The present invention relates to a perpendicular magnetic recording medium implemented on an HDD (hard disk drive) of a perpendicular magnetic recording type or the like, and a method of manufacturing a perpendicular magnetic recording medium.
With an increase in capacity of information processing in recent years, various information recording technologies have been developed. In particular, the surface recording density of an HDD using magnetic recording technology is continuously increasing at an annual rate of approximately 100%. In recent years, an information recording capacity exceeding 160 GB per one magnetic disk with a 2.5-inch diameter for use in an HDD or the like has been desired. To fulfill such demands, an information recording density exceeding 250 Gbits per one square inch is desired to be achieved.
To attain a high recording density in a magnetic disk for use in an HDD or the like, a magnetic disk of a perpendicular magnetic recording type has been suggested in recent years. In a conventional in-plane magnetic recording type, the axis of easy magnetization of a magnetic recording layer is oriented in a plane direction of a base surface. In the perpendicular magnetic recording type, by contrast, the axis of easy magnetization is adjusted so as to be oriented in a direction perpendicular to the base surface. In the perpendicular magnetic recording type, compared with the in-plane recording type, a thermal fluctuation phenomenon can be more suppressed at the time of high-density recording, and therefore the perpendicular magnetic recording type is suitable for increasing the recording density.
Conventionally, as a magnetic recording layer, CoCrPt—SiO2 or CoCrPt—TiO2 having a granular structure has been widely used. In Co, a crystal of a hcp structure (a hexagonal close-packed crystal lattice) grows in a columnar shape, and Cr and SiO2 (or TiO2) are subjected to segregation to form a non-magnetic grain boundary. By using such a granular structure, physically independent fine magnetic grains can be easily formed, and a high recording density can be easily attained.
In the above perpendicular recording type, a magnetic-monopole-type perpendicular head is used to cause a magnetic field in a direction perpendicular to the magnetic recording layer. However, with the use of a magnetic-monopole-type perpendicular head alone, a magnetic flux from a magnetic monopole immediately tries to return to a return magnetic pole on an opposite side, and therefore it is impossible to apply a sufficiently strong magnetic field to the magnetic recording layer. Thus, a soft magnetic layer is provided under a magnetic recording layer of a perpendicular magnetic recording disk to form a path (magnetic path) for a magnetic flux in the soft magnetic layer, thereby making it possible to apply a strong magnetic field in a direction perpendicular to the magnetic recording layer. That is, the soft magnetic layer is a layer in which magnetizing directions are aligned based on the magnetic field at the time of writing to dynamically form a magnetic path.
However, when a strong magnetic field is applied to the magnetic recording layer, a leakage magnetic field to an adjacent track becomes large. From this, WATE (Wide Area Track Erasure) becomes a problem, which is a phenomenon where recorded information is lost over several μm with a write-target track being taken as a center. As a technique of reducing WATE, it is said to be important to set an inverted-magnetic-domain nucleation magnetic field Hn of the magnetic recording layer as being negative and set its absolute value as being large. To obtain a high (large absolute value) Hn, a CGC (Coupled Granular Continuous) medium has been devised (Patent Document 1), in which a thin film (continuous layer) is formed that shows a high perpendicular magnetic anisotropy above or below the magnetic recording layer having a granular structure.
Also, although a high recording density can be achieved with an improvement of a coercive force Hc of the magnetic recording medium, writing with a magnetic head tends to become difficult. Thus, with an improvement in saturation magnetization Ms, the continuous layer also has a role of improving writability, that is, an overwrite characteristic.
In other words, an object of providing a continuous layer onto the magnetic recording layer is to improve the inverted-magnetic-domain nucleation magnetic field Hn to reduce noise and improve the saturation magnetization Ms to also improve the overwrite characteristic. Note that, although the continuous layer is also referred to as an auxiliary recording layer or a cap layer, it is referred to as a continuous layer in the present application unless otherwise specified.
Patent Document 1: Japanese Unexamined Patent Application Publication No. 2003-346315
However, in the conventional technology, while the overwrite characteristic can be improved by the continuous layer having a high saturation magnetization Ms, a noise increase is invited. Since the continuous layer is positioned at an upper portion of the medium, an influence to the noise increase is large.
In general, in the perpendicular magnetic recording medium, the recording magnetic field strength significantly decreases with a further distance away from the recording head. The inventors have conceived that an ideal structure is such that the conventional function of the continuous layer is also included in the first magnetic recording layer to achieve an ideal flux reversal also with a weaker head magnetic field strength compared with a head magnetic field strength in an upper portion (a layer near a surface layer of the medium) of the medium. By using the structure of the present invention, an excellent overwrite characteristic can be more efficiently achieved. Also, since the first magnetic recording layer is positioned at a portion sufficiently away from the reproducing head, a contribution to a noise increase is also small.
The present invention has been devised in view of the above problem in the continuous layer provided to the perpendicular magnetic recording medium. An object of the present invention is to provide a perpendicular magnetic recording medium in which each space between crystal grains of the first magnetic recording layer is so designed as to allow the first magnetic recording layer to also have a function as a continuous layer, and a method of manufacturing a perpendicular magnetic recording medium.
To solve the above problem, as a result of diligent studies by the inventors of the present invention, the inventors found that the overwrite characteristic is improved by setting the space between crystal grains of the first magnetic recording layer at a predetermined value, thereby completing the present invention.
That is, to solve the above problem, in a typical structure of a perpendicular magnetic recording medium according to the present invention, the perpendicular magnetic recording medium includes at least a first magnetic recording layer and a second magnetic recording layer in this order on a base, wherein the first magnetic recording layer and the second magnetic recording layer are ferromagnetic layers of a granular structure in which grain boundary parts made of a non-magnetic substance are each formed between crystal grains each grown in a columnar shape and, in the first magnetic recording layer, an intergranular distance defined by an average of shortest distances each between each of the crystal grains and its adjacent crystal grain is equal to or shorter than 1 nm.
With the structure in which the intergranular distance between each crystal grain and its adjacent crystal grain of the first magnetic recording layer is set to be equal to or shorter than 1 nm, the first magnetic recording layer can be provided with a function similar to that of the continuous layer. Therefore, it is possible to reliably enhance the inverted-magnetic-domain nucleation magnetic field Hn, improve a heat-resistant fluctuation characteristic, and improve the overwrite characteristic. Note that, if the intergranular distance between each crystal grain and its adjacent crystal grain in the first magnetic recording layer is equal to or longer than 1 nm, the function as the continuous layer cannot be achieved, and an improvement of the overwrite characteristic cannot be expected.
