Perpendicular magnetic recording medium and process for manufacture thereof

Information

  • Patent Grant
  • 9047903
  • Patent Number
    9,047,903
  • Date Filed
    Thursday, March 26, 2009
    15 years ago
  • Date Issued
    Tuesday, June 2, 2015
    9 years ago
Abstract
An object of the present invention is to provide a perpendicular magnetic recording medium in which each space between crystal grains of a first magnetic recording layer is so designed as to allow the layer to also have a function as a continuous layer, and a method of manufacturing a perpendicular magnetic recording medium. In a perpendicular magnetic recording medium 100 according to the present invention, a first magnetic recording layer 122a and a second magnetic recording layer 122b are ferromagnetic layers each having a granular structure in which a grain boundary part made of a non-magnetic substance is formed between crystal grains each grown in a column shape and, in the first magnetic recording layer 122a, an intergranular distance defined by an average of shortest distances between grain boundary parts each between a crystal grain and its adjacent crystal grain is equal to or shorter than 1 nm.
Description
TECHNICAL FIELD

The present invention relates to a perpendicular magnetic recording medium implemented on an HDD (hard disk drive) of a perpendicular magnetic recording type or the like, and a method of manufacturing a perpendicular magnetic recording medium.


BACKGROUND ART

With an increase in capacity of information processing in recent years, various information recording technologies have been developed. In particular, the surface recording density of an HDD using magnetic recording technology is continuously increasing at an annual rate of approximately 100%. In recent years, an information recording capacity exceeding 160 GB per one magnetic disk with a 2.5-inch diameter for use in an HDD or the like has been desired. To fulfill such demands, an information recording density exceeding 250 Gbits per one square inch is desired to be achieved.


To attain a high recording density in a magnetic disk for use in an HDD or the like, a magnetic disk of a perpendicular magnetic recording type has been suggested in recent years. In a conventional in-plane magnetic recording type, the axis of easy magnetization of a magnetic recording layer is oriented in a plane direction of a base surface. In the perpendicular magnetic recording type, by contrast, the axis of easy magnetization is adjusted so as to be oriented in a direction perpendicular to the base surface. In the perpendicular magnetic recording type, compared with the in-plane recording type, a thermal fluctuation phenomenon can be more suppressed at the time of high-density recording, and therefore the perpendicular magnetic recording type is suitable for increasing the recording density.


Conventionally, as a magnetic recording layer, CoCrPt—SiO2 or CoCrPt—TiO2 having a granular structure has been widely used. In Co, a crystal of a hcp structure (a hexagonal close-packed crystal lattice) grows in a columnar shape, and Cr and SiO2 (or TiO2) are subjected to segregation to form a non-magnetic grain boundary. By using such a granular structure, physically independent fine magnetic grains can be easily formed, and a high recording density can be easily attained.


In the above perpendicular recording type, a magnetic-monopole-type perpendicular head is used to cause a magnetic field in a direction perpendicular to the magnetic recording layer. However, with the use of a magnetic-monopole-type perpendicular head alone, a magnetic flux from a magnetic monopole immediately tries to return to a return magnetic pole on an opposite side, and therefore it is impossible to apply a sufficiently strong magnetic field to the magnetic recording layer. Thus, a soft magnetic layer is provided under a magnetic recording layer of a perpendicular magnetic recording disk to form a path (magnetic path) for a magnetic flux in the soft magnetic layer, thereby making it possible to apply a strong magnetic field in a direction perpendicular to the magnetic recording layer. That is, the soft magnetic layer is a layer in which magnetizing directions are aligned based on the magnetic field at the time of writing to dynamically form a magnetic path.


However, when a strong magnetic field is applied to the magnetic recording layer, a leakage magnetic field to an adjacent track becomes large. From this, WATE (Wide Area Track Erasure) becomes a problem, which is a phenomenon where recorded information is lost over several μm with a write-target track being taken as a center. As a technique of reducing WATE, it is said to be important to set an inverted-magnetic-domain nucleation magnetic field Hn of the magnetic recording layer as being negative and set its absolute value as being large. To obtain a high (large absolute value) Hn, a CGC (Coupled Granular Continuous) medium has been devised (Patent Document 1), in which a thin film (continuous layer) is formed that shows a high perpendicular magnetic anisotropy above or below the magnetic recording layer having a granular structure.


Also, although a high recording density can be achieved with an improvement of a coercive force Hc of the magnetic recording medium, writing with a magnetic head tends to become difficult. Thus, with an improvement in saturation magnetization Ms, the continuous layer also has a role of improving writability, that is, an overwrite characteristic.


In other words, an object of providing a continuous layer onto the magnetic recording layer is to improve the inverted-magnetic-domain nucleation magnetic field Hn to reduce noise and improve the saturation magnetization Ms to also improve the overwrite characteristic. Note that, although the continuous layer is also referred to as an auxiliary recording layer or a cap layer, it is referred to as a continuous layer in the present application unless otherwise specified.


Patent Document 1: Japanese Unexamined Patent Application Publication No. 2003-346315


SUMMARY OF INVENTION
Problems to be Solved by the Invention

However, in the conventional technology, while the overwrite characteristic can be improved by the continuous layer having a high saturation magnetization Ms, a noise increase is invited. Since the continuous layer is positioned at an upper portion of the medium, an influence to the noise increase is large.


In general, in the perpendicular magnetic recording medium, the recording magnetic field strength significantly decreases with a further distance away from the recording head. The inventors have conceived that an ideal structure is such that the conventional function of the continuous layer is also included in the first magnetic recording layer to achieve an ideal flux reversal also with a weaker head magnetic field strength compared with a head magnetic field strength in an upper portion (a layer near a surface layer of the medium) of the medium. By using the structure of the present invention, an excellent overwrite characteristic can be more efficiently achieved. Also, since the first magnetic recording layer is positioned at a portion sufficiently away from the reproducing head, a contribution to a noise increase is also small.


The present invention has been devised in view of the above problem in the continuous layer provided to the perpendicular magnetic recording medium. An object of the present invention is to provide a perpendicular magnetic recording medium in which each space between crystal grains of the first magnetic recording layer is so designed as to allow the first magnetic recording layer to also have a function as a continuous layer, and a method of manufacturing a perpendicular magnetic recording medium.


Means for Solving the Problem

To solve the above problem, as a result of diligent studies by the inventors of the present invention, the inventors found that the overwrite characteristic is improved by setting the space between crystal grains of the first magnetic recording layer at a predetermined value, thereby completing the present invention.


That is, to solve the above problem, in a typical structure of a perpendicular magnetic recording medium according to the present invention, the perpendicular magnetic recording medium includes at least a first magnetic recording layer and a second magnetic recording layer in this order on a base, wherein the first magnetic recording layer and the second magnetic recording layer are ferromagnetic layers of a granular structure in which grain boundary parts made of a non-magnetic substance are each formed between crystal grains each grown in a columnar shape and, in the first magnetic recording layer, an intergranular distance defined by an average of shortest distances each between each of the crystal grains and its adjacent crystal grain is equal to or shorter than 1 nm.


