The subject matter disclosed herein relates to electric machines. More specifically, the subject matter disclosed herein relates to magnetic material for permanent magnet electric machines.
Permanent magnet electric machines have become popular in recent years due to their high efficiency and high power density relative to other types of electric machines. Permanent magnet machines utilize permanent magnets in a machine rotor arranged to form magnetic poles. The permanent magnets in the rotor form a magnetic field that interacts with a stator magnetic field, often formed by electric current passing through a stator winding, to generate torque at the rotor. One key to the popularity of permanent magnet machines has been the utilization of rare earth magnets, such as those of neodymium, neodymium iron boron or samarium-cobalt, as the permanent magnet elements in the machines. Rare earth magnets are typically favored due to their high residual flux density to produce a relatively high flux density in the air gap of electrical machines utilizing rare earth magnets. Typically, flux densities of about 0.65 Tesla are achieved at the air gap between the rotor and stator of such machines. Also, rare earth magnets are highly resistant to demagnetization for their high coercivity, giving the machines a high reliability. The unstable supply of rare earth magnets and their high cost, however, has driven a need for alternative constructions to produce comparable flux density in the air gap and reasonably high demagnetization resistance as machines utilizing rare earth magnets.
According to one aspect of the invention, a rotor for a permanent magnet electric machine includes a rotor core and a plurality of permanent magnet bundles located at the rotor core. Each permanent magnet bundle includes a first magnet of a first magnetic material and a second magnet of a second magnetic material located radially outboard of the first magnet. The second magnet has an increased resistance to demagnetization relative to the first magnet.
Alternatively in this or other aspects of the invention, the first magnet has greater residual flux density but coercivity lower than the second magnet.
Alternatively in this or other aspects of the invention, the first magnet is formed from an alnico alloy.
Alternatively in this or other aspects of the invention, the second magnet is formed from a ferrite material.
Alternatively in this or other aspects of the invention, the first magnet and second magnet are arranged as a permanent magnet bundle.
Alternatively in this or other aspects of the invention, the first magnet and the second magnet of each permanent magnet bundle are located in a common rotor core slot of the rotor core.
Alternatively in this or other aspects of the invention, an additional magnet is located between circumferentially adjacent magnet bundles.
Alternatively in this or other aspects of the invention, the additional magnet is formed from an alnico ally.
Alternatively in this or other aspects of the invention, the additional magnet is located substantially at a pole center of the rotor.
Alternatively in this or other aspects of the invention, the second magnet is a rare earth magnet.
According to another aspect of the invention, a permanent magnet electric machine includes a stator and a rotor magnetically interactive with the stator. The rotor includes a rotor core and a plurality of permanent magnet bundles located at the rotor core. Each permanent magnet bundle includes a first magnet of a first magnetic material and a second magnet of a second magnetic material located radially outboard of the first magnet. The second magnet has an increased resistance to demagnetization relative to the first magnet.
These and other advantages and features will become more apparent from the following description taken in conjunction with the drawings.
The subject matter, which is regarded as the invention, is particularly pointed out and distinctly claimed in the claims at the conclusion of the specification. The foregoing and other features, and advantages of the invention are apparent from the following detailed description taken in conjunction with the accompanying drawings in which:
The detailed description explains embodiments of the invention, together with advantages and features, by way of example with reference to the drawings.
Shown in
Referring to
When used in combination, however, the first magnet 38 of alnico alloy, and the second magnet 40 of a ferrite material in the magnet bundle 32, a flux density and resistance to demagnetization comparable to a rare earth magnet-driven machine is be achieved. As shown in
Referring now to
While in the embodiments described above, the magnet bundles 32 comprise alnico first magnets 38 and ferrite second magnets 40, it is to be appreciated that in other embodiments, the second magnets 40 may be of a rare earth material such as neodymium, neodymium iron boron (NdFeB) or samarium-cobalt (SmCo). Sintered NdFeB magnets have a residual flux density up to about 1.5 Tesla, while SmCo magnets have a residual flux density in the range of about 0.9 Tesla to about 1.15 Tesla. The utilization of a small portion, for example, up to about 33%, of rare earth material together with the alnico first magnet 38 reduces the amount of relatively rare and high cost rare earth magnet utilized in the electric machine 10, while still providing a desired flux density.
While the invention has been described in detail in connection with only a limited number of embodiments, it should be readily understood that the invention is not limited to such disclosed embodiments. Rather, the invention can be modified to incorporate any number of variations, alterations, substitutions or equivalent arrangements not heretofore described, but which are commensurate with the spirit and scope of the invention. Additionally, while various embodiments of the invention have been described, it is to be understood that aspects of the invention may include only some of the described embodiments. Accordingly, the invention is not to be seen as limited by the foregoing description, but is only limited by the scope of the appended claims.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2012/033726 | 4/16/2012 | WO | 00 | 10/16/2014 |