In the second magnetic recording layer, the intergranular distance defined by the average of the shortest distances between grain boundary parts each between each of the crystal grains and its adjacent crystal grain is preferably equal to or longer than 0.5 nm.
With this, a high coercive force Hc and a high SNR can be optimally maintained. Note that if the intergranular distance between the crystal grains in the first magnetic recording layer is equal to or shorter than 0.5 nm, the granular structure cannot be maintained, thereby decreasing the SNR.
When an average particle diameter of the crystal grains in the first magnetic recording layer is taken as A nm and an average particle diameter of the crystal grains in the second magnetic recording layer is taken as B nm, A>B may hold.
With this, in the first magnetic recording layer, while the function as a continuous layer is achieved, the overwrite characteristic can be improved. Also, in the second magnetic recording layer, a high coercive force Hc and a high SNR can be optimally maintained.
A ratio between the average particle diameter of the crystal grains in the first magnetic recording layer and the average particle diameter of the crystal grains in the second magnetic recording layer is preferably 1<A/B<1.2.
With this, the overwrite characteristic can be optimally improved. Note that if the ratio A/B between the average particle diameter of the crystal grains in the first magnetic recording layer and the average particle diameter of the crystal grains in the second magnetic recording layer is larger than 1.2, the overwrite characteristic is degraded.
A total thickness of the first magnetic recording layer and the second magnetic recording layer is preferably equal to or smaller than 15 nm.
The film thickness of the first magnetic recording layer is preferably equal to or smaller than 5 nm and, desirably 3 nm to 4 nm. This is because, if the thickness is smaller than 3 nm, composition separation of the second magnetic recording layer cannot be promoted and, if the thickness is larger than 4 nm, a R/W characteristic (read/write characteristic) is degraded. The film thickness of the second magnetic recording layer is preferably equal to or larger than 5 nm and, desirably 7 nm to 15 nm. This is because, if the thickness is smaller than 7 nm, a sufficient coercive force cannot be obtained and, if the thickness is larger than 15 nm, a high Hn cannot be obtained. Therefore, to obtain a high Hn, the total thickness of the first magnetic recording layer and the second magnetic recording layer is preferably equal to or smaller than 15 nm.
The first magnetic recording layer may have a film thickness approximately 0.2 to approximately 1 time larger than the film thickness of the second magnetic recording layer. A continuous layer is provided that magnetically continues in a direction of a base surface from the second magnetic recording layer to a side away from the base, and the film thickness of the first magnetic recording layer is preferably approximately 0.2 to approximately 2 times larger than a film thickness of the continuous layer. A continuous layer magnetically continuing in a direction of a base surface is provided on a side of the second magnetic recording layer away from the base, and the film thickness of the second magnetic recording layer is preferably approximately 0.7 to approximately 2 times larger than a film thickness of the continuous layer.
With this, while a high SNR is optimally maintained, an excellent overwrite characteristic can be obtained.
The non-magnetic substance included in the first magnetic recording layer preferably includes one or a plurality of oxides selected from the group of SiO2, TiO2, Cr2O3, Ta2O5, Nb2O5, B2O3, and ZrO2. The non-magnetic substance is a substance in which a grain boundary part can be formed around magnetic particles so that an exchange interaction operation between crystal grains (magnetic particles or magnetic grains) is suppressed or interrupted, and can be any as long as it is a non-magnetic substance that cannot be incorporated into cobalt (Co). In particular, SiO2 has an effect of promoting finer and more isolated (separated from an adjacent magnetic grain) magnetic grains, and TiO2 has an effect of suppressing dispersion in particle diameter of the crystal grains. Also, Cr2O3 can increase the coercive force Hc. Furthermore, by combining these oxides for segregation over the grain boundaries of the magnetic recording layer, both of the advantages can be enjoyed.
The non-magnetic substance included in the second magnetic recording layer preferably includes one or a plurality of oxides selected from the group of SiO2, TiO2, Cr2O3, Ta2O5, Nb2O5, B2O3, and ZrO2. With this, the grain boundary parts can be reliably formed, and the crystal grains can be clearly separated. Therefore, the SNR can be improved.
To solve the above problem, in a typical structure of a method of manufacturing a perpendicular magnetic recording medium according to the present invention, the perpendicular magnetic recording medium includes at least a first magnetic recording layer and a second magnetic recording layer in this order on a base. As the first magnetic recording layer, a magnetic target is used that includes oxygen or one or a plurality of oxides selected from the group of SiO2, TiO2, Cr2O3, Ta2O5, Nb2O5, B2O3, and ZrO2, and a gas pressure of approximately 0.5 to approximately 5 Pa and a power of approximately 100 to approximately 700 W are set, thereby forming a ferromagnetic layer of a granular structure in which non-magnetic grain boundary parts are formed each between crystal grains each grown in a columnar shape; a magnetic target is used that includes oxygen or one or a plurality of oxides selected from the group of SiO2, TiO2, Cr2O3, Ta2O5, NB2O5, B2O3, and ZrO2, and a gas pressure of approximately 0.5 to approximately 5 Pa and a power of approximately 100 to approximately 1000 W are set, thereby forming a ferromagnetic layer of a granular structure in which non-magnetic grain boundary parts are formed each between the crystal grains each grown in a columnar shape as the second magnetic recording layer; and in the first magnetic recording layer, an intergranular distance defined by an average of shortest distances between grain boundary parts each between a crystal grain and its adjacent crystal grain is equal to or shorter than 1 nm.
Components and description thereof based on a technical idea of the perpendicular magnetic recording medium described above and their description are also applicable to a method of manufacturing the perpendicular magnetic recording medium.
In the perpendicular magnetic recording medium according to the present invention, each space between crystal grains of the first magnetic recording layer is so designed as to allow the first magnetic recording layer to also have a function as a continuous layer, and the SNR and the overwrite characteristic can be appropriately improved.
In the following, with reference to the attached drawings, preferred embodiments of the present invention are described in detail. The dimensions, materials, and others such as specific numerical values shown in these embodiments are merely examples so as to facilitate understanding of the invention, and are not meant to restrict the present invention unless otherwise specified. Note that, in the specification and drawings, components having substantially the same functions and structures are provided with the same reference characters and are not redundantly described, and components not directly relating to the present invention are not shown in the drawings.
