1. Field of the Invention
This invention relates generally to the field of face masks, and more particularly to a personal air filtering and isolation device. The present invention is even more particularly a positive pressure air system designed to provide high quality air, relatively free of particulate and biological contaminants to the users while they perform their normal life activities, and also to provide the option to isolate the environment from the user to limit the potential for spreading communicable diseases. A secondary major benefit is to decrease the airway dead space and thereby the amount of inhaled carbon dioxide and water vapor.
2. Background Information
There are conditions that arrive, either natural or man made, that cause the air we breathe to become polluted with various contaminants such as harmful particulate matter or gasses. Various types of face masks have been developed in the past that protect the user from airborne pollutants.
Dust masks have been developed to protect people from larger particulate matter such as sand, wood dust, metal dust or the like. These masks usually are made from non-woven filter paper or woven cloth. They are held on with elastic bands. Other more comprehensive filtering masks have been designed for removing smaller particulate matter as well as some gases. These masks are used to filter the fumes from spray paint and various harmful solvents and the like. These masks often include cartridges with filtering material such as activated charcoal. At the more extreme level, gas masks have been developed to protect people from potentially deadly gasses and particles that may include bacteria, viruses and the like. These masks usually cover most of the face and are made of a nonporous rubber material and include finer gas and particle filtering elements.
Although the above mentioned masks have proven to be effective for their intended uses, current uses require an improved and novel configuration that cannot be found in the existing units. Currently, there are many locations in the world where the ambient air, that is, the air we normally breathe while walking down the street, may be harmful to one's health. In these places, the air contains increased particulate matter, and harmful byproducts that are generated by vehicle and factory emissions, and sprays of pesticides whose harmful particles carryover to populated areas. Most recently, the danger of inhaling SARS (Severe Acute Respiratory Syndrome) viruses, or weapons grade spores of Anthrax particles released by terrorists have caused people to desire protection from potentially inhaling these deadly viruses and bacteria. While the SARS virus measures 0.08 microns, it is transmitted in water droplets that are 0.3 microns or larger. The anthrax spore can be as small as two-tenths of one micron in diameter. These changed spores are then mixed with a powder. Although there are types of military gas masks that may protect a person from the above mentioned pollutants, they tend to be cumbersome, claustrophobic and expensive to manufacture and purchase. Additionally, they are unacceptable from a fashion point of view for wearing under every day conditions. It would certainly turn heads to see a person walking down the street wearing a military style gas mask. Finally, current designs of most filtering masks cause a build up of carbon dioxide and water vapor between the inside of the mask and the user's face because of the increase in dead space. The introduction of fresh air is limited by the construction of the mask. In these instances it is uncomfortable to wear such a mask for prolonged periods of time, such as when walking for long periods of time outdoors, standing in the operating room, or the like.
The present invention provides for a positive pressure air system designed to provide high quality air, relatively free of particulate, organic and biological contaminants to the user while the user performs normal life activities and also to provide the option to isolate the environment from the user to limit the potential for spreading communicable diseases. The present invention provides for ease of use and comfort while in use. It can also be used for extended periods of time with power from a battery and/or other low voltage power supply. Since the present invention is a positive pressure system, significant advantages in user comfort and efficiency of filtration are achieved. Extended use can be achieved through a very simple and quick battery exchange allowing continuous use for eight hours or more. The filter is also quickly and easily replaced allowing virtually unlimited use of this device.
An object of the present invention is to provide a personal air filtering device that is portable and can be worn for continuous periods of time.
Another object of the invention is to provide a personal air filtering device that delivers a substantial amount of fresh air by drawing or forcing air into a filter and delivering it to a mask portion that fits snuggly on a user's face. In the alternative and preferred embodiments, positive air flow allows the face mask to better fit the user's face, improving comfort. Delivery of air to the sides of the mask with an exit at the front of the mask further decreases the dead space.
Another object of the invention is to provide a personal air filtering device that is designed to create a relatively inconspicuous appearance so that it does not draw excessive attention to the wearer while using the present invention in public.