With the structure in which the intergranular distance between each crystal grain and its adjacent crystal grain of the first magnetic recording layer is set to be equal to or shorter than 1 nm, the first magnetic recording layer can be provided with a function similar to that of the continuous layer. Therefore, it is possible to reliably enhance the inverted-magnetic-domain nucleation magnetic field Hn, improve a heat-resistant fluctuation characteristic, and improve the overwrite characteristic. Note that, if the intergranular distance between each crystal grain and its adjacent crystal grain in the first magnetic recording layer is equal to or longer than 1 nm, the function as the continuous layer cannot be achieved, and an improvement of the overwrite characteristic cannot be expected.


In the second magnetic recording layer, the intergranular distance defined by the average of the shortest distances between grain boundary parts each between each of the crystal grains and its adjacent crystal grain is preferably equal to or longer than 0.5 nm.


With this, a high coercive force Hc and a high SNR can be optimally maintained. Note that if the intergranular distance between the crystal grains in the first magnetic recording layer is equal to or shorter than 0.5 nm, the granular structure cannot be maintained, thereby decreasing the SNR.


When an average particle diameter of the crystal grains in the first magnetic recording layer is taken as A nm and an average particle diameter of the crystal grains in the second magnetic recording layer is taken as B nm, A>B may hold.


With this, in the first magnetic recording layer, while the function as a continuous layer is achieved, the overwrite characteristic can be improved. Also, in the second magnetic recording layer, a high coercive force Hc and a high SNR can be optimally maintained.


A ratio between the average particle diameter of the crystal grains in the first magnetic recording layer and the average particle diameter of the crystal grains in the second magnetic recording layer is preferably 1<A/B<1.2.


With this, the overwrite characteristic can be optimally improved. Note that if the ratio A/B between the average particle diameter of the crystal grains in the first magnetic recording layer and the average particle diameter of the crystal grains in the second magnetic recording layer is larger than 1.2, the overwrite characteristic is degraded.


A total thickness of the first magnetic recording layer and the second magnetic recording layer is preferably equal to or smaller than 15 nm.


The film thickness of the first magnetic recording layer is preferably equal to or smaller than 5 nm and, desirably 3 nm to 4 nm. This is because, if the thickness is smaller than 3 nm, composition separation of the second magnetic recording layer cannot be promoted and, if the thickness is larger than 4 nm, a R/W characteristic (read/write characteristic) is degraded. The film thickness of the second magnetic recording layer is preferably equal to or larger than 5 nm and, desirably 7 nm to 15 nm. This is because, if the thickness is smaller than 7 nm, a sufficient coercive force cannot be obtained and, if the thickness is larger than 15 nm, a high Hn cannot be obtained. Therefore, to obtain a high Hn, the total thickness of the first magnetic recording layer and the second magnetic recording layer is preferably equal to or smaller than 15 nm.


The first magnetic recording layer may have a film thickness approximately 0.2 to approximately 1 time larger than the film thickness of the second magnetic recording layer. A continuous layer is provided that magnetically continues in a direction of a base surface from the second magnetic recording layer to a side away from the base, and the film thickness of the first magnetic recording layer is preferably approximately 0.2 to approximately 2 times larger than a film thickness of the continuous layer. A continuous layer magnetically continuing in a direction of a base surface is provided on a side of the second magnetic recording layer away from the base, and the film thickness of the second magnetic recording layer is preferably approximately 0.7 to approximately 2 times larger than a film thickness of the continuous layer.


With this, while a high SNR is optimally maintained, an excellent overwrite characteristic can be obtained.


The non-magnetic substance included in the first magnetic recording layer preferably includes one or a plurality of oxides selected from the group of SiO2, TiO2, Cr2O3, Ta2O5, Nb2O5, B2O3, and ZrO2. The non-magnetic substance is a substance in which a grain boundary part can be formed around magnetic particles so that an exchange interaction operation between crystal grains (magnetic particles or magnetic grains) is suppressed or interrupted, and can be any as long as it is a non-magnetic substance that cannot be incorporated into cobalt (Co). In particular, SiO2 has an effect of promoting finer and more isolated (separated from an adjacent magnetic grain) magnetic grains, and TiO2 has an effect of suppressing dispersion in particle diameter of the crystal grains. Also, Cr2O3 can increase the coercive force Hc. Furthermore, by combining these oxides for segregation over the grain boundaries of the magnetic recording layer, both of the advantages can be enjoyed.


The non-magnetic substance included in the second magnetic recording layer preferably includes one or a plurality of oxides selected from the group of SiO2, TiO2, Cr2O3, Ta2O5, Nb2O5, B2O3, and ZrO2. With this, the grain boundary parts can be reliably formed, and the crystal grains can be clearly separated. Therefore, the SNR can be improved.


To solve the above problem, in a typical structure of a method of manufacturing a perpendicular magnetic recording medium according to the present invention, the perpendicular magnetic recording medium includes at least a first magnetic recording layer and a second magnetic recording layer in this order on a base. As the first magnetic recording layer, a magnetic target is used that includes oxygen or one or a plurality of oxides selected from the group of SiO2, TiO2, Cr2O3, Ta2O5, Nb2O5, B2O3, and ZrO2, and a gas pressure of approximately 0.5 to approximately 5 Pa and a power of approximately 100 to approximately 700 W are set, thereby forming a ferromagnetic layer of a granular structure in which non-magnetic grain boundary parts are formed each between crystal grains each grown in a columnar shape; a magnetic target is used that includes oxygen or one or a plurality of oxides selected from the group of SiO2, TiO2, Cr2O3, Ta2O5, NB2O5, B2O3, and ZrO2, and a gas pressure of approximately 0.5 to approximately 5 Pa and a power of approximately 100 to approximately 1000 W are set, thereby forming a ferromagnetic layer of a granular structure in which non-magnetic grain boundary parts are formed each between the crystal grains each grown in a columnar shape as the second magnetic recording layer; and in the first magnetic recording layer, an intergranular distance defined by an average of shortest distances between grain boundary parts each between a crystal grain and its adjacent crystal grain is equal to or shorter than 1 nm.


Components and description thereof based on a technical idea of the perpendicular magnetic recording medium described above and their description are also applicable to a method of manufacturing the perpendicular magnetic recording medium.


Effect of the Invention

In the perpendicular magnetic recording medium according to the present invention, each space between crystal grains of the first magnetic recording layer is so designed as to allow the first magnetic recording layer to also have a function as a continuous layer, and the SNR and the overwrite characteristic can be appropriately improved.





BRIEF DESCRIPTION OF DRAWINGS


FIG. 1 A diagram for describing the structure of a perpendicular magnetic recording medium according to an embodiment.



FIG. 2 A descriptive diagram for describing a relation between gas pressure and SNR and a relation between input power and SNR characteristic at the time of film-forming a magnetic recording layer.



FIG. 3 A descriptive diagram for describing a relation between an intergranular distance of magnetic particles of a first magnetic recording layer and an intergranular distance of magnetic particles of a second magnetic recording layer, and relations with an overwrite characteristic and SNR.



FIG. 4 A descriptive diagram for describing a perpendicular magnetic recording medium manufactured by using a method of manufacturing a perpendicular magnetic recording medium according to an embodiment.





