The present disclosure relates to person support apparatuses, such as, but not limited to, beds, cots, stretchers, recliners, chairs, operating tables, and the like; and more particularly to a backrest of the person support apparatus that is pivotable with respect to a seat area of the person support apparatus.
Person support apparatuses often include a pivotable backrest. The pivoting of the backrest may create shear forces along the occupant's back as the angle of the back rest is changed. Such shear forces result from the backrest not moving in the same manner as the occupant's back as the occupant changes from a sitting position to an upright position, or vice versa.
In its various embodiments, the present disclosure provides a person support apparatus having a more comfortable pivoting motion for the occupant. In some embodiments, the backrest follows a movement pattern having an instantaneous center of rotation that continuously changes as the backrest pivots. The instantaneous center of rotation may move forward as the backrest pivots from the upright position to a reclined position. In some embodiments, the backrest is coupled to the seat frame by a pair of spaced-apart midlinks that configured to remove restrain movement of the backrest in five degrees of freedom with respect to the seat frame, thereby removing mechanical slop in the backrest. These and/or other features are disclosed in the various embodiments discussed herein.
According to one embodiment, a person support apparatus is provided that includes a frame, a seat supported on the frame, a backrest, and a link assembly. The backrest is pivotable between an upright position and a reclined position. The link assembly is coupled to the seat and the backrest and is configured to continuously move an instantaneous center of rotation of the backrest as the backrest pivots between the upright position and the reclined position.
According to another embodiment, a person support apparatus is provided that includes a frame, a seat, a backrest, right and left midlinks, and a cross bar. The backrest is pivotable between an upright position and a reclined position. The right midlink has a front end and a back end, wherein the front end is pivotably coupled to the seat and the back end is pivotably coupled to the backrest. The left midlink has a front end and a back end, wherein the front end is pivotably coupled to the seat and the back end is pivotably coupled to the backrest. The cross bar rigidly couples the right and left midlinks together.
In other embodiments, the instantaneous center of rotation is located at a first position when the backrest is in the upright position and the instantaneous center of rotation is located at a second position when the backrest is in the reclined position. The first position is located forwardly of the second position. The first and second positions are both located at a height less than a top surface of the seat, in at least one embodiment.
The displacement between the first and second positions, in some embodiments, has a front-back component with a magnitude that is greater than the magnitude of the up-down component of the displacement between the first and second positions.
In some embodiments, the link assembly is configured to move the instantaneous center of rotation along a path between the first and second positions that remains at all times below the height of the top surface of the seat.
The link assembly may be configured to move the instantaneous center of rotation along a path that is defined by a mathematical spline.
In some embodiments, the link assembly includes the right midlink and the left midlink. The right midlink is pivotably coupled to the backrest at a back end of the right midlink and pivotably coupled to the seat at a front end of the right midlink. The left midlink is pivotably coupled to the backrest at a back end of the left midlink and pivotably coupled to the seat at a front end of the left midlink. A cross bar is included, in some embodiments, that rigidly couples the right and left midlinks to each other.
The right midlink and the left midlink each include a front aperture for receiving a pin coupled to a seat frame. In some embodiments, the right and left midlinks each have a thickness that is at least as large as a diameter of the pin. In such embodiments, no cross bar is included for rigidly coupling the right and left midlinks together.
The seat is configured, in some embodiments, to include a seat pan pivotably mounted to a seat frame. The seat frame has a right side plate and a left side plate coupled together by a cross bar. The right side plate includes a right slot defined therein and the left side plate includes a left slot defined therein. A right pin is inserted into the right slot and a left pin is inserted into the left slot. The right pin is coupled to a right side of the backrest and the left pin is coupled to a left side of the backrest. The right and left slots both define an identical shape. In some embodiments, the shape has a curvature between opposite ends of the slots that can be plotted as a mathematical function having a continuous first derivative. In still other embodiments, the mathematical function has a continuous second derivative and/or continuous higher order derivatives.
The backrest contains no direct links to the frame, in at least one embodiment, and the seat is pivotably mounted to the frame.
In still other embodiments, the seat is pivotably supported on the frame and the cross bar pivots with respect to the frame when the seat pivots with respect to the frame.
An electric actuator is included in some embodiments, that has a first end coupled to the backrest and a second end coupled to the seat frame.
