1. Field of the Invention
This invention relates generally to perpendicular magnetic recording media, such as perpendicular magnetic recording disks for use in magnetic recording hard disk drives, and more particularly to a perpendicular magnetic recording medium with a multilayer recording layer having optimal intergranular exchange coupling.
2. Description of the Related Art
Horizontal or longitudinal magnetic recording media, wherein the written or recorded bits are oriented generally parallel to the surfaces of the disk substrate and the planar recording layer, has been the conventional media used in magnetic recording hard disk drives. Perpendicular magnetic recording media, wherein the recorded bits are stored in the recording layer in a generally perpendicular or out-of-plane orientation (i.e., other than parallel to the surfaces of the disk substrate and the recording layer), provides a promising path toward ultra-high recording densities in magnetic recording hard disk drives. A common type of perpendicular magnetic recording system is one that uses a “dual-layer” medium. This type of system is shown in
The SUL serves as a flux return path for the field from the write pole to the return pole of the recording head. In
One type of conventional material for the RL is a granular polycrystalline ferromagnetic cobalt (Co) alloy, such as a CoPtCr alloy. The ferromagnetic grains of this material have a hexagonal-close-packed (hcp) crystalline structure and out-of-plane or perpendicular magnetic anisotropy as a result of the c-axis of the hcp crystalline structure being induced to grow perpendicular to the plane of the layer during deposition. To induce this epitaxial growth of the hcp RL, the EBL onto which the RL is formed is also typically an hcp material.
Both horizontal and perpendicular magnetic recording media that use recording layers of granular polycrystalline ferromagnetic Co alloys exhibit increasing intrinsic media noise with increasing linear recording density. Media noise arises from irregularities in the recorded magnetic transitions and results in random shifts of the readback signal peaks. High media noise leads to a high bit error rate (BER). Thus to obtain higher areal recording densities it is necessary to decrease the intrinsic media noise, i.e., increase the signal-to-noise ratio (SNR), of the recording media. The granular cobalt alloys in the RL structure should thus have a well-isolated fine-grain structure to reduce intergranular exchange coupling, which is responsible for high intrinsic media noise. Enhancement of grain segregation in the cobalt alloy RL can be achieved by the addition of segregants, such as oxides of Si, Ta, Ti, Nb, Cr, V, and B. These segregants tend to precipitate to the grain boundaries, and together with the elements of the cobalt alloy, form nonmagnetic intergranular material. The addition of SiO2 to a CoPtCr granular alloy by sputter deposition from a CoPtCr—SiO2 composite target is described by H. Uwazumi, et al., “CoPtCr—SiO2 Granular Media for High-Density Perpendicular Recording”, IEEE Transactions on Magnetics, Vol. 39, No. 4, July 2003, pp. 1914-1918. The addition of Ta2O5 to a CoPt granular alloy is described by T. Chiba et al., “Structure and magnetic properties of Co—Pt—Ta2O5 film for perpendicular magnetic recording media”, Journal of Magnetism and Magnetic Materials, Vol. 287, February 2005, pp. 167-171.
Perpendicular magnetic recording media with RLs containing oxides or other segregants for improved SNR are subject to thermal decay. As the magnetic grains become smaller to achieve ultrahigh recording density they become more susceptible to magnetic decay, i.e., magnetized regions spontaneously lose their magnetization, resulting in loss of data. This is attributed to thermal activation of small magnetic grains (the superparamagnetic effect). The thermal stability of a magnetic grain is to a large extent determined by Ku V, where Ku is the magnetic anisotropy constant of the magnetic recording layer and V is the volume of the magnetic grain. Thus a RL with a high Ku is important for thermal stability, although the Ku can not be so high as to prevent writing on the RL.
In horizontal recording media, the complete absence of intergranular exchange coupling provides the best SNR. However, in perpendicular recording media the best SNR is achieved at some intermediate level of intergranular exchange coupling in the RL. Also, intergranular exchange coupling improves the thermal stability of the magnetization states in the media grains. Thus in perpendicular recording media, some level of intergranular exchange coupling is advantageous. One approach for increasing the intergranular exchange coupling is by adding a continuous intergranular exchange enhancement layer, also called a “capping” layer, on top of the underlying oxide-containing granular Co alloy, as described for example in Choe et al., “Perpendicular Recording CoPtCrO Composite Media With Performance Enhancement Capping Layer”, IEEE TRANSACTIONS ON MAGNETICS, VOL. 41, NO. 10, OCTOBER 2005, pp. 3172-3174. The capping layer is typically a CoCr alloy with no oxides or other segregants.