DESCRIPTION OF REFERENCE NUMERALS






    • 100 . . . perpendicular magnetic recording medium


    • 110 . . . disk base


    • 112 . . . adhesion layer


    • 114 . . . soft magnetic layer


    • 114
      a . . . first soft magnetic layer


    • 114
      b . . . spacer layer


    • 114
      c . . . second soft magnetic layer


    • 116 . . . preliminary ground layer


    • 118 . . . ground layer


    • 118
      a . . . first ground layer


    • 118
      b . . . second ground layer


    • 120 . . . non-magnetic granular layer


    • 122 . . . magnetic recording layer


    • 122
      a . . . first magnetic recording layer


    • 122
      b . . . second magnetic recording layer


    • 124 . . . continuous layer


    • 126 . . . medium protective layer


    • 128 . . . lubricating layer





BEST MODES FOR CARRYING OUT THE INVENTION

In the following, with reference to the attached drawings, preferred embodiments of the present invention are described in detail. The dimensions, materials, and others such as specific numerical values shown in these embodiments are merely examples so as to facilitate understanding of the invention, and are not meant to restrict the present invention unless otherwise specified. Note that, in the specification and drawings, components having substantially the same functions and structures are provided with the same reference characters and are not redundantly described, and components not directly relating to the present invention are not shown in the drawings.


EMBODIMENTS

An embodiment of the method of manufacturing a perpendicular magnetic recording medium according to the present invention is described. FIG. 1 is a diagram for describing the structure of a perpendicular magnetic recording medium 100 according to the present embodiment. The perpendicular magnetic recording medium 100 depicted in FIG. 1 is configured of a disk base 110, an adhesion layer 112, a first soft magnetic layer 114a, a spacer layer 114b, a second soft magnetic layer 114c, a preliminary ground layer 116, a first ground layer 118a, a second ground layer 118b, a non-magnetic granular layer 120, a first magnetic recording layer 122a, a second magnetic recording layer 122b, a continuous layer 124, a medium protective layer 126, and a lubricating layer 128. Note that the first soft magnetic layer 114a, the spacer layer 114b, and the second soft magnetic layer 114c together form a soft magnetic layer 114. The first ground layer 118a and the second ground layer 118b together form a ground layer 118. The first magnetic recording layer 122a and the second magnetic recording layer 122b together form a magnetic recording layer 122.


As described below, in the perpendicular magnetic recording medium 100 shown in the present embodiment, either or both of the first magnetic recording layer 122a and the second magnetic recording layer 122b of the magnetic recording layer 122 contain oxides of a plurality of types (hereinafter referred to as a “composite oxide”), thereby causing segregation of the composite oxide in a non-magnetic grain boundary.


For the disk base 110, a glass disk molded in a disk shape by direct-pressing amorphous aluminosilicate glass can be used. Note that the type, size, thickness, and others of the glass disk are not particularly restricted. A material of the glass disk can be, for example, aluminosilicate glass, soda lime glass, soda alumino silicate glass, aluminoborosilicate glass, borosilicate glass, quartz glass, chain silicate glass, or glass ceramic, such as crystallized glass. This glass disk is sequentially subjected to grinding, polishing, and chemical strengthening, thereby allowing the smooth, non-magnetic disk base 110 made of chemically-strengthened glass disk to be obtained.


On the disk base 110, the adhesion layer 112 to the continuous layer 124 are sequentially formed by DC magnetron sputtering, and the medium protective layer 126 can be formed by CVD. Then, the lubricating layer 128 can be formed by dip coating. Note that, in view of high productivity, using an in-line-type film forming method is also preferable. In the following, the structure of each layer and its manufacturing method are described.


The adhesion layer 112 is an amorphous ground layer formed in contact with the disk base 110, and includes a function of increasing a peel strength between the soft magnetic layer 114 formed thereon and the disk base 110. When the disk base 110 is made of amorphous glass, the adhesion layer 112 is preferably an amorphous alloy film so as to comply with that amorphous glass surface.


As the adhesion layer 112, for example, a CrTi-type amorphous layer can be selected.


The soft magnetic layer 114 is a layer in which a magnetic path is temporarily formed at the time of recording so as to let a magnetic flux pass through a recording layer in a perpendicular direction in a perpendicular magnetic recording type. By interposing the non-magnetic spacer layer 114b between the first soft magnetic layer 114a and the second soft magnetic layer 114c, the soft magnetic layer 114 can be configured to include Antiferro-magnetic exchange coupling (AFC). With this, magnetizing directions of the soft magnetic layer 114 can be aligned with high accuracy along the magnetic path (magnetic circuit), the number of perpendicular components in the magnetizing direction becomes extremely small, and therefore noise occurring from the soft magnetic layer 114 can be reduced. As the composition of the first soft magnetic layer 114a and the second soft magnetic layer 114c, a cobalt-type alloy, such as CoTaZr; a Co—Fe-type alloy, such as CoCrFeB; a Ni—Fe-type alloy having a [Ni—Fe/Sn]n multilayered structure or the like can be used.


The preliminary ground layer 116 is a non-magnetic alloy layer, and includes an operation of protecting the soft magnetic layer 114 and a function of orienting in a disk perpendicular direction an easy axis of magnetization of a hexagonal close-packed structure (hcp structure) included in the ground layer 118 formed on the preliminary ground layer. In the preliminary ground layer 116, a (111) surface of a face-centered cubic structure (fcc structure) or a (110) surface of a body-centered cubic structure (bcc structure) are preferably parallel to a main surface of the disk base 110. Also, the preliminary ground layer 116 may have a structure in which these crystal structures and amorphous are mixed. As a material of the preliminary ground layer 116, a selection can be made from Ni, Cu, Pt, Pd, Zr, Hf, Nb, and Ta. Furthermore, an alloy including any of these metals as a main element and any one or more additional elements from among Ti, V, Ta, Cr, Mo, and W may be used. For example, NiW, CuW, or CuCr can be suitably selected as an fcc structure, and Ta can be suitably selected as a bcc structure.


The ground layer 118 has a hcp structure, and has an operation of growing crystals of the hcp structure of the magnetic recording layer 122 as a granular structure. Therefore, as the crystal orientation of the ground layer 118 is higher, that is, a (0001) surface of a crystal of the ground layer 118 is more parallel to the main surface of the disk base 110, the orientation of the magnetic recording layer 122 can be improved. As a material of the ground layer 118, Ru is typical. Other than that, a selection can be made from RuCr and RuCo. Ru has a hcp structure, and a lattice space of the crystal is similar to that of Co. Therefore, the magnetic recording layer 122 having Co as a main component can be oriented in good condition.


When the ground layer 118 is made of Ru, by changing the gas pressure at the time of sputtering, a two-layer structure made of Ru can be achieved. Specifically, when the second ground layer 118b on an upper-layer side is formed, the gas pressure of Ar is made higher than that when the first ground layer 118a on a lower-layer side is formed. When the gas pressure is made higher, a free traveling distance of Ru ions to be sputtered is shortened, and therefore the film-forming speed becomes slow, thereby improving the crystal separation ability. Also, with a high pressure, the size of the crystal lattice becomes smaller. Since the size of the crystal lattice of Ru is larger than that of the crystal lattice of Co, when the crystal lattice of Ru is made smaller, it becomes closer to that of Co, thereby further improving the crystal orientation of the Co granular layer.


