The present disclosure is related generally to authentication and/or passing value tokens, the process of confirming the identity of a person by verifying the validity of at least one form of identification by a target authentication device. More particularly, the present disclosure is related to employing personal authentication techniques to authenticate users of the target authentication device.
Conventional modes of authentication include the use of passwords generally composed of character strings composed of letters (a, b, c, . . . ), numbers (1, 2, 3, . . . ), and/or symbols (!, @, #, . . . ) arranged in various combinations.
A minimum level of security for accessing a target authentication device such as a mobile phone is achieved by requiring the owner/user of the mobile phone to enter a unique four-digit character string referred to generally as a Personal Identification Code (PIN), and a passcode in the case of the iPhone brand of mobile phones. The amount of time a mobile phone allows access before requiring re-entry of the PIN is configurable depending on the desired level of security of the owner. Entering a PIN/passcode, however, is a frequent burden for the owner. The owner may be required to enter a PIN/passcode several times per hour throughout the day, every day. In addition to being burdensome for the user, such minimum levels of security are easily hacked by someone skilled in exploiting weaknesses of computer systems.
More generally, however, ways in which someone may be authenticated fall into three categories, based on what are known as the factors of authentication: something the user knows, something the user has, and something the user is. Each authentication factor covers a range of elements used to authenticate or verify a person's identity prior to being granted access, approving a transaction request, signing a document or other work product, granting authority to others, and establishing a chain of authority. For a positive authentication, elements from at least two, and preferably all three, factors should be verified. The three factors (classes) and some of elements of each factor are: the ownership factors: Something the user has (e.g., wrist band, ID card, security token, software token, phone, or cell phone) the knowledge factors: Something the user knows (e.g., a password, pass phrase, or personal identification number (PIN), challenge response (the user must answer a question), pattern) the inherence factors: Something the user is or does (e.g., fingerprint, retinal pattern, DNA sequence (there are assorted definitions of what is sufficient), signature, face, voice, unique bio-electric signals, or other biometric identifier).
Two-factor authentication is when elements representing two factors are required for authentication, the term two-factor authentication is applied—e.g., a bankcard (something the user has) and a PIN (something the user knows). Business networks may require users to provide a password (knowledge factor) and a pseudorandom number from a security token (ownership factor). Access to a very-high-security system might require a mantrap screening of height, weight, facial, and fingerprint checks (several inherence factor elements) plus a PIN and a day code (knowledge factor elements), but this is still a two-factor authentication.
Conventional modes of authentication have become increasingly burdensome and inadequate means for security. Accordingly, new authentication approaches that are robust and less burdensome are needed.
In one aspect, a target authentication device is provided. The target authentication device comprises at least one electrode configured to detect an electrical signal associated with a user of the target authentication device. The electrical signal represents an authentication code for the target authentication device. An authentication receiver module is coupled to the at least one electrode. The authentication receiver module is configured to receive the electrical signal from the at least one electrode and to determine whether the electrical signal matches a predetermined criteria to authenticate the identity of the user based on the electrical signal.
In another aspect, an authentication module is provided. The authentication module comprises at least one electrode configured to couple an electrical signal associated with a user to a user of a target authentication device, the electrical signal represents an authentication code for the target authentication device. An authentication transmission module is coupled to the at least one electrode. The authentication transmission module is configured to transmit the electrical signal from the at least one electrode.
In yet another aspect, a method of authenticating the identity of a user of a target authentication device is provided. According to the method, at least one electrode detects an electrical signal associated with a user of the target authentication device, the electrical signal representing an authentication code for the target authentication device. An authentication receiver module coupled to the at least one electrode receives the electrical signal from the at least one electrode. A processor determines whether the electrical signal matches a predetermined criterion to authenticate the identity of the user based on the electrical signal.
Before explaining the various aspects of authentication in detail, it should be noted that the various aspects disclosed herein are not limited in their application or use to the details of construction and arrangement of parts illustrated in the accompanying drawings and description. Rather, any disclosed aspect of authentication may be positioned or incorporated in other aspects of authentication, variations, and modifications thereof, and may be practiced or carried out in various ways. Accordingly, aspects of the authentication apparatus, system, and method disclosed herein are illustrative in nature and are not meant to limit the scope or application thereof. Furthermore, unless otherwise indicated, the terms and expressions employed herein have been chosen for the purpose of describing the aspects for the convenience of the reader and are not to limit the scope thereof. In addition, it should be understood that any one or more of the disclosed aspects, expressions of aspects, and/or examples thereof, can be combined with any one or more of the other disclosed aspects, expressions of aspects, and/or examples thereof, without limitation.
In the following description, like reference characters designate like or corresponding parts throughout the several views. Also, in the following description, it is to be understood that terms such as front, back, inside, outside, top, bottom and the like are words of convenience and are not to be construed as limiting terms. Terminology used herein is not meant to be limiting insofar as devices described herein, or portions thereof, may be attached or utilized in other orientations. The various aspects will be described in more detail with reference to the drawings.
The present disclosure is directed generally to various aspects of authentication by providing a physical connection between a user and a target authentication device. One example of a target authentication device is a computer system. As used herein, the term computer system in intended to encompass a broad category of devices including, without limitation, computer networks, desktop computers, laptop computers, notebook computers, tablet computers, tablet computers, mobile phones, personal digital assistants, appliances, positioning systems, media devices, automatic teller machines (ATM), kiosks, and the like. In addition, authentication is required when entering public modes of transportation (bus, train, subway, airplane, boat, rental car), building entrances, stadiums, turnstiles, and the like. Additional computer systems that may require authentication also may include medical systems that dispense medication in any form.
It will be appreciated that the term “medication” or “dose form” as used throughout this disclosure includes various forms of ingestible, inhalable, injectable, absorbable, or otherwise consumable medicaments and/or carriers therefor such as, for example, pills, capsules, gel caps, placebos, over capsulation carriers or vehicles, herbal, over-the-counter (OTC) substances, supplements, prescription-only medication, ingestible event markers (IEM), and the like.
Prior to describing various aspects of authentication techniques, the present disclosure first turns to
Regardless of the source, the unique electrical signals suitable for authentication are coupled to the target authentication device, e.g., the mobile device 102, through at least one of the electrodes 104a, 104b, which are suitable for sensing and sourcing electrical signals. In operation, the subject 100 holds the mobile device 102, or otherwise contacts electrodes on another type of computer system, and physically contacts at least one of the electrodes 104a, 104b. The electrical signals are coupled from the subject 100 through at least one of the electrodes 104a, 104b to an authentication subsystem. The authentication subsystem can be integrated with the mobile device 102 or may be added on.
When the ingestible event marker system 106 is the signal source, a unique electrical current signal is generated when the ingestible event marker system 106 contacts digestive fluids 108 in the stomach 110 of the subject 100. The unique electrical current signature is conducted through the body of the subject 100, is detected by at least one of the electrodes 104a, 104b, and is coupled to an authentication subsystem, which decodes the signal and provides a decoded signal to a processing subsystem to authenticate the subject 100.
When the body associated device 112 is the signal source, an electrical current signal is generated by circuits in the body associated device 112. The body associated device 112 is electrically coupled to the body of the subject 100 by another set of electrodes. The electrical signal is conducted by the body and detected by at least one of the input electrodes 104a, 104b on the mobile device 102. These and other aspects of the personal authentication techniques are discussed hereinbelow. Prior to describing such systems, however, the disclosure now turns to measurement subsystems for detecting electrical signals.
In various aspects, in addition to a housing 202, a display 204, an aperture 206 for capturing digital images, and an antenna 208, the mobile device 102 comprises a radio subsystem 302 connected via a bus to a processing subsystem 304. The radio subsystem 302 may perform voice and data communications operations using wireless shared media for the mobile device 102. The processing subsystem 304 may execute software for the mobile device 102. A bus may comprise a USB or micro-USB bus and appropriate interfaces, as well as others.
In various aspects, an authentication and/or protection subsystem 306 is coupled to the electrodes 104a, 104b. The electrodes 104a, 104b are configured to be in physical contact with the subject 100 (
In various aspects, the detection subsystem 306 is coupled to the processing subsystem 304. The detection subsystem 306 converts the detected electrical signals into a secret word or string of characters. A processing subsystem 304 coupled to the detection subsystem 306 uses the string of characters for user authentication to prove identity of the subject 100 (
In various aspects, the display 204 may comprise any suitable display unit for displaying information appropriate for a mobile device 102. The I/O system may comprise any suitable I/O device for entering information into the mobile device 102. Examples for the I/O system may include an alphanumeric keyboard, a numeric keypad, a touch pad, a capacitive touch screen panel, input keys, buttons, switches, rocker switches, voice recognition device and software, and so forth. The I/O system may comprise a microphone and speaker, for example. Information also may be entered into the mobile device 102 by way of the microphone. Such information may be digitized by a voice recognition device.
In various aspects, the radio subsystem 320 may perform voice and data communications operations using wireless shared media for the mobile device 102. The processing subsystem 304 may execute software for the mobile device 102. A bus may comprise a universal serial bus (USB), micro-USB bus, dataport, and appropriate interfaces, as well as others. In one aspect the radio subsystem 302 may be arranged to communicate voice information and control information over one or more assigned frequency bands of the wireless shared media.
In various aspects, the imaging subsystem 308 processes images captured through the aperture 206. A camera may be coupled (e.g., wired or wirelessly) to the processing subsystem 304 and is configured to output image data (photographic data of a person or thing, e.g., video data, digital still image data) to the processing subsystem 304 and to the display 204. In one aspect, the imaging subsystem 308 may comprise a digital camera implemented as an electronic device used to capture and store images electronically in a digital format. Additionally, in some aspects the digital camera may be capable of recording sound and/or video in addition to still images.
In various aspects, the imaging subsystem 308 may comprise a controller to provide control signals to components of a digital camera, including lens position component, microphone position component, and a flash control module, to provide functionality for the digital camera. In some aspects, the controller may be implemented as, for example, a host processor element of the processing subsystem 304 of the mobile device 102. Alternatively, the imaging controller may be implemented as a separate processor from the host processor.
In various aspects, the imaging subsystem 308 may comprise memory either as an element of the processing subsystem 304 of the mobile device 102 or as a separate element. It is worthy to note that in various aspects some portion or the entire memory may be included on the same integrated circuit as the controller. Alternatively, some portion or the entire memory may be disposed on an integrated circuit or other medium (e.g., hard disk drive) external to the integrated circuit of the controller.
In various aspects, the aperture 206 includes a lens component and a lens position component. The lens component may consist of a photographic or optical lens or arrangement of lenses made of a transparent material such as glass, plastic, acrylic or Plexiglass, for example. In one aspect, the one or more lens elements of the lens component may reproduce an image of an object and allow for zooming in or out on the object by mechanically changing the focal length of the lens elements. In various aspects, a digital zoom may be employed in the imaging subsystem 308 to zoom in or out on an image. In some aspects, the one or more lens elements may be used to focus on different portions of an image by varying the focal length of the lens elements. The desired focus can be obtained with an autofocus feature of the digital imaging subsystem 308 or by manually focusing on the desired portion of the image, for example.
In various aspects, the navigation subsystem 310 supports navigation using the mobile device 102. In various aspects the mobile device 102 may comprise location or position determination capabilities and may employ one or more location determination techniques including, for example, Global Positioning System (GPS) techniques, Cell Global Identity (CGI) techniques, CGI including timing advance (TA) techniques, Enhanced Forward Link Trilateration (EFLT) techniques, Time Difference of Arrival (TDOA) techniques, Angle of Arrival (AOA) techniques, Advanced Forward Link Trilateration (AFTL) techniques, Observed Time Difference of Arrival (OTDOA), Enhanced Observed Time Difference (EOTD) techniques, Assisted GPS (AGPS) techniques, hybrid techniques (e.g., GPS/CGI, AGPS/CGI, GPS/AFTL or AGPS/AFTL for CDMA networks, GPS/EOTD or AGPS/EOTD for GSM/GPRS networks, GPS/OTDOA or AGPS/OTDOA for UMTS networks), among others.
In various aspects, the mobile device 102 may be configured to operate in one or more location determination modes including, for example, a standalone mode, a mobile station (MS) assisted mode, and/or a MS-based mode. In a standalone mode, such as a standalone GPS mode, the mobile device 102 may be configured to determine its position without receiving wireless navigation data from the network, though it may receive certain types of position assist data, such as almanac, ephemeris, and coarse data. In a standalone mode, the mobile device 102 may comprise a local location determination circuit such as a GPS receiver which may be integrated within the housing 202 configured to receive satellite data via the antenna 208 and to calculate a position fix. Local location determination circuit may alternatively comprise a GPS receiver in a second housing separate from the housing 202 but in the vicinity of the mobile device 102 and configured to communicate with the mobile device 102 wirelessly (e.g., via a PAN, such as Bluetooth). When operating in an MS-assisted mode or an MS-based mode, however, the mobile device 102 may be configured to communicate over a radio access network (e.g., UMTS radio access network) with a remote computer (e.g., a location determination entity (LDE), a location proxy server (LPS) and/or a mobile positioning center (MPC), among others).
In various aspects, the mobile device 102 also may comprise a power management subsystem (not shown) to manage power for the mobile device 102, including the radio subsystem 302, the processing subsystem 304, and other elements of the mobile device 102. For example, the power management subsystem may include one or more batteries to provide direct current (DC) power, and one or more alternating current (AC) interfaces to draw power from a standard AC main power supply.
In various aspects, the radio subsystem 302 may include an antenna 208. The antenna 208 may broadcast and receive RF energy over the wireless shared media. Examples for the antenna 208 may include an internal antenna, an omni-directional antenna, a monopole antenna, a dipole antenna, an end fed antenna, a circularly polarized antenna, a micro-strip antenna, a diversity antenna, a dual antenna, an antenna array, a helical antenna, and so forth. The aspects are not limited in this context.
In various aspects, the antenna 208 may be connected to a multiplexer. The multiplexer multiplexes signals from a power amplifier for delivery to the antenna 208. The multiplexer demultiplexes signals received from the antenna for delivery to an RF chipset.
In various aspects, the multiplexer may be connected to a power amplifier, where the power amplifier may be used to amplify any signals to be transmitted over the wireless shared media. The power amplifier may work in all assigned frequency bands, such as four (4) frequency bands in a quad-band system. The power amplifier also may operate in various modulation modes, such as Gaussian Minimum Shift Keying (GMSK) modulation suitable for GSM systems and 8-ary Phase Shift Keying (8-PSK) modulation suitable for EDGE systems.
In various aspects, the power amplifier may be connected to an RF chipset. The RF chipset also may be connected to the multiplexer. In one aspect, the RF chipset may comprise an RF driver and an RF transceiver. The RF chipset performs all of the modulation and direct conversion operations required for GMSK and 8-PSK signal types for quad-band E-GPRS radio. The RF chipset receives analog in-phase (I) and quadrature (Q) signals from a baseband processor, and converts the I/Q signals to an RF signal suitable for amplification by the power amplifier. Similarly, the RF chipset converts the signals received from the wireless shared media via the antenna 208 and the multiplexer to analog I/Q signals to be sent to the baseband processor. Although the RF chipset may use two chips by way of example, it may be appreciated that the RF chipset may be implemented using more or less chips and still fall within the intended scope of the aspects.
In various aspects, the RF chipset may be connected to the baseband processor, where the baseband processor may perform baseband operations for the radio subsystem 514. The baseband processor may comprise both analog and digital baseband sections. The analog baseband section includes I/Q filters, analog-to-digital converters, digital-to-analog converters, audio circuits, and other circuits. The digital baseband section may include one or more encoders, decoders, equalizers/demodulators, GMSK modulators, GPRS ciphers, transceiver controls, automatic frequency control (AFC), automatic gain control (AGC), power amplifier (PA) ramp control, and other circuits.
In various aspects, the baseband processor also may be connected to one or more memory units via a memory bus. In one aspect, for example, the baseband processor may be connected to a flash memory unit and a secure digital (SD) memory unit. The memory units may be removable or non-removable memory. In one aspect, for example, the baseband processor may use approximately 1.6 megabytes of static read-only memory (SRAM) for E-GPRS and other protocol stack needs.
In various aspects, the baseband processor also may be connected to a subscriber identity module (SIM). The baseband processor may have a SIM interface for the SIM, where the SIM may comprise a smart card that encrypts voice and data transmissions and stores data about the specific user so that the user can be identified and authenticated to the network supplying voice or data communications. The SIM also may store data such as personal phone settings specific to the user and phone numbers. The SIM can be removable or non-removable.
In various aspects, the baseband processor may further include various interfaces for communicating with a host processor of the processing subsystem 304. For example, the baseband processor may have one or more universal asynchronous receiver-transmitter (UART) interfaces, one or more control/status lines to the host processor, one or more control/data lines to the host processor, and one or more audio lines to communicate audio signals to an audio subsystem of processing subsystem 514. The aspects are not limited in this context.
In various aspects, the processing subsystem 304 may provide computing or processing operations for the mobile device 102 and/or for the authentication subsystem 306. For example, the processing subsystem 304 may be arranged to execute various software programs for the mobile device 102 as well as several software programs for the authentication subsystem 306. Although the processing subsystem 304 may be used to implement operations for the various aspects as software executed by a processor, it may be appreciated that the operations performed by the processing subsystem 304 also may be implemented using hardware circuits or structures, or a combination of hardware and software, as desired for a particular implementation.
In various aspects, the processing subsystem 304 may include a processor implemented using any processor or logic device, such as a complex instruction set computer (CISC) microprocessor, a reduced instruction set computing (RISC) microprocessor, a very long instruction word (VLIW) microprocessor, a processor implementing a combination of instruction sets, or other processor device. In one aspect, for example, a processor may be implemented as a general purpose processor, such as a processor made by Intel Corporation, Santa Clara, Calif. The processor also may be implemented as a dedicated processor, such as a controller, microcontroller, embedded processor, a digital signal processor (DSP), a network processor, a media processor, an input/output (I/O) processor, a media access control (MAC) processor, a radio baseband processor, a field programmable gate array (FPGA), a programmable logic device (PLD), and so forth.
