None
None.
The present invention relates to a building construction membrane, and more particularly to a non-asphaltic roof underlayment that is vapor permeable, forms an air barrier, and is resistant to water and ultra-violet (UV) light. The underlayment can be a component of a roof assembly on both flat and low sloped roofs.
In the roofing industry, a roofing underlayment is typically applied to a low slope roof to form a vapor and air barrier over which insulation and a roof cover is applied. A primary goal of the low slope roof underlayment is to stop vapor and air. However, in a number of applications, it is preferable to have vapor migration and stop air infiltration. The present invention is directed toward the latter application.
It is known in the prior art that flat or low-sloped roofs are often covered with top roofing membranes. Common among the membranes that have the mechanical properties needed to be technologically useful are thermoset membranes such as EPDM rubber and thermoplastic membranes such as PVC and TPO. These membranes typically contain carbon black, titanium oxide (TiO2) and/or other mineral fillers to add advantageous mechanical properties to the membranes.
In most cases, the roofing underlayment comprises a felt material composed of cellulose or glass fibers or a mixture thereof that is saturated with a bituminous material such as asphalt or pitch. Roofing underlayments that are saturated with a bituminous material can be hazardous to manufacture due to the presence of a flammable bituminous material and can contribute to fire on a construction site or a finished roof assembly. Many of the asphaltic underlayments available in the market tend to wrinkle after being applied to a roofing deck due to minor amounts of moisture. This is especially the case if the underlayments are rained upon. Other common problems are underlayment blowing off due to wind. Another major deficiency of a roofing substrate of asphalt or bituminous material is that the material is non-renewable.
The roofing industry has also developed non-asphaltic, underlayments which are butyl based. There are also other types of non-asphaltic membranes used as underlayments such as polyethylene.
Currently, all of the commercial asphaltic and non-asphaltic underlayments tend to be water-resistant but substantially non-breathable or with no permeability. That is, both asphaltic and non-asphaltic underlayments do not allow water vapor to pass through it. As a result, the moisture from the interior of the roofing assembly is trapped in the roof composite of insulation and top roofing membranes and is unable to escape to the exterior atmosphere resulting in damage to the roof over a number of years. Furthermore, asphaltic membranes can degrade due to UV radiation from the sun.
U.S. Pat. No. 4,511,619 issued Apr. 16, 1985 discloses a sealing sheet for the building industry made up of at least one layer that contains filler such as carbon black mixed with an ethylene-propylene copolymer which has a reinforcing laminate in place. The reinforcing layer can be formed of a fabric, a mat, a knitted material, a non-woven material, a synthetic resin or a glass fiber.
U.S. Patent Application Publication Number 2014/0072751 published Mar. 13, 2014 discloses a single-ply polymer coated substrate with at least one adhesive layer for structural water proofing.
U.S. Pat. No. 8,309,211 issued Nov. 13, 2012 discloses a roofing underlayment substrate that is permeable transmitting water vapor at a minimum of 3 perms, water resistant and skid-resistant. The roofing underlayment includes a woven or non-woven substrate having at least one surface which includes a breathable thermoplastic film which also imparts water-resistant to the substrate.
U.S. Pat. No. 8,347,576 issued Jan. 8, 2013 discloses a single-ply mechanically embossed roofing membrane in roll form for use in commercial application on flat and low pitched roofs.
None of the aforementioned references appear to be permeable to allow meaningful transmissions of water vapor or are designed to be UV resistant or attempt to prevent or preclude mold, mildew, rot from forming on a substantially flat roof structure.
These teachings do not aid in the resolution of a number of practical difficulties that are resolved by the present invention.
In view of the drawbacks mentioned above with prior art non-asphaltic underlayments, there is a need for providing a non-asphaltic self adhering roofing underlayment that is a breathable air barrier thereby allowing moisture in the form of water vapor to escape from inside the roof assembly, while preventing water vapor moisture from destroying the roofing composite of insulation and roofing membrane. In addition, UV-resistance is a highly desirable property of an underlayment.