The non-magnetic granular layer 120 is a non-magnetic granular layer. By forming a non-magnetic granular layer on the hcp crystal structure of the ground layer 118 and, on that layer, making a granular layer of the first magnetic recording layer 122a grown, an operation of separating the magnetic granular layer from a stage of initial growth (leading) is provided. The composition of the non-magnetic granular layer 120 can be a granular structure by forming a grain boundary by causing segregation of non-magnetic substance between non-magnetic crystal grains made of a Co-type alloy. In particular, CoCr—SiO2 and CoCrRu—SiO2 can be suitably used and, furthermore, in place of Ru, Rh (rhodium), Pd (palladium), Ag (silver), Os (osmium), Ir (iridium), and Au (gold) can also be used. Still further, the non-magnetic substance is a substance in which a grain boundary part can be formed around magnetic particles so that an exchange interaction operation between magnetic particles (magnetic grains) is suppressed or interrupted, and can be any as long as it is a non-magnetic substance that is not incorporated into cobalt (Co). Examples can include silicon oxide (SiOx), chrome (Cr), chrome oxide (CrO2), titanium oxide (TiO2), zircon oxide (ZrO2), and tantalum oxide (Ta2O5).


The magnetic recording layer 122 is a ferromagnetic layer having a granular structure in a columnar shape in which a grain boundary is formed by causing segregation of a non-magnetic substance around magnetic particles made of a hard magnetic body selected from a Co-type alloy, a Fe-type alloy, and a Ni-type alloy. By providing the non-magnetic granular layer 120, these magnetic particles can make an epitaxial growth continuously from their granular structure. In the present embodiment, the magnetic recording layer is configured of the first magnetic recording layer 122a and the second magnetic recording layer 122b different in composition and film thickness. In both of the first magnetic recording layer 122a and the second magnetic recording layer 122b, as a non-magnetic substance, an oxide, such as SiO2, Cr2O3, TiO2, B2O3, and Fe2O3; a nitride, such as BN; or a carbide, such as B4C3 can be suitably used.


Also, in the present embodiment, in the first magnetic recording layer 122a, an intergranular distance defined by an average of shortest distances between grain boundary parts each between each of magnetic particles (crystal grains) and its adjacent magnetic particle is equal to or shorter than 1 nm. With the structure in which the intergranular distance between each crystal grain and its adjacent crystal grain of the first magnetic recording layer 122a is set to be equal to or shorter than 1 nm, the first magnetic recording layer 122a can be provided with a function similar to that of the continuous layer 124, which will be described further below. Therefore, it is possible to reliably enhance an inverted-magnetic-domain nucleation magnetic field Hn, improve a heat-resistant fluctuation characteristic, and improve the overwrite characteristic. Note that, if the intergranular distance between each crystal grain and its adjacent crystal grain in the first magnetic recording layer 122a is equal to or longer than 1 nm, the function as the continuous layer 24 cannot be achieved, and an improvement of the overwrite characteristic cannot be expected.


Furthermore, in the present embodiment, it is assumed that A>B when an average particle diameter of the magnetic particles (crystal grains) in the first magnetic recording layer 122a is A nm and an average particle diameter of the magnetic particles (crystal grains) in the second magnetic recording layer 122b is B nm. With this, in the first magnetic recording layer 122a, while the function as the continuous layer 124 is achieved, the overwrite characteristic can be improved and, in the second magnetic recording layer 122b, a high coercive force Hc and a high SNR can be optimally maintained.


Still further, in the present embodiment, in either one or both of the first magnetic recording layer 122a and the second magnetic recording layer 122b, two or more non-magnetic substances can be used in a compounding manner. Here, although the type of non-magnetic substance contained is not restricted, SiO2 and TiO2 are in particular preferably included and, next, in place of/in addition to either one, Cr2O3 can be suitably used. For example, the first magnetic recording layer 122a can contain Cr2O3 and SiO2, as an example of the composite oxide (oxides of a plurality of types), in a grain boundary part to form an hcp crystal structure of CoCrPt—Cr2O3—SiO2. Also, for example, the second magnetic recording layer 122b can contain SiO2 and TiO2, as an example of the composite oxide, in a grain boundary part to form an hcp crystal structure of CoCrPt—SiO2—TiO2.


The continuous layer 124 is a magnetically continuous layer (also referred to as a continuous layer) in an in-plane direction on the magnetic recording layer 122 having a granular structure. By providing the continuous layer 124, in addition to a high-density recording property and a low-noise property, it is possible to enhance the inverted-magnetic-domain nucleation magnetic field Hn, improve the heat-resistant fluctuation characteristic, and improve the overwrite characteristic.


The medium protective layer 126 can be formed by forming a film out of carbon by CVD while keeping a vacuum state. The medium protective layer 126 is a protective layer for protecting the perpendicular magnetic recording medium from a shock of the magnetic head. In general, a carbon film formed by CVD has an improved film hardness compared with the one formed by sputtering, and therefore the perpendicular magnetic recording medium can be more effectively protected from a shock from the magnetic head.


The lubricating layer 128 can be formed by forming a film out of perfluoropolyether (PFPE) by dip coating. PFPE has a molecular structure in a long chain shape, and is coupled to an N atom on the surface of the medium protective layer 126 with high affinity. With this operation of the lubricating layer 128, a damage or loss of the medium protective layer 126 can be prevented even if the magnetic head makes contact with the surface of the perpendicular magnetic recording medium 100.


With the above manufacturing processes, the perpendicular magnetic recording medium 100 can be obtained. In the following, effectiveness of the present invention is described by using an example and comparative examples.


Examples and Evaluation

On the disk base 110, by using a vacuumed film forming device, the adhesion layer 112 to the continuous layer 124 were sequentially formed in an Ar atmosphere by DC magnetron sputtering. The adhesive layer 112 was of CrTi. In the soft magnetic layer 114, the composition of the first soft magnetic layer 114a and the second soft magnetic layer 114c was of FeCoTaZr, and the composition of the spacer layer 114b was of Ru. The composition of the preliminary ground layer 116 was of an NiW alloy with an fcc structure. In the ground layer 118, the first ground layer 118a was formed out of Ru under low-pressure Ar, and the second ground layer 118b was formed out of Ru under high-pressure Ar. The composition of the non-magnetic granular layer 120 was of non-magnetic CoCr—SiO2. The magnetic recording layer 122 was formed with a structure in the example and comparative examples below. The composition of the continuous layer 124 was of CoCrPtB. As for the medium protective layer 126, a film was formed by using C2H4 and CN by CVD, and the lubricating layer 128 was formed by using PFPE by dip coating.


In the present embodiment, the film thickness of the continuous layer 124 was 7 nm, the film thickness of the first magnetic recording layer 122a is 3 nm, and the film thickness of the second magnetic recording layer 122b was 10 nm.