In one aspect, the processing subsystem 304 may include a memory to connect to the processor. The memory may be implemented using any machine-readable or computer-readable media capable of storing data, including both volatile and non-volatile memory. For example, the memory may include ROM, RAM, DRAM, DDRAM, SDRAM, SRAM, PROM, EPROM, EEPROM, flash memory, polymer memory such as ferroelectric polymer memory, ovonic memory, phase change or ferroelectric memory, silicon-oxide-nitride-oxide-silicon (SONOS) memory, magnetic or optical cards, or any other type of media suitable for storing information. It is worthy to note that some portion or all of the memory may be included on the same integrated circuit as the processor thereby obviating the need for a memory bus. Alternatively some portion or all of the memory may be disposed on an integrated circuit or other medium, for example a hard disk drive, that is external to the integrated circuit of the processor, and the processor may access the memory via a memory bus, for example.
In various aspects, the memory may store one or more software components (e.g., application client modules). A software component may refer to one or more programs, or a portion of a program, used to implement a discrete set of operations. A collection of software components for a given device may be collectively referred to as a software architecture or application framework. A software architecture for the mobile device 102 is described in more detail below.
A software architecture suitable for use with the mobile device 102 may include a user interface (UI) module, an interface module, a data source or backend services module (data source), and a third party API module. An optional LBS module may comprise a user based permission module, a parser module (e.g., National Maritime Electronic Association or NMEA), a location information source module, and a position information source module. In some aspects, some software components may be omitted and others added. Further, operations for some programs may be separated into additional software components, or consolidated into fewer software components, as desired for a given implementation. The mobile device 102 software architecture may comprise several elements, components or modules, collectively referred to herein as a “module.” A module may be implemented as a circuit, an integrated circuit, an application specific integrated circuit (ASIC), an integrated circuit array, a chipset comprising an integrated circuit or an integrated circuit array, a logic circuit, a memory, an element of an integrated circuit array or a chipset, a stacked integrated circuit array, a processor, a digital signal processor, a programmable logic device, code, firmware, software, and any combination thereof.
Having described the mobile device 102 as one example of computer system, it will be appreciated that any of the following computer systems, without limitation, computer networks, desktop computers, laptop computers, notebook computers, tablet computers, tablet computers, mobile phones, personal digital assistants, appliances, positioning systems, media devices, automatic teller machines (ATM), kiosks, public modes of transportation (bus, train, subway, airplane, boat, rental car, . . . ), building entrances, stadiums, turnstiles, medical systems that dispense medication in any form could be equipped with at least one electrode and a detection subsystem to authenticate the user as the owner of the computer system for security purposes. For the sake of conciseness and clarity, not all of these computer systems will be discussed here.
Turning briefly now to
The enclosing arrangement 1102 may be referred to as a housing, enclosure, attachment, skin, design cover, among other accessories for mobile devices, and may substantially or partially cover or enclose the mobile device 1100.
As shown in
Turning now back to
A transbody conductive communication module 402 and a physiological sensing module 404 are electrically coupled to the electrode input/output interface circuit 401. In one aspect, the transbody conductive communication module 402 is implemented as a first, e.g., high, frequency (HF) signal chain and the physiological sensing module 404 is implemented as a second, e.g., low, frequency (LF) signal chain. Also shown are CMOS temperature sensing module 406 (for detecting ambient temperature) and a 3-axis accelerometer 408. The authentication subsystem 306 also comprises a processing engine 418 (for example, a microcontroller and digital signal processor), a non-volatile memory 410 (for data storage), and a wireless communication module 412 to receive data from and/or transmit data to another device, for example in a data download/upload action, respectively. In various aspects, the communication module 412 may comprise one or more transmitters/receivers (“transceiver”) modules. As used herein, the term “transceiver” may be used in a very general sense to include a transmitter, a receiver, or a combination of both, without limitation. In one aspect, the transbody conductive communication module 402 is configured to communicate with an ingestible event marker system 106 (
The sensors 414 typically contact the subject 100 (
The feedback module 416 may be implemented with software, hardware, circuitry, various devices, and combinations thereof. The function of the feedback module 416 is to provide communication with the subject 100 (
In the specific example of the system 106 combined with a medication or pharmaceutical product, as the product or pill is ingested, or exposed to air, the system 106 is activated in galvanic mode. The system 106 controls conductance to produce a unique current signature that is detected by the electrodes 104a, 104b (
In one aspect, the system 106 includes a framework 502. The framework 502 is a chassis for the system 106 and multiple components are attached to, deposited upon, or secured to the framework 502. In this aspect of the system 106, a digestible material 504 is physically associated with the framework 502. The material 504 may be chemically deposited on, evaporated onto, secured to, or built-up on the framework all of which may be referred to herein as “deposit” with respect to the framework 502. The material 504 is deposited on one side of the framework 502. The materials of interest that can be used as material 504 include, but are not limited to: Cu, CuCl, or CuI. The material 504 is deposited by physical vapor deposition, electrodeposition, or plasma deposition, among other protocols. The material 504 may be from about 0.05 to about 500 μm thick, such as from about 5 to about 100 μm thick. The shape is controlled by shadow mask deposition, or photolithography and etching. Additionally, even though only one region is shown for depositing the material, each system 106 may contain two or more electrically unique regions where the material 504 may be deposited, as desired.
At a different side, which is the opposite side as shown in
According to the disclosure set forth, the materials 504, 506 can be any pair of materials with different electrochemical potentials. Additionally, in the aspects wherein the system 106 is used in-vivo, the materials 504, 506 may be vitamins that can be absorbed. More specifically, the materials 504, 506 can be made of any two materials appropriate for the environment in which the system 106 will be operating. For example, when used with an ingestible product, the materials 504, 506 are any pair of materials with different electrochemical potentials that are ingestible. An illustrative example includes the instance when the system 106 is in contact with an ionic solution, such as stomach acids, fluids excreted through the surface of the skin, fluids present below the surface of the skin, for example. Suitable materials are not restricted to metals, and in certain aspects the paired materials are chosen from metals and non-metals, e.g., a pair made up of a metal (such as Mg) and a salt (such as CuCl or CuI). With respect to the active electrode materials, any pairing of substances—metals, salts, or intercalation compounds—with suitably different electrochemical potentials (voltage) and low interfacial resistance are suitable.
Materials and pairings of interest include, but are not limited to, those reported in TABLE 1 below. In one aspect, one or both of the metals may be doped with a non-metal, e.g., to enhance the voltage potential created between the materials as they come into contact with a conducting liquid. Non-metals that may be used as doping agents in certain aspects include, but are not limited to: sulfur, iodine, and the like. In another aspect, the materials are copper iodine (CuI) as the anode and magnesium (Mg) as the cathode. Aspects of the present disclosure use electrode materials that are not harmful to the human body.
Thus, when the system 106 is in contact with the conducting fluid, a current path is formed through the conducting fluid between the dissimilar materials 504, 506. A control device 508 is secured to the framework 502 and electrically coupled to the materials 504, 506. The control device 508 includes electronic circuitry, for example control logic that is capable of controlling and altering the conductance between the materials 504, 506.
The voltage potential created between the dissimilar materials 504, 506 provides the power for operating the system as well as produces the current flow through the conducting fluid and the system 106. In one aspect, the system 106 operates in direct current mode. In an alternative aspect, the system 106 controls the direction of the current so that the direction of current is reversed in a cyclic manner, similar to alternating current. As the system reaches the conducting fluid or the electrolyte, where the fluid or electrolyte component is provided by a physiological fluid, e.g., stomach acid, the path for current flow between the dissimilar materials 504, 506 is completed external to the system 106; the current path through the system 106 is controlled by the control device 508. Completion of the current path allows for the current to flow and in turn a receiver, not shown, can detect the presence of the current and recognize that the system 106 has been activate and the desired event is occurring or has occurred.
In one aspect, the two dissimilar materials 504, 506 are similar in function to the two electrodes needed for a direct current power source, such as a battery. The conducting liquid acts as the electrolyte needed to complete the power source. The completed power source described is defined by the physical chemical reaction between the dissimilar materials 504, 506 of the system 106 and the surrounding fluids of the body. The completed power source may be viewed as a power source that exploits reverse electrolysis in an ionic or a conduction solution such as gastric fluid, blood, or other bodily fluids and some tissues. Additionally, the environment may be something other than a body and the liquid may be any conducting liquid. For example, the conducting fluid may be salt water or a metallic based paint.
In certain aspects, the two dissimilar materials 504, 506 are shielded from the surrounding environment by an additional layer of material. Accordingly, when the shield is dissolved and the two dissimilar materials 504, 506 are exposed to the target site, a voltage potential is generated.
In certain aspects, the complete power source or supply is one that is made up of active electrode materials, electrolytes, and inactive materials, such as current collectors, packaging. The active materials are any pair of materials with different electrochemical potentials. Suitable materials are not restricted to metals, and in certain aspects the paired materials are chosen from metals and non-metals, e.g., a pair made up of a metal (such as Mg) and a salt (such as CuI). With respect to the active electrode materials, any pairing of substances—metals, salts, or intercalation compounds—with suitably different electrochemical potentials (voltage) and low interfacial resistance are suitable.
A variety of different materials may be employed as the materials that form the electrodes. In certain aspects, electrode materials are chosen to provide for a voltage upon contact with the target physiological site, e.g., the stomach, sufficient to drive the system of the identifier. In certain aspects, the voltage provided by the electrode materials upon contact of the metals of the power source with the target physiological site is 0.001 V or higher, including 0.01 V or higher, such as 0.1 V or higher, e.g., 0.3 V or higher, including 0.5 volts or higher, and including 1.0 volts or higher, where in certain aspects, the voltage ranges from about 0.001 to about 10 volts, such as from about 0.01 to about 10 V.
Referring still to
The system 106 may be grounded through a ground contact. The system 106 also may include a sensor module. In operation, ion or current paths are established between the first material 504 to the second material 506 and through a conducting fluid in contact with the system 106. The voltage potential created between the first and second materials 504, 506 is created through chemical reactions between the first and second materials 504, 506 and the conducting fluid. In one aspect, the surface of the first material 504 is not planar, but rather an irregular surface. The irregular surface increases the surface area of the material and, hence, the area that comes in contact with the conducting fluid.
In one aspect, at the surface of the first material 504, there is chemical reaction between the material 504 and the surrounding conducting fluid such that mass is released into the conducting fluid. The term mass as used herein refers to protons and neutrons that form a substance. One example includes the instant where the material is CuCl and when in contact with the conducting fluid, CuCl becomes Cu (solid) and Cl— in solution. The flow of ions into the conduction fluid is via ion paths. In a similar manner, there is a chemical reaction between the second material 506 and the surrounding conducting fluid and ions are captured by the second material 506. The release of ions at the first material 504 and capture of ion by the second material 506 is collectively referred to as the ionic exchange. The rate of ionic exchange and, hence the ionic emission rate or flow, is controlled by the control device 508. The control device 508 can increase or decrease the rate of ion flow by altering the conductance, which alters the impedance, between the first and second materials 504, 506. Through controlling the ion exchange, the system 106 can encode information in the ionic exchange process. Thus, the system 106 uses ionic emission to encode information in the ionic exchange.
The control device 508 can vary the duration of a fixed ionic exchange rate or current flow magnitude while keeping the rate or magnitude near constant, similar to when the frequency is modulated and the amplitude is constant. Also, the control device 508 can vary the level of the ionic exchange rate or the magnitude of the current flow while keeping the duration near constant. Thus, using various combinations of changes in duration and altering the rate or magnitude, the control device 508 encodes information in the current flow or the ionic exchange. For example, the control device 508 may use, but is not limited to any of the following techniques namely, Binary Phase-Shift Keying (PSK), Frequency Modulation (FM), Amplitude Modulation (AM), On-Off Keying, and PSK with On-Off Keying.
Various aspects of the system 106 may comprise electronic components as part of the control device 508. Components that may be present include but are not limited to: logic and/or memory elements, an integrated circuit, an inductor, a resistor, and sensors for measuring various parameters. Each component may be secured to the framework and/or to another component. The components on the surface of the support may be laid out in any convenient configuration. Where two or more components are present on the surface of the solid support, interconnects may be provided.
The system 106 controls the conductance between the dissimilar materials and, hence, the rate of ionic exchange or the current flow. Through altering the conductance in a specific manner the system is capable of encoding information in the ionic exchange and the current signature. The ionic exchange or the current signature is used to uniquely identify the specific system. Additionally, the system 106 is capable of producing various different unique exchanges or signatures and, thus, provides additional information. For example, a second current signature based on a second conductance alteration pattern may be used to provide additional information, which information may be related to the physical environment. To further illustrate, a first current signature may be a very low current state that maintains an oscillator on the chip and a second current signature may be a current state at least a factor of ten higher than the current state associated with the first current signature.
Having now described the basic elements of a personal authentication system, the disclosure now turns to a description of various aspects of authentication systems.
The body-associated device 112 is located on the surface of the skin and is electrically coupled to the subject 100 via electrodes 604a, 604b. In one aspect, the body-associated device 112 comprises a transmission device 603 that is configured, or programmed, with a secret code 606 that is stored in memory 608, such as a password or a private key for more sophisticated authentication mechanisms. The body-associated device 112 acts in broadcast mode (opposite to the receive mode). The secret code 606 is read from the memory 608 and is encoded into a signal 610 by an encoder 612. The encoded signal 610 is converted to an electrically conductive signal 614 by the I/O interface circuit 616. The encoded electrically conductive signal 614 is applied to the body 617 of the subject 100 via the electrodes 604a, 604b. A battery Vbatt may be included in the body-associated device as a power source. Alternatively, a power source may be implemented by coupling energy through the electrodes 604a, 604b from the target authentication device 602. In yet another alternative, a power source similar to the power source described in connection with the ingestible event marker 106 (
The electrically conductive signal 614 is conducted through the body 617 of the subject 100 to the authentication receiver module 601 of the target authentication device 602. Electrodes 618a, 618b detect the electrically conductive signal 614 from the body 617 and are coupled to a decoder 619 though an I/O interface circuit 620. The decoder 619 decodes the electrically conductive signal 614. The decoded code 622 is then compared by compare module 624 to established criteria 626. When the code 622 matches the established criteria 626, compare module 624 provides the results to the processor 628, which determines whether the electrical signal matches the predetermined criteria to authenticate the identity of the user based on the an electrical signal. If a match occurs, the processor 629 unlocks the target authentication device 602 and enables access by the subject 100. In one aspect, the authentication receiver module 601 is configured to encode the detected signal with a secret and retransmit the encoded signal back to the receiver module where it is compared to an expected result dependent on the mathematical properties of the encoding and the secret. In one aspect, the authentication receiver module 601 is configured to authenticate a challenge-response authentication, which is an authentication process that verifies an identity by requiring correct authentication information to be provided in response to a challenge. The authentication information may be usually a value that is computed in response to an unpredictable challenge value, but it may be just a password.
The target authentication device 602 may be any number of digital instruments. As previously discussed, the target authentication device 602 may be a mobile device 102 as described in connection with
The body associated device 112 comprising the transmission device 603 may be a patch, implant, pendant, ring, article of clothing, piercing, or piece of jewelry. The body associated device 112 is physically and electrically associated with the subject 100, and contains a secret code 606.
In one aspect, the authentication receiver module 601 of the target authentication device 602 may comprise a transbody conductive communication module 402 as described in connection with
In another aspect, the authentication receiver module 601 of the target authentication device 602 may comprise a physiological sensing module 404 as described in connection with
In another aspect, the target authentication device 602 acquires a biometric profile over time and compares past readings against current ones. In this way, a sudden change could indicate that the body-associated device 112 has been removed from one person and put on another.
The secret authentication code 606 may be a simple password based authentication, in which case the password may be programmed into the transmission device 603, or the secret authentication code 606 may be a more complex challenge-response scheme where bi-directional communication is used to establish authentication over a public channel. Other established authentication schemes known in the art are also applicable to this case.
In yet another aspect, is to put a lock on the body-associated device 112 of some kind. A PIN code or tap pattern could be required to unlock the body-associated device 112 and enable it to broadcast the key transconductively (e.g., use the body 617 of the subject 100 as a conductive medium to conduct a current).
The above is a specific instantiation of a key (in this case the body-associated device 112) communicating with and unlocking a lock (in this case the target authentication device 602, such as a mobile device 102, for example) via transconductive communication. In various other aspects, this may be generalized to a number of keys (e.g., patch, watch, key fob in pocket, smart shoes, jewelry, clothing, etc.) communicating with any number of locks (e.g., phone, computer, door, car, cash register, ATM, vending machine). In certain instances it may be beneficial for the communication to be two-way. For instance, in the case of a body-associated device 112 and a mobile device 102, the body-associated device 112 initiates a session by periodically broadcasting the authentication code 606. The mobile device 102 receives the code 606, verifies its authenticity and unlocks the mobile device 102 display 204 (
In another aspect, the relationship between the target identification device 602 and the transmission device 603 can be broadened beyond security and use-related permissions to include assurance of use-related benefits and transactions. For example, in a loyalty management program related to the transmission device 603 (which in addition to the items listed above could include consumer-related product packaging such as drink containers), assured use by a specific individual could be confirmed by the transmission device 603, thereby allowing the loyalty or other benefits to be granted.
In another aspect, instead of being a personally associated authentication token, the transmission device 603 could serve as a value token, like a gift card or event pass. In this case, a temporary transmission device 603 like an adhesive sticker is sold in a conventional transaction. The buyer applies the adhesive sticker to his or her body 617, and the value is transferred to a mobile device 102 (
In another aspect, the authentication process may be bidirectional in that the target authentication device 602 (e.g., the mobile device 102) can send a code through the body 617 of the subject 100 to the body-associated device 112 (e.g., a patch). The body-associated device 112 authenticates and sends a signal back to the target authentication device 602 which would then unlock. In another aspect, an electrical current signal from the ingestible event indicator system 106 may be sourced by a small implantable device, e.g., dog tag sized, that sends a signal that is collected by the target authentication device 602 for authentication. The implantable device also may be configured with a physiological sensing module 404 to collect other physiological information.
With reference now to
In one aspect, the source of the transconduction signal could be an ingested ingestible event marker system 106 or other transconduction signal transmission source, such as a body-associated device 112 or similar transmission device 603 in direct contact with the body 617 of the subject 100. This includes transmitters implanted in the body 617 of the subject 100.
