This application claims priority from Japanese Patent Application No. JP2004-266172, filed Sep. 14, 2004, the entire disclosure of which is incorporated herein by reference.
The present invention relates to a perpendicular magnetic recording medium and more particularly to a magnetic recording medium having an areal recording density greater than 23 gigabits per square centimeter.
Recently, an oxide granular medium using a material, in which an oxide is added to a CoCrPt-based alloy, has been proposed as a perpendicular magnetic recording medium having excellent thermal stability and a high media S/N value. For instance, a medium using CoCrPt—SiO2 as the magnetic recording medium is disclosed in IEEE Trans. Magn., vol. 38, p. 1976 (2002). As shown in IEEE Trans. Magn., vol. 36, p. 2396 (2000), a conventional CoCrPt medium with a Cr-segregated structure has a problem that the perpendicular uniaxial magnetic anisotropy energy is decreased due to the formation of an initial growth layer of the magnetic recording layer. The initial growth layer herein means an amorphous-like layer with a thickness of several nanometers. On the other hand, it is reported that the above-mentioned initial growth layer of the magnetic recording layer is not observed in an oxide granular medium as disclosed in JP-A No. 217107/2003. Moreover, as disclosed in the Abstracts of the 9th Joint MMM/INTERMAG Conference, BC-09, p. 84 (2004), it is reported that a 4 nm thick magnetic recording layer has almost the same perpendicular uniaxial magnetic anisotropy energy as a 15 nm thick layer, which means that an oxide granular medium gives a magnetic recording layer in which deterioration of the crystal structure can almost not be observed in the vicinity of the interface with the intermediate layer.
In order to obtain a high media S/N value it is necessary to reduce the inter-granular exchange coupling of the magnetic recording layer. As described above, in the oxide glandular medium, the magnetic recording layer has no initial growth layer and the grain boundaries of the magnetic recording layer are formed from the interface with the intermediate layer. However, a high media S/N value cannot be obtained because the inter-granular exchange coupling is not reduced sufficiently.
It is a feature of the present invention to provide an oxide granular medium reducing the inter-granular exchange coupling and achieving a high media S/N value, enough to realize an areal recording density greater than 23 gigabits per square centimeter.
In accordance with an aspect of the present invention, a perpendicular magnetic recording medium comprises a substrate, a soft-magnetic underlayer deposited on the substrate, a lower intermediate layer containing Ru deposited on the soft-magnetic underlayer, an upper intermediate layer consisting of Ru crystal grains and oxide crystal grain boundaries deposited on the lower intermediate layer, and a magnetic recording layer consisting of crystal grains and oxide crystal grain boundaries deposited on the upper intermediate layer. The crystal grains of the magnetic recording layer grow epitaxially on the Ru crystal grains of the upper intermediate layer and the crystal grain boundaries of the magnetic recording layer grow on the crystal grain boundaries of the upper intermediate layer. The width of crystal grain boundary of the magnetic recording layer is almost constant from the interface with the intermediate layer to the mid position of the magnetic recording layer thickness.
According to the present invention described above, the formation of grain boundaries around the interface of the magnetic recording layer with the intermediate layer is promoted, and the grain boundaries can be made constant from the interface with the intermediate layer to the mid position of the magnetic recording layer thickness, whereby it is possible to reduce the inter-granular exchange coupling and achieve a higher media S/N value.
A perpendicular magnetic recording medium of the present invention has a difference in position along the depth direction of 1 nm or less, in which the contents of oxygen and Co maintain 95% of their respective contents at the mid position of the magnetic recording layer, in a depth profile of the element content around the interface of the magnetic recording layer with the upper intermediate layer obtained by using X-ray photoelectron spectroscopy. Moreover, in a Kerr rotation angle φ measured by applying a magnetic field H along the in-plane direction by using a Kerr effect magnetometer, a perpendicular magnetic recording medium of the present invention satisfies the relation of a/b≦1.5, where b is the average value of dφ/dH for an absolute value of the applied magnetic field H of 400 kA/m or more and 700 kA/m or less, and a is the average value of dφ/dH for an applied magnetic filed of −16 kA/m or more and 16 kA/m or less.