FIG. 2 is a descriptive diagram for describing a relation between gas pressure and SNR and a relation between input power and SNR at the time of forming the magnetic recording layer 122. In particular, FIG. 2(a) is a diagram showing a relation between a condition (gas pressure and input power) for forming the second magnetic recording layer 122b, and SNR, with a film thickness of the continuous layer 124 being fixed at 7 nm, a film thickness of the first magnetic recording layer 122a at 3 nm, an average particle diameter of magnetic particles at 7 nm, and an average intergranular distance at 0.8 nm. Also, FIG. 2(b) is a diagram showing a relation between a condition (gas pressure and input power) for forming the first magnetic recording layer 122a, and SNR, with a film thickness of the continuous layer 124 being fixed at 7 nm, a film thickness of the second magnetic recording layer 122b at 10 nm, an average particle diameter of magnetic particles at 6 nm, and an average intergranular distance at 1.2 nm. Note that, in either case, a film-forming time is adjusted so that the product of the input power and the film-forming time is constant, thereby making the film thickness constant. In this case, in the first magnetic recording layer 122a, an hcp crystal structure of CoCrPt—Cr2O3—SiO2 was formed by including Cr2O3 and SiO2 as an example of a composite oxide. Also, in the second magnetic recording layer 122b, an hcp crystal structure of CoCrPt—SiO2—TiO2 was formed by including SiO2 and TiO2 as an example of a composite oxide.


As depicted in FIG. 2(a), in the second magnetic recording layer 122b, an optimum SNR can be obtained by forming a film at a gas pressure of 3 Pa and an input power of 400 W. The average particle diameter and intergranular distance of the magnetic particles of the second magnetic recording layer 122b at this time can be measured by a Transmission Electron Microscope (TEM), and the results were such that the average particle diameter was 6.7 nm and the average intergranular distance was 1.4 nm.


In a specific example to find an average particle diameter of crystal grains, all crystal grains included in an area of 100 nm2 in the measurement results obtained by the TEM are subjected to circular approximation by using the area. Then, by calculating an average diameter of the crystal grains subjected to circular approximation, an average particle diameter of the crystal grains can be found. In a specific example to find an intergranular distance, similarly, the intergranular distance can be found by measuring a shortest distance between each crystal grain and its adjacent crystal grain similarly within a 100 nm2, which is a measurement range of the TEM, and averaging the results. In another example to find an intergranular distance, the intergranular distance can be found by measuring a distance between centers of crystal grains subjected to circular approximation by using the area to find an average intercenter distance, and subtracting an average diameter (obtained by doubling a radius) from this average intercenter distance.


As depicted in FIG. 2(b), in the first magnetic recording layer 122a, an optimum overwrite characteristic can be obtained by forming a film at a gas pressure of 2.5 Pa and an input power of 200 W. An average particle diameter of magnetic particles of the first magnetic recording layer 122a at this time can be measured by a transmission electron microscope, and the results were such that the average particle diameter was 6.3 nm and the average intergranular distance was 0.6 nm.


In the following, it is assumed as a first example that the first magnetic recording layer 122a has an average particle diameter of the magnetic particles of 7 nm and an average intergranular distance of 0.7 nm and the second magnetic recording layer 122b has an average particle diameter of the magnetic particles of 6.7 nm and an average intergranular distance of 1.3 nm, that is, the first magnetic recording layer 122a> the second magnetic recording layer 122b regarding the average particle diameter of the magnetic particles. Also, it is assumed as a comparative example that the first magnetic recording layer 122a has an average particle diameter of the magnetic particles of 6.7 nm and an average intergranular distance of 1.3 nm and the second magnetic recording layer 122b has an average particle diameter of the magnetic particles of 7 nm and an average intergranular distance of 0.7 nm, that is, the first magnetic recording layer 122a<the second magnetic recording layer 122b regarding the average particle diameter of the magnetic particles.



FIG. 3 is a descriptive diagram for describing a relation between an average intergranular distance of magnetic particles of the first magnetic recording layer 122a and an average intergranular distance of magnetic particles of the second magnetic recording layer 122b, and relations with an overwrite characteristic and SNR.


As depicted in FIG. 3, when the average intergranular distance of magnetic particles included in the first magnetic recording layer 122a is shorter than the average intergranular distance of magnetic particles included in the second magnetic recording layer 122b, an excellent overwrite characteristic can be obtained, compared with the case in which the average intergranular distance of magnetic particles included in the first magnetic recording layer 122a is larger than the average intergranular distance of magnetic particles included in the second magnetic recording layer 122b.


Also, with the average particle diameter of magnetic particles in the first magnetic recording layer 122a being larger by approximately 0.3 nm than the average particle diameter of magnetic particles in the second magnetic recording layer 122b, the overwrite characteristic can be optimally improved. Note that, as depicted in the comparative example, when the average particle diameter of magnetic particles in the first magnetic recording layer 122a is smaller by approximately 0.3 nm than the average particle diameter of magnetic particles in the second magnetic recording layer 122b, the overwrite characteristic is degraded.


Also, with the average particle diameter of magnetic particles in the first magnetic recording layer 122a set as being larger by approximately 0.3 nm than the average particle diameter of magnetic particles in the second magnetic recording layer 122b, the intergranular distance between the magnetic particles in the first magnetic recording layer 122a can be easily set as being equal to or shorter than 1 nm. As a result, the overwrite characteristic can be optimally improved. Note that if the intergranular distance between the magnetic particles in the first magnetic recording layer 122a is equal to or longer than 1 nm, no improvement in overwrite characteristic can be expected.


Furthermore, with the average particle diameter of magnetic particles in the first magnetic recording layer 122a set as being larger by approximately 0.3 nm than the average particle diameter of magnetic particles in the second magnetic recording layer 122b, the intergranular distance between the magnetic particles in the second magnetic recording layer 122b can be easily set as being equal to or longer than 0.5 nm. As a result, a high coercive force Hc and a high SNR can be optimally maintained. Note that if the intergranular distance between the magnetic particles in the second magnetic recording layer 122b is equal to or shorter than 0.5 nm, the granular structure cannot be maintained, thereby decreasing the SNR.


With the aim of improving an SNR while achieving an excellent overwrite characteristic, in a second embodiment, the first magnetic recording layer 122a was configured to include Cr2O3 and SiO2 as an example of a composite oxide to form an hcp crystal structure of CoCrPt—Cr2O3—SiO2, and the second magnetic recording layer 122b was configured to include SiO2 and TiO2 as an example of a composite oxide to form an hcp crystal structure of CoCrPt—SiO2—TiO2.


As depicted in FIG. 3, with the second magnetic recording layer 122b being formed so as to include a composite oxide of SiO2 and TiO2, characteristics of a plurality of oxides can be obtained. Therefore, noise was reduced by further making the magnetic grains of the magnetic recording layer 122 finer and more isolated and, while an excellent overwrite characteristic was maintained, the SNR was able to be improved.


In particular, SiO2 has an effect of promoting finer and more isolated magnetic grains, and TiO2 has an effect of suppressing dispersion in particle diameter of the crystal grains. By combining these oxides for segregation over the grain boundary parts of the magnetic recording layer 122, both of the advantages can be enjoyed.



FIG. 4 is a descriptive diagram for describing the perpendicular magnetic recording medium 100 manufactured by using the method of manufacturing a perpendicular magnetic recording medium according to the present embodiment.


