Perpendicular magnetic recording disc

Information

  • Patent Grant
  • 9349404
  • Patent Number
    9,349,404
  • Date Filed
    Tuesday, May 31, 2011
    13 years ago
  • Date Issued
    Tuesday, May 24, 2016
    8 years ago
Abstract
[Problem] A perpendicular magnetic disk with an improved SNR and an increased recording density by further improving crystal orientation of a preliminary ground layer formed of an Ni-base alloy is provided.
Description
TECHNICAL FIELD

The present invention relates to a perpendicular magnetic disk implemented on an HDD (hard disk drive) of a perpendicular magnetic recording type or the like.


BACKGROUND ART

With an increase in capacity of information processing in recent years, various information recording technologies have been developed. In particular, the surface recording density of an HDD using magnetic recording technology is continuously increasing at an annual rate of approximately 60%. In recent years, an information recording capacity exceeding 320 gigabytes per platter has been desired for a magnetic recording medium with a 2.5-inch diameter for use in an HDD or the like. To fulfill such demands, an information recording density exceeding 500 gigabits per square inch is desired to be achieved.


Important factors for increasing recording density of the perpendicular magnetic disk include, for example, an improvement in TPI (Tracks per Inch) by narrowing the track width, ensuring electromagnetic conversion characteristics, such as a Signal-to-Noise Ratio (SNR) and an overwrite (OW) characteristic at the time of improving BPI (Bits per Inch), and further ensuring heat fluctuation resistance with recording bits decreased due to the above. Among these, an increase in SNR in a high recording density condition is important.


In a magnetic layer of a granular structure, which goes mainstream in recent years, a nonmagnetic substance having an oxide as a main component is segregated around magnetic particles having a CoCrPt alloy growing in a columnar shape to form a grain boundary part. In this structure, since the magnetic particles are separated from each other, noise is reduced, and this is effective for a high SNR. An important factor to further increase the SNR is to increase crystal orientation. Co takes an hcp structure (a hexagonal close-packed crystal lattice structure), and a c-axis direction (an axial direction of a hexagonal column as a crystal lattice) serves as an axis of easy magnetization. Therefore, by orienting the c axis of each of more crystals in a more perpendicular direction, noise is reduced and signals become strong, which can cause an increase in SNR as a synergy effect.


When a film of a metal with an hcp structure is formed by sputtering, crystal orientation tends to be improved as the film thickness is thicker. Thus, to enhance crystal orientation of a granular magnetic layer from an initial growth stage, conventionally performed are processes of forming a film of a ground layer made of Ru, which is a metal with an hcp structure, and then forming a film of the granular magnetic layer on the ground layer. Furthermore, a crystalline preliminary ground layer (which is also called a seed layer) is provided under the Ru ground layer, and crystal orientation of the Ru ground layer is improved.


Patent Document 1 discloses a structure in which a soft magnetic film forming a backing layer has an amorphous structure, a ground film (which corresponds to a preliminary ground layer in the present application) is made of a NiW alloy, and an intermediate film (which corresponds to a ground layer in the present application) is made of a Ru alloy. According to Patent Document 1, it is described that, with the ground film being made of a NiW alloy and the intermediate film being made of a Ru alloy, recording and reproduction of information can be made with high productivity and high density.


However, as a result of increasing a layer above the soft magnetic layer, when the film thickness is increased, a distance between the magnetic layer and the soft magnetic layer (hereinafter referred to as a “film thickness of the intermediate layer”) is increased. With an increase of the film thickness of the intermediate layer, a distance between the soft magnetic layer and a head becomes longer, and the soft magnetic layer cannot sufficiently draw a write magnetic field outputted from the head. As a result, the overwrite characteristic (OW characteristic) of the medium is worsened, write signal quality is degraded and, in turn, read signal quality (SNR) is degraded.


To reduce degradation of the overwrite characteristic and the SNR, it has been studied that the soft magnetic layer is provided with the function of the preliminary ground layer to reduce the film thickness above the soft magnetic layer. In Patent Document 2, a technology is suggested in which an intermediate layer is made thinner by forming a seed layer (a preliminary ground layer) made of a soft magnetic material.


PRIOR ART DOCUMENTS
Patent Documents



  • Patent Document 1: Japanese Unexamined Patent Application Publication No. 2007-179598

  • Patent Document 2: Japanese Unexamined Patent Application Publication No. 2005-196898



DISCLOSURE OF INVENTION
Problems to be Solved by the Invention

For further increasing recording density in the future, the SNR is required to be further increased. As a measure for improving the SNR, a reduction of the film thickness of the intermediate layer can be thought. However, while the film thickness of the intermediate layer can be reduced in the structure of Patent Document 2, the SNR is not improved. The reason for this can be thought such that an improvement in crystal orientation is difficult in the preliminary ground layer having soft magnetic properties.


Thus, an object of the present invention is to provide a perpendicular magnetic disk for improving an SNR and increasing recording density by further improving crystal orientation of a preliminary ground layer formed of a Ni-base alloy.


Means for Solving the Problem

To solve the above problem, as a result of diligent studies about a preliminary ground layer with soft magnetic properties by the inventors of the present invention, the inventors found that when a CoFe alloy is used as a soft magnetic material of the preliminary ground layer, its surface tends to be rough, causing crystal orientation to be decreased. Thus, in order to reduce surface roughness of a film made of a soft magnetic material, further studies were conducted to complete the present invention.


That is, a typical structure of the perpendicular magnetic disk according to the present invention includes, on a base, a soft magnetic layer, a Ta alloy layer provided on the soft magnetic layer, an Ni alloy layer provided on the Ta alloy layer, a ground layer provided on the Ni alloy layer and having Ru as a main component, and a granular magnetic layer provided on the ground layer. The Ta alloy layer is a layer containing 10 atomic percent or more and 45 atomic percent or less Ta and having amorphous and soft magnetic properties.


The amorphous Ta alloy layer containing Ta in the above range ensures high amorphous properties, and allows a film with a flat surface to be formed. For this reason, crystal orientation of the film of the Ni alloy layer formed thereon can be improved. Also, with the Ta alloy layer having soft magnetic properties, the Ta alloy layer behaves as part of the soft magnetic layer, thereby reducing the film thickness of the intermediate layer. In other words, the film thickness of the intermediate layer is conventionally increased because the preliminary ground layer is used only for the purpose of crystal orientation, but, with the Ta alloy layer playing part of the role of the soft magnetic layer, the preliminary ground layer is not included in the film thickness of the intermediate layer. From these, it is possible to improve the SNR and increase recording density.


