The present invention relates to a human detection apparatus and a human detection method, which detect a human body based on a size of an object detection region in an omnidirectional image.
Conventionally, when detecting a human body using motion information, determination on the size of an object detection region has been used for removing noise. However, an object with a motion to be detected may not only be a human body. A standard detection region unique to a human body (hereafter simply referred to as a standard human region) is prepared, and the size of an object detection region of an object with motion detected is compared with the standard human region so as to determine whether or not the object with the motion detected is a human body. More specifically, when the size of the object detection region is close to the size of the standard human region, the object detection region is determined as a human detection region.
In general, the size information of the standard human region is stored in a memory as a table in advance. The size information of the standard human region includes only one row of the image in the horizontal direction stored in the memory as illustrated in
In an omnidirectional image captured by an omnidirectional camera, in order to detect a human body by determining the size using the standard human region as described above, it is necessary to take change in the size of a captured image of a human body according to a position on an omnidirectional image into consideration. More specifically, as illustrated in
Taking these problems into consideration, PTL1 discloses a technique for changing the size of the standard human region according to a distance from the center of the omnidirectional image.
In addition, conventionally, a human body and its shadow are separated using a detection region. The method utilizes the difference between the human detection region and a shadow detection region in aspect ratio, that is, while the human region is longer in the vertical direction in an aspect ratio, the shadow detection region is longer in the horizontal direction.
However, the conventional technology for detecting a human body based on the size of an object detection region in an omnidirectional image is not performed taking a feature of an omnidirectional image into consideration sufficiently, and consequently, is not sufficiently accurate in detecting a human body.
The present invention has been conceived in view of this point, and it is an object of the present invention to provide a human detection apparatus and a human detection method capable of improving the accuracy in detecting a human body when detecting a human body based on the size of an object detection region in an omnidirectional image.
An aspect of the human detection apparatus according to the present invention includes a vertical-horizontal altering section that switches, according to a location of an object detection region on an omnidirectional image, a vertical size and a horizontal size of the object detection region; and a determining section that determines whether or not the object detection region is a human detection region, based on a vertical size and a horizontal size of the object detection region after the vertical size and the horizontal size are switched by the vertical-horizontal altering section.
An aspect of the human detection method according to the present invention includes switching, according to a location of an object detection region on an omnidirectional image, a vertical size and a horizontal size of the object detection region; and determining whether or not the object detection region is a human detection region, based on a vertical size and a horizontal size of the object detection region after the switching in the vertical size and the horizontal size.
According to the present invention, the accuracy for detecting a human body can be improved when detecting a human body based on the size of an object detection region in an omnidirectional image.
In the following description, Embodiment of the present invention will be described in detail with reference to the drawings.
Motion region detecting section 102 detects a region with motion in an omnidirectional image, based on an inter-region difference value, for example. The information of the detected motion region is output to candidate region forming section 103. The information on the motion region is output to standard human size storage section 112 and human region altering section 113 in size determining section 110.
Candidate region forming section 103 forms a detection region surrounding the region with motion as a candidate human detection region, and outputs size information of the candidate human detection region to region area determining section 114.
Standard human size storage section 112 stores information on the standard human region size according to a distance from the imaging center of an omnidirectional image to an end of the image. Stated differently, standard human size storage section 112 holds a table in which a standard human region size is stored using a distance in the radial direction on the omnidirectional image as an address.
The information of the size of the standard human region stored in standard human size storage section 112 is generated by standard human size generating section 111 in advance. A process by standard human size generating section 111 for generating a standard human size will be described with reference to
The following equations are satisfied since a stereographic imaging system is used for the camera.
[1]
r
i1=2f·tan(θ1/2)
r
i2=2f·tan(θ2/2)
[1]
, where rij=rpjρ×10−3 (Equations 1)
In addition, the following equations are satisfied with regard to height H of a camera and height h of a human body.
[2]
r1=H tan θ1
r
1=(H−h)tan θ2 (Equations 2)
From the equations, when calculating a size of a human body (hei, wid) at a distance rp1 from the center, θ1, θ2, ri1 are eliminated, and ri2 and rp2 are calculated. Accordingly, the height of a human body (vertical size) hei at distance rp1 from the imaging center is represented by the following equation.
[3]
hei=r
p2
−r
p1 (Equation 3)
Assuming that the width is in the same ratio in the actual space and the sensor space, the width (horizontal size) wid is represented by the following equation.
As described above, a standard human size according to a location of the human body is generated by standard human size generating section 111, and a standard human region corresponding to the size is stored in standard human size storage section 112.
