Information
-
Patent Grant
-
6239520
-
Patent Number
6,239,520
-
Date Filed
Monday, April 24, 200024 years ago
-
Date Issued
Tuesday, May 29, 200123 years ago
-
Inventors
-
Original Assignees
-
Examiners
Agents
- Irell & Manella LLP
- Brunell; Norman E.
-
CPC
-
US Classifications
Field of Search
US
- 310 156
- 310 261
- 310 61
- 310 52
- 310 58
- 310 59
- 310 85
- 310 86
- 310 88
- 310 60 A
- 310 60 R
-
International Classifications
-
Abstract
A permanent magnet rotor cooling system and method in which the rotor end cap includes an axially extending bore with a plurality of radially extending holes aligned with holes in the sleeve around the permanent magnet to provide cooling air flow to the air gap between the permanent magnet sleeve and the stator. A second smaller diameter extended bore, with a second plurality of radially extending holes, offset from the first plurality of holes, may also be provided.
Description
TECHNICAL FIELD
This invention relates to the general field of permanent magnet generator/motors and more particularly to an improved system and method for cooling the permanent magnet rotor of a permanent magnet generator/motor.
BACKGROUND OF THE INVENTION
A permanent magnet generator/motor generally includes a rotor assembly having a plurality of equally spaced magnet poles of alternating polarity around the outer periphery of the rotor or, in more recent times, a solid structure of samarium cobalt or neodymium-iron-boron. The rotor is rotatable within a stator which generally includes a plurality of windings and magnetic poles of alternating polarity. In a generator mode, rotation of the rotor causes the permanent magnets to pass by the stator poles and coils and thereby induces an electric current to flow in each of the coils. Alternately, if an electric current is passed through the stator coils, the energized coils will cause the rotor to rotate and thus the generator will perform as a motor.
The permanent magnet materials utilized in the permanent magnet rotor do not hold their magnetic properties above a given temperature, that is, they will lose their magnetic properties if they are subjected to a temperature above a certain limit. Neodymium-iron-cobalt permanent magnets, for example, may be permanently demagnetized if subjected to a temperature above 350 degrees Fahrenheit, while samarium-cobalt permanent magnets may be permanently demagnetized if subjected to temperatures above 650 degrees Fahrenheit. Even operating at temperatures close to the above limits can degrade performance of and/or damage the permanent magnet material.
In use, the permanent magnet material is usually enclosed within a sleeve of non-magnetic material. Intimate contact between the non-magnetic material sleeve and the permanent magnet material is achieved by inserting the permanent magnet into the permanent magnet sleeve with a radial interference fit by any number of conventional techniques.
During operation of the permanent magnet generator/motor, the non-magnetic sleeve is subjected to eddy currents and aerodynamic heating. Because of the intimate contact between the non-metallic sleeve and the permanent magnet, the heat from the non-magnetic sleeve is transferred to the permanent magnet. Such heating must be taken into consideration when selecting permanent magnet materials for a permanent magnet generator/motor.
Since the radial air gap between the outer diameter of the permanent magnet rotor sleeve and the inner diameter of the stator is deliberately kept small to enhance magnetic performance, the resulting annular clearance through which cooling air can travel axially severely restricts the flow of cooling air. When this air gap is on the order of 0.050 inches, there simply is not enough annular clearance for sufficient cooling air to flow.
One of the applications of a permanent magnet generator/motor is referred to as a turbogenerator/motor which includes a power head mounted on the same shaft as the permanent magnet generator/motor, and also includes a combustor and recuperator. The turbogenerator/motor power head would normally include a compressor, a turbine and a bearing rotor through which the permanent magnet generator/motor tie rod passes. The compressor is driven by the turbine which receives heated exhaust gases from the combustor supplied with preheated air from the recuperator.
SUMMARY OF THE INVENTION
The open end of the permanent magnet rotor includes an end cap having an axially extending bore with a plurality of radially extending holes aligned with holes in the sleeve around the permanent magnet. Air flowing through the holes provides cooling in the air gap between the permanent magnet sleeve and the stator. A second smaller diameter bore, having a second plurality of radially extending holes, offset from the first plurality of holes, may also be provided. The housing may also include an annular extension over the plurality of holes in the non-magnetic sleeve to direct the flow of cooling air into the air gap between said rotor and said stator.