An embodiment of the method of manufacturing a perpendicular magnetic recording medium according to the present invention is described.
As described below, in the perpendicular magnetic recording medium 100 shown in the present embodiment, either or both of the first magnetic recording layer 122a and the second magnetic recording layer 122b of the magnetic recording layer 122 contain oxides of a plurality of types (hereinafter referred to as a “composite oxide”), thereby causing segregation of the composite oxide in a non-magnetic grain boundary.
For the disk base 110, a glass disk molded in a disk shape by direct-pressing amorphous aluminosilicate glass can be used. Note that the type, size, thickness, and others of the glass disk are not particularly restricted. A material of the glass disk can be, for example, aluminosilicate glass, soda lime glass, soda alumino silicate glass, aluminoborosilicate glass, borosilicate glass, quartz glass, chain silicate glass, or glass ceramic, such as crystallized glass. This glass disk is sequentially subjected to grinding, polishing, and chemical strengthening, thereby allowing the smooth, non-magnetic disk base 110 made of chemically-strengthened glass disk to be obtained.
On the disk base 110, the adhesion layer 112 to the continuous layer 124 are sequentially formed by DC magnetron sputtering, and the medium protective layer 126 can be formed by CVD. Then, the lubricating layer 128 can be formed by dip coating. Note that, in view of high productivity, using an in-line-type film forming method is also preferable. In the following, the structure of each layer and its manufacturing method are described.
The adhesion layer 112 is an amorphous ground layer formed in contact with the disk base 110, and includes a function of increasing a peel strength between the soft magnetic layer 114 formed thereon and the disk base 110. When the disk base 110 is made of amorphous glass, the adhesion layer 112 is preferably an amorphous alloy film so as to comply with that amorphous glass surface.
As the adhesion layer 112, for example, a CrTi-type amorphous layer can be selected.
The soft magnetic layer 114 is a layer in which a magnetic path is temporarily formed at the time of recording so as to let a magnetic flux pass through a recording layer in a perpendicular direction in a perpendicular magnetic recording type. By interposing the non-magnetic spacer layer 114b between the first soft magnetic layer 114a and the second soft magnetic layer 114c, the soft magnetic layer 114 can be configured to include Antiferro-magnetic exchange coupling (AFC). With this, magnetizing directions of the soft magnetic layer 114 can be aligned with high accuracy along the magnetic path (magnetic circuit), the number of perpendicular components in the magnetizing direction becomes extremely small, and therefore noise occurring from the soft magnetic layer 114 can be reduced. As the composition of the first soft magnetic layer 114a and the second soft magnetic layer 114c, a cobalt-type alloy, such as CoTaZr; a Co—Fe-type alloy, such as CoCrFeB; a Ni—Fe-type alloy having a [Ni—Fe/Sn]n multilayered structure or the like can be used.
The preliminary ground layer 116 is a non-magnetic alloy layer, and includes an operation of protecting the soft magnetic layer 114 and a function of orienting in a disk perpendicular direction an easy axis of magnetization of a hexagonal close-packed structure (hcp structure) included in the ground layer 118 formed on the preliminary ground layer. In the preliminary ground layer 116, a (111) surface of a face-centered cubic structure (fcc structure) or a (110) surface of a body-centered cubic structure (bcc structure) are preferably parallel to a main surface of the disk base 110. Also, the preliminary ground layer 116 may have a structure in which these crystal structures and amorphous are mixed. As a material of the preliminary ground layer 116, a selection can be made from Ni, Cu, Pt, Pd, Zr, Hf, Nb, and Ta. Furthermore, an alloy including any of these metals as a main element and any one or more additional elements from among Ti, V, Ta, Cr, Mo, and W may be used. For example, NiW, CuW, or CuCr can be suitably selected as an fcc structure, and Ta can be suitably selected as a bcc structure.
The ground layer 118 has a hcp structure, and has an operation of growing crystals of the hcp structure of the magnetic recording layer 122 as a granular structure. Therefore, as the crystal orientation of the ground layer 118 is higher, that is, a (0001) surface of a crystal of the ground layer 118 is more parallel to the main surface of the disk base 110, the orientation of the magnetic recording layer 122 can be improved. As a material of the ground layer 118, Ru is typical. Other than that, a selection can be made from RuCr and RuCo. Ru has a hcp structure, and a lattice space of the crystal is similar to that of Co. Therefore, the magnetic recording layer 122 having Co as a main component can be oriented in good condition.
When the ground layer 118 is made of Ru, by changing the gas pressure at the time of sputtering, a two-layer structure made of Ru can be achieved. Specifically, when the second ground layer 118b on an upper-layer side is formed, the gas pressure of Ar is made higher than that when the first ground layer 118a on a lower-layer side is formed. When the gas pressure is made higher, a free traveling distance of Ru ions to be sputtered is shortened, and therefore the film-forming speed becomes slow, thereby improving the crystal separation ability. Also, with a high pressure, the size of the crystal lattice becomes smaller. Since the size of the crystal lattice of Ru is larger than that of the crystal lattice of Co, when the crystal lattice of Ru is made smaller, it becomes closer to that of Co, thereby further improving the crystal orientation of the Co granular layer.
The non-magnetic granular layer 120 is a non-magnetic granular layer. By forming a non-magnetic granular layer on the hcp crystal structure of the ground layer 118 and, on that layer, making a granular layer of the first magnetic recording layer 122a grown, an operation of separating the magnetic granular layer from a stage of initial growth (leading) is provided. The composition of the non-magnetic granular layer 120 can be a granular structure by forming a grain boundary by causing segregation of non-magnetic substance between non-magnetic crystal grains made of a Co-type alloy. In particular, CoCr—SiO2 and CoCrRu—SiO2 can be suitably used and, furthermore, in place of Ru, Rh (rhodium), Pd (palladium), Ag (silver), Os (osmium), Ir (iridium), and Au (gold) can also be used. Still further, the non-magnetic substance is a substance in which a grain boundary part can be formed around magnetic particles so that an exchange interaction operation between magnetic particles (magnetic grains) is suppressed or interrupted, and can be any as long as it is a non-magnetic substance that is not incorporated into cobalt (Co). Examples can include silicon oxide (SiOx), chrome (Cr), chrome oxide (CrO2), titanium oxide (TiO2), zircon oxide (ZrO2), and tantalum oxide (Ta2O5).
