2 |
7352111 | Bagwell | Apr 2008 | B2 |
7362032 | Pelrine et al. | Apr 2008 | B2 |
7397166 | Morgan | Jul 2008 | B1 |
7707925 | Morriss | May 2010 | B2 |
8034046 | Eidenschink | Oct 2011 | B2 |
20020098098 | Miesner | Jul 2002 | A1 |
20040234401 | Banister | Nov 2004 | A1 |
20070025868 | Swayze | Feb 2007 | A1 |
20070128059 | Bagwell | Jun 2007 | A1 |
20070217931 | Estes | Sep 2007 | A1 |
20130136639 | Simpson | May 2013 | A1 |
20130216400 | Bucher et al. | Aug 2013 | A1 |
Number | Date | Country |
---|---|---|
1602830 | Dec 2005 | EP |
2004331 | Mar 1979 | GB |
20110071960 | Jun 2011 | WO |
20130043477 | Mar 2013 | WO |
Entry |
---|
PCT Communication Relating to the Results of the Partial International Searching Authority; dated Dec. 5, 2014; International Application No. PCT/US2014/056756; International File Date: Sep. 22, 2014. |
Number | Date | Country | |
---|---|---|---|
20150093257 A1 | Apr 2015 | US |
Number | Date | Country | |
---|---|---|---|
61885785 | Oct 2013 | US |