The Ta alloy layer is preferably formed by having Ta contained in a Fe—Co-base alloy, a FeNi-base alloy, or a Co-base alloy.


By having Ta in the above range contained in any of the alloys of any bases mentioned above, its surface can be planarized. Also, by using any of the alloys of these bases, the function of the soft magnetic layer and the function of the preliminary ground layer can both be achieved.


The soft magnetic layer is preferably a FeCo-base alloy containing 5 or less atomic percent Ta.


By using a FeCo-base alloy with a high saturation magnetization for the soft magnetic layer, AFC coupling (Antiferro-magnetic exchange coupling) of the soft magnetic layer is reinforced, thereby obtaining a high Hex. When AFC coupling is weak, the magnetizing direction of the soft magnetic layer locally fluctuates to increase noise. On the other hand, when AFC coupling is strong, the direction of magnetization is firmly fixed and magnetization is completely cancelled in upper and lower soft magnetic layers to decrease noise due to the soft magnetic layer, resulting in an improvement in SNR.


That is, in the soft magnetic layer, large Ms is required to obtain a strong AFC coupling. However, only for the purpose of improving overwrite, Ms required is not so large. Therefore, high Ms is obtained with a small amount of Ta in the soft magnetic layer and high flatness is obtained at the cost of a decrease in Ms in the Ta alloy layer. As such, by separating the function of the soft magnetic layer and the function of the Ta alloy layer, saturation magnetization and flatness can both be achieved.


The Ta alloy layer preferably has a film thickness equal to or larger than 1 nm and equal to or smaller than 10 nm.


The reason for the above is that the effect of planarization cannot be obtained when the thickness is smaller than 1 nm. Also, when the thickness is larger than 10 nm, an improvement of the effect can no longer be found. When the thickness is increased further, AFC coupling of the soft magnetic layer is weakened and the track width is increased.


Effect of the Invention

According to the present invention, while an amorphous Ta alloy layer having soft magnetic properties plays part of the role of the soft magnetic layer, planarization is achieved to improve crystal orientation. With this, it is possible to increase the SNR while improving the overwrite characteristic.





BRIEF DESCRIPTION OF DRAWINGS


FIG. 1 A diagram for describing the structure of a perpendicular magnetic disk.



FIG. 2 A drawing for describing examples and comparative examples.



FIG. 3 A drawing for considering a magnetic material for a Ta alloy layer.



FIG. 4 A drawing for considering a concentration of Ta (not the Ta alloy layer) in a soft magnetic layer.



FIG. 5 A drawing for considering a film thickness of the Ta alloy layer.





BEST MODES FOR CARRYING OUT THE INVENTION

In the following, with reference to the attached drawings, preferred embodiments of the present invention are described in detail. The dimensions, materials, and others such as specific numerical values shown in these embodiments are merely examples so as to facilitate understanding of the invention, and are not meant to restrict the present invention unless otherwise specified. Note that, in the specification and drawings, components having substantially the same functions and structures are provided with the same reference character and are not redundantly described, and components not directly relating to the present invention are not shown in the drawings.


(Perpendicular Magnetic Disk)



FIG. 1 is a diagram for describing the structure of a perpendicular magnetic disk 100 according to a first embodiment. The perpendicular magnetic disk 100 depicted in FIG. 1 is configured of a base 110, an adhesion layer 120, a soft magnetic layer 130 (a first soft magnetic layer 132, a spacer layer 134, and a second soft magnetic layer 136), a Ta alloy layer 140, a Ni alloy layer 142, a ground layer 150, a granular magnetic layer 160, a dividing layer 170, an auxiliary recording layer 180, a protective layer 190, and a lubricating layer 200.


As the base 110, for example, a glass disk obtained by molding amorphous aluminosilicate glass in a disk shape by direct pressing can be used. Note that the type, size, thickness, and others of the glass disk are not particularly restricted. Examples of a material of the glass disk include, for example, aluminosilicate glass, soda lime glass, soda aluminosilicate glass, aluminoborosilicate glass, borosilicate glass, quartz glass, chain silicate glass, and glass ceramic such as crystallized glass. By sequentially grinding, polishing, and then chemically strengthening any of these glass disks, the flat, nonmagnetic base 110 formed of a chemically-strengthen glass disk can be obtained.


On the base 110, films of the adhesion layer 120 to the auxiliary recording layer 180 are sequentially formed by DC magnetron sputtering, and a film of the protective layer 190 can be formed by CVD. Thereafter, the lubricating layer 200 can be formed by dip coating. The structure of each layer is described below.


The adhesion layer 120 is formed so as to be in contact with the base 110, and has a function of enhancing a close contact strength between the film of the soft magnetic layer 130 formed thereon and the base 110. The adhesion layer 120 is preferably an amorphous alloy film, such as a CrTi-base amorphous alloy, a CoW-base amorphous alloy, a CrW-base amorphous alloy, a CrTa-base amorphous alloy, or a CrNb-base amorphous alloy. The adhesion layer 120 can have a film thickness, for example, on the order of 2 nm to 20 nm. The adhesion layer 120 may be a single layer, and may be formed by laminating a plurality of layers.


The soft magnetic layer 130 functions as helping facilitate writing of a signal in the magnetic recording layer and increase density by convergence of a write magnetic field from the head when a signal is recorded by a perpendicular magnetic recording scheme. The soft magnetic layer 130 has the thin-film spacer layer 134 made of Ru interposed between the first soft magnetic layer 132 disposed on a base 110 side and the second soft magnetic layer 136 disposed on a front surface side. With this structure, AFC coupling is formed between the first soft magnetic layer 132 and the second soft magnetic layer 136. With this, perpendicular components of magnetization can be extremely lessened, and therefore noise occurring from the soft magnetic layer 130 can be reduced. In the case of the structure in which the spacer layer 134 is involved, the film thickness of the soft magnetic layer 130 can be such that the spacer layer has a film thickness on the order of 0.3 nm to 0.9 nm and layers thereabove and therebelow made of a soft magnetic material each have a film thickness on the order of 10 nm to 50 nm.


As a soft magnetic material, a FeCo-base alloy containing 5 atomic percent or less Ta is preferable. By using a FeCo-base alloy with a high saturation magnetization Ms as the soft magnetic layer, AFC coupling (Antiferro-magnetic exchange coupling) is reinforced, thereby obtaining a high Hex. Here, if Ta concentration is increased, Ms is abruptly decreased, AFC coupling is lost, and noise from the soft magnetic layer is increased.