The event marker system 805 is located on the surface of the skin and is electrically coupled to the subject 100 via electrodes 604a, 604b. In one aspect, the event marker system 805 comprises a transmission device 803 that is configured, or programmed, with a secret code 806 that is stored in memory 808, such as a password or a private key for more sophisticated authentication mechanisms. The event marker system 805 acts in broadcast mode. The secret code 806 is read from the memory 808 and is encoded into a signal 810 by an encoder 812. The encoded signal 810 is converted to an electrically conductive signal 814 by the I/O interface circuit 816. The encoded electrically conductive signal 814 is applied to the body 617 of the subject 100 via the electrodes 604a, 604b.
In various aspects, the event marker system 805 may include a power source, such as a power source made up of a pair of electrodes fabricated from dissimilar materials. The event marker system 805 may generate electrical power when it comes into contact with fluids excreted by the skin. Otherwise, the event marker system 805 is functionally equivalent to the operation of the ingestible event marker 106 discussed in connection with
The electrically conductive signal 814 is conducted through the body 617 of the subject 100 to the authentication receiver module 601 of the target authentication device 602. Electrodes 618a, 618b detect the electrically conductive signal 814 from the body 617 and are coupled to a decoder 619 though an I/O interface circuit 620. The decoder 619 decodes the electrically conductive signal 814. The decoded code 622 is then compared by compare module 624 to established criteria 626. When the code 622 matches the established criteria 626, compare module 624 signals the processor 628, which determines whether the electrical signal matches the predetermined criteria to authenticate the identity of the user based on the an electrical signal. If a match occurs, the processor 629 unlocks the target authentication device 602 and enables access by the subject 100.
In some embodiments of interest, a non-conductive communication module may be provided, which is a wireless radio-frequency module. While the wireless radio-frequency communication module may vary, in some instances this module is a radio-frequency identification (RFID) module. For ease of description purposes only, embodiments of the invention will now be further described in terms of embodiments where the non-conductive communication module is an RFID communication module. However, as noted above the non-conductive communication module may vary widely.
In some instances, the RFID module incorporates, for example, an integrated circuit and an RF antenna. The RFID module may be communicatively associated with a conductive module incorporating, for example, an integrated circuit and a conductive antenna. Either of the RFID module or the conductive module, or both, may function in conjunction with medication and/or medication packaging to receive, process, store, and/or transmit information related to or associated with the medication. As indicated above, the devices and systems can be used across multiple and varied applications to provide secure, controlled, and accurate communications in viable, cost-effective implementations.
Although the present disclosure has been described in connection with a mobile phone, the application may be broadly extended to include other instances where a person needs to authenticate to a system, including, for example access through a locked door, access through a turnstile to get on the subway or into an entertainment venue, access to a computer, access to an ATM or payment terminal at a retailer, access to any other target authentication device 602 described herein.
In one aspect, the authentication receiver module is located inside of an extension chamber on the back of a mobile phone 102 housing 202 (
With reference to
In the specific example of the system 2030 combined with the pharmaceutical product, as the product or pill is ingested, the system 2030 is activated. The system 2030 controls conductance to produce a unique current signature that is detected, thereby signifying that the pharmaceutical product has been taken. The system 2030 includes a framework 2032. The framework 2032 is a chassis for the system 2030 and multiple components are attached to, deposited upon, or secured to the framework 2032. In this aspect of the system 2030, a digestible material 2034 is physically associated with the framework 2032. The material 2034 may be chemically deposited on, evaporated onto, secured to, or built-up on the framework all of which may be referred to herein as “deposit” with respect to the framework 2032. The material 2034 is deposited on one side of the framework 2032. The materials of interest that can be used as material 2034 include, but are not limited to: Cu or CuI. The material 2034 is deposited by physical vapor deposition, electrodeposition, or plasma deposition, among other protocols. The material 2034 may be from about 0.05 to about 500 .mu.m thick, such as from about 5 to about 100 .mu.m thick. The shape is controlled by shadow mask deposition, or photolithography and etching. Additionally, even though only one region is shown for depositing the material, each system 2030 may contain two or more electrically unique regions where the material 2034 may be deposited, as desired.
At a different side, which is the opposite side as shown in
Thus, when the system 2030 is in contact with the conducting liquid, a current path, an example is shown in
The voltage potential created between the materials 2034 and 2036 provides the power for operating the system as well as produces the current flow through the conducting fluid and the system. In one aspect, the system operates in direct current mode. In an alternative aspect, the system controls the direction of the current so that the direction of current is reversed in a cyclic manner, similar to alternating current. As the system reaches the conducting fluid or the electrolyte, where the fluid or electrolyte component is provided by a physiological fluid, e.g., stomach acid, the path for current flow between the materials 2034 and 2036 is completed external to the system 2030; the current path through the system 2030 is controlled by the control device 2038. Completion of the current path allows for the current to flow and in turn a receiver, not shown, can detect the presence of the current and recognize that the system 2030 has been activate and the desired event is occurring or has occurred.
In one aspect, the two materials 2034 and 2036 are similar in function to the two electrodes needed for a direct current power source, such as a battery. The conducting liquid acts as the electrolyte needed to complete the power source. The completed power source described is defined by the physical chemical reaction between the materials 2034 and 2036 of the system 2030 and the surrounding fluids of the body. The completed power source may be viewed as a power source that exploits reverse electrolysis in an ionic or a conductive solution such as gastric fluid, blood, or other bodily fluids and some tissues. Additionally, the environment may be something other than a body and the liquid may be any conducting liquid. For example, the conducting fluid may be salt water or a metallic based paint.
In certain aspects, these two materials are shielded from the surrounding environment by an additional layer of material. Accordingly, when the shield is dissolved and the two dissimilar materials are exposed to the target site, a voltage potential is generated.
Referring again to
Referring now to
Once the control device 2048 is activated or powered up, the control device 2048 can alter conductance between the materials 2044 and 2046. Thus, the control device 2048 is capable of controlling the magnitude of the current through the conducting liquid that surrounds the system 2040. As indicated above with respect to system 2030, a unique current signature that is associated with the system 2040 can be detected by a receiver (not shown) to mark the activation of the system 2040. In order to increase the “length” of the current path the size of the skirt 2049 is altered. The longer the current path, the easier it may be for the receiver to detect the current.
Referring now to
In one aspect, at the surface of the material 2034, there is chemical reaction between the material 2034 and the surrounding conducting fluid such that mass is released into the conducting fluid. The term “mass” as used herein refers to protons and neutrons that form a substance. One example includes the instant where the material is CuCl and when in contact with the conducting fluid, CuCl becomes Cu (solid) and Cl.sup.-in solution. The flow of ions into the conduction fluid is depicted by the ion paths 2050. In a similar manner, there is a chemical reaction between the material 2036 and the surrounding conducting fluid and ions are captured by the material 2036. The release of ions at the material 2034 and capture of ion by the material 2036 is collectively referred to as the ionic exchange. The rate of ionic exchange and, hence the ionic emission rate or flow, is controlled by the control device 2038. The control device 2038 can increase or decrease the rate of ion flow by altering the conductance, which alters the impedance, between the materials 2034 and 2036. Through controlling the ion exchange, the system 2030 can encode information in the ionic exchange process. Thus, the system 2030 uses ionic emission to encode information in the ionic exchange.
The control device 2038 can vary the duration of a fixed ionic exchange rate or current flow magnitude while keeping the rate or magnitude near constant, similar to when the frequency is modulated and the amplitude is constant. Also, the control device 2038 can vary the level of the ionic exchange rate or the magnitude of the current flow while keeping the duration near constant. Thus, using various combinations of changes in duration and altering the rate or magnitude, the control device 2038 encodes information in the current flow or the ionic exchange. For example, the control device 2038 may use, but is not limited to any of the following techniques namely, Binary Phase-Shift Keying (PSK), Frequency modulation, Amplitude modulation, on-off keying, and PSK with on-off keying.
As indicated above, the various aspects disclosed herein, such as systems 2030 and 2040 of
As indicated above, the system, such as system 2030 and 2040, control the conductance between the dissimilar materials and, hence, the rate of ionic exchange or the current flow. Through altering the conductance in a specific manner the system is capable of encoding information in the ionic exchange and the current signature. The ionic exchange or the current signature is used to uniquely identify the specific system. Additionally, the systems 2030 and 2040 are capable of producing various different unique exchanges or signatures and, thus, provide additional information. For example, a second current signature based on a second conductance alteration pattern may be used to provide additional information, which information may be related to the physical environment. To further illustrate, a first current signature may be a very low current state that maintains an oscillator on the chip and a second current signature may be a current state at least a factor of ten higher than the current state associated with the first current signature.
Referring now to
The control module 2062 is also electrically coupled to and in communication with the sensor modules 2072 and 2074. In the aspect shown, the sensor module 2072 is part of the control device 2038 and the sensor module 2074 is a separate component. In alternative aspects, either one of the sensor modules 2072 and 2074 can be used without the other and the scope of the present invention is not limited by the structural or functional location of the sensor modules 2072 or 2074. Additionally, any component of the system 2030 may be functionally or structurally moved, combined, or repositioned without limiting the scope of the present invention as claimed. Thus, it is possible to have one single structure, for example a processor, which is designed to perform the functions of all of the following modules: the control module 2062, the clock 2064, the memory 2066, and the sensor module 2072 or 2074. On the other hand, it is also within the scope of the present invention to have each of these functional components located in independent structures that are linked electrically and able to communicate.
Referring again to
Referring now to
As indicated above, the control device 2038 can be programmed in advance to output a pre-defined current signature. In another aspect, the system can include a receiver system that can receive programming information when the system is activated. In another aspect, not shown, the switch 2064 and the memory 2066 can be combined into one device.
In addition to the above components, the system 2030 may also include one or other electronic components. Electrical components of interest include, but are not limited to: additional logic and/or memory elements, e.g., in the form of an integrated circuit; a power regulation device, e.g., battery, fuel cell or capacitor; a sensor, a stimulator, etc.; a signal transmission element, e.g., in the form of an antenna, electrode, coil, etc.; a passive element, e.g., an inductor, resistor, etc.
In addition to demodulation, the transbody communication module may include a forward error correction module, which module provides additional gain to combat interference from other unwanted signals and noise. Forward error correction functional modules of interest include those described in PCT Application Serial No. PCT/US2007/024225; the disclosure of which is herein incorporated by reference. In some instances, the forward error correction module may employ any convenient protocol, such as Reed-Solomon, Golay, Hamming, BCH, and Turbo protocols to identify and correct (within bounds) decoding errors.
Receivers of the invention may further employ a beacon functionality module. In various aspects, the beacon switching module may employ one or more of the following: a beacon wakeup module, a beacon signal module, a wave/frequency module, a multiple frequency module, and a modulated signal module.
The beacon switching module may be associated with beacon communications, e.g., a beacon communication channel, a beacon protocol, etc. For the purpose of the present disclosure, beacons are typically signals sent either as part of a message or to augment a message (sometimes referred to herein as “beacon signals”). The beacons may have well-defined characteristics, such as frequency. Beacons may be detected readily in noisy environments and may be used for a trigger to a sniff circuit, such as described below. In one aspect, the beacon switching module may comprise the beacon wakeup module, having wakeup functionality. Wakeup functionality generally comprises the functionality to operate in high power modes only during specific times, e.g., short periods for specific purposes, to receive a signal, etc. An important consideration on a receiver portion of a system is that it be of low power. This feature may be advantageous in an implanted receiver, to provide for both small size and to preserve a long-functioning electrical supply from a battery. The beacon switching module enables these advantages by having the receiver operate in a high power mode for very limited periods of time. Short duty cycles of this kind can provide optimal system size and energy draw features.
In practice, the receiver may “wake up” periodically, and at low energy consumption, to perform a “sniff function” via, for example, a sniff circuit. For the purpose of the present application, the term “sniff function” generally refers to a short, low-power function to determine if a transmitter is present. If a transmitter signal is detected by the sniff function, the device may transition to a higher power communication decode mode. If a transmitter signal is not present, the receiver may return, e.g., immediately return, to sleep mode. In this manner, energy is conserved during relatively long periods when a transmitter signal is not present, while high-power capabilities remain available for efficient decode mode operations during the relatively few periods when a transmit signal is present. Several modes, and combination thereof, may be available for operating the sniff circuit. By matching the needs of a particular system to the sniff circuit configuration, an optimized system may be achieved.
Another view of a beacon module is provided in the functional block diagram shown in
Multiplexer 2820 is electrically coupled to both high band pass filter 2830 and low band pass filter 2840. The high and low frequency signal chains provide for programmable gain to cover the desired level or range. In this specific aspect, high band pass filter 2830 passes frequencies in the 10 KHz to 34 KHz band while filtering out noise from out-of-band frequencies. This high frequency band may vary, and may include, for example, a range of 3 KHz to 300 KHz. The passing frequencies are then amplified by amplifier 2832 before being converted into a digital signal by converter 2834 for input into high power processor 2880 (shown as a DSP) which is electrically coupled to the high frequency signal chain.
Low band pass filter 2840 is shown passing lower frequencies in the range of 0.5 Hz to 150 Hz while filtering out out-of-band frequencies. The frequency band may vary, and may include, for example, frequencies less than 300 Hz, such as less than 200 Hz, including less than 150 Hz. The passing frequency signals are amplified by amplifier 842. Also shown is accelerometer 850 electrically coupled to second multiplexer 2860. Multiplexer 2860 multiplexes the signals from the accelerometer with the amplified signals from amplifier 2842. The multiplexed signals are then converted to digital signals by converter 864 which is also electrically coupled to low power processor 2870.
In one aspect, a digital accelerometer (such as one manufactured by Analog Devices), may be implemented in place of accelerometer 2850. Various advantages may be achieved by using a digital accelerometer. For example, because the signals the digital accelerometer would produce signals already in digital format, the digital accelerometer could bypass converter 2864 and electrically couple to the low power microcontroller 2870—in which case multiplexer 2860 would no longer be required. Also, the digital signal may be configured to turn itself on when detecting motion, further conserving power. In addition, continuous step counting may be implemented. The digital accelerometer may include a FIFO buffer to help control the flow of data sent to the low power processor 2870. For instance, data may be buffered in the FIFO until full, at which time the processor may be triggered to turn awaken from an idle state and receive the data.
Low power processor 2870 may be, for example, an MSP430 microcontroller from Texas Instruments. Low power processor 2870 of receiver 2800 maintains the idle state, which as stated earlier, requires minimal current draw—e.g., 10 μA or less, or 1 μA or less.
High power processor 2880 may be, for example, a VC5509 digital signal process from Texas Instruments. The high power processor 2880 performs the signal processing actions during the active state. These actions, as stated earlier, require larger amounts of current than the idle state—e.g., currents of 30 μA or more, such as 50 μA or more—and may include, for example, actions such as scanning for conductively transmitted signals, processing conductively transmitted signals when received, obtaining and/or processing physiological data, etc.
The receiver may include a hardware accelerator module to process data signals. The hardware accelerator module may be implemented instead of, for example, a DSP. Being a more specialized computation unit, it performs aspects of the signal processing algorithm with fewer transistors (less cost and power) compared to the more general purpose DSP. The blocks of hardware may be used to “accelerate” the performance of important specific function(s). Some architectures for hardware accelerators may be “programmable” via microcode or VLIW assembly. In the course of use, their functions may be accessed by calls to function libraries.
The hardware accelerator (HWA) module comprises an HWA input block to receive an input signal that is to be processed and instructions for processing the input signal; and, an HWA processing block to process the input signal according to the received instructions and to generate a resulting output signal. The resulting output signal may be transmitted as needed by an HWA output block.
Also shown in
Wireless communication element 2895 is shown electrically coupled to high power processor 2880 and may include, for example, a BLUETOOTH™ wireless communication transceiver. In one aspect, wireless communication element 2895 is electrically coupled to high power processor 2880. In another aspect, wireless communication element 2895 is electrically coupled to high power processor 2880 and low power processor 2870. Furthermore, wireless communication element 2895 may be implemented to have its own power supply so that it may be turned on and off independently from other components of the receiver—e.g., by a microprocessor.
Example Configurations for Various States
As stated earlier, for each receiver state, the high power functional block may be cycled between active and inactive states accordingly. Also, for each receiver state, various receiver elements (such as circuit blocks, power domains within processor, etc.) of a receiver may be configured to independently cycle from on and off by the power supply module. Therefore, the receiver may have different configurations for each state to achieve power efficiency.
In certain aspects, the receivers are part of a body-associated system or network of devices, such as sensors, signal receivers, and optionally other devices, which may be internal and/or external, which provide a variety of different types of information that is ultimately collected and processed by a processor, such as an external processor, which then can provide contextual data about a living subject, such as a patient, as output. For example, the receiver may be a member of an in-body network of devices which can provide an output that includes data about IEM ingestion, one or more physiological sensed parameters, implantable device operation, etc., to an external collector of the data. The external collector, e.g., in the form of a health care network server, etc., of the data then combines this receiver provided data with additional relevant data about the patient, e.g., weight, weather, medical record data, etc., and may process this disparate data to provide highly specific and contextual patient specific data.
Systems of the invention include, in certain aspects, a signal receiver aspect of a receiver and one or more IEMs. IEMs of interest include those described in PCT application serial no. PCT/US2006/016370 published as WO/2006/116718; PCT application serial no. PCT/US2007/082563 published as WO/2008/052136; PCT application serial no. PCT/US2007/024225 published as WO/2008/063626; PCT application serial no. PCT/US2007/022257 published as WO/2008/066617; PCT application serial no. PCT/US2008/052845 published as WO/2008/095183; PCT application serial no. PCT/US2008/053999 published as WO/2008/101107; PCT application serial no. PCT/US2008/056296 published as WO/2008/112577; PCT application serial no. PCT/US2008/056299 published as WO/2008/112578; and PCT application serial no. PCT/US2008/077753 published as WO 2009/042812; the disclosures of which applications are herein incorporated by reference.
In certain aspects the systems include an external device which is distinct from the receiver (which may be implanted or topically applied in certain aspects), where this external device provides a number of functionalities. Such an external device can include the capacity to provide feedback and appropriate clinical regulation to the patient. Such a device can take any of a number of forms. For example, the device can be configured to sit on the bed next to the patient, e.g., a bedside monitor. Other formats include, but are not limited to, PDAs, smart phones, home computers, etc.