The magnetic recording layer 122 is a ferromagnetic layer having a granular structure in a columnar shape in which a grain boundary is formed by causing segregation of a non-magnetic substance around magnetic particles made of a hard magnetic body selected from a Co-type alloy, a Fe-type alloy, and a Ni-type alloy. By providing the non-magnetic granular layer 120, these magnetic particles can make an epitaxial growth continuously from their granular structure. In the present embodiment, the magnetic recording layer is configured of the first magnetic recording layer 122a and the second magnetic recording layer 122b different in composition and film thickness. In both of the first magnetic recording layer 122a and the second magnetic recording layer 122b, as a non-magnetic substance, an oxide, such as SiO2, Cr2O3, TiO2, B2O3, and Fe2O3; a nitride, such as BN; or a carbide, such as B4C3 can be suitably used.
Also, in the present embodiment, in the first magnetic recording layer 122a, an intergranular distance defined by an average of shortest distances between grain boundary parts each between each of magnetic particles (crystal grains) and its adjacent magnetic particle is equal to or shorter than 1 nm. With the structure in which the intergranular distance between each crystal grain and its adjacent crystal grain of the first magnetic recording layer 122a is set to be equal to or shorter than 1 nm, the first magnetic recording layer 122a can be provided with a function similar to that of the continuous layer 124, which will be described further below. Therefore, it is possible to reliably enhance an inverted-magnetic-domain nucleation magnetic field Hn, improve a heat-resistant fluctuation characteristic, and improve the overwrite characteristic. Note that, if the intergranular distance between each crystal grain and its adjacent crystal grain in the first magnetic recording layer 122a is equal to or longer than 1 nm, the function as the continuous layer 24 cannot be achieved, and an improvement of the overwrite characteristic cannot be expected.
Furthermore, in the present embodiment, it is assumed that A>B when an average particle diameter of the magnetic particles (crystal grains) in the first magnetic recording layer 122a is A nm and an average particle diameter of the magnetic particles (crystal grains) in the second magnetic recording layer 122b is B nm. With this, in the first magnetic recording layer 122a, while the function as the continuous layer 124 is achieved, the overwrite characteristic can be improved and, in the second magnetic recording layer 122b, a high coercive force Hc and a high SNR can be optimally maintained.
Still further, in the present embodiment, in either one or both of the first magnetic recording layer 122a and the second magnetic recording layer 122b, two or more non-magnetic substances can be used in a compounding manner. Here, although the type of non-magnetic substance contained is not restricted, SiO2 and TiO2 are in particular preferably included and, next, in place of/in addition to either one, Cr2O3 can be suitably used. For example, the first magnetic recording layer 122a can contain Cr2O3 and SiO2, as an example of the composite oxide (oxides of a plurality of types), in a grain boundary part to form an hcp crystal structure of CoCrPt—Cr2O3—SiO2. Also, for example, the second magnetic recording layer 122b can contain SiO2 and TiO2, as an example of the composite oxide, in a grain boundary part to form an hcp crystal structure of CoCrPt—SiO2—TiO2.
The continuous layer 124 is a magnetically continuous layer (also referred to as a continuous layer) in an in-plane direction on the magnetic recording layer 122 having a granular structure. By providing the continuous layer 124, in addition to a high-density recording property and a low-noise property, it is possible to enhance the inverted-magnetic-domain nucleation magnetic field Hn, improve the heat-resistant fluctuation characteristic, and improve the overwrite characteristic.
The medium protective layer 126 can be formed by forming a film out of carbon by CVD while keeping a vacuum state. The medium protective layer 126 is a protective layer for protecting the perpendicular magnetic recording medium from a shock of the magnetic head. In general, a carbon film formed by CVD has an improved film hardness compared with the one formed by sputtering, and therefore the perpendicular magnetic recording medium can be more effectively protected from a shock from the magnetic head.
The lubricating layer 128 can be formed by forming a film out of perfluoropolyether (PFPE) by dip coating. PFPE has a molecular structure in a long chain shape, and is coupled to an N atom on the surface of the medium protective layer 126 with high affinity. With this operation of the lubricating layer 128, a damage or loss of the medium protective layer 126 can be prevented even if the magnetic head makes contact with the surface of the perpendicular magnetic recording medium 100.
With the above manufacturing processes, the perpendicular magnetic recording medium 100 can be obtained. In the following, effectiveness of the present invention is described by using an example and comparative examples.
On the disk base 110, by using a vacuumed film forming device, the adhesion layer 112 to the continuous layer 124 were sequentially formed in an Ar atmosphere by DC magnetron sputtering. The adhesive layer 112 was of CrTi. In the soft magnetic layer 114, the composition of the first soft magnetic layer 114a and the second soft magnetic layer 114c was of FeCoTaZr, and the composition of the spacer layer 114b was of Ru. The composition of the preliminary ground layer 116 was of an NiW alloy with an fcc structure. In the ground layer 118, the first ground layer 118a was formed out of Ru under low-pressure Ar, and the second ground layer 118b was formed out of Ru under high-pressure Ar. The composition of the non-magnetic granular layer 120 was of non-magnetic CoCr—SiO2. The magnetic recording layer 122 was formed with a structure in the example and comparative examples below. The composition of the continuous layer 124 was of CoCrPtB. As for the medium protective layer 126, a film was formed by using C2H4 and CN by CVD, and the lubricating layer 128 was formed by using PFPE by dip coating.
In the present embodiment, the film thickness of the continuous layer 124 was 7 nm, the film thickness of the first magnetic recording layer 122a is 3 nm, and the film thickness of the second magnetic recording layer 122b was 10 nm.
As depicted in
In a specific example to find an average particle diameter of crystal grains, all crystal grains included in an area of 100 nm2 in the measurement results obtained by the TEM are subjected to circular approximation by using the area. Then, by calculating an average diameter of the crystal grains subjected to circular approximation, an average particle diameter of the crystal grains can be found. In a specific example to find an intergranular distance, similarly, the intergranular distance can be found by measuring a shortest distance between each crystal grain and its adjacent crystal grain similarly within a 100 nm2, which is a measurement range of the TEM, and averaging the results. In another example to find an intergranular distance, the intergranular distance can be found by measuring a distance between centers of crystal grains subjected to circular approximation by using the area to find an average intercenter distance, and subtracting an average diameter (obtained by doubling a radius) from this average intercenter distance.