The Ta alloy layer 140 is a layer provided on the soft magnetic layer 130 and having amorphous and soft magnetic properties containing 10 atomic percent or more and 45 atomic percent or less Ta. The amorphous Ta alloy layer 140 containing Ta in the above range ensures high amorphous properties and allows a film with a flat surface to be formed. Ta has a function of enhancing amorphous properties and allows a film with an extremely flat surface to be formed. Thus, crystal orientation of the film of the Ni alloy layer 142 formed thereon can be improved.


Also, with the Ta alloy layer 140 having soft magnetic properties, the Ta alloy layer behaves as part of the soft magnetic layer to reduce a spacing loss. In other words, the film thickness of the intermediate layer is conventionally large because the preliminary ground layer is used only for the purpose of crystal orientation, but, with the Ta alloy layer playing part of the role of the soft magnetic layer, the preliminary ground layer is not included in the film thickness of the intermediate layer. From these, it is possible to improve the SNR and increase recording density.


The composition of the Ta alloy layer is preferably formed by having Ta contained in a FeCo-base alloy, a Fe—Ni-base alloy, or a Co-base alloy. By having 10 atomic percent or more and 45 atomic percent or less Ta contained in any of the alloys of any bases mentioned above, the layer can be promoted to be made amorphous and its surface can be planarized. Also, by using any of the alloys of these bases, the function of the soft magnetic layer 130 and the function of the preliminary ground layer can both be achieved.


The Ta alloy layer 140 preferably has a film thickness equal to or larger than 1 nm and equal to or smaller than 10 nm. The reason for the above is that the effect of planarization cannot be obtained when the thickness is smaller than 1 nm. Also, when the thickness is larger than 10 nm, an improvement of the effect can no longer be found. When the thickness is increased further, AFC coupling of the soft magnetic layer 130 is weakened and noise is increased.


The Ni alloy layer 142 has a function of promoting crystal orientation of the ground layer 150 formed thereabove and a function of controlling a microfabricated structure, such as a particle diameter. The Ni alloy layer 142 is formed of an Ni-base alloy with a fcc crystal structure (a face-centered cubic structure) and is oriented in a manner such that a (111) surface is parallel to a main surface of the base 110. An example of a material of the Ni alloy layer 142 can be an alloy having Ni as a main component and having added thereto one or more of V, Cr, Mo, W, Ta, and others. Specifically, a selection can be suitably made from NiV, NiCr, NiTa, NiW, NiVCr, and others. Note that the main component is a component that is contained most. The Ni alloy layer 142 can have a film thickness on the order of 1 nm to 20 nm.


Here, crystal orientation can be improved more by forming a film of the Ni alloy layer 142 after forming a film of the Ta alloy layer 140 on the soft magnetic layer 130 than by directly forming a film of the Ni alloy layer 142 on the soft magnetic layer 130. As described above, large saturation magnetization Ms can be obtained with the soft magnetic properties of the Fe—Co-base alloy containing 5 atomic percent or less Ta, but surface roughness is large. On the other hand, in the Ta alloy layer 140 containing 10 atomic percent or more and 45 atomic percent or less Ta, since the layer is prompted to be made amorphous to cause its surface to be planarized, the crystal of the Ni alloy layer 142 finely grows, thereby improving crystal orientation.


Note that in the soft magnetic layer 130, large Ms is required to obtain a strong AFC coupling. However, only for the purpose of improving the overwrite characteristic, Ms required is not so large. Therefore, high Ms is obtained with a small amount of Ta in the soft magnetic layer 130 and high flatness is obtained with an increased amount of Ta at the cost of a decrease in Ms in the Ta alloy layer 140. As such, by separating the function of the soft magnetic layer 130 and the function of the Ta alloy layer 140, strong AFC coupling and high flatness (crystal orientation) can both be achieved.


The ground layer 150 is a layer having an hcp structure, having a function of promoting crystal orientation of magnetic crystal particles in the hcp structure of the granular magnetic layer 160 formed thereabove and a function of controlling microfabricated structure, such as a particle diameter, and serving as a so-called basis of a granular structure. Ru has an hcp structure as that of Co, and a lattice space of the crystal is similar to that of Co. Therefore, magnetic particles having Co as a main component can be oriented in good condition. Therefore, as crystal orientation of the ground layer 150 is higher, crystal orientation of the granular magnetic layer 160 can be improved. Also, by microfabricating the particle diameter of the ground layer 150, the particle diameter of the granular magnetic layer can be microfabricated. While a typical material of the ground layer 150 is Ru, a metal, such as Cr or Co, or an oxide can further be added. The ground layer 150 can have a film thickness of, for example, on the order of 5 nm to 40 nm.


Also, by changing gas pressure at the time of sputtering, the ground layer 150 may be formed in a two-layer structure. Specifically, if Ar gas pressure is increased in the case of forming an upper layer side of the ground layer 150 compared with the case of forming a lower layer side, the particle diameter of the magnetic particles can be microfabricated while crystal orientation of the upper granular magnetic layer 160 is kept in good condition.


The granular magnetic layer 160 has a granular structure in a columnar shape in which a nonmagnetic substance having an oxide as a main component is segregated around the magnetic particles with ferromagnetic properties having a Co—Pt-base alloy as a main component to form a grain boundary. For example, by forming a film with the use of a target obtained by mixing SiO2, TiO2, or the like in a CoCrPt-base alloy, SiO2 or TiO2, which is a nonmagnetic substance, is segregated around the magnetic particles (grains) formed of a CoCrPt-base alloy to form a grain boundary, and a granular structure with the magnetic particles growing in a columnar shape can be formed.


Note that the substance for use in the granular magnetic layer 160 described above is merely an example, and is not restrictive. As a CoCrPt-base alloy, one or more types of B, Ta, Cu, Ru, and others may be added to CoCrPt. Also, examples of a nonmagnetic substance for forming a grain boundary can include oxides, such as silicon oxide (SiO2), titanium oxide (TiO2), chrome oxide (Cr2O3), zircon oxide (ZrO2), tantalum oxide (Ta2O5), cobalt oxide (CoO or Co3O4). Also, not only one type of oxide but also two or more types of oxide can be combined for use.