The configuration in
The process by human region altering section 113 will be described with reference to
The broken line in
[5]
W=α·cos θ+b·sin θ
H=α·sin θ+b·cos θ (Equations 5)
Here, W in Equation 5 denotes the horizontal size of the standard human region after alteration, H denotes the vertical size of the standard human region after the alteration, a denotes the vertical size of the standard human region stored in standard human size storage section 112, b denotes the horizontal size of the standard human region stored in standard human size storage section 112, and θ denotes an angle illustrated in
The alteration performed by human region altering section 113 is performed so as to adjust the size of the standard human region (
Region area determining section 114 compares an area of the candidate human detection region formed by candidate region forming section 103 and an area of the standard human region obtained by the alteration by human region altering section 113, and determines that the candidate human detection region formed by candidate region forming section 103 is a human detection region when the area of the candidate human detection region is similar to the area of the standard human region (for example, when the difference or the ratio of the areas is within a certain range). In contrast, when the areas are not similar, region area determining section 114 determines that the candidate human detection region formed by candidate region forming section 103 is not a human detection region but a detection region of an object other than a human body. Region area determining section 114 outputs information of the candidate human detection region determined as the human detection region to vertical-horizontal altering section 115.
Vertical-horizontal altering section 115 switches the vertical size and the horizontal size of the object detection region according to the location (direction) of the object detection region determined as the human detection region on the omnidirectional image. In an actual operation, whether or not to switch the vertical size and the horizontal size of the object detection region is determined, based on the direction 8 in which the human body is captured on the omnidirectional image, as illustrated in
In the case described in Embodiment, the omnidirectional image is divided into four regions using thresholds TH1, TH2, TH3, and TH4, and whether or not to switch the vertical size and the horizontal size of the object detection region is determined based on a divided region that direction θ belongs to, as illustrated in
TH4≦θ<TH1 <1>
TH1≦θ<TH2 <2>
TH2≦θ<180°, or −180°≦θ<TH3 <3>
TH3≦θ<TH4 <4>
Region vertical-horizontal size determining section 116 determines whether or not the object detection region is the human detection region, based on the vertical-horizontal size of the object detection region output from vertical-horizontal altering section 115. More specifically, region vertical-horizontal size determining section 116 determines that the object detection region is a human detection region, when the ratio of the vertical size and the horizontal size of the object detection region is equal to or greater than the predetermined value (for example, when the vertical size of the object detection region is equal to or more than twice the horizontal size). This is based on the facts that the human detection region is vertically elongated, and that the shadow detection region is horizontally elongated, as illustrated in
Here, the object detection region input to region vertical-horizontal size determining section 116 includes a shadow detection region of a human body, in addition to the human detection region. Region vertical-horizontal size determining section 116 can eliminate the shadow detection region of the person from the object detection region and extract only the human detection region by performing the determination described above.
The information of the human detection region obtained by region vertical-horizontal size determining section 116 is output to a monitor or others through result output section 117. With this, the human detection region detected by human detection apparatus 100 is displayed on the monitor.
As described above, according to Embodiment, according to the location of the object detection region on the omnidirectional image, vertical-horizontal altering section 115 for switching the vertical size and the horizontal size of the object detection region is provided, and whether or not the object detection region is a human detection region is determined based on the vertical-horizontal size of the object detection region having the vertical size and the horizontal size switched by vertical-horizontal altering section 115. Accordingly, the human detection region and the shadow detection region are clearly separated in an omnidirectional image. Stated differently, it is possible to prevent detection of the shadow detection region as a human detection region by mistake. Accordingly, it is possible to improve accuracy in detecting a human body.
As illustrated in
In view of this point, in Embodiment, the human detection region and the shadow detection region are accurately separated by switching the vertical size and the horizontal size of the object detection region according to the location of the object detection region in the omnidirectional image by vertical-horizontal altering section 115 and subsequently separating the human detection region and the shadow detection region by region vertical-horizontal size determining section 116.
Furthermore, according to Embodiment, based on the direction from the center of the omnidirectional image toward the candidate human detection region, human region altering section 113 for altering the size of the standard human region is provided. Whether or not the candidate human detection region is a human detection region is determined based on the area of the candidate human detection region and the area of the standard human region, after alteration by human region altering section 113. With this, after the size of the standard human region (
Note that, human detection apparatus 100 according to Embodiment may be configured by a computer such as a personal computer including a memory and a CPU. Functions of components configuring human detection apparatus 100 can be implemented by a CPU reading a computer program stored on a memory and executing the program.
Although description in Embodiment uses a human body as an example, Embodiment is applicable to an object other than a human body such as an animal or a car. In particular, Embodiment is suitable for a case when an object having difference in the vertical size and the horizontal size such as a human body and a car is detected.
The disclosure of Japanese Patent Application No. 2012-135771, filed on Jun. 15, 2012, including the specification, drawings and abstract, is incorporated herein by reference in its entirety.
The present invention is effective for improving the detection accuracy of a human body when detecting a human body based on the size of the object detection region in an omnidirectional image, and is suitable for an application to a monitoring system for monitoring people, for example.
Number | Date | Country | Kind |
---|---|---|---|
2012-135771 | Jun 2012 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2013/003719 | 6/13/2013 | WO | 00 | 3/13/2014 |