The present invention relates to a permutation lock having a plurality of adjustment rings which are rotatable about a common axis to set a secret code and having a locking mechanism which has a blocking element, wherein the blocking element can be displaced in the axial direction with respect to the axis of rotation of the adjustment rings from a blocking position into a release position, wherein the adjustment rings are rotationally operatively coupled with axially movable driver elements.
Such a permutation lock is described, for example, in DE 43 30 478 C1. It has a blocking element provided with a plurality of radially projecting lock bits in the form of a pretensioned latch and a plurality of tumbler rings coupled to the adjustment rings. With a set secret code, the lock bits can be pushed through correspondingly adapted throughhole openings in the tumbler rings. The blocking of the blocking element takes place by rotating the tumbler rings.
With such a permutation lock there is the problem that, as a consequence of the axial movement play between the blocking element and the tumbler rings and as a consequence of the production tolerances, the respective release positions of the tumbler rings can be felt after one another in an unauthorized manner, for which purpose the blocking element is acted on in the axial direction and the tumbler rings are simultaneously rotated after one another, with the throughhole openings in the tumbler rings being able to be felt via the lock bits.
It is therefore proposed in DE 43 30 478 C1 to provide additional noses at the blocking element which are positioned before the locking bits in the axial direction and which block the respective tumbler ring in the direction of rotation when the blocking element is brought into a feeling position. However, there are high demands on the production tolerances with such a permutation lock, whereby the manufacture is undesirably expensive.
A permutation lock is set forth in DE 86 17 170 U1 in which a plurality of recesses are provided at the tumbler rings and are arranged distributed over the periphery and are profiled in accordance with the lock bit throughhole openings to make a feeling of the lock bit through hole openings more difficult. On the above-described manipulation, the recesses are thereby also felt which in this respect product the same feeling as on the feeling of the lock bit throughhole openings and thus make the unauthorized opening substantially more difficult. Ultimately, however, an unauthorized opening by feeling can also not be completely precluded here.
It is therefore the object of the invention to provide a permutation lock of the initially named kind in which the security against an unauthorized opening is improved.
The object is satisfied by the features of claim 1. and in particular in that the driver elements have axial elevated portions, wherein the driver elements cooperate via the elevated portions in the axial direction such that the blocking element is only axially displaced into the release position by means of the driver elements in that the secret code is set at the adjustment rings.
In the permutation lock in accordance with the invention, a closing part (e.g. a locking pin, a striker, a block, a clasp, etc.) can be fixed or fixable directly or indirectly to the locking mechanism. The named blocking element can therefore directly cooperate with the closing part or the blocking element is coupled to a locking element (e.g. latch) which cooperates with the closing part. In the blocking position of the blocking element, the closing part is fixed to the locking mechanism. The closing part is released for a removal in the release position of the blocking element. The position of the axially displaceable blocking element thus determines the locking state of the locking mechanism. The blocking element and/or the closing part fixable to the locking mechanism, however, do not at all have to have a plurality of separate lock bits which cooperate with the locking mechanism (in particular with a respective tumbler ring), as is usual with known permutation locks.
The axial elevated portions are formed at one or both end faces of the respective driver element facing in the axial direction with respect to a normal plane to the axis of rotation of the adjustment rings. The driver elements therefore have a thickness which varies in the peripheral direction and which is at a maximum in the region of the elevated portions. The angular position of the respective axial elevated portion or the angular position of the peripheral region having the greatest thickness relative to the respective adjustment ring in this respect corresponds to the secret code. All the axial elevated portions are only brought into alignment with one another and with respect to the blocking element and are coupled by mutual action in the axial direction such that the blocking element is axially displaced into the release position by a complete setting of the secret code, that is only by a corresponding rotation of the last adjustment ring. In other words, the blocking element is axially displaced into the release position in that, and indeed only in that, the axial elevated portions of all driver elements are axially brought into alignment with one another and are hereby coupled force-wise in the axial direction by a complete setting of the secret code at the adjustment rings.
The adjustment rings are thereby force-decoupled from the closing part in the blocking position of the blocking element, whereby a feeling of the secret code with a simultaneous axial force application on the closing part is impossible or is at least made substantially more difficult. The axial displacement of the blocking element takes place independently of which adjustment ring is set to its respective secret code last. As soon as the secret code is therefore only not set on one adjustment ring, a force flow acting on the blocking element is interrupted so that the blocking element moves into the blocking position or remains therein.
Whenever an indication of direction is named in connection with the invention, it relates generally to the axis of rotation of the adjustment rings.