Another object of the invention is to provide a personal air filtering device that is relatively light weight and economical to manufacture.
Another object of the invention is to provide a personal air filtering device that is battery powered.
A further object of the invention is to provide a personal air filtering device that can protect the user from breathing in very fine airborne pollutants.
An additional object of the present invention is to provide a novel personal air filtering device that can provide high quality air relatively free of contaminants. Positive air flow forcibly exhausts exhaled air reducing carbon dioxide intake and water vapor, keeping air cooler, reducing build up of moisture, and generally improving comfort.
Still another object of the present invention is to provide a novel personal air filtering device that allows a user to perform his or her normal life activities while wearing the mask.
It is an additional object of the present invention to provide a novel personal air filtering device that is fully cleanable while isolating the contaminants from the user during cleaning.
It is another object of the present invention to provide a novel personal air filtering device that provides an exhaust filter to isolate the environment from the user by capturing biological material exhaled by the user.
An additional object of the present invention is to provide a novel personal air filtering device that supplies positive pressure filtered air to the user.
Still another object of the present invention is to provide a novel personal air filtering device that is compact, fully self-contained, light weight and simple to use.
It is yet an additional object of the present invention to provide a novel personal air filtering device that allows for rapid hygienic filter changes.
Another object of the present invention is to provide a novel personal air filtering device that can filter a broad range of contaminants including, but not limited to, simple particulates, allergens, bacteria, water borne mist viruses and organic vapors. Simply selecting the appropriate filter cartridge allows the user to filter the substance of concern.
Still another object of the present invention is to provide a novel personal air filtering device that can be carried on the user by belt, shoulder, or backpack.
It is an additional object of the present invention to provide a novel personal air filtering device that is small enough to fit under a coat or other outerwear.
Yet another object of the present invention is to provide a novel personal air filtering device that has automatic sensors for detecting the need to change the filter.
It is still another object of the present invention to provide a novel personal air filtering device that has an automatic sensor to detect a low battery.
An additional object of the present invention is to provide a novel personal air filtering device that is fully portable by operation from a battery or can be operated from a wall electricity adaptor.
Still another object of the present invention is to provide a novel personal air filtering device that provides fresh filtered air to the nose and mouth area eliminating the accumulation of carbon dioxide and water vapor that causes the hot claustrophobic feeling of conventional face masks. This mask requires only a minimal effort to breathe allowing more natural breathing for the user.
It is an additional object of the present invention to provide a novel personal air filtering device that allows the user to draw additional air through the filter and blower during times of increased respiration.
Yet it is another object of the present invention to provide a novel personal air filtering device that allows the user to continue breathing even if the blower stops running due to loss of power (low battery) or failure of the blower itself.
An additional object of the present invention is to provide a novel personal air filtering device that provides a blower motor and battery that are external to the air flow chambers insuring minimal risk to the user of inhaling toxic gases given off by the battery or motor material in case of failure (short circuit).
A further object of the present invention is to provide a novel personal air filtering device that is easy to decontaminate and/or clean and especially prevents the accumulation of bacteria and viruses within the system.
Other objects and advantages of the present invention will become apparent from the following descriptions, taken in connection with the accompanying drawings, wherein by way of illustration and example, embodiments of the present invention are disclosed.
A personal air filtering device is disclosed having a face mask of nonporous material. The face mask is held onto the user's head by standard elastic straps and has a flexible gasket about its perimeter to provide an airtight seal between the mask and the user's face. The face mask has an exit exhaust filter that lets exhaled air out of the mask, but does not let unfiltered air into the mask. There may also be a filter at the exit valve. A flexible Y-shaped tube is provided that enters the face mask on one side and attaches an air filtering assembly on the opposite end. The air filtering assembly is enclosed in a housing. The housing has an air intake opening. The air filtering assembly includes an air moving device such as a fan or pump, a carbon filter cartridge, a particulate matter filter, such as a P-95 or N-95 filter, a battery power supply, and an on-off switch. The activated carbon intake filter can be designed to remove either two-tenths of one micron particles or five to ten micron particles and organic matter. The exit filter will remove particles as small as 0.2 microns.