The dividing layer 170 is provided between the granular magnetic layer 160 and the auxiliary recording layer 180, and has an action of adjusting the strength of exchange coupling between these layers. With this, the strength of a magnetic interaction acting between the granular magnetic layer 160 and the auxiliary recording layer 180 and between adjacent magnetic particles in the granular magnetic layer 160 can be adjusted. With this, while magnetostatic values, such as Hc and Hn, relating to heat fluctuation resistance are kept, recording and reproduction characteristics, such as an overwrite characteristic and an SNR characteristic, can be improved.


The dividing layer 170 is preferably a layer having an hcp crystal structure and having Ru or Co as a main component so as not to decrease inheritance of crystal orientation. As a Ru-base material, in addition to Ru, a material obtained by adding another metal, oxygen, or an oxide to Ru can be used. Also, as a Co-base material, a CoCr alloy or the like can be used. Specific examples include Ru, RuCr, RuCo, Ru—SiO2, Ru—WO3, Ru—TiO2, CoCr, CoCr—SiO2, CoCr—TiO2, or the like can be used. Note that a nonmagnetic material is normally used for the dividing layer 170, but the dividing layer 170 may have low magnetic properties. Furthermore, in order to obtain excellent exchange coupling strength, the dividing layer 170 may preferably have a film thickness within 0.2 nm to 1.0 nm.


Still further, the dividing layer 170 has an action to the structure to promote separation of the crystal particles of the upper auxiliary recording layer 180. For example, even when the upper layer is made of a material not containing a nonmagnetic substance, such as an oxide, the grain boundary of the magnetic crystal particles can be clarified.


The auxiliary recording layer 180 is a magnetic layer magnetically approximately continuous in an in-plane direction of a main surface of the base. Since the auxiliary recording layer 180 has a magnetic interaction (exchange coupling) with respect to the granular magnetic layer 160, magnetostatic characteristics, such as a coercive force Hc and an inverted-magnetic-domain nucleation magnetic field Hn, can be adjusted. With this, an object is to improve heat fluctuation resistance, an overwrite characteristic, and an SNR. As a material of the auxiliary recording layer 180, a CoCrPT alloy can be used and, furthermore, an additive, such as B, Ta, Cu, Ru, or the like, may be added. Specifically, CoCrPt, CoCrPtB, CoCrPtTa, CoCrPtCu, CoCrPtCuB, and others can be used. Furthermore, the auxiliary recording layer 180 can have a film thickness of, for example, 3 nm to 10 nm.


Note that “magnetically continuous” means that magnetic properties continue without interruption. “approximately continuous” means that the auxiliary recording layer 180 is not necessarily a single magnet when observed as a whole but the magnetic properties may be partially discontinuous. That is, the auxiliary recording layer 180 can have magnetic properties across (so as to cover) a collective body of a plurality of magnetic particles. As long as this condition is satisfied, the auxiliary recording layer 180 may have a structure in which, for example, Cr is segregated.


The protective layer 190 is a layer for protecting the perpendicular magnetic disk 100 from a shock from the magnetic head. The protective layer 190 can be formed by forming a film containing carbon by CVD. In general, a carbon film formed by CVD has an improved film hardness compared with a film formed by sputtering, and therefore is suitable because it can more effectively protect the perpendicular magnetic disk 100 from a shock from the magnetic head. The protective layer 190 can have a film thickness of, for example, 2 nm to 6 nm.


The lubricating layer 200 is formed so as to prevent damage on the protective layer 190 when the magnetic head makes contact with the surface of the perpendicular magnetic disk 100. For example, a film can be formed by applying PFPE (perfluoropolyether) by dip coating. The lubricating layer 200 can have a film thickness of, for example, 0.5 nm to 2.0 nm.


First Example

To confirm effectiveness of the above-structured perpendicular magnetic disk 100, the following examples and comparative examples are used for description.


As an example, on the base 110, by using a vacuumed film forming device, films of the adhesion layer 120 to the auxiliary recording layer 132 were sequentially formed in an Ar atmosphere by DC magnetron sputtering. Note that the Ar gas pressure at the time of film formation is 0.6 Pa unless otherwise specified. For the adhesion layer 120, a film was formed of Cr-50Ti so as to have 10 nm. For the first soft magnetic layer 132, a film was formed of 92(40Fe-60Co)-3Ta-5Zr so as to have 18 nm. For the spacer layer 134, a film was formed of Ru so as to have 0.7 nm. For the second soft magnetic layer 136, a film was formed so as to have a composition identical to that of the first soft magnetic layer 132 and have 15 nm. As the Ta alloy layer 140, a film was formed by using 40Fe-60Co-base alloy containing Ta so as to have 6 nm. For the Ni alloy layer 142, a film was formed of Ni-5W so as to have 8 nm. For the ground layer 150, a film was formed of Ru at 0.6 Pa so as to have 10 nm and then a film was formed of Ru at 5 Pa so as to have 10 nm. For the granular magnetic layer 160, a film was formed of 90(70Co-10Cr-20Pt)-10(Cr2O3) at 3 Pa so as to have 2 nm and then a film was formed thereon of 90(72Co-10Cr-18Pt)-5(SiO2)-5(TiO2) at 3 Pa so as to have 12 nm. For the dividing layer 170, a film was formed of Ru so as to have 0.3 nm. For the auxiliary recording layer 180, a film was formed of 62Co-18Cr-15Pt-5B so as to have 6 nm. For the protective layer 190, a film was formed by using C2H4 by CVD so as to have 4.0 nm, and then its surface layer was nitrided. The lubricating layer 200 was formed by using PFPE by dip coating so as to have 1 nm.



FIG. 2 is a drawing for describing the examples and the comparative examples. In both of the comparative examples and the examples, a 40Fe-60Co-base alloy containing Ta is used, and the concentration of Ta is increased or decreased. The concentration of Ta is increased or decreased with a ratio between Fe and Co being kept. For example, 95(40Fe-60Co)-5Ta is used in a first comparative example, 90(40Fe-60Co)-10Ta is used in a first example. Similarly, the concentrations of Ta in a second example, a third example, a fourth example, and a second comparative example are 15 atomic percent, 25 atomic percent, 40 atomic percent, and 55 atomic percent, respectively.


In FIG. 2, Δθ50 of the ground layer is crystal orientation of a Ru crystal measured by a locking curve method by using an X-ray diffraction device. This value indicates orientation distribution (a c-axis angle of divergence) representing the magnitude of variability of orientation of a crystalline, and a smaller value indicates better orientation. With reference to FIG. 2, it can be found that as the concentration of Ta increases, Δθ50 decreases to increase crystal orientation. The reason for this can be thought such that as the concentration of Ta increase, flatness of its surface increases to improve crystal orientation of the film of the Ni alloy layer 142 and others formed after the Ta alloy layer 140 is formed.