An example of a system of the invention is shown in
Another example of the system of the present invention is shown in
In some implementations, the syringe 15107 may be configured in an interlock mode as a default state to prevent the administration of a dosage until the dosage manager 15160 provides feedback information to unlock the syringe 15107 to allow the administration of the agent or medication.
Moreover, the syringe 15107 may, in some embodiments, include a measurement mechanism to provide measurement information representative of the amount of the dosage. When that is the case, the measurement information may be used by the dosage manager 160 along with other patient information, such as blood pressure, glucose level, heart rate, ingestible event marker (IEM) data, etc., to control when, and/or how much of, a dosage is provided to the patient. Furthermore, the syringe 15107 may activate the measurement mechanism (which provides the measured information) when the syringe 15107 is proximate to (e.g., enters or is close to) the patient's body, at which time the measurement information and other information, such as an identifier associated with the syringe 15107, a patient identifier, etc, are carried by a signal to other devices, such as the receiver 15105, the glucometer 15110, and/or the wireless device 15115, for communication to the dosage manager 15160. Moreover, these other devices may monitor the time when the dosage is administered by the syringe 15107. As such, the dosage manager 15160 may receive a precise time when the dosage is administered rather than rely on user-provided dosage administration times. As such, the system may be used to evaluate a specific fluid transfer event between a parenteral fluid delivery device, such as syringe 15107, and a patient
While various details have been set forth in the foregoing description, it will be appreciated that the various aspects of the personal authentication apparatus, system, and method may be practiced without these specific details. For example, for conciseness and clarity selected aspects have been shown in block diagram form rather than in detail. Some portions of the detailed descriptions provided herein may be presented in terms of instructions that operate on data that is stored in a computer memory. Such descriptions and representations are used by those skilled in the art to describe and convey the substance of their work to others skilled in the art. In general, an algorithm refers to a self-consistent sequence of steps leading to a desired result, where a “step” refers to a manipulation of physical quantities which may, though need not necessarily, take the form of electrical or magnetic signals capable of being stored, transferred, combined, compared, and otherwise manipulated. It is common usage to refer to these signals as bits, values, elements, symbols, characters, terms, numbers, or the like. These and similar terms may be associated with the appropriate physical quantities and are merely convenient labels applied to these quantities.
Unless specifically stated otherwise as apparent from the foregoing discussion, it is appreciated that, throughout the foregoing description, discussions using terms such as “processing” or “computing” or “calculating” or “determining” or “displaying” or the like, refer to the action and processes of a computer system, or similar electronic computing device, that manipulates and transforms data represented as physical (electronic) quantities within the computer system's registers and memories into other data similarly represented as physical quantities within the computer system memories or registers or other such information storage, transmission or display devices.
It is worthy to note that any reference to “one aspect,” “an aspect,” “one embodiment,” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the aspect is included in at least one aspect. Thus, appearances of the phrases “in one aspect,” “in an aspect,” “in one embodiment,” or “in an embodiment” in various places throughout the specification are not necessarily all referring to the same aspect. Furthermore, the particular features, structures or characteristics may be combined in any suitable manner in one or more aspects.
Some aspects may be described in accordance with the expression “coupled” and “connected” along with their derivatives. It should be understood that these terms are not intended as synonyms for each other. For example, some aspects may be described using the term “connected” to indicate that two or more elements are in direct physical or electrical contact with each other. In another example, some aspects may be described using the term “coupled” to indicate that two or more elements are in direct physical or electrical contact. The term “coupled,” however, also may mean that two or more elements are not in direct contact with each other, but yet still co-operate or interact with each other.
It is worthy to note that any reference to “one aspect,” “an aspect,” “one embodiment,” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the aspect is included in at least one aspect. Thus, appearances of the phrases “in one aspect,” “in an aspect,” “in one embodiment,” or “in an embodiment” in various places throughout the specification are not necessarily all referring to the same aspect. Furthermore, the particular features, structures or characteristics may be combined in any suitable manner in one or more aspects.
Although various embodiments have been described herein, many modifications, variations, substitutions, changes, and equivalents to those embodiments may be implemented and will occur to those skilled in the art. Also, where materials are disclosed for certain components, other materials may be used. It is therefore to be understood that the foregoing description and the appended claims are intended to cover all such modifications and variations as falling within the scope of the disclosed embodiments. The following claims are intended to cover all such modification and variations.
In a general sense, those skilled in the art will recognize that the various aspects described herein which can be implemented, individually and/or collectively, by a wide range of hardware, software, firmware, or any combination thereof can be viewed as being composed of various types of “electrical circuitry.” Consequently, as used herein “electrical circuitry” includes, but is not limited to, electrical circuitry having at least one discrete electrical circuit, electrical circuitry having at least one integrated circuit, electrical circuitry having at least one application specific integrated circuit, electrical circuitry forming a general purpose computing device configured by a computer program (e.g., a general purpose computer configured by a computer program which at least partially carries out processes and/or devices described herein, or a microprocessor configured by a computer program which at least partially carries out processes and/or devices described herein), electrical circuitry forming a memory device (e.g., forms of random access memory), and/or electrical circuitry forming a communications device (e.g., a modem, communications switch, or optical-electrical equipment). Those having skill in the art will recognize that the subject matter described herein may be implemented in an analog or digital fashion or some combination thereof.
The foregoing detailed description has set forth various embodiments of the devices and/or processes via the use of block diagrams, flowcharts, and/or examples. Insofar as such block diagrams, flowcharts, and/or examples contain one or more functions and/or operations, it will be understood by those within the art that each function and/or operation within such block diagrams, flowcharts, or examples can be implemented, individually and/or collectively, by a wide range of hardware, software, firmware, or virtually any combination thereof. In one embodiment, several portions of the subject matter described herein may be implemented via Application Specific Integrated Circuits (ASICs), Field Programmable Gate Arrays (FPGAs), digital signal processors (DSPs), or other integrated formats. However, those skilled in the art will recognize that some aspects of the embodiments disclosed herein, in whole or in part, can be equivalently implemented in integrated circuits, as one or more computer programs running on one or more computers (e.g., as one or more programs running on one or more computer systems), as one or more programs running on one or more processors (e.g., as one or more programs running on one or more microprocessors), as firmware, or as virtually any combination thereof, and that designing the circuitry and/or writing the code for the software and or firmware would be well within the skill of one of skill in the art in light of this disclosure. In addition, those skilled in the art will appreciate that the mechanisms of the subject matter described herein are capable of being distributed as a program product in a variety of forms, and that an illustrative embodiment of the subject matter described herein applies regardless of the particular type of signal bearing medium used to actually carry out the distribution. Examples of a signal bearing medium include, but are not limited to, the following: a recordable type medium such as a floppy disk, a hard disk drive, a Compact Disc (CD), a Digital Video Disk (DVD), a digital tape, a computer memory, etc.; and a transmission type medium such as a digital and/or an analog communication medium (e.g., a fiber optic cable, a waveguide, a wired communications link, a wireless communication link (e.g., transmitter, receiver, transmission logic, reception logic, etc.), etc.).
All of the above-mentioned U.S. patents, U.S. patent application publications, U.S. patent applications, foreign patents, foreign patent applications, non-patent publications referred to in this specification and/or listed in any Application Data Sheet, or any other disclosure material are incorporated herein by reference, to the extent not inconsistent herewith. As such, and to the extent necessary, the disclosure as explicitly set forth herein supersedes any conflicting material incorporated herein by reference. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material set forth herein will only be incorporated to the extent that no conflict arises between that incorporated material and the existing disclosure material.
One skilled in the art will recognize that the herein described components (e.g., operations), devices, objects, and the discussion accompanying them are used as examples for the sake of conceptual clarity and that various configuration modifications are contemplated. Consequently, as used herein, the specific exemplars set forth and the accompanying discussion are intended to be representative of their more general classes. In general, use of any specific exemplar is intended to be representative of its class, and the non-inclusion of specific components (e.g., operations), devices, and objects should not be taken limiting.
With respect to the use of substantially any plural and/or singular terms herein, those having skill in the art can translate from the plural to the singular and/or from the singular to the plural as is appropriate to the context and/or application. The various singular/plural permutations are not expressly set forth herein for sake of clarity.
The herein described subject matter sometimes illustrates different components contained within, or connected with, different other components. It is to be understood that such depicted architectures are merely exemplary, and that in fact many other architectures may be implemented which achieve the same functionality. In a conceptual sense, any arrangement of components to achieve the same functionality is effectively “associated” such that the desired functionality is achieved. Hence, any two components herein combined to achieve a particular functionality can be seen as “associated with” each other such that the desired functionality is achieved, irrespective of architectures or intermedial components. Likewise, any two components so associated can also be viewed as being “operably connected,” or “operably coupled,” to each other to achieve the desired functionality, and any two components capable of being so associated can also be viewed as being “operably couplable,” to each other to achieve the desired functionality. Specific examples of operably couplable include but are not limited to physically mateable and/or physically interacting components, and/or wirelessly interactable, and/or wirelessly interacting components, and/or logically interacting, and/or logically interactable components.
In some instances, one or more components may be referred to herein as “configured to,” “configurable to,” “operable/operative to,” “adapted/adaptable,” “able to,” “conformable/conformed to,” etc. Those skilled in the art will recognize that “configured to” can generally encompass active-state components and/or inactive-state components and/or standby-state components, unless context requires otherwise.
While particular aspects of the present subject matter described herein have been shown and described, it will be apparent to those skilled in the art that, based upon the teachings herein, changes and modifications may be made without departing from the subject matter described herein and its broader aspects and, therefore, the appended claims are to encompass within their scope all such changes and modifications as are within the true spirit and scope of the subject matter described herein. It will be understood by those within the art that, in general, terms used herein, and especially in the appended claims (e.g., bodies of the appended claims) are generally intended as “open” terms (e.g., the term “including” should be interpreted as “including but not limited to,” the term “having” should be interpreted as “having at least,” the term “includes” should be interpreted as “includes but is not limited to,” etc.). It will be further understood by those within the art that if a specific number of an introduced claim recitation is intended, such an intent will be explicitly recited in the claim, and in the absence of such recitation no such intent is present. For example, as an aid to understanding, the following appended claims may contain usage of the introductory phrases “at least one” and “one or more” to introduce claim recitations. However, the use of such phrases should not be construed to imply that the introduction of a claim recitation by the indefinite articles “a” or “an” limits any particular claim containing such introduced claim recitation to claims containing only one such recitation, even when the same claim includes the introductory phrases “one or more” or “at least one” and indefinite articles such as “a” or “an” (e.g., “a” and/or “an” should typically be interpreted to mean “at least one” or “one or more”); the same holds true for the use of definite articles used to introduce claim recitations.
In addition, even if a specific number of an introduced claim recitation is explicitly recited, those skilled in the art will recognize that such recitation should typically be interpreted to mean at least the recited number (e.g., the bare recitation of “two recitations,” without other modifiers, typically means at least two recitations, or two or more recitations). Furthermore, in those instances where a convention analogous to “at least one of A, B, and C, etc.” is used, in general such a construction is intended in the sense one having skill in the art would understand the convention (e.g., “a system having at least one of A, B, and C” would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, etc.). In those instances where a convention analogous to “at least one of A, B, or C, etc.” is used, in general such a construction is intended in the sense one having skill in the art would understand the convention (e.g., “a system having at least one of A, B, or C” would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, etc.). It will be further understood by those within the art that typically a disjunctive word and/or phrase presenting two or more alternative terms, whether in the description, claims, or drawings, should be understood to contemplate the possibilities of including one of the terms, either of the terms, or both terms unless context dictates otherwise. For example, the phrase “A or B” will be typically understood to include the possibilities of “A” or “B” or “A and B.”
With respect to the appended claims, those skilled in the art will appreciate that recited operations therein may generally be performed in any order. Also, although various operational flows are presented in a sequence(s), it should be understood that the various operations may be performed in other orders than those which are illustrated, or may be performed concurrently. Examples of such alternate orderings may include overlapping, interleaved, interrupted, reordered, incremental, preparatory, supplemental, simultaneous, reverse, or other variant orderings, unless context dictates otherwise. Furthermore, terms like “responsive to,” “related to,” or other past-tense adjectives are generally not intended to exclude such variants, unless context dictates otherwise.
In certain cases, use of a system or method may occur in a territory even if components are located outside the territory. For example, in a distributed computing context, use of a distributed computing system may occur in a territory even though parts of the system may be located outside of the territory (e.g., relay, server, processor, signal-bearing medium, transmitting computer, receiving computer, etc. located outside the territory).
A sale of a system or method may likewise occur in a territory even if components of the system or method are located and/or used outside the territory. Further, implementation of at least part of a system for performing a method in one territory does not preclude use of the system in another territory.
Although various embodiments have been described herein, many modifications, variations, substitutions, changes, and equivalents to those embodiments may be implemented and will occur to those skilled in the art. Also, where materials are disclosed for certain components, other materials may be used. It is therefore to be understood that the foregoing description and the appended claims are intended to cover all such modifications and variations as falling within the scope of the disclosed embodiments. The following claims are intended to cover all such modification and variations.
In summary, numerous benefits have been described which result from employing the concepts described herein. The foregoing description of the one or more embodiments has been presented for purposes of illustration and description. It is not intended to be exhaustive or limiting to the precise form disclosed. Modifications or variations are possible in light of the above teachings. The one or more embodiments were chosen and described in order to illustrate principles and practical application to thereby enable one of ordinary skill in the art to utilize the various embodiments and with various modifications as are suited to the particular use contemplated. It is intended that the claims submitted herewith define the overall scope.