BRIEF DESCRIPTION OF THE DRAWINGS
Having described the present invention in general terms, reference will now be made to the accompanying drawings in which:
FIG. 1
is a sectional view of a turbomachine that can utilize the system and method for cooling a permanent magnet rotor of the present;
FIG. 2
is an enlarged sectional view of the forward or open end of permanent magnet generator/motor of the turbomachine of
FIG. 1
;
FIG. 3
is a sectional view of the permanent magnet generator/motor shaft taken along line
3
—
3
of
FIG. 2
; and
FIG. 4
is a sectional view of the permanent magnet generator/motor shaft taken along line
4
—
4
of FIG.
2
.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
A permanent magnet turbogenerator
10
is illustrated in
FIG. 1
as an example of a turbomachine utilizing the system and method of the present invention. The permanent magnet turbogenerator
10
generally comprises a permanent magnet generator/motor
12
, a power head
13
, and a combustor
14
.
The permanent magnet generator/motor
12
includes a permanent magnet rotor
21
having a cylindrical sleeve
16
with a permanent magnet
17
disposed therein, rotatably supported within a stator
18
by a pair of spaced journal bearings
19
,
20
. Radial stator cooling fins
25
are enclosed in a cylindrical sleeve
27
to form an annular air flow passage to cool the permanent magnet stator
18
and with air passing through on its way to the power head
13
.
The permanent magnet sleeve
16
and permanent magnet
17
collectively form the rotatable permanent magnet rotor or shaft
21
. The power head
13
of the permanent magnet turbogenerator
10
includes compressor
30
and turbine
31
. The compressor
30
having compressor impeller
32
, which receives air from the annular air flow passage in cylindrical sleeve
27
around the permanent magnet stator
18
, is driven by the turbine
31
having turbine rotor
33
which receives heated exhaust gases from the combustor
14
supplied by air from recuperator
15
. The compressor impeller
32
and turbine rotor
33
are disposed on bearing rotor
36
having bearing rotor thrust disk
37
. The bearing rotor
36
is rotatably supported by a single journal bearing within the power head housing while the bearing rotor thrust disk
37
is axially supported by a bi-directional thrust bearing with one element of the thrust bearing on either side of the bearing rotor thrust disk
37
.
The journal bearings would preferably be of the compliant foil hydrodynamic fluid film type of bearing, an example of which is described in detail in U.S. Pat. No. 5,427,455 issued Jun. 6, 1995 by Robert W. Bosley, entitled “Compliant Foil Hydrodynamic Fluid Film Radial Bearing” and is herein incorporated by reference. The thrust bearing would also preferably be of the compliant foil hydrodynamic fluid film type of bearing. An example of this type of bearing can be found in U.S. Pat. No. 5,529,398 issued Jun. 25, 1996 by Robert W. Bosley, entitled “Compliant Foil Hydrodynamic Fluid Film Thrust Bearing” and is also herein incorporated by reference.
The forward or open end of permanent magnet rotor
21
is shown in an enlarged section in FIG.
2
. The permanent magnet sleeve
16
can be constructed of a non-magnetic metallic material, such as Inconel 718, or constructed of a composite material such as a carbon graphite wound sleeve. The permanent magnet
17
, disposed within the permanent magnet sleeve
16
, may be constructed of a permanent magnet material such as samarium cobalt, neodymium-iron-boron or similar materials. Both ends of the permanent magnet
17
would normally be enclosed with a cylindrical metallic end cap or plug
40
of a material such as brass.
The permanent magnet
17
and end caps
40
are interference fit within the sleeve
16
by any number of techniques, including heating the permanent magnet sleeve and supercooling the permanent magnet, hydraulic pressing, press ed lubricating fluids, tapering the inside diameter of the permanent magnet sleeve and/or the outer diameter of the permanent magnet, and other similar methods or combinations thereof.
The forward or open end of the sleeve
16
is rotatably supported by journal bearing
19
within bearing support
42
, which also includes an annular extension
44
over the forward end cap
40
. The forward end cap
40
includes an outer bore
46
and an extended inner bore
48
of a smaller diameter than the outer bore
46
.
The forward end cap
40
includes a first plurality of holes
50
(shown by way of example as six) radially extending from the outer bore
46
to the sleeve
16
with the holes
50
aligned with a like plurality of holes
51
in the sleeve
16
. Also included in the end cap
40
are a second plurality of holes
52
which radially extend from the inner bore
48
to the sleeve
16
and are aligned with a like plurality of holes
53
in the sleeve
16
. The holes
50
and
51
from the outer bore
46
are offset from the holes
52
and
53
from the inner bore
48
. With the holes
50
and
51
at zero degrees (top vertical), sixty degrees, one-hundred twenty degrees, one-hundred eighty degrees, two-hundred forty degrees, and three-hundred degrees, then the holes
52
and
53
would be at thirty degrees, ninety degrees, one-hundred fifty degrees, two-hundred ten degrees, two-hundred seventy degrees, and three-hundred thirty degrees.