As depicted in
In the following, it is assumed as a first example that the first magnetic recording layer 122a has an average particle diameter of the magnetic particles of 7 nm and an average intergranular distance of 0.7 nm and the second magnetic recording layer 122b has an average particle diameter of the magnetic particles of 6.7 nm and an average intergranular distance of 1.3 nm, that is, the first magnetic recording layer 122a> the second magnetic recording layer 122b regarding the average particle diameter of the magnetic particles. Also, it is assumed as a comparative example that the first magnetic recording layer 122a has an average particle diameter of the magnetic particles of 6.7 nm and an average intergranular distance of 1.3 nm and the second magnetic recording layer 122b has an average particle diameter of the magnetic particles of 7 nm and an average intergranular distance of 0.7 nm, that is, the first magnetic recording layer 122a<the second magnetic recording layer 122b regarding the average particle diameter of the magnetic particles.
As depicted in
Also, with the average particle diameter of magnetic particles in the first magnetic recording layer 122a being larger by approximately 0.3 nm than the average particle diameter of magnetic particles in the second magnetic recording layer 122b, the overwrite characteristic can be optimally improved. Note that, as depicted in the comparative example, when the average particle diameter of magnetic particles in the first magnetic recording layer 122a is smaller by approximately 0.3 nm than the average particle diameter of magnetic particles in the second magnetic recording layer 122b, the overwrite characteristic is degraded.
Also, with the average particle diameter of magnetic particles in the first magnetic recording layer 122a set as being larger by approximately 0.3 nm than the average particle diameter of magnetic particles in the second magnetic recording layer 122b, the intergranular distance between the magnetic particles in the first magnetic recording layer 122a can be easily set as being equal to or shorter than 1 nm. As a result, the overwrite characteristic can be optimally improved. Note that if the intergranular distance between the magnetic particles in the first magnetic recording layer 122a is equal to or longer than 1 nm, no improvement in overwrite characteristic can be expected.
Furthermore, with the average particle diameter of magnetic particles in the first magnetic recording layer 122a set as being larger by approximately 0.3 nm than the average particle diameter of magnetic particles in the second magnetic recording layer 122b, the intergranular distance between the magnetic particles in the second magnetic recording layer 122b can be easily set as being equal to or longer than 0.5 nm. As a result, a high coercive force Hc and a high SNR can be optimally maintained. Note that if the intergranular distance between the magnetic particles in the second magnetic recording layer 122b is equal to or shorter than 0.5 nm, the granular structure cannot be maintained, thereby decreasing the SNR.
With the aim of improving an SNR while achieving an excellent overwrite characteristic, in a second embodiment, the first magnetic recording layer 122a was configured to include Cr2O3 and SiO2 as an example of a composite oxide to form an hcp crystal structure of CoCrPt—Cr2O3—SiO2, and the second magnetic recording layer 122b was configured to include SiO2 and TiO2 as an example of a composite oxide to form an hcp crystal structure of CoCrPt—SiO2—TiO2.
As depicted in
In particular, SiO2 has an effect of promoting finer and more isolated magnetic grains, and TiO2 has an effect of suppressing dispersion in particle diameter of the crystal grains. By combining these oxides for segregation over the grain boundary parts of the magnetic recording layer 122, both of the advantages can be enjoyed.
As depicted in
According to the above structure, the second magnetic recording layer can have a function as a continuous layer. Therefore, even if a head magnetic field that is weaker compared with an upper portion of the medium is applied, an ideal flux reversal can be achieved, and the medium can appropriately exert its function. With this, the SNR and overwrite characteristic can be appropriately improved.
In the foregoing, the preferred examples of the present invention have been described with reference to the attached drawings. Needless to say, however, the present invention is not restricted by such examples. It is clear that the person skilled in the art can conceive various modification examples or corrected examples within a range described in the scope of claims for patent, and it is understood that these examples reasonably belong to the technological scope of the present invention.