In order to obtain the perpendicular magnetic recording medium, a structure laminating a lower intermediate layer and an upper intermediate layer in that order is taken as an intermediate layer, in which the lower intermediate layer consists of Ru or a Ru-based alloy containing a metallic element, and the upper intermediate layer has a granular structure consisting of Ru crystals surrounding grain boundaries made of at least one material selected from a group of Si oxide, Al oxide, Ti oxide, Cr oxide, and Mg oxide. It is preferable that the main element, except for oxygen, constituting the grain boundaries of the upper intermediate layer is identical to the main element except for oxygen, constituting the grain boundaries of the magnetic recording layer. In this way it is possible to manufacture a perpendicular magnetic recording medium, in which the width of crystal grain boundary of the magnetic recording layer is kept almost constant from the interface with the intermediate layer to the mid position of the film thickness by fabricating the upper intermediate layer to be a granular structure which has grain boundaries consisting of the same oxide as those of the magnetic recording layer.
In order to make the upper intermediate layer a structure consisting of Ru and grain boundaries made of an oxide surrounding it, it is necessary to create in the lower intermediate layer placed underneath the upper intermediate layer roughness, which will be a trigger for grain boundary formation. Moreover, crystal grain alignment of the lower intermediate layer must be improved as much as possible because it is easy for the crystal grain alignment to deteriorate when an oxide is added in the upper intermediate layer. In order to form a film with excellent crystal grain alignment, it is preferable that the film be formed by at least one process selected from a sputtering process in a low gas pressure atmosphere and a sputtering process with a high deposition rate, but, in this case, it is difficult to create roughness on the surface. On the other hand, in order to create surface roughness, it is preferable that the film be formed by at least one process selected from a sputtering process in a high gas pressure atmosphere and a sputtering process with a low deposition rate, but a problem arises that the crystal grain alignment deteriorates with increasing surface roughness. In the present invention, in order to achieve both high crystal grain alignment and surface roughness, the lower intermediate layer is formed by laminating the first lower intermediate layer and the second lower intermediate layer in order, which are fabricated by different film manufacturing processes. A preferable method for fabricating the first intermediate layer is one selected from sputtering in an Ar gas atmosphere of 0.5 Pa or more and 1 Pa or less and sputtering with a deposition rate of 2 nm per second or more, and a preferable method for fabricating the second lower intermediate layer is one selected from sputtering in an Ar gas atmosphere of 2 Pa or more and 6 Pa or less and sputtering with a deposition rate of 1 nm per second or less. Forming an intermediate layer, in which the crystal grain alignment is excellent and the upper intermediate layer in contact with the magnetic recording layer has a granular structure, makes it possible to fabricate a perpendicular magnetic recording medium having an areal recording density of 23 gigabits or more per square centimeter.
A perpendicular magnetic recording medium was prepared as a sample by using sputtering equipment (C3010) manufactured by ANELVA. This equipment consists of 10 process chambers and one substrate load/unload chamber, and each chamber is exhausted independently. The exhaust ability of all chambers is 6×10−6 Pa or less.
The magnetic characteristics were measured by using a Kerr effect magnetometer. At that time, the magnetic field was swept at a constant rate from +1750 kA/m to −1750 kA/m for 64 seconds. The gradient of the Kerr loop obtained was corrected between 1200 kA/m and 1600 kA/m to be zero in order to remove the effect of the soft-magnetic underlayer. A fully automated XPS analysis equipment with scanning X-ray source (Quantera SXM) manufactured by ULVAC-PHI was used for the composition analysis of the film, and it is analyzed by using Co 2p, Si 2s, O 1s, Ru 3d and C 1s. An aluminum emit −Kα was used for the X-ray source, an electron beam into a hemispherical analyzer was used for the spectroscope, and a 32Multi-Channel Detector was used for the detector. The X-ray power was 45 W at 15 kV. The depth profile of the element content was obtained by etching from the film surface using an ion gun with an acceleration voltage of 500 V, and the composition analyses were carried out every 0.5 nm. This sputter rate corresponded to 1.04 nm/min when converting it with SiO2.