It must furthermore still be noted that the aforesaid rotationally operative coupling of the driver elements to the adjustment rings is to be understood as a coupling which is rotationally fixed in at least one operating position of the locking mechanism and which can optionally, but temporarily, be suspended (in particular to change the secret code, as will be explained in the following).
In accordance with an advantageous embodiment of the invention, the driver elements have control ramps extending in the peripheral direction, wherein the driver elements cooperate directly or indirectly via the control ramps (in particular via rolling elements) to displace the blocking element axially. The control ramps in this respect so-to-say represent run-out chamfers which facilitate the alignment of the axial elevated portions of the driver elements on the setting of the secret code.
The control ramps preferably extend substantially in a semicircular manner with respect to the axis of rotation of the adjustment rings. The control ramps can hereby extend over a large peripheral region of the respective driver element. The control ramps can in particular extend over a larger peripheral region than the angular contact spacing of the adjustment rings (angular difference between two adjacent adjustment positions). A “gentle” transition, that is a transition extending over a wide angular region, can thus be effected between the blocking position and the release position, which contributes to an increased security against an unauthorized feeling (so-called picking).
A respective axially displaceable rolling element is preferably provided between adjacent driver elements. The rolling element, for example a ball or a roller, reduces the friction between the driver elements on the adjustment of the adjustment rings so that the operating comfort of the permutation lock is increased and friction-induced wear is reduced.
It is preferred if the permutation lock has a housing at which at least one of the rolling elements is held in a fixed angular position with respect to the axis of rotation of the adjustment rings. It is hereby ensured that the rolling elements are in a position with a set secret code which allows the displacement of the blocking element into the release position. The rolling elements are in particular always in alignment with the blocking element. The fixing of the rolling elements can, for example, take place by elongated part deepened portions provided at the housing which are aligned parallel to the axis of rotation of the adjustment rings. The rolling elements are thereby fixed with respect to the peripheral direction, but have the axial play required for blocking or releasing the blocking element. Alternatively or additionally, the rolling elements can also be rotationally fixedly held at the blocking element.
In accordance with a further advantageous embodiment, the permutation lock has—as already mentioned—a closing part which is lockable directly or indirectly at the locking mechanism by means of the blocking element. The closing part can, for example, be a closing pin, a striker or a block, such as is usual in a permutation lock which can be used as a two-wheeler lock. Furthermore, however, the closing part can also have a latch receiver, for example a pivotable bolt or a clasp of a suitcase lock or a lug of a zip of a piece of baggage to be secured.
The permutation lock preferably has a transmission device to transmit the displacement path of the blocking element into an offset of a locking element which is larger than the displacement of the blocking element. The transmission device can, for example, be formed by a pivot lever to allow an indirect locking of a closing part. In this respect, the blocking element can, for example, engage at the one end of the pivot lever, whereas the other end engages behind or releases a block. The locking element can, however, also be a coupling pin guided by a slotted part-, which will be explained in the following. The displacement path of the blocking element can be selected as relatively short by the provision of a transmission device so that the axial elevated portions of the driver elements can be dimensioned as relatively small, which in turn allows a compact construction of the lock.
Alternatively or additionally, the permutation lock can have a deflection device to deflect the axial displacement direction of the blocking element into a displacement direction differing therefrom of a locking element of the locking mechanism (e.g. latch, bolt). For example, a displacement direction extending obliquely or perpendicular to the axis of rotation of the adjustment rings can be provided for the locking element coupled to the blocking element. The permutation lock can hereby be better adapted to the respective application.
In accordance with a further advantageous embodiment of the invention, the locking mechanism has a locking element coupled to the blocking element for locking a closing part which is adjustable between a locking position and an unlocking position and will be generally called a latch in the following. Such a latch is adjustable in the diagonal direction with respect to the axis of rotation of the adjustment rings, for example. An adjustment from the locking position into the unlocking position of the latch can take place, for example, by a removal movement of the closing part or can be assisted by it. Conversely, the adjustment of the latch from the unlocking position into the locking position can take place by an introduction movement of the closing part.
In accordance with an advantageous further development, the latch, the blocking element and a housing of the permutation lock have a respective slotted part, wherein a common coupling pin is received in the slotted parts which is likewise adjustable from a blocking position into a release position by the displacement of the blocking element from the blocking position into the release position to adjust the latch into the unlocking position or to release it for an adjustment into the unlocking position. The coupling pin is in particular adjustable in the perpendicular or diagonal direction with respect to the axis of rotation of the adjustment rings. This arrangement comprising the slotted parts and the common coupling pin preferably forms the above-named transmission device so that the displacement path of the coupling pin is larger than the displacement path of the blocking element.
