The invention relates generally to permanent magnet structures, and in particular to new permanent magnet assemblies that do not require pole pieces restricting the aperture of the working region while producing compact solenoidal or longitudinal internal magnetic working fields.
Solenoidal and longitudinal magnetic fields are used extensively in the microwave tube and plasma physics communities in applications requiring the focusing and manipulation of charged particle trajectories. In the case of small microwave tubes, such as the kilowatt magnetrons used in microwave ovens, assembles of permanent magnets and high magnetic permeability pole pieces are commonly used to achieve the longitudinal field profiles required for operation of the device. Larger tubes, however, tend to employ the use of more massive wire solenoid coils or Helmholtz coil pairs in conjunction with bulky power supplies. The reliance on bulky coil-based magnets can be undesirable in cases where overall system compactness is a necessity as well as in cases with limited electrical power budgets.
By using magnetically rigid, high energy-product magnetic materials such as the rare earth magnets Neodymium-Iron-Boron or Samarium-Cobalt, it is feasible to build compact magnetic structures that generate a solenoidal or longitudinal magnetic field within the desired working region of the magnet assembly. Previous work by Tilak, et al., “Permanent Magnet Solenoids: A Catalog of Field Profiles,” ARL-TR-1123, Sept. 1996, as well as U. S. Pat. Nos. 5,126,713, 5,422,618, and 5,438,308 demonstrate examples of permanent magnet solenoids with a variety of working volume diameter to length aspect ratios. Unfortunately, in all of these configurations, the entrance apertures to the working region of the solenoid is either partially or completely blocked by the existence of magnetic pole pieces or cladding magnet arrays. This is most undesirable in cases requiring quick change-out of a microwave tube where one does not wish to disassemble or move the magnet or vice versa. This is also problematic for cases of devices with a constant or nearly constant cross-sectional area throughout in which magnetization is desired in only one finite section.
In the present invention, it was discovered that by properly choosing the shape and magnetization direction of permanent magnet assemblies, a solenoidal or longitudinally-directed magnetic field could be generated in the working region of a permanent magnet solenoid without the need for pole pieces or cladding magnet assemblies that completely or partially block the entrance aperture of the working region. The present invention fulfills the need for a compact method to generate a solenoidal or longitudinally-directed magnetic field in a given volume without the requirement of electrical power or magnetic pole pieces, and provides the ability to use an entrance aperture of the same cross-sectional area as that of the working volume of the magnet.
The present invention provides a wide aperture permanent magnet structure that generates longitudinal or solenoidal internal magnetic working fields without the need for iron or other high magnetic permeability passive pole pieces at each end of the array or the need for external electrical power. The entrance aperture of the magnet array may be equal in cross-sectional area to the open volume within the magnet array. The cross-sectional area of this aperture is perpendicular to the longitudinal direction. The field strength within the working volume has a high degree of uniformity. These magnet structures can be used to confine or manipulate the trajectories of charged particles in microwave tubes and in plasma physics applications.
The structure is an arrangement of layered permanent magnets of varying geometry and magnetic vector alignment forming either a cylindrical shell (solenoidal field) or two parallel surfaces (longitudinal field). The cross-sectional area of the layered permanent magnets consists of a polyhedral or rounded base magnet with an outer layer of polyhedral or rounded cladding magnets. The inner surface of the base magnet is parallel to the longitudinal direction and forms the boundary of the inner volume of the magnet array, neglecting any magnetically inert coatings that may be used to line the inner volume of the magnet array. A unit consisting of a base magnet and associated cladding magnets may be sequentially repeated to form a longer solenoid, a toroid, or a longer parallel surface arrangement.
The magnetization of the base magnet is oriented along the longitudinal direction and in the direction opposite to that of the desired magnetic field within the working region of the solenoid or parallel surface arrangement, which is in stark contrast to prior permanent magnet arrangements. Because of this, there are no magnetic poles located on the boundary of the base magnet and the inner volume or working region of the magnet assembly. The magnetizations of the cladding magnets are directed in such a way to enhance the magnitude and uniformity of the longitudinal or solenoidal field within the working volume of the magnets. For manufacturability purposes, the base or cladding magnets may be comprised of smaller magnet segments, assuming that the magnetization directions of the small magnets forming the larger volumes, i.e., the base or cladding magnets, are all the same.
The wide aperture permanent magnet structure is comprised of two or more subassemblies Each subassembly structure is an arrangement of layered permanent magnets of varying geometry and magnetic vector alignment.
a depicts a three-dimensional magnet sub-assembly 9 created by rotating the cross-section of
A more detailed description of the directionality of the solenoidal field in the working space of the cylindrical shell is displayed in
The existence of the magnetic field nulls at either end of the magnet can be especially advantageous for applications in which the existence of a confined charged particle beam is desired in only a given portion of a device like a microwave tube. If the charged particle is generated and utilized within the active region of the magnet, as it passes out of the active region and into the magnetic null, the beam will spread very rapidly due to electrostatic repulsion and diffuse into the wall of the beam pipe.
The three-dimensional surface plot displayed in
Another embodiment of the present invention, derived from the cross-section depicted in
In other embodiments of the present invention, the base and cladding magnets may take on other shapes, such as polyhedrals with various geometric cross-sections which can also be assembled into a permanent magnet solenoid.
The conditions under which this invention was made are such as to entitle the Government of the United States under paragraph 1(a) of Executive Order 10096, as represented by the Secretary of the Air Force, to the entire right, title and interest therein, including foreign rights.
Number | Name | Date | Kind |
---|---|---|---|
3768054 | Neugebauer | Oct 1973 | A |
4654618 | Leupold | Mar 1987 | A |
4764743 | Leupold et al. | Aug 1988 | A |
4953555 | Leupold et al. | Sep 1990 | A |
5126713 | Leupold | Jun 1992 | A |
5422618 | Leupold | Jun 1995 | A |
5438308 | Leupold | Aug 1995 | A |
5635889 | Stelter | Jun 1997 | A |
5886609 | Stelter | Mar 1999 | A |
7715166 | Schultz et al. | May 2010 | B2 |
Entry |
---|
Tilak, Anu et al “Permanent Magnet Solenoids: A Catalog of Field Profiles”, ARL-TR-1123, Sep. 1996. |