More particularly, the present invention provides a positive pressure air system designed to provide high quality air, relatively free of particulate, organic and biological contaminants to the user while the user performs his or her normal life activities and also to provide the option to isolate the environment from the user to limit the potential for spreading communicable diseases.
The drawings constitute a part of this specification and include exemplary embodiments to the invention, which may be embodied in various forms. It is to be understood that in some instances various aspects of the invention shown may be exaggerated or enlarged to facilitate an understanding of the invention.
Detailed descriptions of the preferred embodiment are provided herein. It is to be understood, however, that the present invention may be embodied in various forms. Therefore, specific details disclosed herein are not to be interpreted as limiting, but rather as a basis for the claims. Also these details represent the basis for teaching one skilled in the art to employ the present invention in virtually any appropriate system, structure or manner.
Referring now to
Referring to
Primary tube 506 is preferably of a larger diameter than secondary tubes 508 to prevent air flow restriction. Primary tube 506 is preferably corrugated to improve flexibility of the tube without the risk of kinking. The corrugated construction also allows for the use of thinner tube walls which reduces weight. In addition, the corrugated tubing provides a significant improvement in air flow over non-corrugated tubing due to the more consistent cross sectional area which reduces air flow restriction.
Secondary tubes 508 connect to face mask 502 by way of inlet ports 520. Inlet ports 520 have an optional pivoting quick-disconnect fitting (not shown) to facilitate the removal of face mask 502 for replacement. The exhaust filter 522 is provided at the front of face mask 502. Air outlet 518 connects primary tube 506 to blower housing 510. This air outlet 518 has an optional pivoting quick-disconnect fitting (not shown) to facilitate the removal of primary tube 506 for periodic replacement. Blower housing 510 has at least two filters 516 and a battery cassette 512. The filters 516 are more specifically filter assemblies 588 composed of a filter carrier 580 which allows the assembly 588 to twist onto the blower housing 510, a coarse 100 micron outer filter 584 (See
The filter assembly 588 is an exterior mounted cartridge that allows removal of the inner fine filter (not shown) and the outer filter 584 without touching the active filter area. This reduces the contamination for the user. In addition the use of a filter assembly 588 allows for the insertion of fresh filters without touching the active filter area. This ensures that the filters are clean and not contaminated when put into use. Other filters known in the art or which may be developed in the future can be incorporated into the filter assembly 588 when other uses are desired.
The filter cartridge 212 can be manufactured in a variety of combinations depending on the specific material which needs to be removed. For example, a simple particle filter can be used when the concern is only dust and debris. When allergies are a concern the filter cartridge can be built with both a course particulate filter followed by a finer filter which would capture most pollens and allergens to about 5 microns. If the concern is communicable diseases such as SARS or influenza a 0.22 micron filter can be added during manufacture.
A carbon filter can also be incorporated within the filter cartridge 212 for use in an operating room. While operating rooms have excellent ventilation systems there is always some contamination by anesthetic gases. Activated carbon filters are designed to remove organic material and specific types of activated carbon filters can be designed for these anesthetic gases. This modified air filter assembly would be appropriate for anesthesiologists, nurse anesthetists, surgeons and scrub nurses.
Battery cassette 512 is provided for batteries (not shown) and contains an optional AC adaptor 514. Battery cassette 512 can include any standard batteries available in the industry. Higher capacity batteries are preferred where the present invention must have a lower weight and size, but the cost will be high. Smaller battery packs can be used to save on cost, but the running time of the invention will be reduced. Battery cassette 512 is preferably detachable by way of a snap lock mechanism (not shown) allowing for in-use exchange. Battery cassette 512 is external to the air flow area eliminating any contamination risk from dirty air and also insuring no possibility that toxic vapors from the batteries (not shown) could be introduced into the air flow. The AC adaptor 514 can also act as a charger to recharge the batteries.
In addition to placement on a belt 18, the invention has optional attachments (not shown) for use in attaching the present invention over the user's shoulder or on the user's back depending on the needs of the user.