When the permanent magnet rotor
21
is rotated, air is drawn into the sleeve
16
and into both the outer bore
46
and extended inner bore
48
, both in the end cap
40
. The air is then pumped from the outer bore
46
through the plurality of radially extending holes
50
in the end cap
40
and through the holes
51
in the sleeve
16
, and also from the inner bore
48
through the plurality of radially extending holes
52
in the end cap
40
and through the holes
53
in the sleeve
16
.
The high rotational speed of the rotor, which can approach 100,000 rpm, creates a large pressure drop which induces a mass flow and air velocity in the air gap between the permanent magnet sleeve
16
and the stator
18
. Centripetal/centrifugal forces derived from the rotor's rotational energy increases the pressure of the air passing through the holes
50
,
51
,
52
, and
53
.
With the bearing support
42
including an annular extension
44
over the sleeve
16
in the area outwards from the holes
51
and
53
, the air flow exiting the holes
51
and
53
is deflected towards the air gap between the sleeve
16
and the stator
18
. The space between the bearing support
42
and the stator
18
can be a sealed chamber for the end turns
55
of the stator
18
, the annular extension is not essential since the only exit from the sealed chamber for the pressurized air from holes
51
and
53
would be the air gap between the sleeve
16
and the stator
18
.
In this manner, cooling air is provided to the air gap between the sleeve
16
and stator
18
to maintain the temperature of the permanent magnet
17
at a low enough temperature to prevent damage from the eddy currents and aerodynamic heating. This is accomplished with a simple yet effective system and method that does not add to the complexity of the permanent magnet turbogenerator/motor.
The cooling system and method is small and compact and does not effect the primary function of the generator rotor. The generator rotor will function as intended and aerodynamic of the system will not be effected by the cooling system and method. The small-integrated design does not block cooling air or intake air for the stator windings or engine such as would an external cooling fan. An external fan could have a blocking effect, as well as, the fan motor could reject heat that could be ingested into the engine intake, which could have a degrading effect on the performance of the engine.
The cooling system and method focuses the cooling air where it does the most good. It is not a general “blast” of airflow bathing all of the components. No external ducting is required to get the cooling air from an outside location to where it is required. Since the cooling system and method is powered by the rotation of the generator rotor, no external power is required. The cooling impeller would have a minimal parasitic loss effect when compared to any external cooling method that would require its own power and result in less electrical power to the end user.
Since the cooling system and method has no external circuits, switches, fuses etc., all of which could fail, it is very dependable. It will operate every time the generator operates. The cooling system and method requires fewer components than an external cooling source and, since it is independent, does not require any revision to the engine controller or control logic.
Cooling the permanent magnet to a lower operating temperature improves the reliability and robustness of the turbogenerator and the complete system by increasing the operating margin of the turbogenerator and the system as a whole and is particularly important at higher ambient temperatures.
Since the field strength of a permanent magnet is proportional to temperature, cooling the permanent magnet increases field strength, which in turn produces higher voltage in the stator. The reduction of heat radiating from the rotor, coupled with the cooling effect of air passing over the stator, causes a reduction in the temperature of the stator windings, which lowers the resistance of the windings. This higher voltage and lower resistance reduces the current for a given kilowatt output or load. Since the efficiency and life of many power electronics, such as insulated-gate-bipolar transistors (IGBT's) is inversely proportional to current, this cooling system and method will therefore increase the efficiency of the turbogenerator system as a whole and increase the life of the magnet, stator windings, power electronics and other components.
While specific embodiments of the present invention have been illustrated and described, it is to be understood that these are provided by way of example only, and that the invention is not to be construed as being limited thereto but only by the proper scope of the following claims.
Claims
- 1. A rotor for a permanent magnet generator/rotor, comprising:a non-magnetic sleeve; a permanent magnet disposed within said sleeve; and non-magnetic end caps disposed within said sleeve at both ends of said permanent magnet; and one of said end caps including a central bore and a plurality of radial holes extending from said central bore to said non-magnetic sleeve, and said non-magnetic sleeve including a like plurality of holes aligned with said plurality of holes in said end cap, with rotation of said rotor providing cooling air through the plurality of holes.