As depicted in FIG. 4, the perpendicular magnetic recording medium 100 manufactured by using the method of manufacturing a perpendicular magnetic recording medium according to the present embodiment is formed so that the intergranular distance between each magnetic particle (crystal grain) and its adjacent magnetic particle (crystal grain) in the first magnetic recording layer 122a is shorter than the intergranular distance between each magnetic particle (crystal grain) and its adjacent magnetic particle (crystal grain) in the second magnetic recording layer 122b. For this reason, the first magnetic recording layer 122a has a function similar to that of the continuous layer 124. Therefore, the overwrite characteristic can be reliably improved.


According to the above structure, the second magnetic recording layer can have a function as a continuous layer. Therefore, even if a head magnetic field that is weaker compared with an upper portion of the medium is applied, an ideal flux reversal can be achieved, and the medium can appropriately exert its function. With this, the SNR and overwrite characteristic can be appropriately improved.


In the foregoing, the preferred examples of the present invention have been described with reference to the attached drawings. Needless to say, however, the present invention is not restricted by such examples. It is clear that the person skilled in the art can conceive various modification examples or corrected examples within a range described in the scope of claims for patent, and it is understood that these examples reasonably belong to the technological scope of the present invention.


For example, in the above embodiments and examples, the magnetic recording layer is formed of two layers, that is, the first magnetic recording layer and the second magnetic recording layer. However, even when the magnetic recording layer is formed of three or more layers, an advantage of the present invention can be similarly achieved by at least setting an average particle diameter of magnetic grains of a lower magnetic recording layer as being larger than the average particle diameter of magnetic grains of an upper magnetic recording layer.


INDUSTRIAL APPLICABILITY

The present invention can be used as a perpendicular magnetic recording medium implemented on an HDD (hard disk drive) of a perpendicular magnetic recording type or the like, and a method of manufacturing a perpendicular magnetic recording medium.