In FIG. 2, each OW was obtained by measuring an overwrite characteristic (ease of write) with the perpendicular magnetic disk 100 being completed after formation of films of the granular magnetic layer 160 and others. With reference to FIG. 2, it can be found that as the concentration of Ta increases, the overwrite characteristic decreases. Note that a slight saturation tendency can be seen in Δθ50 at 40 atomic percent and more, and a saturation tendency can be seen in the overwrite characteristic near 25 atomic percent. The overwrite characteristic decreases according to the concentration of Ta because the magnetic properties of the Ta alloy layer are weakened.


In FIG. 2, each SNR was obtained by measuring an SNR with the perpendicular magnetic disk 100 being completed after formation of films of the granular magnetic layer 160 and others. A significant improvement can be seen from 5 atomic percent in the first comparative example to 10 atomic percent in the first example. However, with a peak of 15 atomic percent in the second example, the value gradually decreases, and significantly decreases at 55 atomic percent in the second comparative example. The SNR decreases as Ta exceeds 5 atomic percent, and the reason for this can be thought such that the magnetic properties of the Ta alloy layer 140 are weakened to cause the function as part of the soft magnetic layer to be lost. It can also be thought that crystal orientation is degraded with 5 atomic percent or less Ta and noise of the magnetic layer increases, thereby decreasing the SNR.


In consideration of the results above, it can be found that the concentration of Ta is preferably equal to or larger than 10 atomic percent and equal to or smaller than 45 atomic percent. That is, at 5 atomic percent in the first comparative example, the effect of characteristic improvement is small for both of Δθ50 and SNR. On the other hand, at 55 atomic percent in the second comparative example, the SNR and the overwrite characteristic are decreased. With the concentration of Ta being in the above range, it is possible to cause the Ta alloy layer 140 to function as part of the soft magnetic layer 130 to decrease the film thickness of an intermediate layer, and improve crystal orientation of layers above the Ni alloy layer 142 to increase the SNR.



FIG. 3 is a drawing for considering a magnetic material for the Ta alloy layer. Only Ta is used in a third comparative example, 90Co-10Ta is used as an example of a Co-base alloy in a fifth example, 90(68Fe-42Ni)-10Ta is used as an example of a FeNi-base alloy in a sixth example, and 85(40Fe-60Co)-15Ta is used as an example of a FeCo-base alloy in the second example.


With reference to FIG. 3, in the third comparative example using nonmagnetic Ta, both of the overwrite characteristic and SNR are lower than those in the fifth, sixth, and second examples. The reason for this can be thought such that, in the structure of the third comparative example, the Ta alloy layer does not have a function as part of the soft magnetic layer, and therefore the film thickness of the intermediate layer is increased. On the other hand, as the results of the fifth, sixth, and second examples, it has been confirmed that both of the function of the soft magnetic layer and the function of the preliminary ground layer can be achieved in any of the alloys of any bases mentioned above.



FIG. 4 is a drawing for considering the concentration of Ta (not the Ta alloy layer) in the soft magnetic layer. The composition of the soft magnetic layer 130 is assumed to be (95-X)(40Fe-60Co)-5Zr—X(Ta), and the concentration of Ta is increased or decreased with a ratio between Fe and Co being kept. Ta is not contained in a seventh example, 1 atomic percent Ta is contained in an eighth example, 3 atomic percent Ta is contained in a ninth example, 5 atomic percent Ta is contained in a second example, 7 atomic percent Ta is contained in a tenth example. Note that the structure of the Ta alloy layer 140 at this time is assumed to be similar to that of the second example.


With reference to FIG. 4, it can be found that as the concentration of Ta contained in the soft magnetic layer is increased, both of the overwrite characteristic and SNR are decreased. The reason for this is such that even in a FeCo-base alloy with high saturation magnetization Ms, as the concentration of Ta is increased, Ms is decreased to weaken AFC coupling and increase noise. In the tenth example containing 7 atomic percent Ta, the SNR is approximately equal to that in the second comparative example shown in FIG. 2. From this, it can be found that Ta contained in the soft magnetic layer 130 is preferably at 5 atomic percent or smaller. Note that, to achieve the effect of the Ta alloy layer 140, it is not required to have Ta contained in the soft magnetic layer 130 (Ta in the soft magnetic layer 130 may be at 0 atomic percent).



FIG. 5 is a drawing for considering a film thickness of the Ta alloy layer. No film of the Ta alloy layer 140 is not formed in a fourth comparative example, and films of the Ta alloy layer 140 are formed so as to have 1 nm, 3 nm, 6 nm, 10 nm, and 13 nm in the first example, a twelfth example, the second example, a thirteenth example, and a fourteenth example, respectively.


With reference to FIG. 5, in comparison between the eleventh example and the fourth comparative example, significant improvements in Δθ50, the overwrite characteristic, and SNR can be seen. Therefore, it can be seen that the Ta alloy layer 140 has a significant effect even when its film is formed to have 1 nm. As the thickness of the Ta alloy layer 140 is increased as 3 nm and 6 nm, the characteristics are further improved. However, with 6 nm as a peak of the SNR, if the thickness is increased more, the characteristics are degraded. In the fourteenth comparative example with 13 nm, the characteristics are approximately the same as those in the fourth comparative example. The reason for this can be thought such that when the thickness of the Ta alloy layer 140 is increased to some degree, AFC coupling of the soft magnetic layer is weakened to increase noise. From this, it has been confirmed that the film thickness of the Ta alloy layer 140 is preferably equal to or larger than 1 nm and equal to or smaller than 10 nm.


In the foregoing, the preferred embodiments of the present invention have been described with reference to the attached drawings. Needless to say, however, the present invention is not restricted to these embodiments. It is clear that the person skilled in the art can conceive various modification examples or corrected examples within a range described in the scope of claims for patent, and it is understood that they reasonably belong to the technological scope of the present invention.


INDUSTRIAL APPLICABILITY

The present invention can be used as a perpendicular magnetic disk implemented on an HDD of a perpendicular magnetic recording type or the like and its manufacturing method.