- 2. A rotor for a permanent magnet generator/rotor, comprising:a non-magnetic sleeve; a permanent magnet disposed within said sleeve; and non-magnetic end caps disposed within said sleeve at both ends of said permanent magnet; one of said end caps including an outer bore and a plurality of radial holes extending from said outer bore to said non-magnetic sleeve, and an extended inner bore and a plurality of radial holes extending from said extended inner bore to said non-magnetic sleeve, and said non-magnetic sleeve including a like plurality of holes aligned with said plurality of holes in said end cap from said outer bore and a like plurality of holes aligned with said plurality of holes in said end cap from said extended inner bore, with rotation of said rotor providing ambient cooling air through the plurality of holes.
- 3. The rotor of claim 2 wherein the plurality of radial holes extending from said outer bore to said non-magnetic sleeve are offset from the plurality of radial holes extending from said extended inner bore to said non-magnetic sleeve.
- 4. The rotor of claim 2 wherein the extended inner bore in said end cap has a smaller diameter than the outer bore in said end cap.
- 5. The rotor of claim 4 wherein the outer bore in said end cap tapers to the smaller diameter extended inner bore in said end cap.
- 6. A rotor for a permanent magnet generator/motor comprising:a non-magnetic sleeve; a permanent magnet disposed within said sleeve; and non-magnetic end caps disposed within said sleeve at both ends of said permanent magnet; one of said end caps including an outer bore and a plurality of radial holes extending from said outer bore to said non-magnetic sleeve, and an extended smaller diameter inner bore and a plurality of radial holes extending from said extended smaller diameter inner bore to said non-magnetic sleeve, and said non-magnetic sleeve including a like plurality of holes aligned with said plurality of holes in said end cap from said outer bore and a like plurality of holes aligned with said plurality of holes in said end cap from said extended smaller diameter inner bore, with rotation of said rotor providing ambient cooling air through the plurality of holes; the plurality of radial holes extending from said outer bore to said non-magnetic sleeve are offset from the plurality of radial holes extending from said extended smaller diameter inner bore to said non-magnetic sleeve and the outer bore in said end cap tapers to the smaller diameter extended inner bore in said end cap.
- 7. A permanent magnet generator/motor comprising:a rotor including a non-magnetic sleeve, a permanent magnet disposed within said sleeve, and non-magnetic end caps disposed within said sleeve at both ends of said permanent magnet; and a housing disposed around said rotor, said housing including bearings to rotatably support said rotor and a stator disposed around said sleeve and operably associated with said permanent magnet within said sleeve; one of said end caps including a central bore and a plurality of radial holes extending from said central bore to said non-magnetic sleeve, and said non-magnetic sleeve including a like plurality of holes aligned with said plurality of holes in said end cap, with rotation of said rotor providing cooling air to the air gap between said rotor and said stator.
- 8. A permanent magnet generator/motor comprising:a rotor including a non-magnetic sleeve, a permanent magnet disposed within said sleeve, and non-magnetic end caps disposed within said sleeve at both ends of said permanent magnet; and a housing disposed around said rotor, said housing including bearings to rotatably support said rotor and a stator disposed around said sleeve and operably associated with said permanent magnet within said sleeve; one of said end caps including an outer bore and a plurality of radial holes extending from said outer bore to said non-magnetic sleeve, and an extended inner bore and a plurality of radial holes extending from said extended inner bore to said non-magnetic sleeve, and said non-magnetic sleeve including a like plurality of holes aligned with said plurality of holes in said end cap from said outer bore and a like plurality of holes aligned with said plurality of holes in said end cap from said extended inner bore, with rotation of said rotor providing ambient cooling air to the air gap between said rotor and said stator.
- 9. The permanent magnet generator motor of claim 8 wherein the plurality of radial holes extending from said outer bore to said non-magnetic sleeve are offset from the plurality of radial holes extending from said extended inner bore to said non-magnetic sleeve.
- 10. The permanent magnet generator motor of claim 8 wherein the extended inner bore in said end cap has a smaller diameter than the outer bore in said end cap.
- 11. The permanent magnet generator motor of claim 10 wherein the outer bore in said end cap tapers to the smaller diameter extended inner bore in said end cap.
- 12. The permanent magnet generator motor of claim 8 wherein said housing includes an annular extension over the plurality of holes in the non-magnetic sleeve to direct the flow of cooling air into the air gap between said rotor and said stator.