The recording/reproducing characteristics were evaluated by the spin stand. The head used for the evaluation was a composite magnetic head consisting of a giant-magnetoresistive (GMR) reader with a shield-gap length of 62 nm and a read width of 120 nm and a single-pole type (SPT) writer with a write width of 150 nm. The output amplitude and noise were measured under the condition that the relative velocity between head and medium was 10 m/s, the skew angle 0°, and the magnetic spacing about 15 nm. The media S/N value was evaluated by a ratio of the isolated signal amplitude at 50 kFCI to the media noise at the linear recording density of 600 KFCI.
Hereafter, the embodiment of the present invention will be described by way of example with reference to accompanying drawings.
Various samples were fabricated and their grain morphology and properties were compared and studied in detail to reduce the inter-granular exchange coupling of the magnetic recording layer. Especially, it was considered that the factors of the layer structure and deposition condition of the intermediate layer were important, so that samples having these different factors were prepared. The layer structure and deposition condition of the intermediate layer of the prepared samples are shown in Table 1.
The samples 1-1 to 4 have the structure shown in
Cross-sectional bright field TEM images of all these samples were observed by using a Transmission Electron Microscope (TEM). Crystal grains are observed as dark contrast in the TEM image of a granular medium because of the strong diffraction intensity, and crystal grain boundaries consisting of oxide are observed as bright contrast because of the weak diffraction intensity, so that they are clearly distinguished from each other. As the typical examples, the observation results of the cross-sectional structures of samples 1-1, 1-5, and 1-7 are shown in FIGS. 2(a), 2(b), and 2(c), respectively.
The cross-sectional TEM images obtained were analyzed paying attention to the deviation of the width of crystal grain boundary of the magnetic recording layer from the interface with the intermediate layer to the mid position of the magnetic recording layer. Hereinafter, the interface of the magnetic recording layer with the intermediate layer means the interface of the magnetic recording layer 16 with the intermediate layer 15 in the structure illustrated in
The sample 1-1 of the comparative example 1 had a width of crystal grain boundary of 0.5 nm around the interface of the magnetic recording layer with the intermediate layer as opposed to a width of crystal grain boundary of 1.1 nm at the mid position of the magnetic recording layer. In the samples 1-2 to 5 which are the same as sample 1-1, the width of crystal grain boundary at the interface with the intermediate layer is half or less of the width of crystal grain boundary at the mid position of the magnetic recording layer. It is shown that the width of crystal grain boundary at the interface with the intermediate layer is narrower than the width of crystal grain boundary at the mid position of the magnetic recording layer. On the other hand, in the sample 1-7 of the embodiment 1, the width of crystal grain boundary at the mid position of the magnetic recording layer is 1.1 nm and the width of crystal grain boundary at the interface of the magnetic recording layer with the intermediate layer is 0.9 mn. This means that the difference in the width of crystal grain boundary between the interface of the magnetic recording layer with the intermediate layer and the mid position of the magnetic recording layer is smaller, as compared with the samples 1-1 to 5. In the samples 1-6 to 12, the difference in the width of crystal grain boundary between the interface of the magnetic recording layer with the intermediate layer and the mid position of the magnetic recording layer was less than 20%. It is thought that an error of about 20% is included when the width of crystal grain boundary is around 1 nm because of accuracy in the measurement, so that it can be determined that the samples 1-6 to 12 have an almost constant width of crystal grain boundary in the magnetic recording layer, from the interface with the intermediate layer to the mid position of the magnetic recording layer.
Table 2 shows the media S/N values of these samples. The samples 1-6 to 12, in which the widths of the crystal grain boundaries of the magnetic recording layers were almost constant from the interface with the intermediate layer to the mid position of the recording layer, have higher media S/N values than the samples 1-1 to 15, in which the widths of crystal grain boundaries at the interface with the intermediate layer become narrower as compared with those at the mid position of the magnetic recording layer. That is, it is found that the width of crystal grain boundary of the magnetic recording layer should be constant from the interface with the intermediate layer to the mid position of the magnetic recording layer in order to obtain a higher media S/N value.