For example, in the above embodiments and examples, the magnetic recording layer is formed of two layers, that is, the first magnetic recording layer and the second magnetic recording layer. However, even when the magnetic recording layer is formed of three or more layers, an advantage of the present invention can be similarly achieved by at least setting an average particle diameter of magnetic grains of a lower magnetic recording layer as being larger than the average particle diameter of magnetic grains of an upper magnetic recording layer.
The present invention can be used as a perpendicular magnetic recording medium implemented on an HDD (hard disk drive) of a perpendicular magnetic recording type or the like, and a method of manufacturing a perpendicular magnetic recording medium.
Number | Date | Country | Kind |
---|---|---|---|
2008-082251 | Mar 2008 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2009/056051 | 3/26/2009 | WO | 00 | 12/23/2010 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2009/119709 | 10/1/2009 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
6013161 | Chen et al. | Jan 2000 | A |
6063248 | Bourez et al. | May 2000 | A |
6068891 | O'Dell et al. | May 2000 | A |
6086730 | Liu et al. | Jul 2000 | A |
6099981 | Nishimori | Aug 2000 | A |
6103404 | Ross et al. | Aug 2000 | A |
6117499 | Wong et al. | Sep 2000 | A |
6136403 | Prabhakara et al. | Oct 2000 | A |
6143375 | Ross et al. | Nov 2000 | A |
6145849 | Bae et al. | Nov 2000 | A |
6146737 | Malhotra et al. | Nov 2000 | A |
6149696 | Jia | Nov 2000 | A |
6150015 | Bertero et al. | Nov 2000 | A |
6156404 | Ross et al. | Dec 2000 | A |
6159076 | Sun et al. | Dec 2000 | A |
6164118 | Suzuki et al. | Dec 2000 | A |
6200441 | Gornicki et al. | Mar 2001 | B1 |
6204995 | Hokkyo et al. | Mar 2001 | B1 |
6206765 | Sanders et al. | Mar 2001 | B1 |
6210819 | Lal et al. | Apr 2001 | B1 |
6216709 | Fung et al. | Apr 2001 | B1 |
6221119 | Homola | Apr 2001 | B1 |
6248395 | Homola et al. | Jun 2001 | B1 |
6261681 | Suekane et al. | Jul 2001 | B1 |
6270885 | Hokkyo et al. | Aug 2001 | B1 |
6274063 | Li et al. | Aug 2001 | B1 |
6283838 | Blake et al. | Sep 2001 | B1 |
6287429 | Moroishi et al. | Sep 2001 | B1 |
6290573 | Suzuki | Sep 2001 | B1 |
6299947 | Suzuki et al. | Oct 2001 | B1 |
6303217 | Malhotra et al. | Oct 2001 | B1 |
6309765 | Suekane et al. | Oct 2001 | B1 |
6358636 | Yang et al. | Mar 2002 | B1 |
6362452 | Suzuki et al. | Mar 2002 | B1 |
6363599 | Bajorek | Apr 2002 | B1 |
6365012 | Sato et al. | Apr 2002 | B1 |
6381090 | Suzuki et al. | Apr 2002 | B1 |
6381092 | Suzuki | Apr 2002 | B1 |
6387483 | Hokkyo et al. | May 2002 | B1 |
6391213 | Homola | May 2002 | B1 |
6395349 | Salamon | May 2002 | B1 |
6403919 | Salamon | Jun 2002 | B1 |
6408677 | Suzuki | Jun 2002 | B1 |
6426157 | Hokkyo et al. | Jul 2002 | B1 |
6429984 | Alex | Aug 2002 | B1 |
6482330 | Bajorek | Nov 2002 | B1 |
6482505 | Bertero et al. | Nov 2002 | B1 |
6500567 | Bertero et al. | Dec 2002 | B1 |
6528124 | Nguyen | Mar 2003 | B1 |
6548821 | Treves et al. | Apr 2003 | B1 |
6552871 | Suzuki et al. | Apr 2003 | B2 |
6565719 | Lairson et al. | May 2003 | B1 |
6566674 | Treves et al. | May 2003 | B1 |
6571806 | Rosano et al. | Jun 2003 | B2 |
6628466 | Alex | Sep 2003 | B2 |
6664503 | Hsieh et al. | Dec 2003 | B1 |
6670055 | Tomiyasu et al. | Dec 2003 | B2 |
6682807 | Lairson et al. | Jan 2004 | B2 |
6683754 | Suzuki et al. | Jan 2004 | B2 |
6730420 | Bertero et al. | May 2004 | B1 |
6743528 | Suekane et al. | Jun 2004 | B2 |
6759138 | Tomiyasu et al. | Jul 2004 | B2 |
6778353 | Harper | Aug 2004 | B1 |
6795274 | Hsieh et al. | Sep 2004 | B1 |
6855232 | Jairson et al. | Feb 2005 | B2 |
6857937 | Bajorek | Feb 2005 | B2 |
6893748 | Bertero et al. | May 2005 | B2 |
6899959 | Bertero et al. | May 2005 | B2 |
6916558 | Umezawa et al. | Jul 2005 | B2 |
6939120 | Harper | Sep 2005 | B1 |
6946191 | Morikawa et al. | Sep 2005 | B2 |
6967798 | Homola et al. | Nov 2005 | B2 |
6972135 | Homola | Dec 2005 | B2 |
7004827 | Suzuki et al. | Feb 2006 | B1 |
7006323 | Suzuki | Feb 2006 | B1 |
7016154 | Nishihira | Mar 2006 | B2 |
7019924 | McNeil et al. | Mar 2006 | B2 |
7045215 | Shimokawa | May 2006 | B2 |
7070870 | Bertero et al. | Jul 2006 | B2 |
7090934 | Hokkyo et al. | Aug 2006 | B2 |
7099112 | Harper | Aug 2006 | B1 |
7105241 | Shimokawa et al. | Sep 2006 | B2 |
7119990 | Bajorek et al. | Oct 2006 | B2 |
7147790 | Wachenschwanz et al. | Dec 2006 | B2 |
7161753 | Wachenschwanz et al. | Jan 2007 | B2 |
7166319 | Ishiyama | Jan 2007 | B2 |
7166374 | Suekane et al. | Jan 2007 | B2 |
7169487 | Kawai et al. | Jan 2007 | B2 |
7174775 | Ishiyama | Feb 2007 | B2 |
7179549 | Malhotra et al. | Feb 2007 | B2 |
7184139 | Treves et al. | Feb 2007 | B2 |
7196860 | Alex | Mar 2007 | B2 |
7199977 | Suzuki et al. | Apr 2007 | B2 |
7208236 | Morikawa et al. | Apr 2007 | B2 |
7220500 | Tomiyasu et al. | May 2007 | B1 |
7229266 | Harper | Jun 2007 | B2 |
7239970 | Treves et al. | Jul 2007 | B2 |
7252897 | Shimokawa et al. | Aug 2007 | B2 |