This application is a continuation application claiming priority under 35 U.S.C. § 120 to U.S. patent application Ser. No. 13/843,307, entitled PERSONAL AUTHENTICATION APPARATUS SYSTEM AND METHOD, filed Mar. 15, 2013, now U.S. Pat. No. 9,659,423, the entire disclosure of which is hereby incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
2206695 | Guanella | Jul 1940 | A |
2463504 | Atkins | Mar 1949 | A |
2582968 | Labin | Jan 1952 | A |
3340866 | Noller | Sep 1967 | A |
3607788 | Adolph | Sep 1971 | A |
3642008 | Bolduc | Feb 1972 | A |
3679480 | Brown et al. | Jul 1972 | A |
3682160 | Murata | Aug 1972 | A |
3719183 | Schwartz | Mar 1973 | A |
3828766 | Krasnow | Aug 1974 | A |
3837339 | Aisenberg et al. | Sep 1974 | A |
3989050 | Buchalter | Nov 1976 | A |
4067014 | Wheeler et al. | Jan 1978 | A |
4077397 | Ellis | Mar 1978 | A |
4077398 | Ellis | Mar 1978 | A |
4082087 | Howson | Apr 1978 | A |
4090752 | Long | May 1978 | A |
4106348 | Auphan | Aug 1978 | A |
4121573 | Crovella et al. | Oct 1978 | A |
4129125 | Lester | Dec 1978 | A |
4149168 | Hose | Apr 1979 | A |
4166453 | McClelland | Sep 1979 | A |
4185172 | Melindo et al. | Jan 1980 | A |
4239046 | Ong | Dec 1980 | A |
4269189 | Abraham | May 1981 | A |
4331654 | Morris | May 1982 | A |
4333150 | Matty et al. | Jun 1982 | A |
4345588 | Widder et al. | Aug 1982 | A |
4418697 | Tama | Dec 1983 | A |
4425117 | Hugemann | Jan 1984 | A |
4494950 | Fischell | Jan 1985 | A |
4513385 | Muri | Apr 1985 | A |
4559950 | Vaughan | Dec 1985 | A |
4578061 | Lemelson | Mar 1986 | A |
4635641 | Hoffman | Jan 1987 | A |
4654165 | Eisenber | Mar 1987 | A |
4669479 | Dunseath | Jun 1987 | A |
4688400 | Chioffe | Aug 1987 | A |
4725997 | Urquhart et al. | Feb 1988 | A |
4749575 | Rotman et al. | Jun 1988 | A |
4763659 | Dunseath | Aug 1988 | A |
4784162 | Ricks | Nov 1988 | A |
4793825 | Benjamin et al. | Dec 1988 | A |
4809705 | Ascher | Mar 1989 | A |
4844076 | Lesho | Jul 1989 | A |
4858617 | Sanders | Aug 1989 | A |
4896261 | Nolan | Jan 1990 | A |
4975230 | Pinkhasov | Dec 1990 | A |
4987897 | Funke | Jan 1991 | A |
5016634 | Vock et al. | May 1991 | A |
5079006 | Urguhart | Jan 1992 | A |
5113859 | Funke | May 1992 | A |
5167626 | Casper | Dec 1992 | A |
5176626 | Soehendra | Jan 1993 | A |
5232383 | Barnick | Aug 1993 | A |
5245332 | Katzenstein et al. | Sep 1993 | A |
5261402 | DiSabito | Nov 1993 | A |
5263481 | Axelgaard et al. | Nov 1993 | A |
5281287 | Lloyd | Jan 1994 | A |
5283136 | Peled et al. | Feb 1994 | A |
5288564 | Klein | Feb 1994 | A |
5318557 | Gross | Jun 1994 | A |
5394882 | Mawhinney | Mar 1995 | A |
5458141 | Neil et al. | Oct 1995 | A |
5473612 | Dehner, Jr. et al. | Dec 1995 | A |
5485841 | Watkin et al. | Jan 1996 | A |
5511548 | Riazzi et al. | Apr 1996 | A |
5551020 | Flax et al. | Aug 1996 | A |
5596302 | Mastrocola et al. | Jan 1997 | A |
D377983 | Sabri et al. | Feb 1997 | S |
5623520 | Kaiser | Apr 1997 | A |
5634466 | Gruner | Jun 1997 | A |
5634468 | Platt | Jun 1997 | A |
5645063 | Straka et al. | Jul 1997 | A |
5720771 | Snell | Feb 1998 | A |
5724432 | Bouvet et al. | Mar 1998 | A |
5740811 | Hedberg | Apr 1998 | A |
5792048 | Schaefer | Aug 1998 | A |
5802467 | Salazar | Sep 1998 | A |
5833716 | Bar-Or | Nov 1998 | A |
5845265 | Woolston | Dec 1998 | A |
5862803 | Besson | Jan 1999 | A |
5862808 | Albarello | Jan 1999 | A |
5868136 | Fox | Feb 1999 | A |
5921925 | Cartmell et al. | Jul 1999 | A |
5925030 | Gross et al. | Jul 1999 | A |
5925066 | Kroll et al. | Jul 1999 | A |
5937059 | Kim et al. | Aug 1999 | A |
5957854 | Besson et al. | Sep 1999 | A |
5974124 | Schlueter, Jr. et al. | Oct 1999 | A |
5981166 | Mandecki | Nov 1999 | A |
5999846 | Pardey et al. | Dec 1999 | A |
6023631 | Cartmell et al. | Feb 2000 | A |
6033370 | Reinbold et al. | Mar 2000 | A |
6038464 | Axelgaard et al. | Mar 2000 | A |
6042710 | Dubrow | Mar 2000 | A |
6047203 | Sackner | Apr 2000 | A |
6076016 | Feierbach | Jun 2000 | A |
6081734 | Batz | Jun 2000 | A |
6095985 | Raymond et al. | Aug 2000 | A |
6115636 | Ryan | Sep 2000 | A |
6117077 | Del Mar et al. | Sep 2000 | A |
6122351 | Schlueter, Jr. et al. | Sep 2000 | A |
6141592 | Pauly | Oct 2000 | A |
6151353 | Harrison et al. | Nov 2000 | A |
6200265 | Walsh et al. | Mar 2001 | B1 |
6200625 | Beckett | Mar 2001 | B1 |
6204764 | Maloney | Mar 2001 | B1 |
6206702 | Hayden et al. | Mar 2001 | B1 |
6217744 | Crosby | Apr 2001 | B1 |
6231593 | Meserol | May 2001 | B1 |
6238338 | DeLuca et al. | May 2001 | B1 |
6245057 | Sieben et al. | Jun 2001 | B1 |
6275476 | Wood | Aug 2001 | B1 |
6285897 | Kilcoyne et al. | Sep 2001 | B1 |
6287252 | Lugo | Sep 2001 | B1 |
6289238 | Besson et al. | Sep 2001 | B1 |
6301298 | Kuntz et al. | Oct 2001 | B1 |
6315719 | Rode et al. | Nov 2001 | B1 |
6317714 | Del Castillo | Nov 2001 | B1 |
6327486 | Nissila et al. | Dec 2001 | B1 |
6358202 | Arent | Mar 2002 | B1 |
6364834 | Reuss | Apr 2002 | B1 |
6366206 | Ishikawa et al. | Apr 2002 | B1 |
6371927 | Brune | Apr 2002 | B1 |
6374670 | Spelman | Apr 2002 | B1 |
6380858 | Yarin et al. | Apr 2002 | B1 |
6394953 | Devlin et al. | May 2002 | B1 |
6394997 | Lemelson | May 2002 | B1 |
6409674 | Brockway et al. | Jun 2002 | B1 |
6426863 | Munshi | Jul 2002 | B1 |
6432292 | Pinto et al. | Aug 2002 | B1 |
6440069 | Raymond et al. | Aug 2002 | B1 |
6441747 | Khair | Aug 2002 | B1 |
6477424 | Thompson et al. | Nov 2002 | B1 |
6482156 | Lliff | Nov 2002 | B2 |
6494829 | New et al. | Dec 2002 | B1 |
6496705 | Ng et al. | Dec 2002 | B1 |
6526315 | Inagawa | Feb 2003 | B1 |
6544174 | West | Apr 2003 | B2 |
6564079 | Cory | May 2003 | B1 |
6577893 | Besson et al. | Jun 2003 | B1 |
6579231 | Phipps | Jun 2003 | B1 |
6605038 | Teller et al. | Aug 2003 | B1 |
6605046 | Del Mar | Aug 2003 | B1 |
6609018 | Cory | Aug 2003 | B2 |
6612984 | Kerr | Sep 2003 | B1 |
6632175 | Marshall | Oct 2003 | B1 |
6632216 | Houzego et al. | Oct 2003 | B2 |
6643541 | Mok et al. | Nov 2003 | B2 |
6654638 | Sweeney | Nov 2003 | B1 |
6663846 | McCombs | Dec 2003 | B1 |
6673474 | Yamamoto | Jan 2004 | B2 |
6680923 | Leon | Jan 2004 | B1 |
6689117 | Sweeney et al. | Feb 2004 | B2 |
6694161 | Mehrotra | Feb 2004 | B2 |
6704602 | Berg et al. | Mar 2004 | B2 |
6720923 | Hayward et al. | Apr 2004 | B1 |
6738671 | Christophersom et al. | May 2004 | B2 |
6740033 | Olejniczak et al. | May 2004 | B1 |
6745082 | Axelgaard et al. | Jun 2004 | B2 |
6755783 | Cosentino | Jun 2004 | B2 |
6757523 | Fry | Jun 2004 | B2 |
6800060 | Marshall | Oct 2004 | B2 |
6801137 | Eggers et al. | Oct 2004 | B2 |
6807438 | Brun Del Re et al. | Oct 2004 | B1 |
6814706 | Barton et al. | Nov 2004 | B2 |
6822554 | Vrijens et al. | Nov 2004 | B2 |
6836862 | Erekson et al. | Dec 2004 | B1 |
6839659 | Tarassenko et al. | Jan 2005 | B2 |
6840904 | Goldberg | Jan 2005 | B2 |
6842636 | Perrault | Jan 2005 | B2 |
6845272 | Thomsen | Jan 2005 | B1 |
6856832 | Matsumura et al. | Feb 2005 | B1 |
6864780 | Doi | Mar 2005 | B2 |
6879810 | Bouet | Apr 2005 | B2 |
6882881 | Lesser et al. | Apr 2005 | B1 |
6889165 | Lind et al. | May 2005 | B2 |
6897788 | Khair et al. | May 2005 | B2 |
6909878 | Haller | Jun 2005 | B2 |
6922592 | Thompson et al. | Jul 2005 | B2 |
6928370 | Anuzis et al. | Aug 2005 | B2 |
6929636 | Von Alten | Aug 2005 | B1 |
6937150 | Medema | Aug 2005 | B2 |
6942616 | Kerr | Sep 2005 | B2 |
6951536 | Yokoi | Oct 2005 | B2 |
6956917 | Lenosky | Oct 2005 | B2 |
6957107 | Rogers et al. | Oct 2005 | B2 |
6959929 | Pugnet et al. | Nov 2005 | B2 |
6961601 | Mathews et al. | Nov 2005 | B2 |
6968153 | Heinonen | Nov 2005 | B1 |
6987965 | Ng et al. | Jan 2006 | B2 |
6990082 | Zehavi et al. | Jan 2006 | B1 |
7002476 | Rapchak | Feb 2006 | B2 |
7004395 | Koenck | Feb 2006 | B2 |
7009634 | Iddan et al. | Mar 2006 | B2 |
7009946 | Kardach | Mar 2006 | B1 |
7013162 | Gorsuch | Mar 2006 | B2 |
7016648 | Haller | Mar 2006 | B2 |
7020508 | Stivoric | Mar 2006 | B2 |
7024248 | Penner et al. | Apr 2006 | B2 |
7031745 | Shen | Apr 2006 | B2 |
7031857 | Tarassenko et al. | Apr 2006 | B2 |
7039453 | Mullick | May 2006 | B2 |
7046649 | Awater et al. | May 2006 | B2 |
7076437 | Levy | Jul 2006 | B1 |
7116252 | Teraguchi | Oct 2006 | B2 |
7118531 | Krill | Oct 2006 | B2 |
7127300 | Mazar et al. | Oct 2006 | B2 |
7139332 | Yu et al. | Nov 2006 | B2 |
7146228 | Nielsen | Dec 2006 | B2 |
7146449 | Do et al. | Dec 2006 | B2 |
7148828 | Fernandez | Dec 2006 | B2 |
7149581 | Goedeke et al. | Dec 2006 | B2 |
7154071 | Sattler et al. | Dec 2006 | B2 |
7154916 | Soloff | Dec 2006 | B2 |
7155232 | Godfrey et al. | Dec 2006 | B2 |
7160258 | Imran | Jan 2007 | B2 |
7161484 | Tsoukalis | Jan 2007 | B2 |
7164942 | Avrahami | Jan 2007 | B2 |
7171166 | Ng et al. | Jan 2007 | B2 |
7171177 | Park et al. | Jan 2007 | B2 |
7171259 | Rytky | Jan 2007 | B2 |
7187960 | Abreu | Mar 2007 | B2 |
7188199 | Leung et al. | Mar 2007 | B2 |
7188767 | Penuela | Mar 2007 | B2 |
7194038 | Inkinen | Mar 2007 | B1 |
7206630 | Tarler | Apr 2007 | B1 |
7209790 | Thompson et al. | Apr 2007 | B2 |
7215660 | Perlman | May 2007 | B2 |
7215991 | Besson | May 2007 | B2 |
7218967 | Bergelson | May 2007 | B2 |
7231451 | Law | Jun 2007 | B2 |
7243118 | Lou | Jul 2007 | B2 |
7246521 | Kim | Jul 2007 | B2 |
7249212 | Do | Jul 2007 | B2 |
7252792 | Perrault | Aug 2007 | B2 |
7253716 | Lovoi et al. | Aug 2007 | B2 |
7261690 | Teller | Aug 2007 | B2 |
7270633 | Goscha | Sep 2007 | B1 |
7273454 | Raymond et al. | Sep 2007 | B2 |
7283867 | Strother et al. | Oct 2007 | B2 |
7285090 | Stivoric et al. | Oct 2007 | B2 |
7289855 | Nghiem | Oct 2007 | B2 |
7291497 | Holmes | Nov 2007 | B2 |
7292139 | Mazar et al. | Nov 2007 | B2 |
7294105 | Islam | Nov 2007 | B1 |
7311665 | Hawthorne | Dec 2007 | B2 |
7313163 | Liu | Dec 2007 | B2 |
7317378 | Jarvis et al. | Jan 2008 | B2 |
7318808 | Tarassenko et al. | Jan 2008 | B2 |
7336929 | Yasuda | Feb 2008 | B2 |
7342895 | Serpa | Mar 2008 | B2 |
7346380 | Axelgaard et al. | Mar 2008 | B2 |
7349722 | Witkowski et al. | Mar 2008 | B2 |
7352998 | Palin | Apr 2008 | B2 |
7353258 | Washburn | Apr 2008 | B2 |
7357891 | Yang et al. | Apr 2008 | B2 |
7359674 | Markki | Apr 2008 | B2 |
7366558 | Virtanen et al. | Apr 2008 | B2 |
7373196 | Ryu et al. | May 2008 | B2 |
7375739 | Robbins | May 2008 | B2 |
7376435 | McGowan | May 2008 | B2 |
7382247 | Welch et al. | Jun 2008 | B2 |
7382263 | Danowski et al. | Jun 2008 | B2 |
7387607 | Holt | Jun 2008 | B2 |
7388903 | Godfrey et al. | Jun 2008 | B2 |
7389088 | Kim | Jun 2008 | B2 |
7392015 | Farlow | Jun 2008 | B1 |
7395105 | Schmidt et al. | Jul 2008 | B2 |
7395106 | Ryu et al. | Jul 2008 | B2 |
7396330 | Banet | Jul 2008 | B2 |
7404968 | Abrams et al. | Jul 2008 | B2 |
7413544 | Kerr | Aug 2008 | B2 |
7414534 | Kroll et al. | Aug 2008 | B1 |
7415242 | Ngan | Aug 2008 | B1 |
7424268 | Diener | Sep 2008 | B2 |
7424319 | Muehlsteff | Sep 2008 | B2 |
7427266 | Ayer et al. | Sep 2008 | B2 |
7471665 | Perlman | Dec 2008 | B2 |
7476104 | Marmaropoulos et al. | Jan 2009 | B2 |
7499674 | Salokannel | Mar 2009 | B2 |
7502643 | Farringdon et al. | Mar 2009 | B2 |
7505795 | Lim et al. | Mar 2009 | B1 |
7510121 | Koenck | Mar 2009 | B2 |
7512448 | Malick | Mar 2009 | B2 |
7515043 | Welch | Apr 2009 | B2 |
7523756 | Minai | Apr 2009 | B2 |
7525426 | Edelstein | Apr 2009 | B2 |
7539533 | Tran | May 2009 | B2 |
7542878 | Nanikashvili | Jun 2009 | B2 |
7547278 | Miyazaki et al. | Jun 2009 | B2 |
7551590 | Haller | Jun 2009 | B2 |
7554452 | Cole | Jun 2009 | B2 |
7575005 | Mumford | Aug 2009 | B2 |
7599003 | Suzuki et al. | Oct 2009 | B2 |
7616111 | Covannon | Nov 2009 | B2 |
7616710 | Kim et al. | Nov 2009 | B2 |
7617001 | Penner et al. | Nov 2009 | B2 |
7626387 | Adachi | Dec 2009 | B2 |
7640802 | King et al. | Jan 2010 | B2 |
7647112 | Tracey | Jan 2010 | B2 |
7647185 | Tarassenko et al. | Jan 2010 | B2 |
7653031 | Godfrey et al. | Jan 2010 | B2 |
7668437 | Yamada et al. | Feb 2010 | B1 |
7672703 | Yeo et al. | Mar 2010 | B2 |
7672714 | Kuo | Mar 2010 | B2 |
7673679 | Harrison et al. | Mar 2010 | B2 |
7678043 | Gilad | Mar 2010 | B2 |
7688204 | Yamanaka et al. | Mar 2010 | B2 |
7689437 | Teller et al. | Mar 2010 | B1 |
7697994 | VanDanacker et al. | Apr 2010 | B2 |
7720036 | Sadri | May 2010 | B2 |
7729776 | Von Arx et al. | Jun 2010 | B2 |
7733224 | Tran | Jun 2010 | B2 |
7736318 | Costentino | Jun 2010 | B2 |
7750790 | Yang et al. | Jul 2010 | B2 |
7756587 | Penner et al. | Jul 2010 | B2 |
7782991 | Sobchak et al. | Aug 2010 | B2 |
7797033 | D'Andrea et al. | Sep 2010 | B2 |
7809399 | Lu | Oct 2010 | B2 |
7844341 | Von Arx et al. | Nov 2010 | B2 |
7874993 | Bardy | Jan 2011 | B2 |
7885700 | Clark et al. | Feb 2011 | B2 |
7904133 | Gehman et al. | Mar 2011 | B2 |
D639437 | Bishay et al. | Jun 2011 | S |
7978064 | Zdeblick et al. | Jul 2011 | B2 |
7983189 | Bugenhagen | Jul 2011 | B2 |
8036748 | Zdeblick et al. | Oct 2011 | B2 |
8055334 | Savage et al. | Nov 2011 | B2 |
8073707 | Teller et al. | Dec 2011 | B2 |
8083128 | Dembo et al. | Dec 2011 | B2 |
8094807 | Ishibashi et al. | Jan 2012 | B2 |
8114021 | Robertson et al. | Feb 2012 | B2 |
8123576 | Kim | Feb 2012 | B2 |
8140143 | Picard et al. | Mar 2012 | B2 |
8160672 | Kim | Apr 2012 | B2 |
8170515 | Le Reverend et al. | May 2012 | B2 |
8177611 | Kang | May 2012 | B2 |
8180425 | Selvitelli et al. | May 2012 | B2 |
8184854 | Bartsch | May 2012 | B2 |
8185191 | Shapiro et al. | May 2012 | B1 |
8185646 | Headley | May 2012 | B2 |
8190230 | Rytky | May 2012 | B2 |
8193821 | Mueller | Jun 2012 | B2 |
8200320 | Kovacs | Jun 2012 | B2 |
8214007 | Baker et al. | Jul 2012 | B2 |
8238998 | Park | Aug 2012 | B2 |
8249686 | Libbus et al. | Aug 2012 | B2 |
8253586 | Matak | Aug 2012 | B1 |