DESCRIPTION OF REFERENCE NUMERALS


100 . . . perpendicular magnetic disk, 110 . . . base, 120 . . . adhesion layer, 130 . . . soft magnetic layer, 132 . . . first soft magnetic layer, 134 . . . spacer layer, 136 . . . second soft magnetic layer, 140 . . . Ta alloy layer, 142 . . . Ni alloy layer, 150 . . . ground layer, 160 . . . granular magnetic layer, 170 . . . dividing layer, 180 . . . auxiliary recording layer, 190 . . . protective layer, 200 . . . lubricating layer

Claims
  • 1. A perpendicular magnetic disk comprising: on a base,a soft magnetic layer comprising a first soft magnetic layer, a second soft magnetic layer and a spacer layer, the first and second soft magnetic layers comprising a Fe—Co-base alloy containing 1 atomic percent or more to 5 atomic percent or less Ta, the spacer layer being interposed between the first and second soft magnetic layers and made of Ru;a Ta alloy layer provided on the second soft magnetic layer, the Ta alloy layer being formed by having Ta contained in a Fe—Co-base alloy or a Fe—Ni base alloy and containing 15 atomic percent or more and 40 atomic percent or less Ta, the Ta alloy layer having amorphous and soft magnetic properties and a film thickness of 1 nm to 10 nm;an Ni alloy layer provided on the Ta alloy layer;a ground layer provided on the Ni alloy layer and having Ru as a main component; anda granular magnetic layer provided on the ground layer,wherein the Ta alloy layer is in contact with the second soft magnetic layer.
  • 2. The perpendicular magnetic disk according to claim 1, wherein the Ta alloy layer contains more than 16 atomic percent and 25 atomic percent or less Ta.
  • 3. The perpendicular magnetic disk according to claim 1, wherein the film thickness of the Ta alloy layer is 1-3 nm.
  • 4. The perpendicular magnetic disk according to claim 1, wherein the film thickness of the Ta alloy layer is 3-6 nm.
  • 5. The perpendicular magnetic disk according to claim 1, wherein the FeCo-base alloy in the first and second soft magnetic layers contains 1 atomic percent or more to 3 atomic percent or less Ta.
  • 6. The perpendicular magnetic disk according to claim 1, wherein the Ni alloy layer comprises an alloy having Ni as a main component and having added thereto at least one of V, Cr and Mo.
  • 7. The perpendicular magnetic disk according to claim 1, wherein the Ni alloy layer comprises an alloy having Ni as a main component and having added thereto V.
Priority Claims (1)
Number Date Country Kind
2010-122590 May 2010 JP national
US Referenced Citations (319)
Number Name Date Kind
6013161 Chen et al. Jan 2000 A
6063248 Bourez et al. May 2000 A
6068891 O'Dell et al. May 2000 A
6086730 Liu et al. Jul 2000 A
6099981 Nishimori Aug 2000 A
6103404 Ross et al. Aug 2000 A
6117499 Wong et al. Sep 2000 A
6136403 Prabhakara et al. Oct 2000 A
6143375 Ross et al. Nov 2000 A
6145849 Bae et al. Nov 2000 A
6146737 Malhotra et al. Nov 2000 A
6149696 Jia Nov 2000 A
6150015 Bertero et al. Nov 2000 A
6156404 Ross et al. Dec 2000 A
6159076 Sun et al. Dec 2000 A
6164118 Suzuki et al. Dec 2000 A
6200441 Gornicki et al. Mar 2001 B1
6204995 Hokkyo et al. Mar 2001 B1
6206765 Sanders et al. Mar 2001 B1
6210819 Lal et al. Apr 2001 B1
6216709 Fung et al. Apr 2001 B1
6221119 Homola Apr 2001 B1
6248395 Homola et al. Jun 2001 B1
6261681 Suekane et al. Jul 2001 B1
6270885 Hokkyo et al. Aug 2001 B1
6274063 Li et al. Aug 2001 B1
6283838 Blake et al. Sep 2001 B1
6287429 Moroishi et al. Sep 2001 B1
6290573 Suzuki Sep 2001 B1
6299947 Suzuki et al. Oct 2001 B1
6303217 Malhotra et al. Oct 2001 B1
6309765 Suekane et al. Oct 2001 B1
6358636 Yang et al. Mar 2002 B1
6362452 Suzuki et al. Mar 2002 B1
6363599 Bajorek Apr 2002 B1
6365012 Sato et al. Apr 2002 B1
6381090 Suzuki et al. Apr 2002 B1
6381092 Suzuki Apr 2002 B1
6387483 Hokkyo et al. May 2002 B1
6391213 Homola May 2002 B1
6395349 Salamon May 2002 B1
6403919 Salamon Jun 2002 B1
6408677 Suzuki Jun 2002 B1
6426157 Hokkyo et al. Jul 2002 B1
6429984 Alex Aug 2002 B1
6482330 Bajorek Nov 2002 B1
6482505 Bertero et al. Nov 2002 B1
6500567 Bertero et al. Dec 2002 B1
6528124 Nguyen Mar 2003 B1
6548821 Treves et al. Apr 2003 B1
6552871 Suzuki et al. Apr 2003 B2
6565719 Lairson et al. May 2003 B1
6566674 Treves et al. May 2003 B1
6571806 Rosano et al. Jun 2003 B2
6628466 Alex Sep 2003 B2
6664503 Hsieh et al. Dec 2003 B1
6670055 Tomiyasu et al. Dec 2003 B2
6682807 Lairson et al. Jan 2004 B2
6683754 Suzuki et al. Jan 2004 B2
6730420 Bertero et al. May 2004 B1
6743528 Suekane et al. Jun 2004 B2
6759138 Tomiyasu et al. Jul 2004 B2
6778353 Harper Aug 2004 B1