The present invention is directed towards a flat roofing self-adhering underlayment that is water resistive, UV resistant and a vapor permeable air barrier. The roofing underlayment is a polyester substrate which is coated with a foamed n-butyl acrylate copolymer containing carbon black and cured to maintain air bubble pores in place. A permeable pressure sensitive copolymer adhesive coating having a back bone of n-butyl acrylate, 2-ethylhexyl acrylate and vinyl acetate is foamed and coated over the n-butyl acrylate copolymer coating, bonding to the coating with a reduction in tackiness in the adhesive which may eliminate the need for a slip sheet in some usages. After curing, the pressure sensitive adhesive, coating and substrate is laminated.
In one particular embodiment, a single-ply permeable polyester substrate has a permeable acrylate coating on the bottom side of the base substrate and a permeable adhesive applied over the acrylate coating.
The present invention will be described with reference to the appended Figures, in which:
These and other objects, advantages, and novel features of the present invention will become apparent when considered with the teachings contained in the detailed disclosure along with the accompanying drawings.
The present invention is directed toward a self-adhering water-resistant vapor permeable roofing underlayment membrane as shown in
The present roof underlayment 10 as seen in
The coating 14 is mixed prior to application on the polyester base layer and run through a foamer (high speed dispersion mixer) so that it formed with encapsulated air bubbles. These air bubbles are interconnected in the copolymer to form a permeable coating ranging from about 80 mils to about 100 mils in thickness with a permeability ranging from about 30 perms to about 60 perms when it is cured. The coating 14 is coated on the substrate 12 with a knife and roller in a wet application. The coating 14 is a wet foamed copolymer with the primary monopolymer being n-butyl acrylate mixed with another acrylate monopolymer.
Acrylates are the salts, esters and conjugate bases of acrylic acid and its derivatives. Acrylates contain vinyl groups; that is two carbon atoms double bonded to each other, directly attached to the carbonyl carbon.
Other polymers which can be mixed with the n-butyl acrylate are methyl acrylate, methyl methacrylate and methyl acrylic acid. Carbon black at approximately 1% by weight of the copolymer solution is added to the copolymer. A suitable copolymer base coating is manufactured by BASF SE Corporation and sold under the trademark ACRONAL® 4250. This coating has a viscosity of 300 and a density (lb/gal of 8.6) with pH of about 7.7 with a temperature low point of −28° C.
The n-butyl acrylate polymer in the coating 14 ranges from 20 to 55% solids, with a pH ranging 7.7 to 8.0, and a preferred viscosity at 73° F. (cps) of 300 using a Brookfield RV viscometer Spindle #4@100 rpm. The viscosity can effectively range from 100 to 500 depending on the percentage of solids. As previously noted, carbon black is also added to the copolymer to reduce tackiness, add strength and increase the UV effectiveness of the underlayment. The copolymer is foamed with a high speed dispersion mixer at 700 rpm with a 32% air injection with entrained air bubbles so that it has a foam density ranging from about 50% to about 65% preferably from about 55% to about 60%. The coating 14 is applied to the polyester substrate 12.
The coating 14 is then heat cured after leaving the coating blade setting the foamed air bubbles in place in the copolymer providing the coating with permeability. The coating 14 copolymer ranges from about 30% to about 98% n-butyl acrylate.
A copolymer pressure sensitive adhesive 16 is run through a second foamer so that it is formed with encapsulated air bubbles and is then applied to the cured acrylate coating 14 by a second blade coater, at a thickness ranging from about 4 mils to about 10 mils and cured as previously noted for the coating 14 to lock the air bubbles in place. Suitable pressure is applied to laminate the underlayment and the pressure sensitive adhesive has a preferred thickness of about 5 mils. The completed underlayment 10 has a permeability ranging from about 25 perms to about 45 perms and a preferred range from about 30 perms to about 40 perms.
The copolymer portion of the pressure sensitive adhesive (PSA) 16 has a backbone consisting of n-butyl acrylate, 2-ethylhexyl acrylate, and vinyl acetate. The structure of the backbone is shown in Table I below as follows:
The adhesive fully bonds to the coating 14 for air tightness and ease of installation and requires no primer for use on any substrate.