8254853 | Rofougaran | Aug 2012 | B2 |
8285356 | Bly et al. | Oct 2012 | B2 |
8290574 | Felid et al. | Oct 2012 | B2 |
8301232 | Albert et al. | Oct 2012 | B2 |
8308640 | Baldus et al. | Nov 2012 | B2 |
8315687 | Cross et al. | Nov 2012 | B2 |
8321672 | Asano | Nov 2012 | B2 |
8332009 | McLaughlin et al. | Dec 2012 | B2 |
8360976 | Imran | Jan 2013 | B2 |
8369936 | Farringdon et al. | Feb 2013 | B2 |
8386009 | Lindberg et al. | Feb 2013 | B2 |
8404275 | Habboushe | Mar 2013 | B2 |
8440274 | Wang | May 2013 | B2 |
8454528 | Yuen et al. | Jun 2013 | B2 |
8471960 | Lin et al. | Jun 2013 | B2 |
8514979 | Laporte | Aug 2013 | B2 |
8515559 | Roberts et al. | Aug 2013 | B2 |
8538544 | Sivard | Sep 2013 | B2 |
8545436 | Robertson et al. | Oct 2013 | B2 |
8548033 | Nemeth et al. | Oct 2013 | B2 |
8604974 | Ganeshan | Dec 2013 | B2 |
8615290 | Lin et al. | Dec 2013 | B2 |
8620402 | Parker, III et al. | Dec 2013 | B2 |
8634838 | Hellwig et al. | Jan 2014 | B2 |
8660645 | Stevenson et al. | Feb 2014 | B2 |
8668643 | Kinast | Mar 2014 | B2 |
8725243 | Dilorenzo et al. | May 2014 | B2 |
8730031 | Thompson et al. | May 2014 | B2 |
8754799 | Coln et al. | Jun 2014 | B2 |
8773258 | Vosch et al. | Jul 2014 | B2 |
8836513 | Hafezi et al. | Sep 2014 | B2 |
8838217 | Myr | Sep 2014 | B2 |
8858432 | Robertson | Oct 2014 | B2 |
8886281 | Pernu et al. | Nov 2014 | B2 |
8886316 | Juels | Nov 2014 | B1 |
8892194 | Balji et al. | Nov 2014 | B2 |
8908943 | Berry et al. | Dec 2014 | B2 |
8920345 | Greenberg | Dec 2014 | B2 |
8923956 | Clark et al. | Dec 2014 | B2 |
8926509 | Magar et al. | Jan 2015 | B2 |
8932221 | Colliou et al. | Jan 2015 | B2 |
8945005 | Hafezi et al. | Feb 2015 | B2 |
8945328 | Longinotti et al. | Feb 2015 | B2 |
8989837 | Weinstein et al. | Mar 2015 | B2 |
9014779 | Zdeblick et al. | Apr 2015 | B2 |
9031658 | Chiao et al. | May 2015 | B2 |
9149577 | Robertson et al. | Oct 2015 | B2 |
9158890 | Meredith et al. | Oct 2015 | B2 |
9189941 | Eschelman et al. | Nov 2015 | B2 |
9226663 | Fei | Jan 2016 | B2 |
9226679 | Balda | Jan 2016 | B2 |
9270025 | Robertson et al. | Feb 2016 | B2 |
9270503 | Kushner et al. | Feb 2016 | B2 |
9277864 | Yang et al. | Mar 2016 | B2 |
9320455 | Hafezi et al. | Apr 2016 | B2 |
9439566 | Arne et al. | Sep 2016 | B2 |
9439582 | Berkman et al. | Sep 2016 | B2 |
9439599 | Thompson et al. | Sep 2016 | B2 |
9517012 | Lane et al. | Dec 2016 | B2 |
9577864 | Kushner et al. | Feb 2017 | B2 |
9597010 | Thompson et al. | Mar 2017 | B2 |
9659423 | Robertson et al. | May 2017 | B2 |
9756874 | Arne et al. | Sep 2017 | B2 |
9787511 | Fleming et al. | Oct 2017 | B2 |
9820658 | Tran | Nov 2017 | B2 |
9946297 | Nazzaro et al. | Apr 2018 | B2 |
10498572 | Flemming et al. | Dec 2019 | B2 |
20010027331 | Thompson | Oct 2001 | A1 |
20010031071 | Nichols et al. | Oct 2001 | A1 |
20010044588 | Mault | Nov 2001 | A1 |
20010051766 | Gazdinski | Dec 2001 | A1 |
20010056262 | Cabiri et al. | Dec 2001 | A1 |
20020002326 | Causey et al. | Jan 2002 | A1 |
20020026111 | Ackerman | Feb 2002 | A1 |
20020040278 | Anuzis et al. | Apr 2002 | A1 |
20020077620 | Sweeney et al. | Jun 2002 | A1 |
20020128934 | Shaer | Sep 2002 | A1 |
20020132226 | Nair | Sep 2002 | A1 |
20020169696 | Zara | Nov 2002 | A1 |
20020192159 | Reitberg | Dec 2002 | A1 |
20020193669 | Glukhovsky | Dec 2002 | A1 |
20020198470 | Imran et al. | Dec 2002 | A1 |
20030017826 | Fishman | Jan 2003 | A1 |
20030023150 | Yokoi et al. | Jan 2003 | A1 |
20030028226 | Thompson | Feb 2003 | A1 |
20030065536 | Hansen | Apr 2003 | A1 |
20030076179 | Branch et al. | Apr 2003 | A1 |
20030083559 | Thompson | May 2003 | A1 |
20030091121 | Kenmochi | May 2003 | A1 |
20030126593 | Mault | Jul 2003 | A1 |
20030130714 | Nielsen et al. | Jul 2003 | A1 |
20030135128 | Suffin et al. | Jul 2003 | A1 |
20030135392 | Vrijens et al. | Jul 2003 | A1 |
20030152622 | Louie-Helm et al. | Aug 2003 | A1 |
20030158466 | Lynn et al. | Aug 2003 | A1 |
20030158756 | Abramson | Aug 2003 | A1 |
20030162556 | Libes | Aug 2003 | A1 |
20030164401 | Andreasson et al. | Sep 2003 | A1 |
20030167000 | Mullick et al. | Sep 2003 | A1 |
20030171791 | KenKnight | Sep 2003 | A1 |
20030171898 | Tarassenko et al. | Sep 2003 | A1 |
20030181788 | Yokoi et al. | Sep 2003 | A1 |
20030181815 | Ebner et al. | Sep 2003 | A1 |
20030185286 | Yuen | Oct 2003 | A1 |
20030187337 | Tarassenko et al. | Oct 2003 | A1 |
20030187338 | Say et al. | Oct 2003 | A1 |
20030195403 | Berner et al. | Oct 2003 | A1 |
20030208113 | Mault et al. | Nov 2003 | A1 |
20030213495 | Fujita et al. | Nov 2003 | A1 |
20030214579 | Iddan | Nov 2003 | A1 |
20030216622 | Meron et al. | Nov 2003 | A1 |
20030216625 | Phipps | Nov 2003 | A1 |
20030216666 | Ericson et al. | Nov 2003 | A1 |
20030216729 | Marchitto | Nov 2003 | A1 |
20030229382 | Sun et al. | Dec 2003 | A1 |
20040008123 | Carrender et al. | Jan 2004 | A1 |
20040018476 | LaDue | Jan 2004 | A1 |
20040019172 | Yang et al. | Jan 2004 | A1 |
20040034295 | Salganicoff | Feb 2004 | A1 |
20040049245 | Gass | Mar 2004 | A1 |
20040064728 | Scheurich | Apr 2004 | A1 |
20040073095 | Causey et al. | Apr 2004 | A1 |
20040073454 | Urquhart et al. | Apr 2004 | A1 |
20040077995 | Ferek-Petric | Apr 2004 | A1 |
20040082982 | Gord et al. | Apr 2004 | A1 |
20040087839 | Raymond et al. | May 2004 | A1 |
20040092801 | Drakulic | May 2004 | A1 |
20040106859 | Say et al. | Jun 2004 | A1 |
20040115507 | Potter et al. | Jun 2004 | A1 |
20040115517 | Fukada et al. | Jun 2004 | A1 |
20040121015 | Chidlaw et al. | Jun 2004 | A1 |
20040122297 | Stahmann et al. | Jun 2004 | A1 |
20040148140 | Tarassenko et al. | Jul 2004 | A1 |
20040153007 | Harris | Aug 2004 | A1 |
20040165686 | Siwiak | Aug 2004 | A1 |
20040167226 | Serafini | Aug 2004 | A1 |
20040167801 | Say et al. | Aug 2004 | A1 |
20040193020 | Chiba | Sep 2004 | A1 |
20040193029 | Gluhovsky | Sep 2004 | A1 |
20040193446 | Mayer et al. | Sep 2004 | A1 |
20040199222 | Sun et al. | Oct 2004 | A1 |
20040215084 | Shimizu et al. | Oct 2004 | A1 |
20040218683 | Batra | Nov 2004 | A1 |
20040220643 | Schmidt | Nov 2004 | A1 |
20040224644 | Wu | Nov 2004 | A1 |
20040225199 | Evanyk | Nov 2004 | A1 |
20040240481 | Matsumoto | Dec 2004 | A1 |
20040253304 | Gross et al. | Dec 2004 | A1 |
20040260154 | Sidelnik | Dec 2004 | A1 |
20050010338 | Kraeling et al. | Jan 2005 | A1 |
20050017841 | Doi | Jan 2005 | A1 |
20050020887 | Goldberg | Jan 2005 | A1 |
20050021103 | DiLorenzo | Jan 2005 | A1 |
20050021370 | Riff | Jan 2005 | A1 |
20050024198 | Ward | Feb 2005 | A1 |
20050027205 | Tarassenko et al. | Feb 2005 | A1 |
20050038321 | Fujita et al. | Feb 2005 | A1 |
20050041752 | Rosen | Feb 2005 | A1 |
20050043634 | Yokoi et al. | Feb 2005 | A1 |
20050055014 | Coppeta et al. | Mar 2005 | A1 |
20050062644 | Leci | Mar 2005 | A1 |
20050065407 | Nakamura et al. | Mar 2005 | A1 |
20050070778 | Lackey | Mar 2005 | A1 |
20050092108 | Andermo | May 2005 | A1 |
20050096514 | Starkebaum | May 2005 | A1 |
20050096562 | Delalic et al. | May 2005 | A1 |
20050101843 | Quinn | May 2005 | A1 |
20050101872 | Sattler | May 2005 | A1 |
20050115561 | Stahmann et al. | Jun 2005 | A1 |
20050116820 | Goldreich | Jun 2005 | A1 |
20050117389 | Worledge | Jun 2005 | A1 |
20050121322 | Say et al. | Jun 2005 | A1 |
20050131281 | Ayer et al. | Jun 2005 | A1 |
20050137480 | Alt et al. | Jun 2005 | A1 |
20050143623 | Kojima | Jun 2005 | A1 |
20050148883 | Boesen | Jul 2005 | A1 |
20050154428 | Bruinsma | Jul 2005 | A1 |
20050165323 | Montgomery | Jul 2005 | A1 |
20050177069 | Takizawa | Aug 2005 | A1 |
20050182389 | LaPorte | Aug 2005 | A1 |
20050187789 | Hatlestad et al. | Aug 2005 | A1 |
20050192489 | Marshall | Sep 2005 | A1 |
20050197680 | DelMain et al. | Sep 2005 | A1 |
20050228268 | Cole | Oct 2005 | A1 |
20050234307 | Heinonen | Oct 2005 | A1 |
20050240305 | Bogash et al. | Oct 2005 | A1 |
20050245794 | Dinsmoor | Nov 2005 | A1 |
20050259768 | Yang et al. | Nov 2005 | A1 |
20050261559 | Mumford | Nov 2005 | A1 |
20050267556 | Shuros et al. | Dec 2005 | A1 |
20050267756 | Schultz et al. | Dec 2005 | A1 |
20050277912 | John | Dec 2005 | A1 |
20050277999 | Strother et al. | Dec 2005 | A1 |
20050285746 | Sengupta | Dec 2005 | A1 |
20050288594 | Lewkowicz et al. | Dec 2005 | A1 |
20060001496 | Abrosimov et al. | Jan 2006 | A1 |
20060036134 | Tarassenko et al. | Feb 2006 | A1 |
20060061472 | Lovoi et al. | Mar 2006 | A1 |
20060065713 | Kingery | Mar 2006 | A1 |
20060074283 | Henderson | Apr 2006 | A1 |
20060078765 | Yang et al. | Apr 2006 | A1 |
20060095091 | Drew | May 2006 | A1 |
20060095093 | Bettesh et al. | May 2006 | A1 |
20060100533 | Han | May 2006 | A1 |
20060109058 | Keating | May 2006 | A1 |
20060110962 | Powell | May 2006 | A1 |
20060122474 | Teller et al. | Jun 2006 | A1 |
20060122667 | Chavan et al. | Jun 2006 | A1 |
20060129060 | Lee et al. | Jun 2006 | A1 |
20060136266 | Tarassenko et al. | Jun 2006 | A1 |
20060136744 | Lange | Jun 2006 | A1 |
20060142648 | Banet | Jun 2006 | A1 |
20060145876 | Kimura | Jul 2006 | A1 |
20060148254 | McLean | Jul 2006 | A1 |
20060149339 | Burnes | Jul 2006 | A1 |
20060155174 | Glukhovsky et al. | Jul 2006 | A1 |
20060155183 | Kroecker | Jul 2006 | A1 |
20060158820 | Takiguchi | Jul 2006 | A1 |
20060161225 | Sormann et al. | Jul 2006 | A1 |
20060179949 | Kim | Aug 2006 | A1 |
20060183993 | Horn | Aug 2006 | A1 |
20060184092 | Atanasoska et al. | Aug 2006 | A1 |
20060204738 | Dubrow et al. | Sep 2006 | A1 |
20060210626 | Spaeder | Sep 2006 | A1 |
20060216603 | Choi | Sep 2006 | A1 |
20060218011 | Walker | Sep 2006 | A1 |
20060235489 | Drew | Oct 2006 | A1 |
20060247505 | Siddiqui | Nov 2006 | A1 |
20060253005 | Drinan | Nov 2006 | A1 |
20060255064 | Donaldson | Nov 2006 | A1 |
20060265246 | Hoag | Nov 2006 | A1 |
20060268170 | Suzuki et al. | Nov 2006 | A1 |
20060269019 | Simmons et al. | Nov 2006 | A1 |
20060270346 | Ibrahim | Nov 2006 | A1 |
20060277097 | Shafron et al. | Dec 2006 | A1 |
20060280227 | Pinkney | Dec 2006 | A1 |
20060282001 | Noel | Dec 2006 | A1 |
20060289640 | Mercure | Dec 2006 | A1 |
20060293607 | Alt | Dec 2006 | A1 |
20070002038 | Suzuki | Jan 2007 | A1 |
20070006636 | King et al. | Jan 2007 | A1 |
20070008113 | Spoonhower et al. | Jan 2007 | A1 |
20070016089 | Fischell et al. | Jan 2007 | A1 |
20070027386 | Such | Feb 2007 | A1 |
20070027388 | Chou | Feb 2007 | A1 |
20070038054 | Zhou | Feb 2007 | A1 |
20070049339 | Barak et al. | Mar 2007 | A1 |
20070055098 | Shimizu et al. | Mar 2007 | A1 |
20070060797 | Ball | Mar 2007 | A1 |
20070073353 | Rooney et al. | Mar 2007 | A1 |
20070096765 | Kagan | May 2007 | A1 |
20070106346 | Bergelson | May 2007 | A1 |
20070123772 | Euliano | May 2007 | A1 |
20070129622 | Bourget | Jun 2007 | A1 |
20070130287 | Kumar | Jun 2007 | A1 |
20070135803 | Belson | Jun 2007 | A1 |
20070142721 | Berner et al. | Jun 2007 | A1 |
20070156016 | Betesh | Jul 2007 | A1 |
20070162089 | Mosesov | Jul 2007 | A1 |
20070162090 | Penner | Jul 2007 | A1 |
20070164752 | Kato | Jul 2007 | A1 |
20070167495 | Brown et al. | Jul 2007 | A1 |
20070167848 | Kuo et al. | Jul 2007 | A1 |
20070173701 | Al-Ali | Jul 2007 | A1 |
20070179347 | Tarassenko et al. | Aug 2007 | A1 |
20070180047 | Dong et al. | Aug 2007 | A1 |
20070185393 | Zhou | Aug 2007 | A1 |
20070191002 | Ge | Aug 2007 | A1 |
20070196456 | Stevens | Aug 2007 | A1 |
20070207793 | Myer | Sep 2007 | A1 |
20070213659 | Trovato et al. | Sep 2007 | A1 |
20070237719 | Jones | Oct 2007 | A1 |
20070244370 | Kuo et al. | Oct 2007 | A1 |
20070249946 | Kumar et al. | Oct 2007 | A1 |
20070255198 | Leong et al. | Nov 2007 | A1 |
20070255330 | Lee | Nov 2007 | A1 |
20070270672 | Hayter | Nov 2007 | A1 |
20070279217 | Venkatraman | Dec 2007 | A1 |
20070282174 | Sabatino | Dec 2007 | A1 |
20070282177 | Pilz | Dec 2007 | A1 |
20070291715 | Laroia et al. | Dec 2007 | A1 |
20070299480 | Hill | Dec 2007 | A1 |
20080014866 | Lipowshi | Jan 2008 | A1 |
20080015421 | Penner | Jan 2008 | A1 |
20080015494 | Santini et al. | Jan 2008 | A1 |
20080020037 | Robertson et al. | Jan 2008 | A1 |
20080021519 | DeGeest | Jan 2008 | A1 |
20080021521 | Shah | Jan 2008 | A1 |
20080027679 | Shklarski | Jan 2008 | A1 |
20080033273 | Zhou | Feb 2008 | A1 |
20080044025 | Corndorf | Feb 2008 | A1 |
20080045843 | Tsuji et al. | Feb 2008 | A1 |
20080046038 | Hill | Feb 2008 | A1 |
20080051667 | Goldreich | Feb 2008 | A1 |
20080051767 | Rossing et al. | Feb 2008 | A1 |
20080058614 | Banet | Mar 2008 | A1 |
20080062856 | Feher | Mar 2008 | A1 |
20080065168 | Bitton et al. | Mar 2008 | A1 |
20080069397 | Bartsch | Mar 2008 | A1 |
20080074307 | Boric-Lubecke | Mar 2008 | A1 |
20080077015 | Botic-Lubecke | Mar 2008 | A1 |
20080077028 | Schaldach et al. | Mar 2008 | A1 |
20080077188 | Denker et al. | Mar 2008 | A1 |
20080091089 | Guillory et al. | Apr 2008 | A1 |
20080091114 | Min | Apr 2008 | A1 |
20080097549 | Colbaugh | Apr 2008 | A1 |
20080097917 | Dicks | Apr 2008 | A1 |
20080099366 | Niemic et al. | May 2008 | A1 |
20080103440 | Ferren et al. | May 2008 | A1 |
20080112885 | Okunev et al. | May 2008 | A1 |
20080114224 | Bandy et al. | May 2008 | A1 |
20080119705 | Patel | May 2008 | A1 |
20080119716 | Boric-Lubecke | May 2008 | A1 |
20080137566 | Marholev | Jun 2008 | A1 |
20080139907 | Rao et al. | Jun 2008 | A1 |
20080139953 | Baker | Jun 2008 | A1 |
20080140403 | Hughes et al. | Jun 2008 | A1 |
20080146871 | Arneson et al. | Jun 2008 | A1 |
20080146889 | Young | Jun 2008 | A1 |
20080146892 | LeBeouf | Jun 2008 | A1 |
20080154104 | Lamego | Jun 2008 | A1 |
20080166992 | Ricordi | Jul 2008 | A1 |
20080183245 | Van Oort | Jul 2008 | A1 |
20080188837 | Belsky et al. | Aug 2008 | A1 |
20080194912 | Trovato et al. | Aug 2008 | A1 |
20080208009 | Shklarski | Aug 2008 | A1 |