6795274 Hsieh et al. Sep 2004 B1
6855232 Jairson et al. Feb 2005 B2
6857937 Bajorek Feb 2005 B2
6893748 Bertero et al. May 2005 B2
6899959 Bertero et al. May 2005 B2
6916558 Umezawa et al. Jul 2005 B2
6939120 Harper Sep 2005 B1
6946191 Morikawa et al. Sep 2005 B2
6967798 Homola et al. Nov 2005 B2
6972135 Homola Dec 2005 B2
7004827 Suzuki et al. Feb 2006 B1
7006323 Suzuki Feb 2006 B1
7016154 Nishihira Mar 2006 B2
7019924 McNeil et al. Mar 2006 B2
7045215 Shimokawa May 2006 B2
7070870 Bertero et al. Jul 2006 B2
7090934 Hokkyo et al. Aug 2006 B2
7099112 Harper Aug 2006 B1
7105241 Shimokawa et al. Sep 2006 B2
7119990 Bajorek et al. Oct 2006 B2
7147790 Wachenschwanz et al. Dec 2006 B2
7161753 Wachenschwanz et al. Jan 2007 B2
7166319 Ishiyama Jan 2007 B2
7166374 Suekane et al. Jan 2007 B2
7169487 Kawai et al. Jan 2007 B2
7174775 Ishiyama Feb 2007 B2
7179549 Malhotra et al. Feb 2007 B2
7184139 Treves et al. Feb 2007 B2
7196860 Alex Mar 2007 B2
7199977 Suzuki et al. Apr 2007 B2
7208236 Morikawa et al. Apr 2007 B2
7220500 Tomiyasu et al. May 2007 B1
7229266 Harper Jun 2007 B2
7239970 Treves et al. Jul 2007 B2
7252897 Shimokawa et al. Aug 2007 B2
7277254 Shimokawa et al. Oct 2007 B2
7281920 Homola et al. Oct 2007 B2
7292329 Treves et al. Nov 2007 B2
7301726 Suzuki Nov 2007 B1
7302148 Treves et al. Nov 2007 B2
7305119 Treves et al. Dec 2007 B2
7314404 Singh et al. Jan 2008 B2
7320584 Harper et al. Jan 2008 B1
7329114 Harper et al. Feb 2008 B2
7375362 Treves et al. May 2008 B2
7420886 Tomiyasu et al. Sep 2008 B2
7425719 Treves et al. Sep 2008 B2
7471484 Wachenschwanz et al. Dec 2008 B2
7498062 Calcaterra et al. Mar 2009 B2
7531485 Hara et al. May 2009 B2
7537846 Ishiyama et al. May 2009 B2
7549209 Wachenschwanz et al. Jun 2009 B2
7569490 Staud Aug 2009 B2
7597792 Homola et al. Oct 2009 B2
7597973 Ishiyama Oct 2009 B2
7608193 Wachenschwanz et al. Oct 2009 B2
7632087 Homola Dec 2009 B2
7656615 Wachenschwanz et al. Feb 2010 B2
7682546 Harper Mar 2010 B2
7684152 Suzuki et al. Mar 2010 B2
7686606 Harper et al. Mar 2010 B2
7686991 Harper Mar 2010 B2
7695833 Ishiyama Apr 2010 B2
7722968 Ishiyama May 2010 B2
7733605 Suzuki et al. Jun 2010 B2
7736768 Ishiyama Jun 2010 B2
7755861 Li et al. Jul 2010 B1
7758732 Calcaterra et al. Jul 2010 B1
7833639 Sonobe et al. Nov 2010 B2
7833641 Tomiyasu et al. Nov 2010 B2
7910159 Jung Mar 2011 B2
7911736 Bajorek Mar 2011 B2
7924519 Lambert Apr 2011 B2
7944165 O'Dell May 2011 B1
7944643 Jiang et al. May 2011 B1
7955723 Umezawa et al. Jun 2011 B2
7983003 Sonobe et al. Jul 2011 B2
7993497 Moroishi et al. Aug 2011 B2
7993765 Kim et al. Aug 2011 B2
7998912 Chen et al. Aug 2011 B2
8002901 Chen et al. Aug 2011 B1
8003237 Sonobe et al. Aug 2011 B2
8012920 Shimokawa Sep 2011 B2
8038863 Homola Oct 2011 B2
8057926 Ayama et al. Nov 2011 B2
8062778 Suzuki et al. Nov 2011 B2
8064156 Suzuki et al. Nov 2011 B1
8076013 Sonobe et al. Dec 2011 B2
8092931 Ishiyama et al. Jan 2012 B2
8100685 Harper et al. Jan 2012 B1
8101054 Chen et al. Jan 2012 B2
8125723 Nichols et al. Feb 2012 B1
8125724 Nichols et al. Feb 2012 B1
8137517 Bourez Mar 2012 B1
8142916 Umezawa et al. Mar 2012 B2
8163093 Chen et al. Apr 2012 B1
8171949 Lund et al. May 2012 B1
8173282 Sun et al. May 2012 B1
8178480 Hamakubo et al. May 2012 B2
8206789 Suzuki Jun 2012 B2
8218260 Iamratanakul et al. Jul 2012 B2
8247095 Champion et al. Aug 2012 B2
8257783 Suzuki et al. Sep 2012 B2
8298609 Liew et al. Oct 2012 B1
8298689 Sonobe et al. Oct 2012 B2
8309239 Umezawa et al. Nov 2012 B2
8316668 Chan et al. Nov 2012 B1
8331056 O'Dell Dec 2012 B2
8354618 Chen et al. Jan 2013 B1
8367228 Sonobe et al. Feb 2013 B2
8383209 Ayama Feb 2013 B2
8394243 Jung et al. Mar 2013 B1
8397751 Chan et al. Mar 2013 B1
8399809 Bourez Mar 2013 B1
8402638 Treves et al. Mar 2013 B1
8404056 Chen et al. Mar 2013 B1
8404369 Ruffini et al. Mar 2013 B2
8404370 Sato et al. Mar 2013 B2
8406918 Tan et al. Mar 2013 B2
8414966 Yasumori et al. Apr 2013 B2
8425975 Ishiyama Apr 2013 B2
8431257 Kim et al. Apr 2013 B2
8431258 Onoue et al. Apr 2013 B2
8453315 Kajiwara et al. Jun 2013 B2
8488276 Jung et al. Jul 2013 B1
8491800 Dorsey Jul 2013 B1
8492009 Homola et al. Jul 2013 B1
8492011 Itoh et al. Jul 2013 B2
8496466 Treves et al. Jul 2013 B1
8517364 Crumley et al. Aug 2013 B1
8517657 Chen et al. Aug 2013 B2
8524052 Tan et al. Sep 2013 B1
8530065 Chernyshov et al. Sep 2013 B1
8546000 Umezawa Oct 2013 B2
8551253 Na'im et al. Oct 2013 B2
8551627 Shimada et al. Oct 2013 B2
8556566 Suzuki et al. Oct 2013 B1
8559131 Masuda et al. Oct 2013 B2
8562748 Chen et al. Oct 2013 B1
8565050 Bertero et al. Oct 2013 B1
8570844 Yuan et al. Oct 2013 B1