There are several problems with RL structures that have a single lower ferromagnetic layer with reduced or no intergranular exchange coupling, such as oxide-containing granular Co alloy layers, covered by an upper continuous oxide-free capping layer for enhancing intergranular exchange coupling. When the lower ferromagnetic layer is a Ta-oxide-containing layer the RL structure has unacceptable corrosion resistance. When the lower ferromagnetic layer is a Si-oxide-containing layer the RL structure has less than optimal recording performance. In all such RL structures, because the intergranular exchange coupling occurs only through the interaction between the upper capping layer and the top surface of the underlying oxide-containing layer, the capping layer must be made relatively thick to create the optimal amount of intergranular exchange coupling. This large thickness for the RL structure can adversely affect resolution and writability because it produces an increase in the transition width (or ‘a’ parameter) causing adjacent transitions to increasingly interfere when readback at high recording density.
What is needed is a perpendicular magnetic recording medium with an RL structure that has good corrosion resistance, optimal recording performance, and optimal intergranular exchange coupling to produce high SNR and high thermal stability, but without the required large thickness that results from a capping layer.
The invention is a perpendicular magnetic recording medium with a multilayer RL structure that includes a ferromagnetic intergranular exchange enhancement layer for mediating intergranular exchange coupling in the other ferromagnetic layers in the RL structure. In a first embodiment the RL structure is a multilayer of two lower ferromagnetic layers (MAG1 and MAG2), each with reduced or no intergranular exchange coupling, and a ferromagnetic capping layer as the intergranular exchange enhancement layer on top of and in contact with the upper ferromagnetic layer MAG2. MAG1 may be a granular polycrystalline Co alloy and an oxide or oxides of Ta, MAG2 may be a granular polycrystalline Co alloy and an oxide of Si, and the capping layer may be an oxide-free CoCr alloy. The lower Ta-oxide-containing MAG1, which has good recording properties but poor corrosion resistance, is located farther from the disk surface so as to be less susceptible to corrosion, and the Si-oxide-containing MAG2, which has poor recording properties but good corrosion resistance, is in contact with the capping layer.
In a second embodiment, the RL structure is a multilayer with an intergranular exchange enhancement interlayer (IL) in between two ferromagnetic layers, MAG1 and MAG2, each with reduced or no intergranular exchange coupling. The intergranular exchange enhancement from the IL acts on two interfaces. Because the total thickness of MAG1+MAG2 is substantially the same as the thickness of a comparable single magnetic layer with a capping layer on top, the IL is acting on half the thickness of the comparable single magnetic layer and can thus be made thinner than the capping layer. In this second embodiment, the IL may be an oxide-free CoCr alloy like the capping layer in the first embodiment, and MAG1 and MAG2 may be a granular polycrystalline Co alloys, such as a CoPt or CoPtCr alloy, with a suitable segregant such as an oxide or oxides of one or more of Si, Ta, Ti, Nb, Cr, V and B. Also, like in the first embodiment, MAG1 may be a Co alloy with Ta-oxide and MAG2 may be a Co alloy with Si-oxide. However, MAG1 and MAG2 may also have the identical composition and thickness. Also, instead of a granular polycrystalline Co alloy, one or both of MAG 1 and MAG2 may be formed of any of the known amorphous or crystalline materials and structures that exhibit perpendicular magnetic anisotropy.
The invention is also a perpendicular magnetic recording system that includes the above-described medium and a magnetic recording write head.
For a fuller understanding of the nature and advantages of the present invention, reference should be made to the following detailed description taken together with the accompanying figures.
The prior art perpendicular magnetic recording medium wherein the RL includes a capping layer (CP) on top of a single ferromagnetic layer (MAG) is depicted in schematic cross-section in
A first embodiment of the perpendicular magnetic recording disk of this invention is illustrated in
MAG1 is formed of a granular polycrystalline Co alloy, such as a CoPt or CoPtCr alloy, and an oxide or oxides of Ta. MAG2 is formed of a granular polycrystalline Co alloy, such as a CoPt or CoPtCr alloy, and an oxide or oxides of Si. The CP may be formed of Co, or ferromagnetic Co alloys, such as CoCr alloys. The Co alloys of the CP may include one or both of Pt and B. The CP is deposited directly on MAG2, with MAG2 being deposited directly on MAG1. MAG1 and MAG2 are sputter deposited at relatively high pressure (e.g., 10-20 mTorr) in the presence of oxygen. Alternatively MAG1 and MAG2 may be sputter deposited from an oxide-containing target (e.g., a Ta2O5 target in the case of MAG1 and a SiO2 target in the case of MAG2) either with or without the presence of oxygen in the sputtering chamber. The CP is typically sputter deposited at lower pressure (e.g., 2-5 mTorr) without the presence of oxygen. The ferromagnetic alloy in the CP has significantly greater intergranular exchange coupling than the ferromagnetic alloys in MAG1 and MAG2. The CP alloy should preferably not include any oxides or other segregants, which would tend to reduce intergranular exchange coupling in the CP.