7277254 | Shimokawa et al. | Oct 2007 | B2 |
7281920 | Homola et al. | Oct 2007 | B2 |
7292329 | Treves et al. | Nov 2007 | B2 |
7301726 | Suzuki | Nov 2007 | B1 |
7302148 | Treves et al. | Nov 2007 | B2 |
7305119 | Treves et al. | Dec 2007 | B2 |
7314404 | Singh et al. | Jan 2008 | B2 |
7320584 | Harper et al. | Jan 2008 | B1 |
7329114 | Harper et al. | Feb 2008 | B2 |
7375362 | Treves et al. | May 2008 | B2 |
7420886 | Tomiyasu et al. | Sep 2008 | B2 |
7425719 | Treves et al. | Sep 2008 | B2 |
7471484 | Wachenschwanz et al. | Dec 2008 | B2 |
7498062 | Calcaterra et al. | Mar 2009 | B2 |
7531485 | Hara et al. | May 2009 | B2 |
7537846 | Ishiyama et al. | May 2009 | B2 |
7549209 | Wachenschwanz et al. | Jun 2009 | B2 |
7569490 | Staud | Aug 2009 | B2 |
7597792 | Homola et al. | Oct 2009 | B2 |
7597973 | Ishiyama | Oct 2009 | B2 |
7608193 | Wachenschwanz et al. | Oct 2009 | B2 |
7632087 | Homola | Dec 2009 | B2 |
7656615 | Wachenschwanz et al. | Feb 2010 | B2 |
7682546 | Harper | Mar 2010 | B2 |
7684152 | Suzuki et al. | Mar 2010 | B2 |
7686606 | Harper et al. | Mar 2010 | B2 |
7686991 | Harper | Mar 2010 | B2 |
7695833 | Ishiyama | Apr 2010 | B2 |
7722968 | Ishiyama | May 2010 | B2 |
7733605 | Suzuki et al. | Jun 2010 | B2 |
7736768 | Ishiyama | Jun 2010 | B2 |
7755861 | Li et al. | Jul 2010 | B1 |
7758732 | Calcaterra et al. | Jul 2010 | B1 |
7833639 | Sonobe et al. | Nov 2010 | B2 |
7833641 | Tomiyasu et al. | Nov 2010 | B2 |
7910159 | Jung | Mar 2011 | B2 |
7911736 | Bajorek | Mar 2011 | B2 |
7924519 | Lambert | Apr 2011 | B2 |
7944165 | O'Dell | May 2011 | B1 |
7944643 | Jiang et al. | May 2011 | B1 |
7955723 | Umezawa et al. | Jun 2011 | B2 |
7983003 | Sonobe et al. | Jul 2011 | B2 |
7993497 | Moroishi et al. | Aug 2011 | B2 |
7993765 | Kim et al. | Aug 2011 | B2 |
7998912 | Chen et al. | Aug 2011 | B2 |
8002901 | Chen et al. | Aug 2011 | B1 |
8003237 | Sonobe et al. | Aug 2011 | B2 |
8012920 | Shimokawa | Sep 2011 | B2 |
8038863 | Homola | Oct 2011 | B2 |
8057926 | Ayama et al. | Nov 2011 | B2 |
8062778 | Suzuki et al. | Nov 2011 | B2 |
8064156 | Suzuki et al. | Nov 2011 | B1 |
8076013 | Sonobe et al. | Dec 2011 | B2 |
8092931 | Ishiyama et al. | Jan 2012 | B2 |
8100685 | Harper et al. | Jan 2012 | B1 |
8101054 | Chen et al. | Jan 2012 | B2 |
8125723 | Nichols et al. | Feb 2012 | B1 |
8125724 | Nichols et al. | Feb 2012 | B1 |
8137517 | Bourez | Mar 2012 | B1 |
8142916 | Umezawa et al. | Mar 2012 | B2 |
8163093 | Chen et al. | Apr 2012 | B1 |
8171949 | Lund et al. | May 2012 | B1 |
8173282 | Sun et al. | May 2012 | B1 |
8178480 | Hamakubo et al. | May 2012 | B2 |
8206789 | Suzuki | Jun 2012 | B2 |
8218260 | Iamratanakul et al. | Jul 2012 | B2 |
8247095 | Champion et al. | Aug 2012 | B2 |
8257783 | Suzuki et al. | Sep 2012 | B2 |
8298609 | Liew et al. | Oct 2012 | B1 |
8298689 | Sonobe et al. | Oct 2012 | B2 |
8309239 | Umezawa et al. | Nov 2012 | B2 |
8316668 | Chan et al. | Nov 2012 | B1 |
8331056 | O'Dell | Dec 2012 | B2 |
8354618 | Chen et al. | Jan 2013 | B1 |
8367228 | Sonobe et al. | Feb 2013 | B2 |
8383209 | Ayama | Feb 2013 | B2 |
8394243 | Jung et al. | Mar 2013 | B1 |
8397751 | Chan et al. | Mar 2013 | B1 |
8399809 | Bourez | Mar 2013 | B1 |
8402638 | Treves et al. | Mar 2013 | B1 |
8404056 | Chen et al. | Mar 2013 | B1 |
8404369 | Ruffini et al. | Mar 2013 | B2 |
8404370 | Sato et al. | Mar 2013 | B2 |
8406918 | Tan et al. | Mar 2013 | B2 |
8414966 | Yasumori et al. | Apr 2013 | B2 |
8425975 | Ishiyama | Apr 2013 | B2 |
8431257 | Kim et al. | Apr 2013 | B2 |
8431258 | Onoue et al. | Apr 2013 | B2 |
8453315 | Kajiwara et al. | Jun 2013 | B2 |
8488276 | Jung et al. | Jul 2013 | B1 |
8491800 | Dorsey | Jul 2013 | B1 |
8492009 | Homola et al. | Jul 2013 | B1 |
8492011 | Itoh et al. | Jul 2013 | B2 |
8496466 | Treves et al. | Jul 2013 | B1 |
8517364 | Crumley et al. | Aug 2013 | B1 |
8517657 | Chen et al. | Aug 2013 | B2 |
8524052 | Tan et al. | Sep 2013 | B1 |
8530065 | Chernyshov et al. | Sep 2013 | B1 |
8546000 | Umezawa | Oct 2013 | B2 |
8551253 | Na'im et al. | Oct 2013 | B2 |
8551627 | Shimada et al. | Oct 2013 | B2 |
8556566 | Suzuki et al. | Oct 2013 | B1 |
8559131 | Masuda et al. | Oct 2013 | B2 |
8562748 | Chen et al. | Oct 2013 | B1 |
8565050 | Bertero et al. | Oct 2013 | B1 |
8570844 | Yuan et al. | Oct 2013 | B1 |
8580410 | Onoue | Nov 2013 | B2 |
8584687 | Chen et al. | Nov 2013 | B1 |
8591709 | Lim et al. | Nov 2013 | B1 |
8592061 | Onoue et al. | Nov 2013 | B2 |
8596287 | Chen et al. | Dec 2013 | B1 |
8597723 | Jung et al. | Dec 2013 | B1 |
8603649 | Onoue | Dec 2013 | B2 |
8603650 | Sonobe et al. | Dec 2013 | B2 |
8605388 | Yasumori et al. | Dec 2013 | B2 |
8605555 | Chernyshov et al. | Dec 2013 | B1 |
8608147 | Yap et al. | Dec 2013 | B1 |
8609263 | Chernyshov et al. | Dec 2013 | B1 |
8619381 | Moser et al. | Dec 2013 | B2 |
8623528 | Umezawa et al. | Jan 2014 | B2 |
8623529 | Suzuki | Jan 2014 | B2 |