Next, the composition analyses of these samples along the depth direction were carried out by using X-ray photoelectron spectroscopy. As an example, the result of sample 1-1 is shown in
Next,
In the above-mentioned composition analysis profiles of Co and O normalized by the contents at the mid position of magnetic recording layer, the layer thickness d, in which there is a shortage of oxide in the magnetic recording layer, is defined by the following expression; in which the positions where the normalized content of Co and O reach 95% on the intermediate layer side expressed respectively as P—Co and P—O.
d=P—Co−P—O
In the conventional manufacturing methods and layer structures it is impossible to avoid a shortage of oxide which will make crystal grain boundaries around the interface of the magnetic recording layer with the intermediate layer. This is caused by a low sputtering yield of oxide compared with Co-based alloy. Actually, when a medium having the same structure as that of the sample 1-1 was formed using a co-sputter method in which the discharge of the SiO2 target was made faster than that of the CoCrPt target while depositing the magnetic recording layer, considering the difference in the sputter yield, the layer thickness d deficient in oxide can be made 1 nm or less and a 2.5 dB higher media S/N value could be obtained as compared with the sample 1-1. Moreover, as shown in the present invention, one can make up for a shortage of oxide around the interface of the magnetic layer with the intermediate layer caused by a difference in the sputtering yield by inventing a layer structure of the intermediate layer without changing the method for manufacturing the magnetic recording layer, resulting in a higher media S/N value being obtained.
In order to quantify the peak at around zero magnetic field, the average value b of dφ/dH is defined in the range of −700 kA/m ≦H ≦−400 kA/m and 400 kA/m ≦H ≦700 kA/m, and the average value a of dφ/dH is defined in the range of −16 kA/m ≦H ≦16 kA/m. The intensity of the peak in dφ/dH in the vicinity of zero magnetic field becomes lower as the value of a/b approaches 1.
Next, attention is paid to the relationship between the structure of the intermediate layer of the fabricated sample and the media S/N value. The samples 1-7 6 to 12 having high media S/N values are ones to which oxide is added in the upper intermediate layer. Moreover, as shown in
Moreover, in order to make the upper intermediate layer a structure consisting of Ru crystal grains and oxide grain boundaries surrounding them, it is necessary to create roughness, which will be a trigger for grain boundary formation, in the lower intermediate layer placed underneath the upper intermediate layer. As a result of studying various deposition conditions, it was understood that it is necessary to deposit the second lower intermediate layer by sputtering under at least one condition selected from an Ar atmosphere of 2 Pa or more and 6 Pa or less and a deposition rate 1 nm per second or less, in order to create in the lower intermediate layer surface roughness which becomes a trigger for grain boundary formation, and to make the upper intermediate layer a structure consisting of Ru crystal grains and oxide grain boundaries surrounding them.
Although a magnetic recording layer in which 17.5 vol % of Si oxide was added into the Co—17 at % Cr—14 at % Pt alloy in the embodiment 1, the same tendency as the embodiment 1 could be obtained in the case when the addition of Si oxide is changed to be 15 vol % and 20 vol % and Co—15 at % Cr—14 at % Pt, Co—19 at % Cr—14 at % Pt, and Co—17 at % Cr—16 at % Pt having different CoCrPt alloy compositions were used. Moreover, as the results of studying various oxides which are added in the magnetic recording layer and the upper intermediate layer, the same tendency as the embodiment 1 could be observed when Al oxide, Ti oxide, Cr oxide, and Mo oxide are used in lieu of Si oxide.
The samples 1-6, 1-7 and samples 1-10 to 12 in the embodiment 1 are the ones which only have different oxides added to the upper intermediate layer. Comparing the media S/N value of these samples, the highest media S/N value was obtained in the sample 1-7 in which the same Si oxide as the magnetic recording layer is added to the upper intermediate layer. As a result of studying the combination of oxides added to the magnetic recording layer and the upper intermediate layer for the samples of a magnetic recording layer to which is added oxide in lieu of Si oxide, it was understood that a higher media S/N value could be obtained in a medium in which the main element, except for oxygen, consisting of the grain boundaries of the upper intermediate layer was identical with the main element, except for oxygen, consisting of the grain boundaries of the magnetic recording layer.