The seat pan is supported on the seat frame, in at least one embodiment, by a plurality of load cells configured to detect a magnitude of weight supported by the seat pan.
Before the various embodiments disclosed herein are explained in detail, it is to be understood that the claims are not to be limited to the details of operation, to the details of construction, or to the arrangement of the components set forth in the following description or illustrated in the drawings. The embodiments described herein are capable of being practiced or being carried out in alternative ways not expressly disclosed herein. Also, it is to be understood that the phraseology and terminology used herein are for the purpose of description and should not be regarded as limiting. The use of “including” and “comprising” and variations thereof is meant to encompass the items listed thereafter and equivalents thereof as well as additional items and equivalents thereof. Further, enumeration may be used in the description of various embodiments. Unless otherwise expressly stated, the use of enumeration should not be construed as limiting the claims to any specific order or number of components. Nor should the use of enumeration be construed as excluding from the scope of the claims any additional steps or components that might be combined with or into the enumerated steps or components.
A person support apparatus 20 according to one embodiment is shown in
Person support apparatus 20 includes a seat 22, a backrest 24, a leg rest 26, a pair of armrests 28, and a plurality of wheels 30 (
In at least one embodiment, those components of person support apparatus 20 that are not explicitly described herein are constructed in accordance with any of the embodiments disclosed in commonly assigned, copending U.S. patent application Ser. No. 14/212,253 filed Mar. 14, 2014 by inventors Christopher Hough et al. and entitled MEDICAL SUPPORT APPARATUS, the complete disclosure of which is incorporated herein by reference. The movement and control of person support apparatus 20 may also be carried out in accordance with the disclosure of commonly assigned, copending U.S. patent application Ser. No. 14/801,167 filed Jul. 16, 2015 by inventors Anish Paul et al. and entitled MEDICAL SUPPORT APPARATUS, the complete disclosure of which is also incorporated herein by reference. Person support apparatus 20 may also be constructed in other manners besides those described in these two commonly assigned patent applications.
When seat actuator 34 extends or retracts, it causes a seat frame 42 to pivot about a seat pivot axis 44. The extension of seat actuator 34 therefore causes seat frame 42 to tilt in such a manner that a forward end 46 of seat 22 moves downward relative to a backward end 48 of seat 22 (i.e. seat frame 42 rotates in a counterclockwise direction as shown in
Backrest actuator 36 is mounted to backrest 24 and to seat frame 42. The extension and retraction of backrest actuator 36 therefore causes backrest 24 to pivot with respect to seat frame 42. More specifically, when backrest actuator 36 extends, backrest 24 rotates in a counterclockwise direction in
Leg rest actuator 40 is mounted to seat frame 42 and to leg rest 26. The extension of leg rest actuator 40 therefore pivots leg rest 26 from a retracted position (e.g.
Lift actuator 38 is coupled to a base 52 by an X-frame lift 54. X-frame lift 54 includes two legs 56 that are pivotally coupled to each other about a center axis 58. When lift actuator 38 extends or retracts, the relative angle between each of the legs 56 changes, which changes the overall height of X-frame lift 54. Further, because frame 50 is mounted on a top end of X-frame lift 54, the changing height of X-frame lift 54 changes the height of frame 50. Lift actuator 38 therefore raises the height of frame 50 when it extends and lowers the height of frame 50 when it retracts. Because seat frame 42 is mounted (pivotally) on frame 50, and because backrest 24 and leg rest 26 are both mounted to seat frame 42, raising and lowering the height of frame 50 simultaneously raises and lowers the height of seat 22, backrest 24, and leg rest 26. However, extending and retracting lift actuator 38 does not, by itself, change the angular orientations of any of leg rest 26, backrest 24, and/or seat 22, either with respect to each other or with respect to the floor.