Claims
  • 1. A perpendicular magnetic recording medium comprising: a base;a recording layer consisting of a first magnetic recording layer 3 nm or more and less than 5 nm thick and a second magnetic recording layer 7 nm or more and less than 15 nm thick, in this order on the base, anda continuous layer that comprises a material whose composition differs from that of a material that comprises the second magnetic recording layer and magnetically continues in a direction of a base surface is provided on a side of the second magnetic recording layer away from the base,whereinthe first magnetic recording layer and the second magnetic recording layer are ferromagnetic layers of a granular structure in which grain boundary parts made of a non-magnetic substance are each formed between crystal grains each grown in a columnar shape, anda first intergranular distance defined by an average of shortest distances between each of the crystal grains and its adjacent crystal grain in the first magnetic recording layer is shorter than a second intergranular distance defined by an average of shortest distances between grain boundary parts each between each of the crystal grains and its adjacent crystal grain in the second magnetic recording layer,wherein A>B when an average particle diameter of the crystal grains in the first magnetic recording layer is taken as A nm and an average particle diameter of the crystal grains in the second magnetic recording layer is taken as B nm,wherein a ratio between the average particle diameter of the crystal grains in the first magnetic recording layer and the average particle diameter of the crystal grains in the second magnetic recording layer is 1<A/B<1.2,wherein the non-magnetic substance included in the first magnetic recording layer includes one or a plurality of oxides selected from the group of SiO2, TiO2, Cr2O3, Ta2O5, Nb2O5, B2O3, and ZrO2, andwherein the non-magnetic substance included in the second magnetic recording layer includes one or a plurality of oxides selected from the group of SiO2, TiO2, Cr2O3, Ta2O5, Nb2O5, B2O3, and ZrO2.
  • 2. The perpendicular magnetic recording medium according to claim 1, wherein a total thickness of the first magnetic recording layer and the second magnetic recording layer is equal to or smaller than 15 nm.
  • 3. The perpendicular magnetic recording medium according to claim 1, wherein the film thickness of the first magnetic recording layer is approximately 0.2 to approximately 2 times larger than a film thickness of the continuous layer.
  • 4. The perpendicular magnetic recording medium according to claim 1, wherein the film thickness of the second magnetic recording layer is approximately 0.7 to approximately 2 times larger than a film thickness of the continuous layer.
Priority Claims (1)
Number Date Country Kind
2008-082251 Mar 2008 JP national
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/JP2009/056051 3/26/2009 WO 00 12/23/2010
Publishing Document Publishing Date Country Kind
WO2009/119709 10/1/2009 WO A
US Referenced Citations (323)
Number Name Date Kind
6013161 Chen et al. Jan 2000 A
6063248 Bourez et al. May 2000 A
6068891 O'Dell et al. May 2000 A
6086730 Liu et al. Jul 2000 A
6099981 Nishimori Aug 2000 A
6103404 Ross et al. Aug 2000 A
6117499 Wong et al. Sep 2000 A
6136403 Prabhakara et al. Oct 2000 A
6143375 Ross et al. Nov 2000 A
6145849 Bae et al. Nov 2000 A
6146737 Malhotra et al. Nov 2000 A
6149696 Jia Nov 2000 A
6150015 Bertero et al. Nov 2000 A
6156404 Ross et al. Dec 2000 A
6159076 Sun et al. Dec 2000 A
6164118 Suzuki et al. Dec 2000 A
6200441 Gornicki et al. Mar 2001 B1
6204995 Hokkyo et al. Mar 2001 B1
6206765 Sanders et al. Mar 2001 B1
6210819 Lal et al. Apr 2001 B1
6216709 Fung et al. Apr 2001 B1
6221119 Homola Apr 2001 B1
6248395 Homola et al. Jun 2001 B1
6261681 Suekane et al. Jul 2001 B1
6270885 Hokkyo et al. Aug 2001 B1
6274063 Li et al. Aug 2001 B1
6283838 Blake et al. Sep 2001 B1
6287429 Moroishi et al. Sep 2001 B1
6290573 Suzuki Sep 2001 B1
6299947 Suzuki et al. Oct 2001 B1
6303217 Malhotra et al. Oct 2001 B1
6309765 Suekane et al. Oct 2001 B1
6358636 Yang et al. Mar 2002 B1
6362452 Suzuki et al. Mar 2002 B1
6363599 Bajorek Apr 2002 B1
6365012 Sato et al. Apr 2002 B1
6381090 Suzuki et al. Apr 2002 B1
6381092 Suzuki Apr 2002 B1
6387483 Hokkyo et al. May 2002 B1
6391213 Homola May 2002 B1
6395349 Salamon May 2002 B1
6403919 Salamon Jun 2002 B1
6408677 Suzuki Jun 2002 B1
6426157 Hokkyo et al. Jul 2002 B1
6429984 Alex Aug 2002 B1
6482330 Bajorek Nov 2002 B1
6482505 Bertero et al. Nov 2002 B1
6500567 Bertero et al. Dec 2002 B1
6528124 Nguyen Mar 2003 B1
6548821 Treves et al. Apr 2003 B1
6552871 Suzuki et al. Apr 2003 B2
6565719 Lairson et al. May 2003 B1
6566674 Treves et al. May 2003 B1
6571806 Rosano et al. Jun 2003 B2
6628466 Alex Sep 2003 B2
6664503 Hsieh et al. Dec 2003 B1
6670055 Tomiyasu et al. Dec 2003 B2
6682807 Lairson et al. Jan 2004 B2
6683754 Suzuki et al. Jan 2004 B2
6730420 Bertero et al. May 2004 B1
6743528 Suekane et al. Jun 2004 B2
6759138 Tomiyasu et al. Jul 2004 B2
6778353 Harper Aug 2004 B1
6795274 Hsieh et al. Sep 2004 B1
6855232 Jairson et al. Feb 2005 B2
6857937 Bajorek Feb 2005 B2
6893748 Bertero et al. May 2005 B2
6899959 Bertero et al. May 2005 B2
6916558 Umezawa et al. Jul 2005 B2
6939120 Harper Sep 2005 B1
6946191 Morikawa et al. Sep 2005 B2
6967798 Homola et al. Nov 2005 B2
6972135 Homola Dec 2005 B2
7004827 Suzuki et al. Feb 2006 B1
7006323 Suzuki Feb 2006 B1
7016154 Nishihira Mar 2006 B2
7019924 McNeil et al. Mar 2006 B2
7045215 Shimokawa May 2006 B2
7070870 Bertero et al. Jul 2006 B2
7090934 Hokkyo et al. Aug 2006 B2
7099112 Harper Aug 2006 B1
7105241 Shimokawa et al. Sep 2006 B2
7119990 Bajorek et al. Oct 2006 B2
7147790 Wachenschwanz et al. Dec 2006 B2
7161753 Wachenschwanz et al. Jan 2007 B2
7166319 Ishiyama Jan 2007 B2
7166374 Suekane et al. Jan 2007 B2
7169487 Kawai et al. Jan 2007 B2
7174775 Ishiyama Feb 2007 B2
7179549 Malhotra et al. Feb 2007 B2
7184139 Treves et al. Feb 2007 B2
7196860 Alex Mar 2007 B2
7199977 Suzuki et al. Apr 2007 B2
7208236 Morikawa et al. Apr 2007 B2
7220500 Tomiyasu et al. May 2007 B1
7229266 Harper Jun 2007 B2
7239970 Treves et al. Jul 2007 B2
7252897 Shimokawa et al. Aug 2007 B2
7277254 Shimokawa et al. Oct 2007 B2
7281920 Homola et al. Oct 2007 B2
7292329 Treves et al. Nov 2007 B2
7301726 Suzuki Nov 2007 B1
7302148 Treves et al. Nov 2007 B2
7305119 Treves et al. Dec 2007 B2
7314404 Singh et al. Jan 2008 B2
7320584 Harper et al. Jan 2008 B1
7329114 Harper et al. Feb 2008 B2
7375362 Treves et al. May 2008 B2
7420886 Tomiyasu et al. Sep 2008 B2
7425719 Treves et al. Sep 2008 B2
7471484 Wachenschwanz et al. Dec 2008 B2
7498062 Calcaterra et al. Mar 2009 B2
7531485 Hara et al. May 2009 B2
7537846 Ishiyama et al. May 2009 B2
7549209 Wachenschwanz et al. Jun 2009 B2
7569490 Staud Aug 2009 B2
7597792 Homola et al. Oct 2009 B2
7597973 Ishiyama Oct 2009 B2
7608193 Wachenschwanz et al. Oct 2009 B2
7632087 Homola Dec 2009 B2
7656615 Wachenschwanz et al. Feb 2010 B2
7682546 Harper Mar 2010 B2
7684152 Suzuki et al. Mar 2010 B2
7686606 Harper et al. Mar 2010 B2