The pressure sensitive adhesive (PSA) is an acrylic solution. The polymeric portion of the PSA makes up at least 95% of the adhesive formulation and has a copolymer backbone of n-butyl acrylate (about 60% by weight), 2-ethylhexyl acrylate (about 32% by weight) and vinyl acetate (about 7% by weight) forming a copolymer blend capable of bonding and crosslinking with the coating 14. Proper foaming of the adhesive is critical to good micropore formation. The aeration process includes high sheer mixing to entrain air in the mixed adhesive liquid solution. This is the same aeration process used for the coating. The self-adhering adhesive 16 is evenly applied on the n-butyl acrylate coating, cured and the micropores are formed and fixed throughout the PSA. The coating method used with the present invention for both the coating 14 and the PVA 16 was accomplished with a blade coater. This is a non-contact coating method and it does not crush or destroy the foam in the copolymer during coating. After application, the adhesive must be heated to lock-in the micropore formation. The adhesive in the present invention was reformulated by adding surfactants and water to the copolymer to control bubble size, bubble density, viscosity, and stability of the copolymer. The peel value of the adhesive is reduced by the introduction of voids (air bubbles) and the addition of carbon black and a surfactant such as long chain alcohols create a stable inverse emulsion.
The acrylate polymer coating 14 does not require a slip sheet when applied. It is dry enough to be rolled onto itself. The pressure sensitive adhesive 16 is applied to a siliconized release film 17 and then laminated to the polyester and coating composite.
Microscopy of the modified adhesive surface was performed revealing a porous structure of the adhesive having a bubble density (number of pores) ranging from about 4000 pores in 1.0 in2 to about 4600 pores in 1.0 in2, preferably about 4400 pores in 1.0 in2 with a majority of the pores, preferably about 80% to about 90% of the bubbles/pores having a size ranging from about 200 microns to about 300 microns. The pores formed are generally round and oval in shape and form a vapor pathway through the adhesive layer. The majority of the pores 100 formed by the bubbles appear to be distributed evenly across the surface penetrating through the adhesive layer when the polymer mixture is heat treated to set the pores in the adhesive. Preferably, the density of the foamed adhesive should fall between about 0.65 and about 0.75 after aeration.
The adhesive copolymer which was manufactured and as shown in Table I ranges from about 45% by weight to about 50% by weight, preferably about 48% to about 49% by weight. The copolymer was mixed with a first solvent-free, surfactant-based wetting agent, preferably ranging from about 4% by weight to about 6% by weight, and most preferably about 5% by weight to provide emulsification and bubble size; and a second surfactant such as a foaming agent ranging from about 1.5% by weight to about 2.0% by weight, and preferably about 1.7% by weight to provide foam formation. A polymeric based thickener was added to the mixture in a range from about 0.2% by weight to about 0.4% by weight, preferably about 0.30% by weight. The adhesive copolymer composition was added to water ranging from about 40% by weight to about 50% by weight, preferably about 43% by weight to about 45% by weight and mixed in a high speed dispersion mixer at 500 rpm to form uniform bubbles in the mixture and fed into a coater feeder as previously described. The foamed adhesive was coated onto the cured porous n-butyl acrylate coating and heat cured to form the pores in place in the copolymer. The pressure sensitive adhesive and underlayment is laminated to reduce tackiness of the pressure sensitive adhesive and the need for a slip sheet.
For industry testing standards, the present underlayment 10 will support a water column of twenty four (24) inches of water for forty eight (48) hours.
Construction of a typical roof composite for a commercial flat roof 20 using the underlayment is shown in
The principles, preferred embodiments and modes of operation of the present invention have been described in the foregoing specification. However, the invention should not be construed as limited to the particular embodiments which have been described above. Instead, the embodiments described here should be regarded as illustrative rather than restrictive. Variations and changes may be made by others without departing from the scope of the present invention as defined by the following claims:
The present applications claims priority and benefits from U.S. provisional application Ser. No. 62/732,908 filed Sep. 18, 2018.
Number | Date | Country | |
---|---|---|---|
62732908 | Sep 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16602328 | Sep 2019 | US |
Child | 18050319 | US |