20080214901 | Gehman | Sep 2008 | A1 |
20080214985 | Yanaki | Sep 2008 | A1 |
20080243020 | Chou | Oct 2008 | A1 |
20080249360 | Li | Oct 2008 | A1 |
20080262320 | Schaefer et al. | Oct 2008 | A1 |
20080262336 | Ryu | Oct 2008 | A1 |
20080269664 | Trovato et al. | Oct 2008 | A1 |
20080275312 | Mosesov | Nov 2008 | A1 |
20080284599 | Zdeblick et al. | Nov 2008 | A1 |
20080288026 | Cross et al. | Nov 2008 | A1 |
20080288027 | Kroll | Nov 2008 | A1 |
20080294020 | Sapounas | Nov 2008 | A1 |
20080300572 | Rankers | Dec 2008 | A1 |
20080303638 | Nguyen | Dec 2008 | A1 |
20080306357 | Korman | Dec 2008 | A1 |
20080306359 | Zdeblick et al. | Dec 2008 | A1 |
20080306360 | Robertson et al. | Dec 2008 | A1 |
20080306362 | Davis | Dec 2008 | A1 |
20080311852 | Hansen | Dec 2008 | A1 |
20080312522 | Rowlandson | Dec 2008 | A1 |
20080316020 | Robertson | Dec 2008 | A1 |
20090009332 | Nunez et al. | Jan 2009 | A1 |
20090018409 | Banet et al. | Jan 2009 | A1 |
20090024045 | Prakash | Jan 2009 | A1 |
20090030293 | Cooper et al. | Jan 2009 | A1 |
20090030297 | Miller | Jan 2009 | A1 |
20090034209 | Joo | Feb 2009 | A1 |
20090043171 | Rule | Feb 2009 | A1 |
20090048498 | Riskey | Feb 2009 | A1 |
20090062634 | Say et al. | Mar 2009 | A1 |
20090062670 | Sterling | Mar 2009 | A1 |
20090062730 | Woo | Mar 2009 | A1 |
20090069642 | Gao | Mar 2009 | A1 |
20090069655 | Say et al. | Mar 2009 | A1 |
20090069656 | Say et al. | Mar 2009 | A1 |
20090069657 | Say et al. | Mar 2009 | A1 |
20090069658 | Say et al. | Mar 2009 | A1 |
20090069724 | Otto et al. | Mar 2009 | A1 |
20090076340 | Libbus et al. | Mar 2009 | A1 |
20090076343 | James | Mar 2009 | A1 |
20090076350 | Bly et al. | Mar 2009 | A1 |
20090076397 | Libbus et al. | Mar 2009 | A1 |
20090082645 | Hafezi et al. | Mar 2009 | A1 |
20090088618 | Ameson | Apr 2009 | A1 |
20090099435 | Say et al. | Apr 2009 | A1 |
20090110148 | Zhang | Apr 2009 | A1 |
20090112626 | Talbot | Apr 2009 | A1 |
20090124871 | Arshak | May 2009 | A1 |
20090131774 | Sweitzer | May 2009 | A1 |
20090135886 | Robertson et al. | May 2009 | A1 |
20090153397 | Li et al. | Jun 2009 | A1 |
20090157113 | Marcotte | Jun 2009 | A1 |
20090157358 | Kim | Jun 2009 | A1 |
20090161602 | Matsumoto | Jun 2009 | A1 |
20090163789 | Say et al. | Jun 2009 | A1 |
20090171180 | Pering | Jul 2009 | A1 |
20090173628 | Say et al. | Jul 2009 | A1 |
20090177055 | Say et al. | Jul 2009 | A1 |
20090177056 | Say et al. | Jul 2009 | A1 |
20090177057 | Say et al. | Jul 2009 | A1 |
20090177058 | Say et al. | Jul 2009 | A1 |
20090177059 | Say et al. | Jul 2009 | A1 |
20090177060 | Say et al. | Jul 2009 | A1 |
20090177061 | Say et al. | Jul 2009 | A1 |
20090177062 | Say et al. | Jul 2009 | A1 |
20090177063 | Say et al. | Jul 2009 | A1 |
20090177064 | Say et al. | Jul 2009 | A1 |
20090177065 | Say et al. | Jul 2009 | A1 |
20090177066 | Say et al. | Jul 2009 | A1 |
20090182206 | Najafi | Jul 2009 | A1 |
20090182212 | Say et al. | Jul 2009 | A1 |
20090182213 | Say et al. | Jul 2009 | A1 |
20090182214 | Say et al. | Jul 2009 | A1 |
20090182215 | Say et al. | Jul 2009 | A1 |
20090182388 | Von Arx | Jul 2009 | A1 |
20090187088 | Say et al. | Jul 2009 | A1 |
20090187089 | Say et al. | Jul 2009 | A1 |
20090187090 | Say et al. | Jul 2009 | A1 |
20090187091 | Say et al. | Jul 2009 | A1 |
20090187092 | Say et al. | Jul 2009 | A1 |
20090187093 | Say et al. | Jul 2009 | A1 |
20090187094 | Say et al. | Jul 2009 | A1 |
20090187095 | Say et al. | Jul 2009 | A1 |
20090187381 | King et al. | Jul 2009 | A1 |
20090192351 | Nishino | Jul 2009 | A1 |
20090192368 | Say et al. | Jul 2009 | A1 |
20090192369 | Say et al. | Jul 2009 | A1 |
20090192370 | Say et al. | Jul 2009 | A1 |
20090192371 | Say et al. | Jul 2009 | A1 |
20090192372 | Say et al. | Jul 2009 | A1 |
20090192373 | Say et al. | Jul 2009 | A1 |
20090192374 | Say et al. | Jul 2009 | A1 |
20090192375 | Say et al. | Jul 2009 | A1 |
20090192376 | Say et al. | Jul 2009 | A1 |
20090192377 | Say et al. | Jul 2009 | A1 |
20090192378 | Say et al. | Jul 2009 | A1 |
20090192379 | Say et al. | Jul 2009 | A1 |
20090198115 | Say et al. | Aug 2009 | A1 |
20090198116 | Say et al. | Aug 2009 | A1 |
20090198175 | Say et al. | Aug 2009 | A1 |
20090199282 | Tsitkova | Aug 2009 | A1 |
20090203964 | Shimizu et al. | Aug 2009 | A1 |
20090203971 | Sciarappa | Aug 2009 | A1 |
20090203972 | Heneghan | Aug 2009 | A1 |
20090203978 | Say et al. | Aug 2009 | A1 |
20090204265 | Hackett | Aug 2009 | A1 |
20090210164 | Say et al. | Aug 2009 | A1 |
20090216101 | Say et al. | Aug 2009 | A1 |
20090216102 | Say et al. | Aug 2009 | A1 |
20090227204 | Robertson et al. | Sep 2009 | A1 |
20090227876 | Tran | Sep 2009 | A1 |
20090227940 | Say et al. | Sep 2009 | A1 |
20090227941 | Say et al. | Sep 2009 | A1 |
20090228214 | Say et al. | Sep 2009 | A1 |
20090231125 | Baldus | Sep 2009 | A1 |
20090234200 | Husheer | Sep 2009 | A1 |
20090243833 | Huang | Oct 2009 | A1 |
20090253960 | Takenaka et al. | Oct 2009 | A1 |
20090256702 | Robertson | Oct 2009 | A1 |
20090258669 | Nie et al. | Oct 2009 | A1 |
20090264714 | Chou | Oct 2009 | A1 |
20090264964 | Abrahamson | Oct 2009 | A1 |
20090265186 | Tarassenko et al. | Oct 2009 | A1 |
20090273467 | Elixmann | Nov 2009 | A1 |
20090281539 | Selig | Nov 2009 | A1 |
20090287109 | Ferren et al. | Nov 2009 | A1 |
20090292194 | Libbus et al. | Nov 2009 | A1 |
20090295548 | Ronkka | Dec 2009 | A1 |
20090296677 | Mahany | Dec 2009 | A1 |
20090301925 | Alloro et al. | Dec 2009 | A1 |
20090303920 | Mahany | Dec 2009 | A1 |
20090309708 | Hasegawa | Dec 2009 | A1 |
20090312619 | Say et al. | Dec 2009 | A1 |
20090318761 | Rabinovitz | Dec 2009 | A1 |
20090318779 | Tran | Dec 2009 | A1 |
20090318783 | Rohde | Dec 2009 | A1 |
20090318793 | Datta | Dec 2009 | A1 |
20100010330 | Rankers | Jan 2010 | A1 |
20100033324 | Shimizu et al. | Feb 2010 | A1 |
20100036269 | Ferren et al. | Feb 2010 | A1 |
20100049006 | Magar | Feb 2010 | A1 |
20100049012 | Dijksman et al. | Feb 2010 | A1 |
20100049069 | Tarassenko et al. | Feb 2010 | A1 |
20100049263 | Reeve | Feb 2010 | A1 |
20100056878 | Partin | Mar 2010 | A1 |
20100056891 | Say et al. | Mar 2010 | A1 |
20100056939 | Tarassenko et al. | Mar 2010 | A1 |
20100057041 | Hayter | Mar 2010 | A1 |
20100060300 | Muller | Mar 2010 | A1 |
20100062709 | Kato | Mar 2010 | A1 |
20100063438 | Bengtsson | Mar 2010 | A1 |
20100063841 | D'Ambrosia et al. | Mar 2010 | A1 |
20100069002 | Rong | Mar 2010 | A1 |
20100069717 | Hafezi et al. | Mar 2010 | A1 |
20100099967 | Say et al. | Apr 2010 | A1 |
20100099968 | Say et al. | Apr 2010 | A1 |
20100099969 | Say et al. | Apr 2010 | A1 |
20100100077 | Rush | Apr 2010 | A1 |
20100100078 | Say et al. | Apr 2010 | A1 |
20100106001 | Say et al. | Apr 2010 | A1 |
20100113950 | Lin | May 2010 | A1 |
20100118853 | Godfrey | May 2010 | A1 |
20100121315 | Trovato | May 2010 | A1 |
20100128175 | Lin | May 2010 | A1 |
20100139672 | Kroll et al. | Jun 2010 | A1 |
20100160742 | Seidl et al. | Jun 2010 | A1 |
20100168659 | Say et al. | Jul 2010 | A1 |
20100179398 | Say et al. | Jul 2010 | A1 |
20100185055 | Robertson | Jul 2010 | A1 |
20100191073 | Tarassenko et al. | Jul 2010 | A1 |
20100210299 | Gorbachov | Aug 2010 | A1 |
20100218249 | Wilson | Aug 2010 | A1 |
20100222652 | Cho | Sep 2010 | A1 |
20100228113 | Solosko | Sep 2010 | A1 |
20100234706 | Gilland | Sep 2010 | A1 |
20100234715 | Shin | Sep 2010 | A1 |
20100234914 | Shen | Sep 2010 | A1 |
20100245091 | Singh | Sep 2010 | A1 |
20100249541 | Geva et al. | Sep 2010 | A1 |
20100249881 | Corndorf | Sep 2010 | A1 |
20100256461 | Mohamedali | Oct 2010 | A1 |
20100259543 | Tarassenko et al. | Oct 2010 | A1 |
20100268048 | Say et al. | Oct 2010 | A1 |
20100268049 | Say et al. | Oct 2010 | A1 |
20100268050 | Say et al. | Oct 2010 | A1 |
20100274111 | Say et al. | Oct 2010 | A1 |
20100280345 | Say et al. | Nov 2010 | A1 |
20100280346 | Say et al. | Nov 2010 | A1 |
20100298650 | Moon et al. | Nov 2010 | A1 |
20100298730 | Tarassenko et al. | Nov 2010 | A1 |
20100311482 | Lange | Dec 2010 | A1 |
20100312580 | Tarassenko et al. | Dec 2010 | A1 |
20110004079 | Al Ali et al. | Jan 2011 | A1 |
20110065983 | Hafezi et al. | Mar 2011 | A1 |
20110081860 | Brown et al. | Apr 2011 | A1 |
20110124983 | Kroll et al. | May 2011 | A1 |
20110134906 | Garudadri et al. | Jun 2011 | A1 |
20110144470 | Mazar et al. | Jun 2011 | A1 |
20110160549 | Saroka et al. | Jun 2011 | A1 |
20110166937 | Bangera et al. | Jul 2011 | A1 |
20110196454 | Strand et al. | Aug 2011 | A1 |
20110208013 | Phan | Aug 2011 | A1 |
20110237922 | Parker, III | Sep 2011 | A1 |
20110237924 | McGusty et al. | Sep 2011 | A1 |
20110270135 | Dooley et al. | Nov 2011 | A1 |
20110279963 | Kumar et al. | Nov 2011 | A1 |
20120016231 | Westmoreland | Jan 2012 | A1 |
20120029307 | Paquet et al. | Feb 2012 | A1 |
20120029309 | Paquet et al. | Feb 2012 | A1 |
20120032816 | Cho et al. | Feb 2012 | A1 |
20120332778 | Nakano et al. | Feb 2012 | |
20120071743 | Todorov et al. | Mar 2012 | A1 |
20120083715 | Yuen et al. | Apr 2012 | A1 |
20120086550 | LeBlanc | Apr 2012 | A1 |
20120089000 | Bishay et al. | Apr 2012 | A1 |
20120101396 | Solosko et al. | Apr 2012 | A1 |
20120163426 | Nemeth | Jun 2012 | A1 |
20120179004 | Roesicke et al. | Jul 2012 | A1 |
20120197144 | Christ et al. | Aug 2012 | A1 |
20120299723 | Hafezi et al. | Nov 2012 | A1 |
20120306662 | Vosch | Dec 2012 | A1 |
20120310070 | Kumar et al. | Dec 2012 | A1 |
20120316413 | Liu et al. | Dec 2012 | A1 |
20120323136 | Shiftman et al. | Dec 2012 | A1 |
20130002435 | Utter, II | Jan 2013 | A1 |
20130021166 | Shah et al. | Jan 2013 | A1 |
20130027344 | Choon | Jan 2013 | A1 |
20130030259 | Thomsen et al. | Jan 2013 | A1 |
20130057385 | Murakami et al. | Mar 2013 | A1 |
20130060115 | Gehman et al. | Mar 2013 | A1 |
20130171596 | French | Jul 2013 | A1 |
20130185228 | Dresner | Jul 2013 | A1 |
20130194118 | Coln et al. | Aug 2013 | A1 |
20130196012 | Dill | Aug 2013 | A1 |
20130218022 | Larsen | Aug 2013 | A1 |
20130231188 | Berberich et al. | Sep 2013 | A1 |
20130238647 | Thompson | Sep 2013 | A1 |
20130275296 | Tietzen et al. | Oct 2013 | A1 |
20140051946 | Arne et al. | Feb 2014 | A1 |
20140066726 | Costello | Mar 2014 | A1 |
20140280125 | Bhardwaj et al. | Sep 2014 | A1 |
20140300490 | Kotz | Oct 2014 | A1 |
20140308930 | Tran | Oct 2014 | A1 |
20140349256 | Connor | Nov 2014 | A1 |
20140374276 | Guthrie et al. | Dec 2014 | A1 |
20150080678 | Frank et al. | Mar 2015 | A1 |
20150080679 | Frank et al. | Mar 2015 | A1 |
20150080680 | Zdeblick et al. | Mar 2015 | A1 |
20150080681 | Hafezi et al. | Mar 2015 | A1 |
20150127737 | Thompson et al. | May 2015 | A1 |
20150127738 | Thompson et al. | May 2015 | A1 |
20150149375 | Thompson et al. | May 2015 | A1 |
20150182170 | Zdeblick et al. | Jul 2015 | A1 |
20150248833 | Arne et al. | Sep 2015 | A1 |
20160324442 | Zdeblick et al. | Nov 2016 | A1 |
20180184698 | Arne et al. | Jul 2018 | A1 |
20190191006 | Thompson | Jun 2019 | A1 |
20190261888 | Zdeblick et al. | Aug 2019 | A1 |
Number | Date | Country |
---|---|---|
1588649 | Mar 2005 | CN |
1991868 | Jul 2007 | CN |
101005470 | Jul 2007 | CN |
101032396 | Sep 2007 | CN |
201076456 | Jun 2008 | CN |
10313005 | Oct 2004 | DE |
0526166 | Feb 1993 | EP |
1246356 | Oct 2002 | EP |
1451595 | Sep 2004 | EP |
1530224 | May 2005 | EP |
1789128 | May 2007 | EP |
2063535 | May 2009 | EP |
2143369 | Jan 2010 | EP |
61072712 | Apr 1986 | JP |
S62112529 | May 1987 | JP |
05228128 | Sep 1993 | JP |
1014898 | Jan 1998 | JP |
H11195415 | Jul 1999 | JP |
2000506410 | May 2000 | JP |
2001070267 | Mar 2001 | JP |
2001198096 | Jul 2001 | JP |
2002224053 | Aug 2002 | JP |
2002282219 | Oct 2002 | JP |
2002291684 | Oct 2002 | JP |
2003050867 | Feb 2003 | JP |
2004007187 | Jan 2004 | JP |
2004313242 | Nov 2004 | JP |
2005073886 | Mar 2005 | JP |
2005102959 | Apr 2005 | JP |
2005137683 | Jun 2005 | JP |
2005304880 | Nov 2005 | JP |
2005532841 | Nov 2005 | JP |
2005532849 | Nov 2005 | JP |
2006508752 | Mar 2006 | JP |
2006509574 | Mar 2006 | JP |
2006136405 | Jun 2006 | JP |
2006177699 | Jul 2006 | JP |
2006268614 | Oct 2006 | JP |
2007167448 | Jul 2007 | JP |
2007200739 | Aug 2007 | JP |
2007313340 | Dec 2007 | JP |
2008011865 | Jan 2008 | JP |
2008501415 | Jan 2008 | JP |
2008086390 | Apr 2008 | JP |
2008181295 | Aug 2008 | JP |
2008191110 | Aug 2008 | JP |
2008212488 | Sep 2008 | JP |
2009528909 | Aug 2009 | JP |
2010049490 | Mar 2010 | JP |
2011086027 | Apr 2011 | JP |
2012039370 | Feb 2012 | JP |
2012200309 | Oct 2012 | JP |
2012212362 | Nov 2012 | JP |
927471 | Nov 2009 | KR |
10-2012-099995 | Sep 2012 | KR |
553735 | Sep 2003 | TW |
200724094 | Jul 2007 | TW |
WO1988002237 | Apr 1988 | WO |
WO1993008734 | May 1993 | WO |
WO1993019667 | Oct 1993 | WO |
WO1997014112 | Apr 1997 | WO |
WO1998043537 | Oct 1998 | WO |
WO1999059465 | Nov 1999 | WO |
WO2000033246 | Jun 2000 | WO |
WO2001000085 | Jan 2001 | WO |
WO2001047466 | Jul 2001 | WO |
WO2001074011 | Oct 2001 | WO |
WO2001080731 | Nov 2001 | WO |
WO2002045489 | Jun 2002 | WO |
WO2002058330 | Jul 2002 | WO |
WO2002062276 | Aug 2002 | WO |
WO2002087681 | Nov 2002 | WO |
WO2003050643 | Jun 2003 | WO |
WO2003056491 | Jul 2003 | WO |
WO2004014225 | Feb 2004 | WO |
WO2004039256 | May 2004 | WO |
WO2004059551 | Jul 2004 | WO |
WO2004066834 | Aug 2004 | WO |
WO2004068748 | Aug 2004 | WO |
WO2004068881 | Aug 2004 | WO |
WO2004075751 | Sep 2004 | WO |
WO2004109316 | Dec 2004 | WO |
WO2005011237 | Feb 2005 | WO |
WO2005013503 | Feb 2005 | WO |
WO2005020023 | Mar 2005 | WO |
WO2005024687 | Mar 2005 | WO |
WO2005041767 | May 2005 | WO |
WO2005046575 | May 2005 | WO |
WO2005047837 | May 2005 | WO |
WO2005051166 | Jun 2005 | WO |