During operation, air is drawn through filters 516 by blower 550 (See
In
In
In
In
Vacuum plenum 546 is provided encasing a blower plate 570 and an impeller 572. Impeller 572 fits into pressure plenum 548 within a specially designed impeller channel 568. A motor 576 with cover plate 586 fits up into the base of pressure plenum 548. Air outlet 518 is provided which can be connected to primary tube 506. As the impeller 572 rotates, air is drawn through filters 516 (See
In
When using the present invention, the user first verifies that the air filter assembly 200 or 500 is clean and has a fresh filter 212 or 516. The user then places the blower housing 210 or 510 and batteries or battery pack 38, 40, or 512 on his or her belt 18. The air filter assembly 200 or 500 is then turned on and the face mask 7 or 502 is then placed over the user's nose and mouth. The user can now breathe normally from the supply of clean filtered air.
As the filter 212 or 516 becomes dirty, a pressure differential develops between the outside atmosphere and intake plenum (the volume between the filter and the blower intake opening). As the differential increases a sensor (not shown) triggers an alarm indicating the user should change the filter 212 or 516.
Additionally, a simple circuit (not shown) monitors the battery voltage and indicates to the user when the remaining charge has decreased to about 10% of full, thus allowing time to exit the area the user is in or to replace the batteries or battery pack 38, 40 or 512.
Once the user has finished using the air filter assembly 200 or 500 and removes and disposes of the filters 212 or 516, tubes 4 or 506 and 508, and face mask 7 or 502, the air filter assembly 200 or 500 can be easily cleaned. The face mask 7 or 502 can be detached from tubes 4 or 508 and rinsed or washed. The tubes 4 or 506 disconnect from the blower housing 210 or 510, the tubes 4 or 506 and 508 are disposed, and new tubes 4 or 506 and 508 are connected.
The user removes the dirty filter 212 or 516 and places it in a sealable plastic bag. The contaminants are primarily held in the inner layers of the filter 212 or 516 so removing the dirty filter 212 or 516 can be accomplished without risk of exposure provided basic care is taken. With the filter 212 or 516 removed, the blower housing 210 or 510 can be opened. The vacuum plenum 546 detaches from the pressure plenum 548.
Within the pressure plenum 548 is the blower plate 570 which lifts out. This plate 570 has molded into it half of the impeller shroud (not shown). The other half of the impeller shroud (not shown) is molded directly to the lower part of the pressure plenum 548. The impeller 572 lifts off the motor shaft (not shown). The motor shaft (not shown) is air and water tight, and sealed to the pressure plenum 548. The motor 576 is located in a pocket on the outside of the pressure plenum 548 and is sealed in place with a cover plate 586.
The motor 576 and battery pack 38, 40 or 512 are isolated so that once opened the unit can be washed and thoroughly cleaned. Fully opening the unit facilitates the cleaning.
The reassembly involves closing the unit, placing a fresh filter 212 or 516 on the air filter assembly 200 or 500, and reattaching fresh tubes 4 or 506 to the air outlet 518. Once reassembled the air filter assembly 200 or 500 is ready to use.
The above descriptions and illustrations show a unique portable air filtration system that can be worn by a person for extended periods of time. The entire assembly is relatively unobtrusive in appearance and can therefore be worn in public locations without embarrassment. The air filter assembly 200 or 500 is designed to be relatively inexpensive to manufacture and yet effective enough to potentially save the life of the user when exposed to harmful and potentially deadly particles floating in the ambient air.
Although the invention has been described with reference to specific embodiments, this description is not meant to be construed in a limited sense. Various modifications of the disclosed embodiments, as well as alternative embodiments of the inventions will become apparent to persons skilled in the art upon the reference to the description of the invention. It is, therefore, contemplated that the appended claims will cover such modifications that fall within the scope of the invention.
This is a continuation in part application claiming priority to U.S. patent application Ser. No. 10/075,900 filed Feb. 15, 2002.
Number | Date | Country | |
---|---|---|---|
Parent | 10075900 | Feb 2002 | US |
Child | 10624870 | Jul 2003 | US |