The present invention relates to a permanent magnet synchronous generator control.
Especially the present invention relates to a method of controlling a permanent magnet synchronous generator and a system for controlling a permanent magnet synchronous generator. Preferably the present invention is used as a ship's auxiliary power supply or corresponding power supply.
Motor—generator sets, typically diesel engine—synchronous generator sets, are well known equipments for power supply on ships, especially as auxiliary power supplies, UPS (Uninterruptible Power Supply) and so on. The synchronous generator is generally provided with external excitation. The generator output voltage and frequency have to be constant. The frequency is controlled via motor speed, (motor revolution), and in this way the active generator power is controlled if the generator is connected to the AC voltage grid. Generator output and load voltage control are available due to excitation control via generator external excitation.
In the case of the short circuit on the load side, the generator has according to safety regulations to able to produce minimum three times higher current as the rated one.
Permanent magnet (PM) generators can be used instead of synchronous generators with external excitation. When permanent magnet generators are used, no external excitation and thus no external excitation power is needed, and thus the generator efficiency is higher than the generator efficiency of traditional generators. The disadvantage of the permanent magnet generators is that permanent magnet excitation can not be controlled, and therefore the generator output voltage and the load voltage cannot be controlled so that they remain constant.
The object of the present invention is to eliminate the drawbacks of prior-art solutions and to achieve permanent magnet generator control that will make it possible to control the generator output voltage.
Another object of the present invention is to achieve a system wherein the rating and size of the permanent magnet generator may be minimized.
A further object of the present invention is to achieve a system wherein the number of the components in the control circuit can be minimized and the electrical circuit may be done as simple as possible.
In the present invention the synchronous permanent magnet generator control is improved the use of an additional three phase power converter consisting of a semiconductor switch bridge connected to the output of the generator and a DC capacitor coupled to the converter DC circuit. An output filter may be connected to the generator output in order to achieve sinusoidal converter output voltage.
The present invention is in detail defined in the attached claims.
The rated converter power is related to the PM generator construction. Such construction has benefits compared with traditional solution, especially the lower weight and size of the generator and higher efficiency.
In the following, preferred embodiments of the present invention will be described in detail by reference to the drawings, wherein
The PM generator apparatus is further provided with an additional three phase power converter controlling the PM generator output voltage. Its AC output is connected to the PM generator output GENOUT and consists of a full wave converter bridge 30 and a control unit 40. A DC link capacitor CDC is coupled on the converter DC side 80. The apparatus is further provided with a converter output filter 20 at the converter AC output for filtering the converter three-phase AC output voltage in order to provide a sinusoidal voltage and current. The DC side 80 has no other connections than the DC link capacitor CDC.
The converter bridge is a full-wave bridge with pulse-width-modulated semiconductor switches V1 to V6, such as IGBTs, in upper and lower arms and flywheel diodes D1 to D6 connected in inverse-parallel with the semiconductor switches. The semiconductor switches V1 to V6 are controlled with pulse-width modulation by means of a PWM control in the control unit 40.
The filter 20 is a three phase choke-capacitance filter structure L1, Cf, L2 having a serial coupling of chokes L1 and L2 and the capacitor unit coupled between them in each phase. The filtering can also be based only on L1 choke, without choke L2 and capacitor Cf. The converter 30 can produce, take and control the reactive power from the generator 10 by means of the control unit 40.
In this way the generator output voltage and the load voltage UU, UV, UW can be controlled and kept constant during the different load conditions. Rated converter power is related to the PM generator 10 construction, and it is one fraction of the rated generator power, in the range of 30% to 50%. Such construction has the benefits, compared with traditional solution (synchronous generator with external excitation), such as lower generator weight and size, and higher efficiency.
The circuit according to the present invention can have additional benefits if additional control strategy is applied.
Short circuit current is by permanent magnet generator 10 limited by the relative high internal stator inductances. Therefore, the demand of three times short circuit current in the ratio to the rated current is very relevant to the PM generator production costs. The short circuit generator current can be reduced, (for example on two times rated current), when the additional converter circuit is controlled to supply current at short circuit conditions, in the 3. quadrant, (reactive current), up to value of the generator rated current. In that case, the load short circuit current will be three times rated current, and the generator short circuit current will be only two times rated current. (Load current=generator current+converter current).
An additional converter operational feature such as this makes it possible to achieve a compact PM generator construction.
For the converter operation at short circuit conditions on the load side 70, an active power for the covering of converter power losses is needed. The power source for such active power can be a fraction of remaining load voltage at short circuit conditions, (for example 10% of the generator voltage). Another solution will be from the DC link capacitor CDC, which can be dimensioned for power losses recovering for the time of short circuit duration.
Taking in account the PM generator's simplified one-phase equivalent circuit,
In
In this way, even at short circuit at the generator terminals, (zero voltage at the load and the generator) tap voltage will be minimum 10% if the tap is in the position 9:1 of the internal inductance. At the same time, necessary converter filter chokes L1 will be integrated in the three generator windings LG1, LG2, LG3 in each phase,
If the remaining induction value of choke L2 is high enough, the circuit can be significant simplified, see
It is obvious to the person skilled in the art that the embodiments of the invention are not restricted to the examples presented above, but that they can be varied within the scope of the following claims. Besides IGBTs, the fully controllable semiconductor switches used may also consist of other fully grid-controlled semiconductor switches, i.e. switches that can be turned on and off, such as transistors or MOSFETs.
Number | Date | Country | Kind |
---|---|---|---|
20060499 | May 2006 | FI | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/FI2007/000135 | 5/18/2007 | WO | 00 | 2/20/2009 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2007/135223 | 11/29/2007 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4677365 | Yang | Jun 1987 | A |
5483111 | Kuznetsov | Jan 1996 | A |
5594322 | Rozman et al. | Jan 1997 | A |
5594630 | Baker | Jan 1997 | A |
5929537 | Glennon | Jul 1999 | A |
6777846 | Feldner et al. | Aug 2004 | B2 |
6812586 | Wacknov et al. | Nov 2004 | B2 |
6838860 | Huggett et al. | Jan 2005 | B2 |
6850426 | Kojori et al. | Feb 2005 | B2 |
6919711 | Haydock et al. | Jul 2005 | B2 |
7085145 | Sheehy et al. | Aug 2006 | B2 |
20020110007 | Kalman et al. | Aug 2002 | A1 |
20030057926 | Huggett et al. | Mar 2003 | A1 |
20030126060 | Lof et al. | Jul 2003 | A1 |
20030222459 | Harris et al. | Dec 2003 | A1 |
20050242783 | Nakagawa et al. | Nov 2005 | A1 |
20060273765 | Mellor et al. | Dec 2006 | A1 |
20110037442 | Tormanen et al. | Feb 2011 | A1 |
Number | Date | Country |
---|---|---|
3-98498 | Apr 1991 | JP |
2000-125569 | Apr 2000 | JP |
WO-03079529 | Sep 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20110037442 A1 | Feb 2011 | US |