8580410 Onoue Nov 2013 B2
8584687 Chen et al. Nov 2013 B1
8591709 Lim et al. Nov 2013 B1
8592061 Onoue et al. Nov 2013 B2
8596287 Chen et al. Dec 2013 B1
8597723 Jung et al. Dec 2013 B1
8603649 Onoue Dec 2013 B2
8603650 Sonobe et al. Dec 2013 B2
8605388 Yasumori et al. Dec 2013 B2
8605555 Chernyshov et al. Dec 2013 B1
8608147 Yap et al. Dec 2013 B1
8609263 Chernyshov et al. Dec 2013 B1
8619381 Moser et al. Dec 2013 B2
8623528 Umezawa et al. Jan 2014 B2
8623529 Suzuki Jan 2014 B2
8628866 Singh et al. Jan 2014 B2
8634155 Yasumori et al. Jan 2014 B2
8658003 Bourez Feb 2014 B1
8658292 Mallary et al. Feb 2014 B1
8665541 Saito Mar 2014 B2
8668953 Buechel-Rimmel Mar 2014 B1
8674327 Poon et al. Mar 2014 B1
8685214 Moh et al. Apr 2014 B1
20020060883 Suzuki May 2002 A1
20030022024 Wachenschwanz Jan 2003 A1
20040022387 Weikle Feb 2004 A1
20040132301 Harper et al. Jul 2004 A1
20040202793 Harper et al. Oct 2004 A1
20040202865 Homola et al. Oct 2004 A1
20040209123 Bajorek et al. Oct 2004 A1
20040209470 Bajorek Oct 2004 A1
20050036223 Wachenschwanz et al. Feb 2005 A1
20050129985 Oh et al. Jun 2005 A1
20050142990 Homola Jun 2005 A1
20050150862 Harper et al. Jul 2005 A1
20050151282 Harper et al. Jul 2005 A1
20050151283 Bajorek et al. Jul 2005 A1
20050151300 Harper et al. Jul 2005 A1
20050155554 Saito Jul 2005 A1
20050167867 Bajorek et al. Aug 2005 A1
20050263401 Olsen et al. Dec 2005 A1
20060147758 Jung et al. Jul 2006 A1
20060177702 Ajan Aug 2006 A1
20060181697 Treves et al. Aug 2006 A1
20060207890 Staud Sep 2006 A1
20060275628 Chen et al. Dec 2006 A1
20070070549 Suzuki et al. Mar 2007 A1
20070245909 Homola Oct 2007 A1
20080075845 Sonobe et al. Mar 2008 A1
20080093760 Harper et al. Apr 2008 A1
20080130170 Shimizu et al. Jun 2008 A1
20090117408 Umezawa et al. May 2009 A1
20090136784 Suzuki et al. May 2009 A1
20090169922 Ishiyama Jul 2009 A1
20090191331 Umezawa et al. Jul 2009 A1
20090202866 Kim et al. Aug 2009 A1
20090296276 Shimizu Dec 2009 A1
20090311557 Onoue et al. Dec 2009 A1
20100039724 Onoue et al. Feb 2010 A1
20100143752 Ishibashi et al. Jun 2010 A1
20100188772 Sasaki et al. Jul 2010 A1
20100190035 Sonobe et al. Jul 2010 A1
20100196619 Ishiyama Aug 2010 A1
20100196740 Ayama et al. Aug 2010 A1
20100209601 Shimokawa et al. Aug 2010 A1
20100215992 Horikawa et al. Aug 2010 A1
20100232065 Suzuki et al. Sep 2010 A1
20100233516 Kong et al. Sep 2010 A1
20100247965 Onoue Sep 2010 A1
20100261039 Itoh et al. Oct 2010 A1
20100279151 Sakamoto et al. Nov 2010 A1
20100300884 Homola et al. Dec 2010 A1
20100304186 Shimokawa Dec 2010 A1
20110097603 Onoue Apr 2011 A1
20110097604 Onoue Apr 2011 A1
20110171495 Tachibana et al. Jul 2011 A1
20110206947 Tachibana et al. Aug 2011 A1
20110212346 Onoue et al. Sep 2011 A1
20110223446 Onoue et al. Sep 2011 A1
20110244119 Umezawa et al. Oct 2011 A1
20110299194 Aniya et al. Dec 2011 A1
20110311841 Saito et al. Dec 2011 A1
20120069466 Okamoto et al. Mar 2012 A1
20120070692 Sato et al. Mar 2012 A1
20120077060 Ozawa Mar 2012 A1
20120127599 Shimokawa et al. May 2012 A1
20120127601 Suzuki et al. May 2012 A1
20120129009 Sato et al. May 2012 A1
20120140359 Tachibana Jun 2012 A1
20120141833 Umezawa et al. Jun 2012 A1
20120141835 Sakamoto Jun 2012 A1
20120148875 Hamakubo et al. Jun 2012 A1
20120156523 Seki et al. Jun 2012 A1
20120164488 Shin et al. Jun 2012 A1
20120170152 Sonobe et al. Jul 2012 A1
20120171369 Koike et al. Jul 2012 A1
20120175243 Fukuura et al. Jul 2012 A1
20120189872 Umezawa et al. Jul 2012 A1
20120196049 Azuma et al. Aug 2012 A1
20120207919 Sakamoto et al. Aug 2012 A1
20120225217 Itoh et al. Sep 2012 A1
20120251842 Yuan et al. Oct 2012 A1
20120251846 Desai et al. Oct 2012 A1
20120276417 Shimokawa et al. Nov 2012 A1
20120308722 Suzuki et al. Dec 2012 A1
20130040167 Alagarsamy et al. Feb 2013 A1
20130071694 Srinivasan et al. Mar 2013 A1
20130165029 Sun et al. Jun 2013 A1
20130175252 Bourez Jul 2013 A1
20130216865 Yasumori et al. Aug 2013 A1
20130230647 Onoue et al. Sep 2013 A1
20130314815 Yuan et al. Nov 2013 A1
20140011054 Suzuki Jan 2014 A1
20140044992 Onoue Feb 2014 A1
20140050843 Yi et al. Feb 2014 A1
Foreign Referenced Citations (7)
Number Date Country
2002-298326 Oct 2002 JP
2005-196898 Jul 2005 JP
2005-310356 Nov 2005 JP
2007-179598 Jul 2007 JP
2008-123626 May 2008 JP
2009252308 Oct 2009 JP
2010038448 Apr 2010 WO
Non-Patent Literature Citations (2)
Entry
English Machine Translation: Kamimura (JP 2009-252308).
Japanese Office Action dated May 27, 2014 for related Japanese Patent Application No. 2010-122590, 5 pages.
Related Publications (1)
Number Date Country
20120141833 A1 Jun 2012 US