- 13. A permanent magnet generator/motor comprising:a rotor including a non-magnetic sleeve, a permanent magnet disposed within said sleeve, and non-magnetic end caps disposed within said sleeve at both ends of said permanent magnet; and a housing disposed around said rotor, said housing including bearings to rotatably support said rotor and a stator disposed around said sleeve and operably associated with said permanent magnet within said sleeve; one of said end caps including an outer bore and a plurality of radial holes extending from said outer bore to said non-magnetic sleeve, and an extended smaller diameter inner bore and a plurality of radial holes extending from said extended smaller diameter inner bore to said non-magnetic sleeve, and said non-magnetic sleeve including a like plurality of holes aligned with said plurality of holes in said end cap from said outer bore and a like plurality of holes aligned with said plurality of holes in said end cap from said extended inner bore, with rotation of said rotor providing ambient cooling air to the air gap between said rotor and said stator; the outer bore in said end cap tapering to the smaller diameter extended inner bore in said end cap, the plurality of radial holes extending from said outer bore to said non-magnetic sleeve offset from the plurality of radial holes extending from said extended smaller diameter inner bore to said non-magnetic sleeve, and said housing including an annular extension over the plurality of holes in the non-magnetic sleeve to direct the flow of cooling air into the air gap between said rotor and said stator.
- 14. A method of providing cooling air to the air gap between a permanent magnet rotor and stator, comprising:providing a rotor including a non-magnetic sleeve, a permanent magnet disposed within the sleeve, and non-magnetic end caps disposed within the sleeve at both ends of the permanent magnet; providing a housing disposed around the rotor with the housing including bearings to rotatably support the rotor and a stator disposed around the sleeve and operably associated with the permanent magnet within the sleeve; providing a central bore in one of the end caps and a plurality of radial holes extending from the central bore through the non-magnetic sleeve; and rotating the rotor to pump cooling air from the ambient atmosphere to the air gap between the rotor and stator.
- 15. A method of providing cooling air to the air gap between a permanent magnet rotor and stator, comprising:providing a rotor including a non-magnetic sleeve, a permanent magnet disposed within the sleeve, and non-magnetic end caps disposed within the sleeve at both ends of the permanent magnet; and providing a housing disposed around the rotor, the housing including bearings to rotatably support the rotor and a stator disposed around the sleeve and operably associated with the permanent magnet within the sleeve; providing an outer bore in one of the end caps and a plurality of radial holes extending from the outer bore through the non-magnetic sleeve; providing an extended inner bore in one of the end caps and a plurality of radial holes extending from the extended inner bore through the non-magnetic sleeve; and rotating the rotor to pump cooling air from the ambient atmosphere to the air gap between the rotor and stator.
- 16. The method of claim 15 and in addition, offsetting the plurality of radial holes extending from the outer bore through the non-magnetic sleeve from the plurality of radial holes extending from the extended inner bore through the non-magnetic sleeve.
- 17. The method of claim 15 and in addition, providing the extended inner bore in the end cap with a smaller diameter than the outer bore in the end cap.
- 18. The method of claim 17 and in addition, tapering the outer bore in the end cap to the smaller diameter extended inner bore in the end cap.
- 19. The method of claim 15 and in addition, providing an annular extension in the housing over the plurality of holes in the non-magnetic sleeve to direct the flow of cooling air into the air gap between the rotor and the stator.
- 20. A method of providing cooling air to the air gap between a permanent magnet rotor and stator, comprising:providing a rotor including a non-magnetic sleeve, a permanent magnet disposed within the sleeve, and non-magnetic end caps disposed within the sleeve at both ends of the permanent magnet; and providing a housing disposed around the rotor, the housing including bearings to rotatably support the rotor and a stator disposed around the sleeve and operably associated with the permanent magnet within the sleeve; providing an outer bore in one of the end caps and a plurality of radial holes extending from the outer bore through the non-magnetic sleeve; providing an extended smaller diameter inner bore in one of the end caps and a plurality of radial holes extending from the extended inner bore through the non-magnetic sleeve; tapering the outer bore in the end cap to the smaller diameter extended inner bore in the end cap; offsetting the plurality of radial holes extending from the outer bore through the non-magnetic sleeve from the plurality of radial holes extending from the extended inner bore through the non-magnetic sleeve; providing an annular extension in the housing over the plurality of holes in the non-magnetic sleeve to direct the flow of cooling air into the air gap between the rotor and the stator; and rotating the rotor to pump cooling air from the ambient atmosphere to the air gap between the rotor and stator.
US Referenced Citations (7)