The slotted part of the blocking element and the slotted part of the housing preferably extend obliquely to one another such that the coupling pin is adjustable solely by the displacement of the blocking element. The two named slotted parts thus form a compulsory guide for the coupling pin.
It is furthermore preferred if the coupling pin and/or a locking spigot provided at the blocking element cooperate with a blocking section of a slotted part provided in the latch such that the latch is blocked in the locking position in the blocking position of the coupling pin and the latch is adjustable between the locking position and the unlocking position in the release position of the coupling pin. A particularly reliable blocking of the latch takes place by a blocking of the latch both by the coupling pin and by the locking spigot. It is, however, also possible to block the latch solely by the locking spigot so that a coupling pin and the associated slotted parts do not have to be provided. Furthermore, instead of a common slotted part for the locking spigot and for the coupling pin, blocking sections can also be provided at separate slotted parts of the latch.
The slotted part of the blocking element and the slotted part of the housing preferably extend obliquely at an angle to one another which is smaller than 45° and in particular amounts to approximately 30°. The transmission function explained above is hereby realized.
In accordance with an advantageous embodiment, the latch is pretensioned in the direction of the unlocking position and/or the blocking element is pretensioned in the direction of the blocking position. A removal movement of the closing part is assisted by the a pretension of the latch. It is moreover prevented that the latch falls back into its locking position when a closing part is not introduced and thereby prevents an introduction of the closing part into the lock. It is ensured by the pretensioning of the blocking element that the blocking element is independently displaced into the blocking position as soon as the secret code is no longer set.
It is preferred if the driver element is rotationally fixedly, but axially movably, coupled to a respective guide ring, with the guide rings being rotatable about the axis of rotation of the adjustment rings. The guide rings thus serve for the driving of the respective driver element in the direction of rotation and are in turn rotationally operatively coupled to a respective adjustment ring.
The latch is preferably additionally blocked in its locking position by the guide rings as long as the secret code is not set at the adjustment rings. The guide rings here act in a similar mariner to tumbler rings in generic permutation locks and prevent, additionally to the blocking element or the coupling pin, that the latch can be displaced into its unlocking position in an unauthorized manner. Even on a violent destruction of the blocking element and/or of the coupling pin, an unauthorized opening of the lock would thus not be possible with a secret code not set. It is preferred in this respect if the latch is also aligned in parallel with the axis of rotation of the adjustment rings during the adjustment movement in order to be able to cooperate with all guide rings at the same time.
In accordance with another advantageous embodiment, the guide rings are blocked in the direction of rotation when the secret code is set at the adjustment rings and the latch is displaced into the unlocking position. In this respect, the latch in its unlocking position preferably engages into cut-outs provided at the guide rings. It is thereby avoided, on the one hand, that, when the closing part is removed, the guide rings are inadvertently rotated by means of the adjustment rings, which would prevent a reintroduction of the closing part into the lock. On the other hand, the blocking of the guide rings prevents that they rotate unintentionally on a change of the secret code explained in more detail in the following.
The adjustment rings and the guide rings are preferably rotationally fixedly coupled to one another in an operating position of the locking mechanism and the adjustment rings and the guide rings are rotatable relative to one another in a release position of the locking mechanism to enable a change of the secret code. To change the secret code, the guide rings and the adjustment rings can therefore temporarily be decoupled from one another so that the adjustment rings can be rotated with respect to the guide rings and thus also with respect to the axial elevated portions of the driver elements to set a new secret code.
The permutation lock preferably has rotationally fixedly held latch rings which have at least one resilient latch section which can be latched to latch recesses of the adjustment rings. A latching of the adjustment rollers is hereby achieved both in the operating position and in the above-explained release position of the locking mechanism in a simple and inexpensive manner.
It is furthermore preferred if the respective driver element is configured as a ring or as a ring segment (in particular semicircular, wherein at least one end face of the driver element has a control ramp extending in the peripheral direction.
Further preferred embodiments of the invention result from the description, from the drawings and from the dependent claims.
The invention will be described in the following with reference to an embodiment and to the drawings. There are shown:
In accordance with
A cylindrical hollow space is defined between the cylindrical section 14 of the housing 12 and the adjustment rings 22a to 22d, in which cylindrical hollow space guide rings 26a to 26d and latch rings 28a to 23d are alternately arranged, wherein a guide ring 26a to 26d and a latch ring 28a to 28d are associated with each adjustment ring 22a to 22d. Whereas the adjustment rings 22a to 22d are fixed with respect to the housing 12 by the flange section 16 and the cover 24 in the axial direction, the guide rings 26a to 26d and the latch rings 28a to 28d are displaceable in the axial direction on the cylindrical section 14.