The embodiment of
Referring again to the prior art of
In a second embodiment of the perpendicular magnetic recording medium of this invention, as depicted in
In the embodiment of
The IL may be formed of Co, or ferromagnetic Co alloys, such as CoCr alloys. The Co alloys may include one or both of Pt and B. The IL is deposited directly on MAG1 and MAG2 is deposited directly on the IL. MAG1 and MAG2, if they are oxide-containing Co alloys, are sputter deposited at relatively high pressure (e.g., 10-20 mTorr) in the presence of oxygen. Alternatively they may be sputter deposited from an oxide-containing target but not in the presence of oxygen. The IL is typically sputter deposited at lower pressure (e.g., 2-5 mTorr) without the presence of oxygen. The ferromagnetic alloy in the IL has significantly greater intergranular exchange coupling than the ferromagnetic alloys in MAG1 and MAG2. The IL alloy should preferably not include any oxides or other segregants, which would tend to reduce intergranular exchange coupling in the IL. Because the IL grain boundaries overlay the boundaries of the generally segregated and decoupled grains of MAG1 and MAG2 at the two interfaces, and the IL and MAG1 grains at one interface and the IL and MAG2 grains at the other interface are strongly coupled perpendicularly, the IL introduces an effective intergranular exchange coupling in MAG1 and MAG2. This results in a combined MAG1+IL+MAG2 system with a tunable level of intergranular exchange. This is depicted in
The total MAG1+IL+MAG2 thickness should be in the range of approximately 10 to 20 nm, preferably in the range of approximately 13 to 17 nm. The IL portion of the total MAG1+IL+MAG2 thickness should be between about 3 to 25%, with a preferred range of about 6 to 15%. The optimal IL thickness can be determined experimentally by varying the thickness and measuring the performance of the disks to determine which thickness provides the most suitable level of intergranular exchange coupling for the combined MAG1+IL+MAG2 system.
To achieve high performance perpendicular magnetic recording disks at ultra-high recording densities, e.g., greater than about 200 Gbits/in2, the RL should exhibit low intrinsic media noise (high signal-to-noise ratio or SNR), a coercivity Hc greater than about 4000 Oe and a nucleation field Hn greater (more negative) than about −1500 Oe. The nucleation field Hn is the reversing field, preferably in the second quadrant of the M-H hysteresis loop, at which the magnetization begins to drop from its saturation value (Ms). The more negative the nucleation field, the more stable the remanent magnetic state will be because a larger reversing field is required to alter the magnetization.
To test the improvements in recording performance with the second embodiment of this invention, various disk structures were fabricated and Hc and Hn measured as a function of CP thickness (for the prior art structure like that shown in
A representative disk structure for the invention shown in
The adhesion layer or OL for the growth of the SUL may be an AlTi alloy or a similar material with a thickness of about 2-5 nm. The SUL may be formed of magnetically permeable materials such as alloys of CoNiFe, FeCoB, CoCuFe, NiFe, FeAlSi, FeTaN, FeN, FeTaC, CoTaZr, CoFeTaZr, CoFeB, and CoZrNb. The SUL may also be a laminated or multilayered SUL formed of multiple soft magnetic films separated by nonmagnetic films, such as electrically conductive films of Al or CoCr. The SUL may also be a laminated or multilayered SUL formed of multiple soft magnetic films separated by interlayer films that mediate an antiferromagnetic coupling, such as Ru, Ir, or Cr or alloys thereof.
The EBL is located on top of the SUL. It acts to break the magnetic exchange coupling between the magnetically permeable films of the SUL and the RL and also serves to facilitate epitaxial growth of the RL. The EBL may not be necessary, but if used it can be a nonmagnetic titanium (Ti) layer; a non-electrically-conducting material such as Si, Ge and SiGe alloys; a metal such as Cr, Ru, W, Zr, Nb, Mo, V and Al; a metal alloy such as amorphous CrTi and NiP; an amorphous carbon such as CNx, CHx and C; or oxides, nitrides or carbides of an element selected from the group consisting of Si, Al, Zr, Ti, and B. If an EBL is used, a seed layer may be used on top of the SUL before deposition of the EBL. For example, if Ru is used as the EBL, a 1-8 nm thick NiFe or NiW seed layer may be deposited on top of the SUL, followed by a 3-30 nm thick Ru EBL. The EBL may also be a multilayered EBL.
The OC formed on top of the RL may be an amorphous “diamond-like” carbon film or other known protective overcoats, such as Si-nitride.
While the present invention has been particularly shown and described with reference to the preferred embodiments, it will be understood by those skilled in the art that various changes in form and detail may be made without departing from the spirit and scope of the invention. Accordingly, the disclosed invention is to be considered merely as illustrative and limited in scope only as specified in the appended claims.