8634155 | Yasumori et al. | Jan 2014 | B2 |
8658003 | Bourez | Feb 2014 | B1 |
8658292 | Mallary et al. | Feb 2014 | B1 |
8665541 | Saito | Mar 2014 | B2 |
8668953 | Buechel-Rimmel | Mar 2014 | B1 |
8674327 | Poon et al. | Mar 2014 | B1 |
8685214 | Moh et al. | Apr 2014 | B1 |
8696404 | Sun et al. | Apr 2014 | B2 |
8711499 | Desai et al. | Apr 2014 | B1 |
8743666 | Bertero et al. | Jun 2014 | B1 |
8758912 | Srinivasan et al. | Jun 2014 | B2 |
8787124 | Chernyshov et al. | Jul 2014 | B1 |
8787130 | Yuan et al. | Jul 2014 | B1 |
8791391 | Bourez | Jul 2014 | B2 |
20020060883 | Suzuki | May 2002 | A1 |
20030022024 | Wachenschwanz | Jan 2003 | A1 |
20040022387 | Weikle | Feb 2004 | A1 |
20040132301 | Harper et al. | Jul 2004 | A1 |
20040202793 | Harper et al. | Oct 2004 | A1 |
20040202865 | Homola et al. | Oct 2004 | A1 |
20040209123 | Bajorek et al. | Oct 2004 | A1 |
20040209470 | Bajorek | Oct 2004 | A1 |
20050036223 | Wachenschwanz et al. | Feb 2005 | A1 |
20050142990 | Homola | Jun 2005 | A1 |
20050150862 | Harper et al. | Jul 2005 | A1 |
20050151282 | Harper et al. | Jul 2005 | A1 |
20050151283 | Bajorek et al. | Jul 2005 | A1 |
20050151300 | Harper et al. | Jul 2005 | A1 |
20050153169 | Watanabe et al. | Jul 2005 | A1 |
20050155554 | Saito | Jul 2005 | A1 |
20050167867 | Bajorek et al. | Aug 2005 | A1 |
20050186450 | Takenoiri et al. | Aug 2005 | A1 |
20050263401 | Olsen et al. | Dec 2005 | A1 |
20060147758 | Jung et al. | Jul 2006 | A1 |
20060181697 | Treves et al. | Aug 2006 | A1 |
20060204791 | Sakawaki et al. | Sep 2006 | A1 |
20060207890 | Staud | Sep 2006 | A1 |
20060222900 | Inamura et al. | Oct 2006 | A1 |
20060222902 | Mukai | Oct 2006 | A1 |
20070070549 | Suzuki et al. | Mar 2007 | A1 |
20070245909 | Homola | Oct 2007 | A1 |
20080075845 | Sonobe et al. | Mar 2008 | A1 |
20080093760 | Harper et al. | Apr 2008 | A1 |
20090117408 | Umezawa et al. | May 2009 | A1 |
20090136784 | Suzuki et al. | May 2009 | A1 |
20090169922 | Ishiyama | Jul 2009 | A1 |
20090191331 | Umezawa et al. | Jul 2009 | A1 |
20090202866 | Kim et al. | Aug 2009 | A1 |
20090311557 | Onoue et al. | Dec 2009 | A1 |
20100143752 | Ishibashi et al. | Jun 2010 | A1 |
20100190035 | Sonobe et al. | Jul 2010 | A1 |
20100196619 | Ishiyama | Aug 2010 | A1 |
20100196740 | Ayama et al. | Aug 2010 | A1 |
20100209601 | Shimokawa et al. | Aug 2010 | A1 |
20100215992 | Horikawa et al. | Aug 2010 | A1 |
20100232065 | Suzuki et al. | Sep 2010 | A1 |
20100247965 | Onoue | Sep 2010 | A1 |
20100261039 | Itoh et al. | Oct 2010 | A1 |
20100279151 | Sakamoto et al. | Nov 2010 | A1 |
20100300884 | Homola et al. | Dec 2010 | A1 |
20100304186 | Shimokawa | Dec 2010 | A1 |
20110097603 | Onoue | Apr 2011 | A1 |
20110097604 | Onoue | Apr 2011 | A1 |
20110171495 | Tachibana et al. | Jul 2011 | A1 |
20110206947 | Tachibana et al. | Aug 2011 | A1 |
20110212346 | Onoue et al. | Sep 2011 | A1 |
20110223446 | Onoue et al. | Sep 2011 | A1 |
20110244119 | Umezawa et al. | Oct 2011 | A1 |
20110299194 | Aniya et al. | Dec 2011 | A1 |
20110311841 | Saito et al. | Dec 2011 | A1 |
20120069466 | Okamoto et al. | Mar 2012 | A1 |
20120070692 | Sato et al. | Mar 2012 | A1 |
20120077060 | Ozawa | Mar 2012 | A1 |
20120127599 | Shimokawa et al. | May 2012 | A1 |
20120127601 | Suzuki et al. | May 2012 | A1 |
20120129009 | Sato et al. | May 2012 | A1 |
20120140359 | Tachibana | Jun 2012 | A1 |
20120141833 | Umezawa et al. | Jun 2012 | A1 |
20120141835 | Sakamoto | Jun 2012 | A1 |
20120148875 | Hamakubo et al. | Jun 2012 | A1 |
20120156523 | Seki et al. | Jun 2012 | A1 |
20120164488 | Shin et al. | Jun 2012 | A1 |
20120170152 | Sonobe et al. | Jul 2012 | A1 |
20120171369 | Koike et al. | Jul 2012 | A1 |
20120175243 | Fukuura et al. | Jul 2012 | A1 |
20120189872 | Umezawa et al. | Jul 2012 | A1 |
20120196049 | Azuma et al. | Aug 2012 | A1 |
20120207919 | Sakamoto et al. | Aug 2012 | A1 |
20120225217 | Itoh et al. | Sep 2012 | A1 |
20120251842 | Yuan et al. | Oct 2012 | A1 |
20120251846 | Desai et al. | Oct 2012 | A1 |
20120276417 | Shimokawa et al. | Nov 2012 | A1 |
20120308722 | Suzuki et al. | Dec 2012 | A1 |
20130040167 | Alagarsamy et al. | Feb 2013 | A1 |
20130071694 | Srinivasan et al. | Mar 2013 | A1 |
20130165029 | Sun et al. | Jun 2013 | A1 |
20130175252 | Bourez | Jul 2013 | A1 |
20130216865 | Yasumori et al. | Aug 2013 | A1 |
20130230647 | Onoue et al. | Sep 2013 | A1 |
20130314815 | Yuan et al. | Nov 2013 | A1 |
20140011054 | Suzuki | Jan 2014 | A1 |
20140044992 | Onoue | Feb 2014 | A1 |
20140050843 | Yi et al. | Feb 2014 | A1 |
20140151360 | Gregory et al. | Jun 2014 | A1 |
Number | Date | Country |
---|---|---|
60-239916 | Nov 1985 | JP |
63-201912 | Aug 1988 | JP |
11-025439 | Jan 1999 | JP |
2003-346315 | Dec 2003 | JP |
2006-309922 | Nov 2006 | JP |
2008-108395 | May 2008 | JP |
2007114402 | Oct 2007 | WO |
WO 2007114402 | Oct 2007 | WO |
Number | Date | Country | |
---|---|---|---|
20110097603 A1 | Apr 2011 | US |