7686991 Harper Mar 2010 B2
7695833 Ishiyama Apr 2010 B2
7722968 Ishiyama May 2010 B2
7733605 Suzuki et al. Jun 2010 B2
7736768 Ishiyama Jun 2010 B2
7755861 Li et al. Jul 2010 B1
7758732 Calcaterra et al. Jul 2010 B1
7833639 Sonobe et al. Nov 2010 B2
7833641 Tomiyasu et al. Nov 2010 B2
7910159 Jung Mar 2011 B2
7911736 Bajorek Mar 2011 B2
7924519 Lambert Apr 2011 B2
7944165 O'Dell May 2011 B1
7944643 Jiang et al. May 2011 B1
7955723 Umezawa et al. Jun 2011 B2
7983003 Sonobe et al. Jul 2011 B2
7993497 Moroishi et al. Aug 2011 B2
7993765 Kim et al. Aug 2011 B2
7998912 Chen et al. Aug 2011 B2
8002901 Chen et al. Aug 2011 B1
8003237 Sonobe et al. Aug 2011 B2
8012920 Shimokawa Sep 2011 B2
8038863 Homola Oct 2011 B2
8057926 Ayama et al. Nov 2011 B2
8062778 Suzuki et al. Nov 2011 B2
8064156 Suzuki et al. Nov 2011 B1
8076013 Sonobe et al. Dec 2011 B2
8092931 Ishiyama et al. Jan 2012 B2
8100685 Harper et al. Jan 2012 B1
8101054 Chen et al. Jan 2012 B2
8125723 Nichols et al. Feb 2012 B1
8125724 Nichols et al. Feb 2012 B1
8137517 Bourez Mar 2012 B1
8142916 Umezawa et al. Mar 2012 B2
8163093 Chen et al. Apr 2012 B1
8171949 Lund et al. May 2012 B1
8173282 Sun et al. May 2012 B1
8178480 Hamakubo et al. May 2012 B2
8206789 Suzuki Jun 2012 B2
8218260 Iamratanakul et al. Jul 2012 B2
8247095 Champion et al. Aug 2012 B2
8257783 Suzuki et al. Sep 2012 B2
8298609 Liew et al. Oct 2012 B1
8298689 Sonobe et al. Oct 2012 B2
8309239 Umezawa et al. Nov 2012 B2
8316668 Chan et al. Nov 2012 B1
8331056 O'Dell Dec 2012 B2
8354618 Chen et al. Jan 2013 B1
8367228 Sonobe et al. Feb 2013 B2
8383209 Ayama Feb 2013 B2
8394243 Jung et al. Mar 2013 B1
8397751 Chan et al. Mar 2013 B1
8399809 Bourez Mar 2013 B1
8402638 Treves et al. Mar 2013 B1
8404056 Chen et al. Mar 2013 B1
8404369 Ruffini et al. Mar 2013 B2
8404370 Sato et al. Mar 2013 B2
8406918 Tan et al. Mar 2013 B2
8414966 Yasumori et al. Apr 2013 B2
8425975 Ishiyama Apr 2013 B2
8431257 Kim et al. Apr 2013 B2
8431258 Onoue et al. Apr 2013 B2
8453315 Kajiwara et al. Jun 2013 B2
8488276 Jung et al. Jul 2013 B1
8491800 Dorsey Jul 2013 B1
8492009 Homola et al. Jul 2013 B1
8492011 Itoh et al. Jul 2013 B2
8496466 Treves et al. Jul 2013 B1
8517364 Crumley et al. Aug 2013 B1
8517657 Chen et al. Aug 2013 B2
8524052 Tan et al. Sep 2013 B1
8530065 Chernyshov et al. Sep 2013 B1
8546000 Umezawa Oct 2013 B2
8551253 Na'im et al. Oct 2013 B2
8551627 Shimada et al. Oct 2013 B2
8556566 Suzuki et al. Oct 2013 B1
8559131 Masuda et al. Oct 2013 B2
8562748 Chen et al. Oct 2013 B1
8565050 Bertero et al. Oct 2013 B1
8570844 Yuan et al. Oct 2013 B1
8580410 Onoue Nov 2013 B2
8584687 Chen et al. Nov 2013 B1
8591709 Lim et al. Nov 2013 B1
8592061 Onoue et al. Nov 2013 B2
8596287 Chen et al. Dec 2013 B1
8597723 Jung et al. Dec 2013 B1
8603649 Onoue Dec 2013 B2
8603650 Sonobe et al. Dec 2013 B2
8605388 Yasumori et al. Dec 2013 B2
8605555 Chernyshov et al. Dec 2013 B1
8608147 Yap et al. Dec 2013 B1
8609263 Chernyshov et al. Dec 2013 B1
8619381 Moser et al. Dec 2013 B2
8623528 Umezawa et al. Jan 2014 B2
8623529 Suzuki Jan 2014 B2
8634155 Yasumori et al. Jan 2014 B2
8658003 Bourez Feb 2014 B1
8658292 Mallary et al. Feb 2014 B1
8665541 Saito Mar 2014 B2
8668953 Buechel-Rimmel Mar 2014 B1
8674327 Poon et al. Mar 2014 B1
8685214 Moh et al. Apr 2014 B1
8696404 Sun et al. Apr 2014 B2
8711499 Desai et al. Apr 2014 B1
8743666 Bertero et al. Jun 2014 B1
8758912 Srinivasan et al. Jun 2014 B2
8787124 Chernyshov et al. Jul 2014 B1
8787130 Yuan et al. Jul 2014 B1
8791391 Bourez Jul 2014 B2
20020060883 Suzuki May 2002 A1
20030022024 Wachenschwanz Jan 2003 A1
20040022387 Weikle Feb 2004 A1
20040132301 Harper et al. Jul 2004 A1
20040202793 Harper et al. Oct 2004 A1
20040202865 Homola et al. Oct 2004 A1
20040209123 Bajorek et al. Oct 2004 A1
20040209470 Bajorek Oct 2004 A1
20050036223 Wachenschwanz et al. Feb 2005 A1
20050142990 Homola Jun 2005 A1
20050150862 Harper et al. Jul 2005 A1
20050151282 Harper et al. Jul 2005 A1
20050151283 Bajorek et al. Jul 2005 A1
20050151300 Harper et al. Jul 2005 A1
20050153169 Watanabe et al. Jul 2005 A1
20050155554 Saito Jul 2005 A1
20050167867 Bajorek et al. Aug 2005 A1
20050186450 Takenoiri et al. Aug 2005 A1
20050263401 Olsen et al. Dec 2005 A1
20060147758 Jung et al. Jul 2006 A1
20060181697 Treves et al. Aug 2006 A1
20060204791 Sakawaki et al. Sep 2006 A1
20060207890 Staud Sep 2006 A1
20060222900 Inamura et al. Oct 2006 A1
20060222902 Mukai Oct 2006 A1
20070070549 Suzuki et al. Mar 2007 A1
20070245909 Homola Oct 2007 A1
20080075845 Sonobe et al. Mar 2008 A1
20080093760 Harper et al. Apr 2008 A1
20090117408 Umezawa et al. May 2009 A1
20090136784 Suzuki et al. May 2009 A1
20090169922 Ishiyama Jul 2009 A1
20090191331 Umezawa et al. Jul 2009 A1
20090202866 Kim et al. Aug 2009 A1
20090311557 Onoue et al. Dec 2009 A1
20100143752 Ishibashi et al. Jun 2010 A1
20100190035 Sonobe et al. Jul 2010 A1
20100196619 Ishiyama Aug 2010 A1
20100196740 Ayama et al. Aug 2010 A1
20100209601 Shimokawa et al. Aug 2010 A1
20100215992 Horikawa et al. Aug 2010 A1
20100232065 Suzuki et al. Sep 2010 A1
20100247965 Onoue Sep 2010 A1
20100261039 Itoh et al. Oct 2010 A1
20100279151 Sakamoto et al. Nov 2010 A1
20100300884 Homola et al. Dec 2010 A1
20100304186 Shimokawa Dec 2010 A1
20110097603 Onoue Apr 2011 A1
20110097604 Onoue Apr 2011 A1
20110171495 Tachibana et al. Jul 2011 A1
20110206947 Tachibana et al. Aug 2011 A1
20110212346 Onoue et al. Sep 2011 A1
20110223446 Onoue et al. Sep 2011 A1
20110244119 Umezawa et al. Oct 2011 A1
20110299194 Aniya et al. Dec 2011 A1
20110311841 Saito et al. Dec 2011 A1
20120069466 Okamoto et al. Mar 2012 A1
20120070692 Sato et al. Mar 2012 A1
20120077060 Ozawa Mar 2012 A1
20120127599 Shimokawa et al. May 2012 A1
20120127601 Suzuki et al. May 2012 A1
20120129009 Sato et al. May 2012 A1
20120140359 Tachibana Jun 2012 A1
20120141833 Umezawa et al. Jun 2012 A1
20120141835 Sakamoto Jun 2012 A1
20120148875 Hamakubo et al. Jun 2012 A1
20120156523 Seki et al. Jun 2012 A1
20120164488 Shin et al. Jun 2012 A1
20120170152 Sonobe et al. Jul 2012 A1
20120171369 Koike et al. Jul 2012 A1
20120175243 Fukuura et al. Jul 2012 A1
20120189872 Umezawa et al. Jul 2012 A1
20120196049 Azuma et al. Aug 2012 A1
20120207919 Sakamoto et al. Aug 2012 A1
20120225217 Itoh et al. Sep 2012 A1
20120251842 Yuan et al. Oct 2012 A1
20120251846 Desai et al. Oct 2012 A1
20120276417 Shimokawa et al. Nov 2012 A1
20120308722 Suzuki et al. Dec 2012 A1
20130040167 Alagarsamy et al. Feb 2013 A1
20130071694 Srinivasan et al. Mar 2013 A1
20130165029 Sun et al. Jun 2013 A1
20130175252 Bourez Jul 2013 A1
20130216865 Yasumori et al. Aug 2013 A1
20130230647 Onoue et al. Sep 2013 A1
20130314815 Yuan et al. Nov 2013 A1
20140011054 Suzuki Jan 2014 A1
20140044992 Onoue Feb 2014 A1
20140050843 Yi et al. Feb 2014 A1
20140151360 Gregory et al. Jun 2014 A1
Foreign Referenced Citations (8)
Number Date Country
60-239916 Nov 1985 JP
63-201912 Aug 1988 JP
11-025439 Jan 1999 JP
2003-346315 Dec 2003 JP
2006-309922 Nov 2006 JP
2008-108395 May 2008 JP
2007114402 Oct 2007 WO
WO 2007114402 Oct 2007 WO
Related Publications (1)
Number Date Country
20110097603 A1 Apr 2011 US