Each of the actuators 34-40 is powered by a direct current (DC) electrical motor. That is, each of the actuators 34-40 extends or retracts in response to its associated motor being driven in one direction or its opposite direction. The control of each motor is carried out by a control system in communication with control panels 32. Control panels 32 may be constructed in the same manner as, operate in the same manner as, and/or carry out any one or more of the same functions that are carried out using the control panels disclosed in any of the following commonly assigned U.S. patent applications: Ser. No. 14/838,693 filed Aug. 28, 2015 by inventors Daniel Brosnan et al. and entitled PERSON SUPPORT APPARATUS WITH ACTUATOR BRAKE CONTROL; Ser. No. 14/549,006 filed Nov. 20, 2014 by inventors Richard Derenne et al. and entitled PERSON SUPPORT APPARATUSES WITH VIRTUAL CONTROL PANELS; Ser. No. 62/166,354 filed May 26, 2015 by inventors Michael Hayes et al. and entitled USER INTERFACES FOR PATIENT CARE DEVICES; Ser. No. 62/171,472 filed Jun. 5, 2015 by inventors Aaron Furman et al. and entitled PATIENT SUPPORT APPARATUSES WITH DYNAMIC CONTROL PANELS; and Ser. No. 62/186,464 filed Jun. 30, 2015 by inventors Marko Kostic et al. and entitled PERSON SUPPORT APPARATUSES WITH LOAD CELLS, the complete disclosures of all of which are hereby incorporated herein by reference in their entirety.
Seat frame 42 is adapted to support a seat pan 68 thereon (
The mounting of seat pan 68 to seat frame 42 via load cells 70 enables load cells 70 to detect the weight of an occupant on person support apparatus 20. Load cells 70 may therefore be used as part of a scale system integrated in person support apparatus 20 for measuring the occupant's weight. Alternatively, or additionally, the load cells 70 may be used as part of an exit detection system integrated into person support apparatus 20 that provides an alert when an occupant of person support apparatus 20 exits therefrom. Further details of one manner of mounting load cells 70 to brackets 74 and seat frame 42, as well as further details regarding the use of load cells 70 in a scale system or exit detection system, may be found in commonly assigned U.S. patent application Ser. No. 62/389,892, filed Dec. 17, 2015 and entitled PERSON SUPPORT APPARATUS WITH EXIT DETECTION SYSTEM AND/OR SCALE SYSTEM, the complete disclosure of which is hereby incorporated herein by reference.
Seat frame 42 further includes a right slot 76a defined toward a back end of right side plate 60a, as well as a left slot 76b defined toward a back end of left side plate 60b (
Right and left slots 76a and b are used in controlling the pivoting motion of backrest 24 with respect to seat frame 42, as will be discussed in greater detail below. By defining slots 76a and 76b to have a smoothly curved shape, the pivoting of backrest 24 with respect to seat frame 42 undergoes a smooth pivoting motion free of bumps, jerks, or other discontinuities.
Backrest 24 includes a right and left bracket 78 that are used to mount backrest 24 to seat frame 42 (
A right and left midlink 84a and 84b are also used to coupled backrest 24 to seat frame 42 (
By linking backrest 24 to seat frame 42 with midlinks 84a and b, as well as by guiding pin 82 within slots 76a and b, the motion of backrest 24 as it pivots between different positions is controlled such that backrest 24 has an instantaneous center of rotation that does not remain stationary as it pivots between the different positions. The movement of pin 90 and the instantaneous center of rotation of backrest 24 as backrest 24 pivots can better be understood with respect to
Specifically, when backrest 24 has pivoted sufficiently far back such that pin 82 has moved to location R2 within slot 76, joint J has moved to position J2 and the instantaneous center of rotation of backrest 24 has moved to position I2. When backrest 24 pivots further backward to the position in which pin 82 has moved to location R3 within slot 76, joint J has moved to position J3 and the instantaneous center of rotation has moved to position I3.
Midlinks 84 are rigidly coupled together by a cross bar 100 (
Tensioning system 104 includes a pair of springs 106 that are coupled between seat frame 42 and chair frame 50. More specifically, a first end 105 of each spring 106 is coupled to a seat pin 108 on chair frame 42. Seat pin 108 is rigidly coupled to chair frame 42. A second end 107 of each spring 106 is coupled to a slot pin 110. Slot pin 110 is slidingly coupled to chair frame 50. More specifically, slot pin 110 is inserted into a pair of parallel pin slots 112 defined in chair frame 50. A tensioning bolt 114 having external threads is inserted through an aperture in slot pin 110 as well as a pin aperture 116 defined in a plate 118. Pin aperture 116 is internally threaded so that it threadingly mates with the external threads of tensioning bolt 114. Plate 118 is fixedly coupled to chair frame 50.