WO2005055448 | Jun 2005 | WO |
WO2005082436 | Sep 2005 | WO |
WO2005084533 | Sep 2005 | WO |
WO2005110238 | Nov 2005 | WO |
WO2006027586 | Mar 2006 | WO |
WO2006035351 | Apr 2006 | WO |
WO2006046648 | May 2006 | WO |
WO2006055892 | May 2006 | WO |
WO2006055956 | May 2006 | WO |
WO2006066566 | Jun 2006 | WO |
WO2006075016 | Jul 2006 | WO |
WO2006094513 | Sep 2006 | WO |
WO2006100620 | Sep 2006 | WO |
WO2006104843 | Oct 2006 | WO |
WO2006109072 | Oct 2006 | WO |
WO2006116718 | Nov 2006 | WO |
WO2006119345 | Nov 2006 | WO |
WO2006127355 | Nov 2006 | WO |
WO2007001724 | Jan 2007 | WO |
WO2007001742 | Jan 2007 | WO |
WO2007013952 | Feb 2007 | WO |
WO2007014084 | Feb 2007 | WO |
WO2007014527 | Feb 2007 | WO |
WO2007021496 | Feb 2007 | WO |
WO2007027660 | Mar 2007 | WO |
WO2007028035 | Mar 2007 | WO |
WO2007036687 | Apr 2007 | WO |
WO2007036741 | Apr 2007 | WO |
WO2007036746 | Apr 2007 | WO |
WO2007040878 | Apr 2007 | WO |
WO2007071180 | Jun 2007 | WO |
WO2007096810 | Aug 2007 | WO |
WO2007101141 | Sep 2007 | WO |
WO2007120946 | Oct 2007 | WO |
WO2007127316 | Nov 2007 | WO |
WO2007127455 | Nov 2007 | WO |
WO2007127879 | Nov 2007 | WO |
WO2007128165 | Nov 2007 | WO |
WO2007130491 | Nov 2007 | WO |
WO2007143535 | Dec 2007 | WO |
WO2007149546 | Dec 2007 | WO |
WO2008002239 | Jan 2008 | WO |
WO2008008281 | Jan 2008 | WO |
WO2008030482 | Mar 2008 | WO |
WO2008052136 | May 2008 | WO |
WO2008063626 | May 2008 | WO |
WO2008066617 | Jun 2008 | WO |
WO2008068695 | Jun 2008 | WO |
WO2008076464 | Jun 2008 | WO |
WO2008089232 | Jul 2008 | WO |
WO2008091683 | Jul 2008 | WO |
WO2008095183 | Aug 2008 | WO |
WO2008097652 | Aug 2008 | WO |
WO2008101107 | Aug 2008 | WO |
WO2008112577 | Sep 2008 | WO |
WO2008112578 | Sep 2008 | WO |
WO2008120156 | Oct 2008 | WO |
WO2008133394 | Nov 2008 | WO |
WO2008134185 | Nov 2008 | WO |
WO2008150633 | Dec 2008 | WO |
WO2009001108 | Dec 2008 | WO |
WO2009006615 | Jan 2009 | WO |
WO2009029453 | Mar 2009 | WO |
WO2009031149 | Mar 2009 | WO |
WO2009035773 | Mar 2009 | WO |
WO2009036334 | Mar 2009 | WO |
WO2009051829 | Apr 2009 | WO |
WO2009051830 | Apr 2009 | WO |
WO2009063377 | May 2009 | WO |
WO2009081348 | Jul 2009 | WO |
WO2009111664 | Sep 2009 | WO |
WO2009146082 | Dec 2009 | WO |
WO2010003175 | Jan 2010 | WO |
WO2010009100 | Jan 2010 | WO |
WO2010011833 | Jan 2010 | WO |
WO2010019778 | Feb 2010 | WO |
WO2010057049 | May 2010 | WO |
WO2010075115 | Jul 2010 | WO |
WO2010080843 | Jul 2010 | WO |
WO2010105053 | Sep 2010 | WO |
WO2010107563 | Sep 2010 | WO |
WO2010115194 | Oct 2010 | WO |
WO2010132331 | Nov 2010 | WO |
WO2010135516 | Nov 2010 | WO |
WO2012104657 | Aug 2012 | WO |
WO2012112561 | Aug 2012 | WO |
WO2012158190 | Nov 2012 | WO |
WO2013012869 | Jan 2013 | WO |
WO2015042411 | Mar 2015 | WO |
WO2015044722 | Apr 2015 | WO |
WO2015112603 | Jul 2015 | WO |
Entry |
---|
AADE, “AADE 37th Annual Meeting San Antonio Aug. 4-7, 2010” American Association of Diabetes Educators (2010); http://www.diabeteseducator.org/annualmeeting/2010/index.html; 2 pp. |
Arshak et al., A Review and Adaptation of Methods of Object Tracking to Telemetry Capsules IC-Med (2007) vol. 1, No. 1, Issue 1, 12 pp. |
“ASGE Technology Status Evaluation Report: wireless capsule endoscopy” American Soc. for Gastrointestinal Endoscopy (2006) vol. 63, No. 4; 7 pp. |
Au-Yeung, K., et al., “A Networked System for Self-Management of Drug Therapy and Wellness”, Wireless Health '10, Oct. 5-7, 2010, San Diego, 9 pages. |
Aydin et al., “Design and implementation considerations for an advanced wireless interface in miniaturized integrated sensor Microsystems” Sch. of Eng. & Electron., Edinburgh Univ., UK; (2003); abstract. |
Barrie, Heidelberg pH capsule gastric analysis. Texbook of Natural Medicine, (1992), Pizzorno, Murray & Barrie. |
Baskiyar, S. “A Real-time Fault Tolerant Intra-body Network” Dept. of Comp. Sci & Soft Eng; Auburn University; Proceedings of the 27th Annual IEEE Conference; 0742-1303/02 (2002) IEEE; 6 pp. |
Bergogne C., et al., “A new frequency estimator applied to burst transmission”, IEEE International Conference on Acoustics, Speech and Signal Processing, Apr. 21, 1997, vol. 1, pp. 267-270. |
Brock, “Smart Medicine: The Application of Auto-ID Technology to Healthcare” Auto-ID Labs (2002) http://www.autoidlabs.org/uploads/media/MIT-AUTOID-WH-010.pdf. |
Carlson et al., “Evaluation of a non-invasive respiratory monitoring system for sleeping subjects” Physiological Measurement (1999) 20(1): 53. |
Delvaux et al., “Capsule endoscopy: Technique and indications” Clinical Gastoenterology (2008) vol. 22, Issue 5, pp. 813-837. |
Description of ePatch Technology Platform for ECG and EMG, located it http://www.madebydelta.com/imported/images/DELTA_Web/documents/ME/ePatch_ECG_EMG.pdf, Dated Sep. 2, 2010. |
Evanczuk, S., “PIC MCU software library uses human body for secure communications link” EDN Network; edn.com; Feb. 26, 2013 Retrieved from internet Jun. 19, 2013 at http://www.edn.com/electronics-products/other/4407842/PIC-MCU-software-library-uses-human-body-for-secure-communications-link; 5 pp. |
Fawaz et al., “Enhanced Telemetry System using CP-QPSK Band-Pass Modulation Technique Suitable for Smart Pill Medical Application” IFIP IEEE Dubai Conference (2008); http://www.asic.fh-offenburg.de/downloads/ePille/IFIP_IEEE_Dubai_Conference.pdf. |
Gilson, D.R. “Molecular dynamics simulation of dipole interactions”, Department of Physics, Hull University, Dec. 2002, p. 1-43. |
Given Imaging, “Agile Patency Brochure” (2006) http://www.inclino.no/documents/AgilePatencyBrochure_Global_GMB-0118-01.pdf; 4pp. |
Gonzalez-Guillaumin et al., “Ingestible capsule for impedance and pH monitoring in the esophagus” IEEE Trans Biomed Eng. (2007) 54(12: 2231-6; abstract. |
Greene, “Edible RFID microchip monitor can tell if you take your medicine” Bloomberg Businessweek (2010) 2 pp.; http://www.businessweek.com/idg/2010-03-31/edible-rfid-microchip-monitor-can-tell-if-you-take-your-medicine.html. |
Halthion Medical Technologies “Providing Ambulatory Medical Devices Which Monitor, Measure and Record” webpage. Online website: http://www.halthion.com/; downloaded May 30, 2012. |
Heydari et al., “Analysis of the PLL jitter due to power/ground and substrate noise”; IEEE Transactions on Circuits and Systems (2004) 51(12): 2404-16. |
Hoover et al., “Rx for health: Engineers design pill that signals it has been swallowed” University of Florida News (2010) 2pp.; http://news.ufl.edu/2010/03/31/antenna-pill-2/. |
Hotz “The Really Smart Phone” The Wall Street Journal, What They Know (2011); 6 pp.; http://online.wsj.com/article/SB10001424052748704547604576263261679848814.html?mod=djemTECH_t. |
Intromedic, MicroCam Innovative Capsule Endoscope Pamphlet. (2006) 8 pp (http://www.intromedic.com/en/product/productinfo.asp). |
ISFET—Ion Sensitive Field-Effect Transistor; Microsens S.A. pdf document. First cited in Office Action dated Jun. 13, 2011 for U.S. Appl. No. 12/238,345; 4pp. |
Jung, S. “Dissolvable ‘Transient Electronics’ Will Be Good for Your Body and the Environment” MedGadget; Oct. 1, 2012; Onlne website: http://medgadget.com/2012/10/dissolvable-transient-electronics-will-be-good-for-your-body-and-the-environment.html; downloaded Oct. 24, 2012; 4 pp. |
Juvenile Diabetes Research Foundation International (JDRF), “Artificial Pancreas Project” (2010); http://www.artificialpancreasproject.com/; 3 pp. |
Li, P-Y, et al. “An electrochemical intraocular drug delivery device”, Sensors and Actuators A 143 (2008) p. 41-48. |
Lifescan, “OneTouch UltraLink™” http://www.lifescan.com/products/meters/ultralink (2010) 2 pp. |
Mackay et al., “Radio Telemetering from within the Body” Inside Information is Revealed by Tiny Transmitters that can be Swallowed or Implanted in Man or Animal Science (1991) 1196-1202; 134; American Association for the Advancement of Science, Washington D.C. |
Mackay et al., “Endoradiosonde” Nature, (1957) 1239-1240, 179 Nature Publishing Group. |
Mckenzie et al., “Validation of a new telemetric core temperature monitor” J. Therm. Biol. (2004) 29(7-8):605-11. |
Medtronic, “CareLink Therapy Management Software for Diabetes” (2010); https://carelink.minimed.com/patient/entry.jsp?bhcp=1; 1 pp. |
Medtronic, “Carelink™ USB” (2008) http://www.medtronicdiabetes.com/pdf/carelink_usb_factsheet.pdf 2pp. |
Medtronic “The New MiniMed Paradigm® Real-Time Revel™ System” (2010) http://www.medtronicdiabetes.com/products/index.html; 2 pp. |
Medtronic, “Mini Med Paradigm® Revel™ Insulin Pump” (2010) http://www.medtronicdiabetes.com/products/insulinpumps/index.html; 2 pp. |
Medtronic, Mini Med Paradigm™ Veo™ System: Factsheet (2010). http://www.medtronic-diabetes.com.au/downloads/Paradigm%20Veo%20Factsheet.pdf ; 4 pp. |
Melanson, “Walkers swallow RFID pills for science” Engadget (2008); http://www.engadget.com/2008/07/29/walkers-swallow-rfid-pills-for-science/. |
Minimitter Co. Inc. “Actiheart” Traditional 510(k) Summary. Sep. 27, 2005. |
Minimitter Co. Inc. Noninvasive technology to help your studies succeed. Mini Mitter.com Mar. 31, 2009. |
Mini Mitter Co, Inc. 510(k) Premarket Notification Mini-Logger for Diagnostic Spirometer. 9-21 (1999). |
Mini Mitter Co, Inc. 510(k) Premarket Notification for VitalSense. Apr. 22, 2004. |
Minimitter Co. Inc. VitalSense Integrated Physiological Monitoring System. Product Description. (2005). |
Minimitter Co. Inc. VitalSense Wireless Vital Signs Monitoring. Temperatures.com Mar. 31, 2009. |
Mojaverian et al., “Estimation of gastric residence time of the Heidelberg capsule in humans: effect of varying food composition” Gastroenterology (1985) 89:(2): 392-7. |
“New ‘smart pill’ to track adherence” E-Health-Insider (2010) http://www.e-health-insider.com/news/5910/new_‘smart_pill’_monitors_medicines. |
Owano, N., “Study proposes smart sutures with sensors for wounds” phys.org. Aug. 2012. http://phys.org/news/2012-08-smart-sutures-sensors-wounds.html. |
Park, “Medtronic to Buy MiniMed for $3.7 Billion” (2001) HomeCare; http://homecaremag.com/mag/medical_medtronic_buy_minimed/; 2 pp. |
Radio Antennae, http://www.erikdeman.de/html/sail018h.htm; (2008) 5 pages. |
“RFID “pill” monitors marchers” RFID News (2008) http://www.rfidnews.org/2008/07/23/rfid-pill-monitors-marchers/. |
Sanduleanu et al., “Octave tunable, highly linear, RC-ring oscillator with differential fine-coarse tuning, quadrature outputs and amplitude control for fiber optic transceivers” (2002) IEEE MTT-S International Microwave Symposium Digest 545-8. |
Santini, J.T. et al, “Microchips as controlled drug delivery-devices”, Agnew. Chem. Int. Ed. (2000), vol. 39, p. 2396-2407. |
“SensiVida minimally invasive clinical systems” Investor Presentation Oct. 2009 28pp; http://www.sensividamedtech.com/SensiVidaGeneralOctober09.pdf. |
Shawgo, R.S. et al. “BioMEMS from drug delivery”, Current Opinion in Solid State and Material Science 6 (2002), p. 329-334. |
Shrivas et al., “A New Platform for Bioelectronics-Electronic Pill”, Cummins College, (2010).; http://www.cumminscollege.org/downloads/electronics_and_telecommunication/Newsletters/Current%20Newsletters.pdf; First cited in third party client search conducted by Patent Eagle Search May 18, 2010 (2010). |
“Smartlife awarded patent for knitted transducer” Innovation in Textiles News: http://www.innovationintextiles.com/articles/208.php; 2pp. (2009). |
“The SmartPill Wireless Motility Capsule” SmartPill, The Measure of GI Health; (2010) http://www.smartpillcorp.com/index.cfm?pagepath=Products/The_SmartPill_Capsule&id=17814. |
Solanas et al., “RFID Technology for the Health Care Sector” Recent Patents on Electrical Engineering (2008) 1, 22-31. |
Soper, S.A. et al. “Bio-Mems Technologies and Applications”, Chapter 12, “MEMS for Drug Delivery”, p. 325-346 (2007). |
Swedberg, “University Team Sees Ingestible RFID Tag as a Boon to Clinical Trials” RFID Journal Apr. 27, 2010; http://www.rfidjournal.com/article/view/7560/1. |
Tajalli et al., “Improving the power-delay performance in subthreshold source-coupled logic circuits” Integrated Circuit and System Design. Power and Timing Modeling, Optimization and Simulation, Springer Berlin Heidelberg (2008) 21-30. |
Tatbul et al., “Confidence-based data management for personal area sensor networks” ACM International Conference Proceeding Series (2004) 72. |
Tierney, M.J. et al “Electroreleasing Composite Membranes for Delivery of Insulin and other Biomacromolecules”, J. Electrochem. Soc., vol. 137, No. 6, Jun. 1990, p. 2005-2006. |
Walkey, “MOSFET Structure and Processing”; 97.398* Physical Electronics Lecture 20, 24 pages, First cited in Office Action dated Jun. 13, 2011 for U.S. Appl. No. 12/238,345. |
Xiaoming et al., “A telemedicine system for wireless home healthcare based on bluetooth and the internet” Telemedicine Journal and e-health (2004) 10(S2): S110-6. |
Yang et al., “Fast-switching frequency synthesizer with a discriminator-aided phase detector” IEEE Journal of Solid-State Circuits (2000) 35(10): 1445-52. |
Yao et al., “Low Power Digital Communication in Implantable Devices Using Volume Conduction of Biological Tissues” Proceedings of the 28th IEEE, EMBS Annual International Conference, Aug. 30-Sep. 3, 2006. |
Zimmerman, “Personal Area Networks: Near-field intrabody communication” IBM Systems Journal (1996) 35 (3-4):609-17. |
Zworykin, “A Radio Pill” Nature, (1957) 898, 179 Nature Publishing Group. |
Kang et al., “Nonwoven Fabric Active Electrodes for Biopotential Measurement During Normal Daily Activity,” IEEE Trans Biomed Eng. Jan. 2008; vol. 55, No. 1, pp. 188-195. |
Number | Date | Country | |
---|---|---|---|
20180096547 A1 | Apr 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13843307 | Mar 2013 | US |
Child | 15592423 | US |