The adjustment rings 22a to 22d have a plurality of elevated portions 34 on their inner periphery whose number corresponds to the number of setting markings 36 applied to the outer periphery. An equal number of elevated portions 38 are provided at the outer periphery of the guide rings 26a to 26d and engage in an operating state of the lock between the elevated portions 34 of the adjustment rings 22a to 22d so that each adjustment ring 22a to 22d and the respective guide ring 26a to 26d are rotationally fixedly coupled.
The guide rings 26a to 26d and adjustment rings 22a to 22d can be brought out of engagement to change the secret code. For this purpose a setting ring 40 is provided which is received in the interior of the flange section 16 and which has two actuation pins 42 which project out of the end face of the flange section 16 and allow a rotation of the setting ring 40 with respect to the housing 12 with a removed closing pin 20. The setting ring 40 has two ramps 44 which cooperate with corresponding sections, not shown, of the flange section 16 such that, when the setting ring 40 is rotated from an operating position into a release position, the setting ring 40 is released axially in the direction toward the flange section 16. Driven by the force of a spring 30 concentrically arranged in the cover 24, the setting ring 40 and, at the same time, the guide rings 26a to 26d and the latch rings 28a to 28d are adjusted axially in the direction of the flange section 16 so that the elevated portions 34 of the adjustment rollers 22a to 22d and the elevated portions 38 of the guide rings 26a to 26d temporarily move out of engagement. The adjustment rollers 22a to 22d can thereby be adjusted relative to the guide rings 26a to 26d so that the secret code can be changed by the user.
As can in particular be easily recognized in
The driver elements 32a to 32d have concave control ramps 50 at their end faces which are in each case symmetrical with respect to an axis A and an axis B (
As can in particular easily be recognized in
As can easily be recognized in
The latch rings 28a to 28d (
A blocking element 72 is axially displaceably arranged in the interior of the cylindrical sections 14, with a corresponding cross-action profile of the blocking element 72 and of the inner contour of the cylindrical section 14 as well as slots 74a 74b provided therein (
A slit-shaped receiver 76 for a latch 78 is provided in the interior of the blocking element (
The blocking element 72 (
In the following, the design of the closing pin 20 will be described in more detail which serves as a closing part and which can in particular be recognized easily in
The latch 78 (see in particular
As can best be recognized in
The function of the permutation lock 10 will now be described in the following. In the representation in accordance with
If now the corresponding secret code is also set at the fourth adjustment ring 22d, the elevated portion 54 of the driver element 32d is brought as a consequence into operational connection with the ball 56c, on the one hand, and the cam surface 82 of the blocking element 72, on the other hand, as can be seen in
The further operating mechanism of the permutation lock 10 will now be explained with respect to
If now the secret code is set at the adjustment rings 22a to 22d, the blocking element 72 is displaced from its blocking position (
The latch 78 is still located in its locking position, but is no longer blocked by the blocking element 72. The closing pin 20 can now be removed from the receiver 18. In this process, the guide sections 102a, 102b of the latch 78 move along the guides 104a, 104b in a diagonal direction to the top left (
At the start of the removal movement, the coupling pin 114 is displaced further upwardly by the movement of the latch 78 due to the still present minimal engagement with the blocking section 118 so that the coupling pin 114 can no longer block the unlocking movement of the latch 78.
Overall, the displacement path of the coupling pin 114 in the slotted part 112 amounts to approximately 2.6 mm due to the 30° interleaving of the slotted parts 88 and 112 with a displacement path of the blocking element 72 of approximately 1.5 mm.
As can easily be recognized in
The removal movement is assisted by the spring 108 which also holds the latch 78 in the unlocking position shown in
The closing pin 30 is introduced into the receiver 18 for the repeated closing of the permutation lock 10. In this respect, the latch 78 is displaced back in the reverse direction from its unlocking position shown in
As can be recognized in
The function corresponds in other respects to that in accordance with the embodiment of
In a modification of the embodiments described here, it is also possible to provide a radially introducible closing part instead of the axially introducible closing pin. In this case, the blocking element could directly take over the function of the latch or of a locking element in that it engages directly into a corresponding recess of the closing part, for example into a peripheral groove of a block, as is known from the initially named DE 43 30 478 C1.
Number | Date | Country | Kind |
---|---|---|---|
10 2010 013 400.7 | Mar 2010 | DE | national |