Rotation of tensioning bolt 114 within pin aperture 116 causes slot pin 110 to move within pin slot 112. Depending upon the direction in which tensioning bolt 114 is rotated (clockwise or counterclockwise), slot pin 110 moves either toward a first end 120 of pin slot 112 or toward a second end 122 of pin slot 112. The tension in springs 106 can therefore be increased by rotating tensioning bolt 114 in a direction that moves slot pin 110 towards second end 122, and the tension in springs 106 can be decreased by rotating tensioning bolt 114 in a direction that moves slot pin 110 towards first end 120. The tension within springs 106 exerts a biasing force on seat frame 42 that urges seat frame 42 to rotate in a clockwise direction (as shown in
In the embodiment shown in
Although tensioning system 104 is shown as being used between seat frame 42 and chair frame 50, it will be understood by those skilled in the art that tensioning system 104 can be applied between other mechanically moving parts of person support apparatus 20. Further, it will be understood by those skilled in the art that tensioning system 104 can be used for removing mechanical slack between moving components of other devices besides person support apparatus 20. Still further, it will be understood that various modifications can be made to tensioning system 104, such as, but not limited to, automatically rotating tensioning bolt 114 through the use of a motor. Further, one or more tensioning sensors can be installed that measure the amount of tension in springs 106 and report the tension readings to a controller, such as a microcontroller. In such a modified embodiment, the controller then automatically adjusts the tensioning bolt by controlling the motor, thereby automatically achieving the desired tension without requiring any manual labor.
Various additional alterations and changes beyond those already mentioned herein can be made to the above-described embodiments. This disclosure is presented for illustrative purposes and should not be interpreted as an exhaustive description of all embodiments or to limit the scope of the claims to the specific elements illustrated or described in connection with these embodiments. For example, and without limitation, any individual element(s) of the described embodiments may be replaced by alternative elements that provide substantially similar functionality or otherwise provide adequate operation. This includes, for example, presently known alternative elements, such as those that might be currently known to one skilled in the art, and alternative elements that may be developed in the future, such as those that one skilled in the art might, upon development, recognize as an alternative. Any reference to claim elements in the singular, for example, using the articles “a,” “an,” “the” or “said,” is not to be construed as limiting the element to the singular.
This application is a continuation-in-part of U.S. patent application Ser. No. 14/212,253 filed Mar. 14, 2014 by inventors Christopher Hough et al. and entitled MEDICAL SUPPORT APPARATUS, which claims priority to U.S. provisional patent application 61/791,255 filed Mar. 15, 2013, by the same inventors and bearing the same title. This application is also a continuation-in-part of U.S. patent application Ser. No. 14/801,167 filed Jul. 16, 2015 by inventors Anish Paul et al. and entitled MEDICAL SUPPORT APPARATUS, which claims priority to U.S. provisional patent application Ser. No. 62/029,142 filed Jul. 25, 2014, by the same inventors and bearing the same title. The complete disclosure of all four of these patent applications is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3787089 | Wrethander | Jan 1974 | A |
5790997 | Ruehl | Aug 1998 | A |
6161229 | Ryan et al. | Dec 2000 | A |
8882190 | Garland | Nov 2014 | B2 |
20070114828 | Corcoran | May 2007 | A1 |
20100066056 | Li et al. | Mar 2010 | A1 |
20100212087 | Leib et al. | Aug 2010 | A1 |
Number | Date | Country |
---|---|---|
1031337 | Aug 2000 | EP |
1859765 | Nov 2007 | EP |
1997466 | Dec 2008 | EP |
Entry |
---|
European Search Report for EP14770826 dated Sep. 13, 2016, a European counterpart to U.S. Appl. No. 14/984,403. |
European Written Opinion for EP14770826 dated Sep. 13, 2016, a European counterpart to U.S. Appl. No. 14/984,403. |
Number | Date | Country | |
---|---|---|---|
20160227929 A1 | Aug 2016 | US |
Number | Date | Country | |
---|---|---|---|
61791255 | Mar 2013 | US | |
62029142 | Jul 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14212253 | Mar 2014 | US |
Child | 14984403 | US | |
Parent | 14801167 | Jul 2015 | US |
Child | 14212253 | US |