The perpendicular magnetic recording media of the embodiment 2 and the comparative example 2 were fabricated using the same layer structure and deposition conditions as those of the sample 1-7 of the embodiment 1 except for the deposition condition and thickness of the first lower intermediate layer 20 and the second lower intermediate layer 21. Table 3 shows the deposition conditions and thicknesses of the first lower intermediate layer and the second lower intermediate layer of the embodiment 2 and the comparative example 2. The values of full width at half-maximum Δθ50 of the Rocking curves of the Ru (0002) diffraction peak measured by using X-ray diffraction are listed in Table 3.
A higher crystal grain alignment with the Δθ50 value of 5 or less was obtained in a sample, in which the first lower intermediate layer was fabricated by sputtering under at least one condition selected from an Ar gas atmosphere of 0.5 Pa or more and 1 Pa or less and a deposition rate of 2 nm per second or less.
The perpendicular magnetic recording medium of the embodiment 3 was fabricated using the same layer structure and deposition conditions as those of the sample 1-7 of the embodiment 1 except for the upper intermediate layer 19. Addition of Si oxide to the upper intermediate layer was changed in the embodiment 3. A perpendicular magnetic recording medium was prepared as a comparative sample by the same layer structure and the same process conditions as the embodiment 3 except for not adding Si oxide to the upper intermediate layer, and this was used for the comparative sample 3.
The Si content being the main element, except for O, of the oxide added into the upper intermediate layer was measured by using X-ray photoelectron spectroscopy (XPS), and the relationship between the Si content of the upper intermediate layer and the media S/N value is shown in
It is thought that the crystal grain alignment of the magnetic recording layer deteriorates because the matching between the crystal grain size and the width of grain boundary of the upper intermediate layer and the magnetic recording layer becomes worse when a greater amount of Si oxide is added into the upper intermediate layer than the Si oxide added into the magnetic recording layer. That is, it is understood that the content of the main element, except for oxygen, constituting the grain boundaries of the upper intermediate layer obtained according to composition analysis by X-ray photoelectron spectroscopy must be the same or less than the content of the main element except for oxygen constituting the grain boundaries of the magnetic recording layer in order to promote formation of oxide grain boundaries around the interface of the magnetic recording layer with the intermediate layer while maintaining the high crystal grain alignment in the magnetic recording layer. The same results could be obtained when Al oxide, Ti oxide, Cr oxide, and Mg oxide were added in the upper intermediate layer in lieu of Si oxide.
The perpendicular magnetic recording medium of the embodiment 4 was fabricated using the same layer structure and deposition conditions as those of the sample 1-7 of the embodiment 1 except for the thickness of the upper intermediate layer 19. The thickness of the upper intermediate layer was changed in the embodiment 4.
The perpendicular magnetic recording media shown in the samples 5-1 to 9 were fabricated using the same layer structure and deposition conditions as those of the sample 1-7 of the embodiment 1 except for the deposition conditions of the first lower intermediate layer 20 and the second lower intermediate layer 21. Table 4 shows the deposition conditions of the first intermediate layer and the second lower intermediate layer of each sample.
The surface roughness and crystal grain alignment of the layers can be changed by changing the deposition rate and gas pressure. When a film is deposited under a high gas pressure and a low deposition rate, there is a tendency that the surface roughness becomes greater and the crystal grain alignment becomes worse. On the other hand, when a film is deposited under a low gas pressure and a high deposition rate, there is a tendency that the surface roughness becomes smaller and the crystal grain alignment becomes better. As shown in Table 4, a higher media S/N value could be obtained in the case when the second lower intermediate layer was deposited under a higher gas pressure than the first lower intermediate layer, when the second lower intermediate layer was deposited at a lower deposition rate than the first lower intermediate layer, and when the second lower intermediate layer is deposited under a higher gas pressure and at a lower deposition rate than the first lower intermediate layer. That is, it is understood that a high media S/N value can be obtained in the case when a film with excellent crystal grain alignment is deposited as the first intermediate layer and a film having large surface roughness is deposited as the second intermediate layer.
It is to be understood that the above description is intended to be illustrative and not restrictive. Many embodiments will be apparent to those of skill in the art upon reviewing the above description. The scope of the invention should, therefore, be determined not with reference to the above description, but instead should be determined with reference to the appended claims alone with their full scope of equivalents.
Number | Date | Country | Kind |
---|---|---|---|
2004-266172 | Sep 2004 | JP | national |